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Improved Phase Factor Computation for the PAR
Reduction of an OFDM Signal Using PTS

Chintha TellamburaMember, IEEE

Abstract—The peak-to-average power ratio (PAR) of an or- The purpose of this paperto presentanew algorithmthatis able
thogonal frequency-division multiplexing (OFDM) signal can be to compute best phase factors for PTS. This algorithm performs
substantially larger than that of a single carrier system. Partial better than the OBPS solution. For a 256-subcarrier system

transmit sequence (PTS) combining can improve the PAR statistics . .
of an OFDM signal. As PTS requires an exhaustive search over PAR4 can be reduced by approximately 5 dB using the new

all combinations of allowed phase factors, the search complexity &lgorithm. Furthermore, the complexity of the new algorithm
increases exponentially with the number of subblocks. In this letter, does not increase exponentially with the number of subblocks.
we present a new algorithm for computing the phase factors that

achievedetterperformance than the exhaustive search approach. Il. PHASE FACTOR COMPUTATION FORPTS

Index Terms—OFDM, peak-to-average power ratio. The complex envelope of the transmitted OFDM signal is rep-

resented by
. INTRODUCTION

RTHOGONAL frequency-division multiplexing (OFDM)

has been proposed for both digital TV broadcasting an
high speed wireless networks over multipath channels [1]. T
principal drawback of OFDM is that the peak transmitted pow
can be substantially larger than the average power. Followi
[2], which first described a block coding technique to reduce th
signal peaks, many PAR issues have been studied in the litera
(see [3]-[5] as examples among many others).

The PTS [6] approach is a distortionless technique based
combining signal subblocks which are phase-shifted by const
phase factors. Even with the phase factors discretized to 0
7, PAR; can be reduced by more than 4 dB for a 256-subcarri s . "
guadrature phase shift keyed (QPSK) modulated OFDM syste or the PTS approach, the input data vedors partitioned

thatis partitioned into 16 signal subblocks [throughout the pap'QFo dlSch)mt S(;J?blo.cks’.asi(ﬁ"@A; \1/§/r?"| 0 M}I’ anéibtlheie
we denote by PAR a value such thaPr(PAR > PAR,.) — are combined to minimize the . While several subblock par-

10°"]. I the phase factors are discretized to four levels, for 18073 SCREe8 0 8C WE S5t e SR sl STEe
subcarriers and four signal subblocks, BA&reduced by more 9

than 3 dB. These impressive gains are realized by using whaf |§ ofequal size. Now, suppose thatior= 1, ..., M, Am =

T .
known as amptimal binary phase sequen@@BPS), which was Am1, A’"Qt’h' o ‘Ltl.mi tLN] |§tthe Z€ero pac_lrdhed IEF-I;.@KT'"th ¢
originally suggested in [6]. With this approach, the phase factoﬁ1ese are the partial ransmit sequences. 1he objective IS thus to

are restricted to 0 and and hence an exhaustive search can &melne these with the aim of minimizing the PAR. The signal

carried out over all combinations of permissible phase factors.s,&‘m'DIeS atthe output of the PTS combiner can be written as

N-1
1 .
s(t) = — E X, ed%mt Q)
N n=0

erej = v/—1andX, € {1,j, —1, —j} (for simplicity,
e consider QPSK modulation only). We shall write the input
ta block as a vectoX = [Xp, ..., Xny—1]¥. Most PAR-
uction techniques are concerned with redueing |s(¢)|.
Quever, since most systems employ discrete-time signals, the
maximum amplitude oL N samples o0&(¢) is reduced instead,
w ereL is the oversampling factor. The cate= 1 is known
gﬁ,tcritical sampling or Nyquist rate sampling. The casg 1
I%responds to oversampling. Sampling can be implemented by
gr:suitably zero-padded, inverse Fast Fourier transform (IFFT).

drawback to this approach is that the complexity of the OBPS Aqq Ay - A 6?“51

search increases exponentially with the number of subblocks. S— Ao Az -+ Appe e @
In an effort to simplify the PTS method, a recent paper [4] has | ...t :
introduced new algorithms which performorsethan the OBPS Ay Ay - Amrwn eda

solution but are much less complex. Note, at this point,thatsi%%eres — [S4(2) Sy (®)]F contains the optimized

the OBPS search Uses binaryquantized phase factors, itdoess‘b%al samples. We shall write the phase factors as a vector,

yield the global optimum solution for PTS. ® = [p1, b, ..., $ua]?. The phase factorp,} are chosen to
minimize the peak of the signal samples,(¢)|. So the min-
imum PAR is related to the problem
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A. Suboptimal Exhaustive Search (SES) Algorithms (7) that nearly always minimizés;|. Each®; can be viewed as

The phase factors are restricted to a finite set of values ahEfasonable—butnotnecessarily the optimal— solution for (3).
hence (3) is approximated by the problem Our next step is therefore to compute AlV such solutions and
choose the one that minimizes the maximum signal samples.

minimize Similar to the SES algorithms for (4), the new algorithm can
max_|Sk(®)] be applie_d inLN iteration; to obt_ain a solution for (3); thfth
. O<k<LN iteration involves computindg.N signal samples (®;) using
subject to (2) and choosing the maximum (&, (®;)|. At the end of each
é {2_7rl =0 W_ 1} 4) iteration, the phase vector is retained if the current value of
" wro ’ max | Sy (®;)| is less than the previous maximum. There are two

main differences between the SES algorithms and the new al-
gorithm. First, the number of iterations changes fidgfY —! to
ILN . Second, the phase vectors are computed differently. The
B’hase factors from (7) are not restricted to 0 andhich is the
ase for SES with” = 2. Rather, they are continuous variables
etween 0 an@r.

