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ABSTRACT - Motivated by potential applications to wide- 
band cellular DS-CDMA and millimeter-wave communica- 
tions, study on the generalized selection combining (GSC) 
receiver that adaptively combines a subset of M “strongest” 
paths out of L available paths has intensified over the past few 
years. The study of GSC(M,L)  receiver is also important 
from a theoretical standpoint because this model encapsulates 
both the classical selection combining and maximal-ratio com- 
bining receiver as limiting cases. Despite its importance, pub- 
lished results on GSC(M,L)  receiver performance in a 
generalized fading channel is still very limited, mainly due to 
the mathematical difficulty encountered while computing the 
first-order statistics of a linear sum of ordered random vari- 
ables. This paper provides a partial solution to the problem on 
hand by deriving relatively simple-to-evaluate expressions for 
the MGF of GSC output SNR in a variety of fading environ- 
ments given that the individual branch SNRs are independent 
and identically distributed. Moreover, our generic single inte- 
gral expression for the MGF of GSC output SNR reduces to a 
closed-form formula if the branch amplitudes follow either 
Rayleigh or Nakagami-m (positive integer fading index) dis- 
tribution. An easily programmable recursive solution of the 
MGF in Nakagami-m channels is also provided. Our expres- 
sions hold for any M and L values, and thus facilitate a compre- 
hensive analysis of GSC systems including the average symbol 
error probability (ASEP) analysis of a broad class of binary and 
M-ary modulations, average combined SNR and the outage 
rate of error probability analysis. 

The GSC diversity scheme has received considerable atten- 
tion in existing literature (i.e., scanning the literature, we 
find that that there are more than 17 published journal and 
conference papers on this subject over the past four years). 
This is owing to its ability to mitigate the detrimental 
effects of deep fades on wireless channels, while achieving 
a good compromise between receiver performance and 
implementation complexity (notably fewer electronics and 
lower power consumption). For instance, in wideband 
CDMA applications, the number of available correlators 
will limit the number of multipaths that can be utilized in a 
typical rake combiner. The G S C ( M ,  L )  receiver clearly 
merits consideration because it outperforms the M-MRC 
(i.e., signal combination from only the first Mrake fingers) 
receiver configuration, owing to the improved SNR statis- 
tic at the output of the hybrid combiner. It also reduces the 
complexity of implementation for antenna arrays using mil- 
limeter wave communications and improves the throughput 
performance of packet radio networks employing “selec- 

1. INTRODUCTION 

tive packet combining”. To explain the operation of a GSC 
receiver, first consider the statistically independent and 
identically distributed ( i i d )  random variables (RVs) 
yI, y2, . . ., yL representing the SNRs of L diversity branches. 
If the RVs are rearranged in descending order and then 
written as y(i) 2 y(21 t . . . 2 y(‘) , y(,] is called the i-th order sta- 
tistic. We shall denote GSC(M, L )  receiver, where 
1 S M S L ,  as an optimal linear combining technique 
applied to the subset y(il, y(2)r ..., y(M,. Clearly, GSC(1, L )  
and GSC(L, L )  are simply the well-known selection com- 
bining (SC) and classical maximal-ratio combining (MRC) 
receiver, respectively. Therefore, the study of the GSC 
receiver is important, both from a theoretical standpoint and 
from a practical viewpoint. 
Despite this, analysis of GSC(M,  L )  receiver performance 
in fading environments other than Rayleigh fading is rather 
limited. The primary difficulty stems from the fact that the 
ordered SNRs y(,), because of the inequalities among them, 
are necessarily dependent. Consequently, finding the 
moment generating function (MGF) of a linear sum of 

ordered RVs y = y(,l (i.e., GSC output SNR) is generally 

much more difficult than for the unordered RVs’. In the 
past [4]-[8], numerous ad-hoc attempts have been made to 
compute the MGF of ordered Gamma variates (i.e., Nakag- 
ami-m fading case), resulting in various complicated for- 
mulas. Furthermore, the existing mathematical approaches 
do not lend themselves to the performance evaluation of 
GSC receivers in Rician and Nakagami-q channels. As 
such, one of the main objectives of this paper is to report a 
novel mathematical framework which can facilitate the 
problem of analyzing the GSC receiver performance with 
i.i.d diversity branches in a variety of fading environments. 
An attractive feature of our approach is that the MGF of 
GSC(M,L)  output SNR for all common fading channel 
models as well as for all combinations of M and L values 
can be simply expressed in terms of only a single integral 
whose integrand is composed of tabulated functions. For 
the special cases of Rayleigh and Nakagami-m fading with 
positive integer fading severity index, the integral simpli- 
fies into a closed-form formula. 

