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Computation of the Continuous-Time PAR of an
OFDM Signal with BPSK Subcarriers

C. Tellambura, Member, IEEE

Abstract—A procedure for computing the continuous-time
peak-to-average power ratio (PAR) of an orthogonal frequency-di-
vision multiplexing (OFDM) signal, with binary phase-shift
keying (BPSK) subcarriers, is developed here. It is shown that the
instantaneous envelope power function (EPF) can be transformed
into a linear sum of Chebyshev polynomials. Consequently, the
roots of the derivative of EPF can be obtained by solving a poly-
nomial. Using the procedure to evaluate the difference between
the continuous-time and discrete-time PAR, it is shown that an
oversampling factor of four is accurate.

Index Terms—Chebyshev polynomials, OFDM, PAR.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has been proposed for both digital TV

broadcasting and high speed wireless networks over multipath
channels [1]. The principal drawback of OFDM is that the
peak transmitted power may be up to times the average,
where is the number of subcarriers. Linear amplifiers that
can handle the peak power are less efficient. Hard limiting of
the transmitted signal generates intermodulation products that
can interfere with adjacent channels. Given these problems,
following [2], which first described a block coding technique
to reduce the signal peaks, many peak-to-average power ratio
(PAR)-reduction techniques have been proposed in the open
literature [3]–[5].

This letter doesnot proposeany PAR-reduction technique, in-
stead develops a procedure for computing the continuous-time
PAR an OFDM signal, with binary phase-shift keying (BPSK)
subcarriers. In many cases, the continuous-time PAR is approx-
imated using the discrete-time PAR, which is obtained from the
samples of the OFDM signal. The sampling rate is the Nyquist
rate or a multiple of it (oversampling). An important question is
how large the oversampling factor should be in order for the ap-
proximation to be accurate. Since our procedure yields the exact
PAR value, this question can be confidently settled.

To compute the continuous-time PAR, the roots of the deriva-
tive of the envelope power function (EPF) are required. At first,
finding the required roots appears very difficult. This is because
the derivative in this case is a sum of sinusoidal functions. As
such, it may require the use of a general root finding algorithm
for nonlinear functions. Fortunately, there is a way around this
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difficulty. Using a inverse cosine-based transformation, the EPF
can be converted to a sum of Chebyshev polynomials. Add to
that, the required roots are now trapped within the interval 0 to 1.
So the original root finding problem is reduced to a root finding
problem for a polynomial. Reliable algorithms for finding all
roots of a polynomial (recall that a polynomial of orderwill
have roots) are well known. Even common mathematical soft-
ware, such as MATLAB, contains functions that can handle
polynomials of orders up to several thousands. Consequently,
using this approach, the absolute peak of the envelope power
function can be evaluated exactly.

II. M ATHEMATICAL DEFINITIONS

The complex envelope of the transmitted OFDM signal is rep-
resented by

(1)

where and . We shall write an or-
dered -tuple . The instantaneous enve-
lope powerof the signal is the real-valued function

.
It is easy to show that [6], [3]

(2)

where

(3)

Equation (2) illustrates why our procedure is limited to BPSK
subcarriers. With complex modulation techniques, such as
QPSK, the EPF (2) would consist of both and

terms. From here, we have found that the EPF
cannot be transformed into a linear combination of Chebyshev
polynomials.

The continuous-time PAR is defined as

(4)

Most of PAR-reduction techniques are concerned with re-
ducing this quantity. However, since most systems employ
discrete-time signals, the maximum amplitude of samples
of is used to approximate it, whereis the oversampling
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factor. The sampling can be implemented by an inverse discrete
Fourier transform (IDFT).

Consider the IDFT of length of expressed as

(5)

The discrete-time PAR is defined as

(6)

The corresponds to oversampling. Of course, if
, the discrete-time PAR should approach the continuous-time

PAR. It is, therefore, clear that

(7)

III. COMPUTATION OF CONTINUOUS-TIME PAR

To compute Eq. (4) exactly, the roots of are
needed. Let us define

(8)

where is the th-order Chebyshev poly-
nomial [7, p. 1054]. Note that , ,

and so on [explicit expressions for the coefficients of
for any are available]. Since is a polynomial of

degree , its first derivative is a polynomial of degree
. Recall that a polynomial of degreewill have roots.

These roots can be real or complex and many algorithms exist
with which one can find all the roots of a polynomial [8, p. 369].
For example, a companion matrix can be constructed whose
eigenvalues are the desired roots. This is the method used in our
numerical examples.

