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Abstract-The peak-to-average power ratio (PAR) of an orthogonal 
frequency division multiplexing (OFDM) signal can be substantially 
larger than that of a single carrier system. Partial transmit sequence 
(PTS) combining can improve the PAR statistics of an OFDM signal. 
For PTS, the search complexity increases exponentially with the num- 
ber of subblocks. Here, we present a new algorithm for computing the 
phase factors that achieves better performance than the exhaustive bi- 
nary search approach. We also investigate the effects of non-linear am- 
plifiers on the performance of the new algorithm, including the power 
spectral density and in-band distortion. 

Index terms - OFDM, Peak-to-average power ratio 

I .  INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) 
has been proposed for both digital TV broadcasting and 
high speed wireless networks over multipath channels [l]. 
The principal drawback of OFDM is that the peak trans- 
mitted power can be substantially larger than the average 
power. Linear amplifiers that can handle the peak power are 
less efficient. Hard limiting of the transmitted signal gener- 
ates intermodulation products that are capable of interfering 
with adjacent channels. Given these problems, following 
[Z], which first described a block coding technique to re- 
duce the signal peaks, many PAR issues have been studied 
in the literature (see [3-51 as examples among many oth- 
ers). 

The PTS [6] approach is a distortionless technique based 
on combining signal subblocks which are phase-shifted by 
constant phase factors. The technique significantly reduces 
the PAR. Unfortunately, finding the optimal phase factors 
is a complex, non-linear optimization problem. Never- 
theless, even with the phase factors discretized to 0 and 
r ,  PAR3 can be reduced by 'more than 4 dB for a 256- 
subcarrier, quadrature phase shift keyed (QPSK) modulated 
OFDM system that is partitioned into 16 signal subblocks 
(throughout the paper we denote by PAR, a value such that 
Pr(PAR > PAR,) = lo-,). If the phase factors are dis- 
cretized to four levels, for 128 subcarriers and four signal 
subblocks, PAR2 is reduced by more than 3 dB. These im- 
pressive gains are realized by using what is known as an op- 
timal binaryphase sequence (OBPS), which was originally 
suggested in [6]. With this approach, the phase factors are 
restricted to 0 and 7r and hence an exhaustive search can be 
carried out over all combinations of permissible phase fac- 
tors. A drawback to this approach is that the complexity of 
the OBPS search increases exponentially with the number 
of subblocks. In an effort to simplify the PTS method, a 
recent paper [4] has introduced new algorithms which per- 

form worse than the OBPS solution but are much less com- 
plex. Note, at this point, that since the OBPS search uses 
binary quantized phase factors, it does not yield the global 
optimum solution for PTS. 

The purpose of this paper to present a new algorithm that 
is able to compute best phase factors for PTS. This algo- 
rithm performs better than the OBPS solution. For a 256- 
subcarrier system, PA& can be reduced by approximately 
5 dB using the new algorithm. Furthermore, the complexity 
of the new algorithm does not increase exponentially with 
the number of subblocks. We also investigate the effects 
of non-linear amplifiers on the performance of the new al- 
gorithm, including the power spectral density (PSD) and 
in-band distortion. 

11. PHASE FACTOR COMPUTATION FOR PTS 

The complex envelope of the transmitted OFDM signal 
is represented by 

where j = &i and X ,  E {l,j, -1, - j }  (for simplic- 
ity, we consider QPSK modulation only). We shall write 
the input data block as a vector, X = [&, . . . , X N - 1 I T .  
Most PAR-reduction techniques are concerned with re- 
ducing max I s ( t ) l .  However, since most systems employ 
discrete-time signals, the maximum amplitude of LN sam- 
ples of s ( t )  is reduced instead, where L is the oversampling 
factor. The case L = 1 is known as critical sampling or 
Nyquist rate sampling. The case L > 1 corresponds to 
oversampling. Sampling can be implemented by a suitably 
zero-padded, inverse Fast Fourier transform (IFFT). 