1 .  For exponential RVs (i.e., Rayleigh fading case), however, the y(,, 
may be simply expressed as a linear combination of i unordered 
standard exponential RVs with an appropriate weighting [ 11. 

M 

, = I  
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The significance of this study also lies in that many of the 
previously reported GSC(M,  L )  results over Nakagami-m 
fading channels have a number of limitations. In [2], the 
final result for the error probability involves the computation 
of multiple integrals (undesirable for larger values of M). 
The main limitation of [3] is that the GSC results are only 
applicable to M = 2 and L = 3 or 4. Extending this 
approach to larger M values appears to be impossible [4]. 
Apart from coherent BPSK and BFSK, [3] did not analyze 
other higher level modulation formats such as MPSK, M-ary 
square QAM, star-QAM, DQPSK and MDPSK, to name a 
few. In [4], the authors applied the Dirichlet transformation 
to simplify a multiple integral for the MGF of GSC output 
SNR. The resulting expression for the MGF [4, Eq. (15)] 
generally requires the evaluation of (L- 1)-fold nested inte- 
gral via numerical methods, which can be tedious and com- 
plicated, particularly for large L even if M is small (e.g., 
M = 1). Also, for the positive integer m case, one has to 
simplify the (L-1)-fold integral for the MGF for each differ- 
ent M and/or L values! As such, the approach does not lend 
itself to a versatile method for calculating the ASEP for arbi- 
trary Mand L. More recently, [5] presents ASEP analysis of 
coherent and noncoherent GSC(M,  L )  receivers in Nakag- 
ami-m fading channels for both the i.i.d and the nonidentical 
fading statistics cases using an MGF approach. An equiva- 
lent MGF formula for the i.i.d Nakagami-m fading case was 
discovered independently in [6]-[7], in addition to the deri- 
vation of the average combined SNR and outage probability 
analysis of GSC systems. In [8], we refined the analysis pre- 
sented in [7] and derived the ASEP of a multitude of digital 
modulation schemes in closed-form. 
In this paper, by contrast with above, we first derive a con- 
siderably simpler expression for the MGF of SNR at the 
output of an hybrid GSC(M, L )  combiner. Besides, our for-. 
mula is not restricted to the Nakagami-m channels alone 
but rather applies to any other fading channel models such 
as the Rician fading. Different from [4], our initial formula- 
tion of the above ordered statistics problem will require 
evaluation of an M-fold integral for the MGF and the 
resulting expression holds for arbitrary L.  Using an appro- 
priate variable substitution, we were able to simply the 
M-fold nested integral into a single integral whose inte- 
grand is composed of only the PDF of a single diversity 
branch and its marginal MGF (see Appendix A). Further 
simplifications of this integral are also possible for several 
special cases. For instance, the integral can be evaluated in 
closed-form when the Nakagami-m fading severity index, 
m , assumes a positive integer value. For the real m case, 
the integral may be replaced by a single infinite series for 
his 2 or a two-fold infinite sum for any M ?  3 .  These 
MGFs can then be used to compute various performance 
metrics of a coherent GSC receiver: (i) ASEP of a variety 
of binary and multilevel modulation schemes; (ii) outage 
rate of error probability; (iii) average combined SNR. 

Besides, the MGF expression derived in this paper also 
applies to tb: performance evaluation of MFSK and DPSK 
in conjunction with a noncoherent GSC (post-d,:tection 
SC/EGC) quadratic receiver over wireless channels. 

11. GSC(M, L )  COMBINER OUPUT STATISTIC 
In this section, we derive analytical expressions for the 
GSC(M, L )  combiner output statistics by modelling the 
branch amplitudes as i.i.d Rayleigh, Rician, Nakagami-m or 
Nakagami-q RVs. These expressions can be applied directly 
for computing the ASEP and outage probability for iifferent 
modulation schemes. 
From [9], we know that when M strongest diversity Ixanches 
are selected from a total of L available i.i.d diversity 
branches the: joint PDF is given by 

Pv ,..... u,(n, ... 9 YM) = M(;)[F(YM)l'-MfiP(Y/) (1) 
/ =  I 

where yI t . ,. t y M t  0, p ( . )  and F ( . )  correspond to the PDF 
and CDF, respectively, of the SNR for a single channel 
reception (no-diversity case). Recognizing that the MGF of 
the combinds  output SNR $,(.) is the key to the unified 
analysis of a wide range of modulation schemes over wire- 
less channels, our immediate intention will be to derive the 
desired MGF. 