Since

(9)

the derivative vanishes both at and at the transforms
of the real roots of that lie between and . Let
those roots be where . Define the
set

(10)

It is clear that all the required roots of the derivative of
are in this set. Note that is a periodic function and only
the roots between to 1 need to be considered. Therefore, the
continuous-time PAR is obtained by

(11)

The following is an outline of the complete procedure.

Step 1) Calculate the correlation coefficientsfor a given
data vector .

Fig. 1. PAR distribution for 32-carrier BPSK-OFDM.

Step 2) Obtain the coefficients of in (8).
Step 3) Solve for the roots of the derivative of .
Step 4) Evaluate on and pick the maximum.

IV. DISCUSSION ANDCONCLUSIONS

In Fig. 1, results using the above method are shown for
a 32-BPSK-subcarrier OFDM system. One million 32-bit
codewords are generated randomly. The continuous-time PAR,
computed using the above procedure, is compared with the
discrete-time PAR (6). The difference can be as high as 1 dB,
where . When , the difference is negligible. These
results are applicable for an unperturbed system in which the
signal amplitude is Rayleigh distributed (for large, is an
approximately complex Gaussian random process).

The partial transmit sequence (PTS) approach provides im-
proved PAR statistics for the OFDM signal. The input data block
is divided into subblocks which are multiplied by rotational fac-
tors in order to reduce the PAR. Here, we study the same system
above with four subblocks, while limiting the rotational factors

to and . Our sole aim is to find the continuous-time
PAR of this method. Consequently, the input data vector is mod-
ified as

The optimal vector is chosen out of eight values for
the purpose of minimizing the discrete-time PAR (6) (i.e., from
one of the eight IDFT’s per symbol), the distribution of which
is shown in the PTS discrete-PAR curve in Fig. 2 for one mil-
lion randomly generated 32-bit codewords. We can also use the
procedure to compute of , labeled in the same figure
as PTS continuous-PAR. While the discrete-time PAR is several
decibels less than that of the uncoded case, the continuous-time
PAR of PTS is reducedmuch less.This shows that both caution
and care must be exercised when the discrete-time PAR is used
as a measure of PAR-reduction. Again, when , the dif-
ference between the continuous-time and discrete-time PAR is
negligible.
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Fig. 2. PAR distribution for PTS with 32-carrier BPSK-OFDM.

In conclusion, the PAR-reduction problem for OFDM has re-
ceived a great deal of attention recently. Despite this, exact com-
putational methods for the continuous-time PAR have not been
reported. In this letter, a procedure for computing the contin-

uous-time PAR of an OFDM signal, with BPSK subcarriers, has
been developed. The procedure may be useful for theoretical
studies of PAR distributions. Using it to evaluate the difference
between the continuous-time and discrete-time PAR, it has been
shown that an oversampling factor of four is accurate.

REFERENCES

[1] J. A. C. Bingham, “Multicarrier modulation for data transmission: An
idea whose time has come,”IEEE Commun. Mag., pp. 5–14, 1990.

[2] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme
for reduction of peak to mean envelope power ratio of multicarrier trans-
mission schemes,”Electron. Lett., vol. 30, pp. 2098–2099, 1994.

[3] P. Van Eetvelt, G. Wade, and M. Tomlinson, “Peak to average power
reduction for OFDM schemes by selective scrambling,”Electron. Lett.,
vol. 32, pp. 1963–1964, Oct. 1996.

[4] L. J. Cimini Jr. and N. R. Sollenberger, “Peak-to-average power ratio
reduction of an OFDM signal using partial transmit sequences,” inProc.
IEEE. ICC’99, Vancouver, Canada, 1999.

[5] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM,
Golay complementary sequences, and Reed–Muller codes,”IEEE
Trans. Inform. Theory, vol. 45, pp. 2397–2417, Nov. 1999.

[6] C. Tellambura, “Upper bound on the peak factor ofN -multiple carriers,”
Electron. Lett., vol. 33, pp. 1608–1609, Sept. 1997.

[7] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Prod-
ucts, 5th ed. New York: Academic, 1994.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Nu-
merical Recipes in C—The Art of Scientific Computing, 2nd ed. New
York: Cambridge Univ. Press, 1992.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 22, 2009 at 18:45 from IEEE Xplore.  Restrictions apply. 