For the PTS approach, the input data vector X is parti- 
tioned into disjoint subblocks, as {X,lm = 1 , 2 , .  . . , M } ,  
and these are combined to minimize the PAR. While several 
subblock partitioning schemes do exist, we assume the sim- 
plest scheme for which the subblocks consist of a contigu- 
ous set of subcarriers and are of equal size. Now, suppose 

is the zero-padded IFFT of X,. These are the partial trans- 
mit sequences. The objective is thus to combine these with 
the aim of minimizing the PAR. The signal samples at the 

that form = 1,. . . , M ,  A, = [Ami ,  Am2, . .  . , A,,LN]* 
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output of the PTS combiner can be written as 

where s = [SI(@), . . . , s L N ( @ ) I T  contains the optimized 
signal samples. We shall write the phase factors as a vector, 
@ = [ $ I ,  $2, . . . , (bMIT.  The phase factors { $ k }  are chosen 
to minimize the peak of the signal samples I s k  (a) 1 ,  So the 
minimum PAR is related to the problem 

minimize max Isk(@)l 
subject to 0 5 $,,, < 27r, 

(3) O<k<LN 

m = 1,. . . , M .  

Suppose Jrn to be the global optimal solution to this prob- 
lem. Ucfortunately, there appears to be no simple way to 
obtain 4,,, analytic$ly. For coherent demodulation, it is 
necessyy to send I$,,, to the receiver as side information. 
When I$,,, is a continuous value, an infinite number of bits 
will be required as-side information. The solution to this 
problem is to limit 4, to a level from a finite number of pre- 
determined levels (quantization). For differential demodu- 
lation, it is not necessary to send I$,,, to the receiver, but 
M - 1 subcarriers at the subblock boundaries have to be set 
aside as reference subcarriers. 

A .  Suboptimal Exhaustive Search (SES) Algorithms 

and hence ( 3 )  is approximated by the problem 
The phase factors are restricted to a finite set of values 

minimize 

If the number of rotation angles W is "sufficiently" large, 
the solution of (4) will approach that of ( 3 ) .  Furthermore, 
41 can be fixed without any performance loss. Now, there 
are only M - 1 free variables to be optimized and hence 
WM-' distinct phase vectors, ai, need to be tested. As 
such, (4) is solved using W M - l  iterations; the i-th itera- 
tion involves computing LN signal samples, each of which 
is denoted by SI, (ai), using ( 2 )  and choosing the maximum 
I s k ( @ , ) l  value. At the end of each iteration, the phase vec- 
tor is retained if the current value of max I s k ( @ i ) l  is less 
than the previous maximum. The phase vector that is re- 
tained after all the iterations are completed will be an ap- 
proximation to the global optimal solution of (3). 

In most reported studies, W = 2 and one is able to obtain 
the OBPS. In some cases, the use of more rotation angles 
(W > 2 )  has been found to yield diminishing returns. 

In SES, the computational load consists of M IFFTs, 
MLN complex multiplications per iteration, and LN op- 
erations of 1.1. If W = 2 or 4, the multiplications can be 
replaced by additions. It might also be possible to use FFT 
algorithms that are suitable for handling data sets with a 
large number of zeros in order to reduce complexity. Such 

issues are not pursued in this letter. As the computational 
cost of M 1 FFTs is fixed for any algorithm, for comparative 
purposes, we ignore that fixed cost component arid define 
the measure of complexity as 

N c -  - W M - l L N .  ( 5 )  

This measure indicates the total number of operations of 1 . 1  
and multiplications required. Given that its value increases 
exponentially with M ,  SES may not be feasible for M > 8. 

B. New a1j:orithm 

The motivation for a new algorithm arises from the fol- 
lowing observation. For given a, we have the i-th row of 
( 2 )  as 

&(a) = Aliej@' + Aziej@" + . . . + AMiej@ (6)  

where A,i: r = 1 ,2 ,  . . . , M ,  are fixed complex numbers 
dependent only on the input data frame. What choice of 9 
will minimize the amplitude of this sum? If we sort JA,.iJ 
as 

where { T I , .  . . , r ~ }  is a permutation of { 1,. . . , .U}, and 
choose 

IArlil > IArZil > * . *  > IArMil, 

where L denotes the phase angle of a complex number, then 
the minimu.m amplitude sample is given by 

(8) 

The phase selection (7) yields nearly always the maximum 
amount of amplitude cancellation for the i-th signal sample. 
As a result, it is very easy to find 9 that will nearly always 
minimize the amplitude of a single signal sample. Let @pi be 
the solutiori (7) that nearly always minimizes ]Si[. Each @i 
can be viewed as a reasonable - but not necessarily the opti- 
mal - solution for (3). Our next step is therefore to compute 
all LN such solutions and choose the one that minimizes 
the maximum signal samples. 