Let y = 

Then, the MGF of y may be computed as [8] 

M 

denote the hybrid combiner output SNR. 
I -  I 

,;.I e"*Mp,, + ~ s )  = 6 F'r e-svz.. . ,.... vJY1, ...9YM)dYM...dY2dYl 

x Gue-"M-'p(yM- I ) .  . . GIe-'''p(y, )dyl.. . dyM- IdyM (2) 

From Appendix A, we know that ( 2 )  can be re-written very 
concisely a s  

~ ~ ( s )  = ~ ~ ) 6 e . ' * " p ( y , ) [ ~ ( y , ) 1 ~ - ~ [ 9 ( s ,  Y ~ ) I ~ - ~ ~ Y ~  (3) 

where $(s,y)  = ce- 'p(x)& is the marginal MGF of SNR 

of a single diversity branch (i.e., no-diversity). Fortunately, 
closed-form solutions for $(s ,y )  are available for all the 
statistical c;hannel models that are typically used to charac- 
terize the variations in the received signal power over wire- 
less (fading) channels. They are summarized below: 
A .  Rayleigh Fading 

(4) 1 
n p ( x )  = -exp(-x/R), x 2 0 

exp[-y(s+ I / Q ) ]  
1 + s n  W , y )  = 

where 
B. Rician Fading 

:= E [ x ]  denotes the average SNR per branch. 
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(7) 

where Q( fiu, 6 b )  = [ exp(- t - a)Io(2&)dr is the first 

order Marcum Q-function, I o ( . )  is the modified Bessel func- 
tion and K 2 0 is the Rice factor. 
C. Nakagami-m Fading 

(9) 

where T(a ,  x )  = exp(-r)t"-'dt denotes the complementary 

incomplete Gamma function and m t 0.5 is the fading sever- 
ity index. If the fading index m assumes a positive integer 
value, (9) may be simplified as 

D. Nakagami-q Fading 
p ( x )  = -eexp[+]~,,[+],xt~ 1 (11) 

( I - b ) R  ( I - b ) R  

where -1 s b  = ( 1  - q 2 ) / ( 1  +q2)s  1, O < q k s =  is the fading 
parameter and Rice's I,-function is related to the first-order 
Marcum Q-function as 

I.(V/U, U )  = i [ Q ( G W ,  K V - Q ( C W ,  ml 

while W = A m .  
It is also interesting to note that (3) can also be re-stated as 

$,(SI = Mi~)~/ze-" ' "ep( tane) [  I - $(o, t a n e ) l ~ - ~  

(13) 
since F ( x )  = 1 -$(O,x) .  Besides, (3) andor (13) can be 
evaluated very efficiently using a Gauss-Chebychev quadra- 
ture (GCQ) approximation formula. For the specific case of 
i.i.d Nakagami-m channels, it is apparent that (3) or (13) will 
yield significant improvement over [5] in terms of computa- 
tional complexity because the latter involves an M-dimen- 
sional GCQ sum whereas in our case, we need to compute 
only a one-dimensional GCQ sum! 
The CDF of GSC output SNR can be readily computed by 
invoking Gil-Pelaez inversion theorem (which gives a rela- 
tion between the CDF and MGF of a random variable) and 
then use a trapezoidal rule approximation, we arrive at 

x [$(s, tan e)]"- ' sec'ede 

where the coefficient T selected is sufficiently large such 
that Pr(x > T )  _ < E ,  and E can be set to a very small value. 
Our numerical computation based on (1 4) indicates that this 
series converge slowly at low values of F,(x) (say, 
F,(x) < lo-')). Therefore, we also provide an alternative 
Laplace inversion formula for calculating the CDF of GSC 
output SNR: 