As with (5), we define the measure of complexity as

If the number of rotation angled” is “sufficiently” large, the
solution of (4) will approach that of (3). Furthermogg, can
be fixed without any performance loss. Now, there are on
M — 1 free variables to be optimized and herigg”—* dis-
tinct phase vector®};, need to be tested. As such, (4) is solveé
using WM—1 jterations; theith iteration involves computing
LN signal samples, each of which is denoted%y®; ), using

(2) and choosing the maximup¥, (®;)| value. At the end of N.= LN x LN. 9)
each iteration, the phase vector is retained if the current value

of max | Sy (®;)| is less than the previous maximum. The phasghe first LN denotes the number of iterations and the second
vector that is retained after all the iterations are completed Wilenotes the number of operations per iterations. As well, for

be an approximation to the global optimal solution of (3). W = 2, comparison of (5) and (9) reveals that the new algorithm
In SES, the computational load consistsWfiIFFT's, M LN  is more complex than SES for smalf but less complex for

complex multiplications per iteration, addV operations of-|.  |large M (> 8).
As the computational cost df/ IFFT's is fixed for any algo-
rithm, for comparative purposes, we ignore that fixed cost com- . RESULTS

ponent and define the measure of complexity as o ) . ) o
To justify the new algorithnvis-a-visthe SES approach, it is

N, =WM-ILN., (5) necessaryto demonstrate two things. First, we must demonstrate
) o ) that the PAR reduction achieved with the new algorithm is better
This measure indicates the total number of operations-0f 5 jts complexity less than or similar to that of SES. Second,
and multiplications required. Given that its value increases € myst also demonstrate that, if the phase factors used in the
ponentially withM/, SES may not be feasible fad > 8. new algorithm are quantized, the resulting performance loss will
be small. This is particularly relevant if coherent demodulation
is to be employed. These two issues are studied by simulation.
The motivation for a new algorithm arises from the followingn the results which follow10> OFDM signals are generated
observation. For givere, we have theth row of (2) as in each case. The transmitted signal is oversampled by a factor
Si(®B) = Any I 4 Agici® 4 Apgyei ©6) (r)r:od(fjlfll;\te_d :zl.sgllnrsesults are for 256-subcarrier and QPSK-

B. New Algorithm

whereA,;, 7 = 1, 2, ..., M, are fixed complex numbers de- Fig. 1 compares the performance of the two algorithms as
pendent only on the input data frame. What choicabofill ~ function of A7, the number of subblocks. Fad = 2, 4, the
minimize the amplitude of this sum? If we s¢#, ;| as new algorithm performs more than 1 dB better than the OBPS
solution. ForM = &, the performance gain is about 0.5 dB. For
|Aril > [Aril > - > [Aryl, M = 16, both the algorithms perform nearly equally. However,
where {r1, ... ra} is a permutation of(1 ..., M}, and in_this case, the OBPS search requi2és operations per iter-
choose : : : a_ltlon. As this would take up an enormous amount of computer
time, the results for thé/ = 16, OBPS curve are shown for a
e = { —L A, =13, ... ) limited, random search of the phase factor space. We performed
” T — LA, =24, ... only 500 trials and in [4] it was observed that 2000 trials would

result in performance which was essentially equivalent to the
where/ denotes the phase angle of a complex number, then §8ps |t the entire2!> combinations were tested at each iter-
minimum amplitude sample is given by ation, we would expect th&/ = 16, OBPS curve to improve

Si(®) = | Ari| — [Apsi| + [Apos]| — - @) somewhat (i.e.., it should be better than the new qlgorithm). Note

that on the basis of (5) and (9), the OBPS search is 32 times more
The phase selection (7) yields nearly always the maximuromplex than the new algorithm fé¢ = 16. We also tested the
amount of amplitude cancellation for tkth signal sample. As a execution speed ratio for the two algorithms executed by Matlab
result, it is very easy to fin@ that will nearly always minimize on a 900 MHz Pentium machine. Fbf = 16, the OBPS algo-
the amplitude of a single signal sample. Ketbe the solution rithm was 20 times slower than the new algorithm. Thus, in this
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Fig. 2. The effect of quantization on the new algorithm, fdr= 8.

particular case and for a similar level of performance, the new

algorithm is less complex.
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Fig. 3. The effect of oversampling factor fof = 8.

algorithm. Of course, this occurs at an increasing level of com-
plexity. Fig. 3 evaluates the performance of the new algorithm
as a function of the oversampling factér,Increasing. beyond

4 seems to bring very little improvement in performance.

IV. CONCLUSIONS

In conclusion, we observe that the PAR-reduction problem
for OFDM has received a great deal of attention recently. In this
paper, a new algorithm for computing a good set of phase fac-
tors for PTS combining has been developed. This algorithm per-
forms better than the OBPS search for smidll As the number
of subblocks increases, the performance difference between the
two algorithms tends to zero, while the complexity of the OBPS
solution increases exponentially. The effect of 2-bit quantiza-
tion on the performance of the new algorithm is negligible.
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