Similar t o  the SES algorithms for (4), the new algorithm 
can be applied in LN iterations to obtain a solution for (3); 
the i-th iteration involves computing LN signal samples 
S k  (ai) using (2) and choosing the maximum of 1.91, (ai) 1. 
At the end of each iteration, the phase vector is retained 
if the current value of max /Sk (@i) I is less than the previ- 
ous maximum. There are two main differences between the 
SES algorithms and the new algorithm. First, the number of 
iterations changes from W M - '  to L N .  Second, the phase 
vectors are computed differently. The phase factors from 
(7) are not restricted to 0 and T ,  which is the case for SES 
with W = 2. Rather, they are continuous variables between 
0 and 2 ~ .  

Si(@) = IArlil - lArzil + IArSil - . . . 

As with (9, we define the measure of complexity as 

(9) Nc = LN x LN.  

The first LIV denotes the number of iterations and the sec- 
ond denotes the number of operations per iterations. As 
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well, for W = 2, comparison of (5) and (9) reveals that the 
new algorithm is more complex than SES for small M but 
less complex for large M (> 8). 

111. NONLINEAR TRANSMITTER CHARACTERISTICS 

The OFDM signal is subject to various hardware non- 
linearities in both the transmitter and receiver. These in- 
clude signal clipping in the analog to digital (AD) con- 
verter, signal clipping in the IFFT and FFT processors with 
a limited word length, amplitude modulation (AM)/AM 
and AM/phase modulation (PM) distortion in the radio fre- 
quency (RF) amplifiers. Such non-linearities not only affect 
the performance of an OFDM system, but also may affect 
the system performance of an adjacent channel. The out- 
of-band noise of OFDM signals increases due to nonlinear 
power amplifiers operating at different back-offs. The high 
PAR of OFDM requires high back-offs at the amplifiers. 
The non-linear characteristics of the soft limiter and solid 
state power amplifier are shown below [7,8]. 

A.  Soft limiter (SL) 

acteristics of a SL can be written as 
Since the AMIPM component is zero the nonlinear char- 

Where x is the input to the SL, A is the saturated output and 
cp is the phase angle of the input x. Although most physical 
components will not exhibit this piecewise linear behavior, 
the SL can be a good model if the nonlinear element is lin- 
earized by a suitable predistortor. 

B. Solid-state power amplifiers (SSPA) 

plifiers (SSPA) can be modeled as 
The input out relationship of many solid-state power am- 

@[PI = 0. 

where p = IzI and the parameter P controls the smooth- 
ness of the transition from the linear region to the limiting 
or saturation region. When, P -+ 00 the SSPA model ap- 
proximates the SL characteristics. The back off (BO) at 
the non-linear device can be defined in terms of maximum 
power output A2 as 

where E{ lx12} is the average ofthe input power to the non- 
linear device. For PSD results, it is convenient to define the 
normalized bandwidth B, = fT, where T is the OFDM 
symbol duration. 

IV. RESULTS 

To justify the new algorithm vis-a-vis the SES approach, 
it is necessary to demonstrate two things. First, we must 

Fig. 1. Comparison of the new algorithm and the OBPS algorithm. 

demonstrate that the PAR reduction achieved with the new 
algorithm is better and its complexity less than or similar 
to that of SES. Second, we must also demonstrate that, 
if the phase factors used in the new algorithm are quan- 
tized, the resulting performance loss will be small. This is 
particularly relevant if coherent demodulation is to be em- 
ployed. These two issues are studied by simulation. In the 
results which follow, lo5 OFDM signals are generated in 
each case. The transmitted signal is oversampled by a fac- 
tor of 4 ( L  = 4). All results are for 256-subcarrier and 
QPSK-modulated systems. 