The optimal choice of c is the saddle point that minimizes 
~ ( s )  = $,(s)e""/s for s > 0 .  Since ~ ( s )  is a convex function 
in the range [ O ,  C-) , this minimum exists and unique. How- 
ever, this value need not be determined with great precision. 
Standard mathematical software such as Matlab and Maple 
can readily solve for c . The uniqueness of the global optimal 
c simplifies this search enormously. An absolute precision 
of 10-l is sufficient for this optimization (i.e., very coarse 
search). Having obtained the optimal c ,  one can compute 
F,(x)  as accurately as one desires by using a trapezoidal sum 
utilizing sufficiently many samples of integrand spaced 
closely enough together. 
We have validated that (1 5) is stable for numerical computa- 
tion even as low as lo-''. The above development is also 
important because, to the best of our knowledge, there are no 
published results on the CDF of the GSC output SNR avail- 
able in existing literature for wireless channels other than 
Rayleigh fading. Yet, it is useful for predicting the outage 
probability improvement that can be realized by using a GSC 
diversity receiver. 
It is now easy to show that the PDF of the GSC output SNR 
in a Nakagami-m fading channel is given by 

It is also possible to derive a closed-form formula for p , (x )  

and F,(x) in Nakagami-m (positive integer fading index) 
channels. They are omitted here for brevity. At this juncture, 
it is also worth noting that $&) can be evaluated using a 
recursion formula for Nakagami-m channels (for both posi- 
tive integer and real m values) directly from (2): 
(a) positive integer m 

where F(a,  b, m, n, 1) = r ( n ) / b " ,  

x F(u, a + b, m, k +  m, M- I ) } ,  M 2  2 (18) 
and the coefficients p(., ., .) may be computed using multi- 
nomial theorem, 
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P(z, 1,d)  = l/z! and P( l ,k ,d )  = k .  

(b) real m 

x ~ ( s +  :, s +  ?(L - M +  I), m, n + m(L - M +  1 1 , ~ )  (20:) 
Y Y  

where 

(21) 
b’G(a, a + b, m, k +  v +  m , M -  1 )  G ( a , b , m , v , M ) =  

* - o  r(i + v + k ) / r ( v )  

Readers are referred to [SI for a detailed description on the 
applications of the PDF, CDF and the MGF formulas in the 
characterization of GSC(M,  L )  diversity systems. 

Fig. 1 and Fig. 2 illustrate the effects of combining addi- 
tional ordered SNRs on the ASEP performance of QPSK in 
Nakagami-m fading channels. While the probability of deep 
fades decreases as the number of combined branches M 
increases, the marginal value of higher order diversities 
diminishes, however. For the same reason, the amount of 
diversity improvement diminishes as the channel condition 
improves (compare Fig. 1 and Fig. 2). It is also evident from 
these figures that increasing L also translates into a consider- 
able improvement in the receiver performance. 

111. COMPUTATIONAL RESULTS 

is specified, then the mean SNlUbranch requirement may be 
estimated as R = 4.77(0.6) = 4.6dB (interpolated from Fig. 
3) assumin,? that m = 2 ,  M = 3 and L = 5 .  If 4-QAM (or 
QPSK) is used rather than BPSK, then the mean SNUbranch 
requirement increases to R = 10.83(0.6) = 8.ldB. 

Avsrags SNR (dB1 

Fig. 2. ASEP of QPSK versus the mean SNWsymbolhrimch R for 
m = 1.5 and L = 4 or L = 5 .  

Average SNR IdBl Norrnriiied average SNR (dB1 

0 ” 
Ararago SNR ldB1 

Fig. 1. ASEP of QPSK versus the mean SNWsymbolhranch R for 
m = 3 andL = 4 orL = 5 .  

Using Fig. 3, it is possible to predict the outage probability 
of a specified modulation scheme that employs a GSC(M, 5 )  
receiver in Nakagami-m channels ( m  = 2 ) when the average 
SNWsymboVbranch is given, or alternatively, compute the 
mean SNWsymbol/branch to satisfy an outage requirement. 
For instance, if P, * = 10” is specified, then Pout = F,(4.77) 
for BPSK because the threshold SNR may be computed as 
R* = [erfc?(2 x lo”)]’ = 4.77. Alternatively, if Po,, = 10.’ 

Fig. 3.  Outage probability F,(Cl*) versus the norma1i:w.l average 
SNWsymbolhanch R/Q* for GSC(M,  5 )  receiver on a 
Nakagami-in channel (m = 2 ). 

5 

4.5 

4 

II: 

- 5 3 5  
$ 3  
n 

- p 2 5  

E b 2  

1 :  

I 1 5  2 2 5  3 3 5  4 4 5  5 
0 tl 

Number01 divBrsI1y branches L 

Fig. 4. The normalized average GSC output SNR ygsc/C2 versus the 
total num’oer of diversity branches L for various M in a 
Nakagami-m channel. 
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In Fig. 4, the normalized mean combined SNR at the GSC 
output is plotted as a function of diversity order L for differ- 
ent M values. For a fixed M, we observe that ygTc/Q 
increases with increasing L. However, the relative increase 
declines gradually as ( L  - M) increases, which is typical of 
selection diversity systems. Also, for a fixed L, increasing M 
leads to a higher ygyc/Q as anticipated. 

If the i.i.d random variables yI, y2, ..., yL , each with PDF p ( x )  
and CDF F ( x ) ,  are arranged in a descending order of magni- 
tude and then written as yI 2 y2 2 . . . 2 yL , we call yA = y(Al 
the k-th order statistic. Recognizing that the knowledge of 

MGF of y = y k L  can be used to unify the performance 

analysis of digital communication systems over fading 
channels, in this appendix, we will develop a general proce- 
dure for deriving $,(s) for any 1 I M I  L and also without 
imposing any restrictions on the fade distribution. 
From (2), we have 

APPENDIX A 

M 

I *  I 

x p e-5yv- ‘p (  yM. I ) . . . L e-”’p( yI )dy . . . dyM. I dyM (A. 1) 

Now let us consider several special cases. For M = 1 (SC), 
(A. 1) reduces to 

TU 

W S )  = L e  e-’”p(yl )[my1 )IL- ‘@I 64.2) 
For M = 2 ,  (A.l) simplifies into 

where $(s ,y )  = re -”p(x )dx  is the marginal MGF of RV yA 

and k~ { 1, 2, ..., L ) .  
Letting M = 3 in (A.I), we obtain 

w) = 6 ( 4 ) ~  e - 5 7 ~ p ( ~ 3 )  [ F ( Y ~ ) ~ ~ - ~  

(‘4.4) 

Using variable substitution U = $(s, y2) in the inner integral 
of (A.4), and after simplifications, we obtain 

(A. 5 )  WS ) = 3 (4)C e-’%(y3 1 [F(y3 1 1 ’ [Ms, y3 ) l2  dy3 

with the aid of the integral identity 

and recognizing that du = -e-”’p(y2)dy2. 
Using the procedure described above, it is straight-forward 
to show that for M = 4 , (A. I )  reduces to 

$& 1 = 4( i )C  e-”‘p (y4) M y 4  ) 1 [ $(s, y4 1 1’ dy4 (A. 7) 

In summary, we can show that the ( M -  1) -fold nested inte- 
gral in (A.l) may be replaced by a product of ( M -  1)  inte- 
grals by applying (A.6) repetitively, viz., 

[ue-’yu 1p(yM_ I) .. .L e-Ay’p(yl)dyl.. .dyM- I = [@(s’ ( M -  Y M ) I ~ - ’  l ) !  ( A 4  

Substituting (AX) into (A.l), we obtain an elegant formula 
for the MGF of GSC output SNR: 

~1 = $;)e e-”Mp(yM) [F(Y~) 1‘ 4 (s, yM)  I I drM (A. 9) 

which is valid for all combinations of L and M I L  as well 
as for different fading environments. 
At this juncture, it is instructive to examine &(.) for the two 
limiting cases of interest. When M = 1 , (A.9) is in agree- 
ment with (A.2). On the other extreme (i.e., M = L ) ,  we 
get (using (A.6)) 

(A.10) 

as expected (note: $(s, 0) = @(s) corresponds to the MGF of 
SNR in the no-diversity case). 
It is also not very difficult to demonstrate that (A.9) col- 
lapses into a single integral expression with finite integration 
limits (see (13)) while the fading signal amplitudes follow 
either the Rician, or the Nakagami-m (real m 2 0.5 ), or the 
Nakagami-q distribution. This is attributed to the availability 
of closed-form solutions for the marginal MGF $(s, a)  in 
the above cases. Moreover, if y,, y2, _.., yL are i.i.d exponen- 
tial or Gamma variates, (A.9) can also be evaluated in 
closed-form by mimicking our development in [SI. 

M s )  = L c e % y d $ ( s ,  yL)l ‘- ldyL = [$(s)lL 
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