Fig. 1 compares the performance of the two algorithms 
as function of M ,  the number of subblocks. For M = 2,4, 
the new algorithm performs more than 1 dB better than the 
OBPS solution. For M = 8, the performance gain is about 
0.5 dB. For M = 16, both the algorithms perform nearly 
equally. However, in this case, the OBPS search requires 
215 operations per iteration. As this would take up an enor- 
mous amount of computer time, the results for the M = 16, 
OBPS curve are shown for a limited, random search of the 
phase factor space. We performed only 500 trials and in 
[4] it was observed that 2000 trials would result in perfor- 
mance which was essentially equivalent to the OBPS. If the 
entire 215 combinations were tested at each iteration, we 
would expect the M = 16, OBPS curve to improve some- 
what (i.e., it should be better than the new algorithm). Note 
that on the basis of (5)  and (9), the OBPS search is 32 times 
more complex than the new algorithm for M = 16. We 
also tested the execution speed ratio for the two algorithms 
executed by Matlab on a 900 MHz Pentium machine. For 
M = 16, the OBPS algorithm was 20 times slower than the 
new algorithm. Thus, in this particular case and for a simi- 
lar level of performance, the new algorithm is less complex. 
Based on this figure and other simulations not shown here, 
we can conclude the following: as M increases, the per- 
formance of both algorithms will converge while the com- 
plexity of the OBPS approach continues to increase expo- 
nentially. 

Next, we consider quantization of the phase factors in the 
new algorithm to Q bits. That is, the phase factors (8) are 
rounded off to the nearest element in the set { k7r/2Q-'I k = 
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Fig. 2. The effect of quantization on the new algorithm, for M = 8. Fig. 4. Power spectral density of conventional OFDM and FITS-OFDM 
after SSPA non-linear device. 
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Fig. 3. Power spectral density of conventional OFDM and PTS-OFDM 
after soft limiting non-linear device. 

0,1, .  . . ,2Q-l}. The minimum overhead required to trans- 
mit all the phase factors to the receiver is then ( M  - l )Q 
bits. Fig. 2 shows results for Q = 1 , 2  and 00. Even 
Q = 1 achieves a performance level within 0.4 dB of the 
unquantized case (Q = 00). Performance degradation for 
the Q = 2 case is negligible. 

The conventional OFDM and PTS-OFDM signals are 
passed through SL and SAPA non-linear devices and the 
PSDs are estimated. Fig. 3 shows the PSD for a soft limiter 
with different back-off values. At 5 dB back off the out- 
of-band noise of the two signals is nearly the same. When 
the back off is increased to 7 dB, the out-of-band noise of 
PTS-OFDM is 20 dB below at B, = 2 to that of OFDM. 
This difference increases to 60 dB, when the back off is 
increased to 9 dB. 

Somewhat similar performance is observed for a SSPA 
non-linear device, as depicted in Fig. 4. Again, no signifi- 
cant difference is observed for 5 dB back off, while out of 
band radiation is reduced by 10 dB and 50 dB at B, = 2 
for 7 dB and 9 dB back offs. Therefore, it is evident that 
PTS with the new algorithm reduces the out-of-band noise 
of an OFDM signal significantly. 

Fig.5 and 6 show the constellation diagrams of the re- 
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Fig. 5. Signiil constellation at the receiver of  conventional OFDM after 
SL non-linear device. 

ceived signal of conventional OFDM and PTS-OFDM. A 
high level of in-band distortion occurs for conventional 
OFDM for a 5 dB back off. The severity of distortion 
reduces with the increasing back off. Even for a m  11 dB 
back off some in-band signal distortion occurs. In con- 
trast, in-band distortion occurs only for a 5 dB back off for 
PTS-OFDM. Clearly, the in-band signal distortion can be 
reduced significantly by using a PTS-OFDM. 

V. CONCLUSIONS 

In conclusion, we observe that the PAR-reduction prob- 
lem for OFDM has received a great deal of attention re- 
cently. In this paper, a new algorithm for computing a good 
set of phase factors for PTS combining has been developed. 
This algorithm performs better than the OBPS search for 
small M .  As the number of subblocks increases, the per- 
formance difference between the two algorithms tends to 
zero, while the complexity of the OBPS solution increases 
exponentially. The effect of 2-bit quantization on the per- 
formance cif the new algorithm is negligible. The out-of- 
band noise and in-band distortion of an OFDM signal can 
be significantly reduced by the use of PTS-OFDM with the 
new algorithm. 
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Fig. 6. Signal constellation at the receiver of PTS-OFDM (M = 16) after 
SL non-linear device. 
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