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On the Peak Factors of Sampled and
Continuous Signals

H. Minn, Student Member, IEEE, C. Tellambura, Member, IEEE, and V. K. Bhargava, Fellow, IEEE

Abstract—Motivated by a recent letter on an infinite difference
between the peak-to-average power ratios (PAPRs) of samples (a
series) and a band-limited function constructed from that series,
we investigate the amplitude and variations of a band-limited func-
tion and present some relevant bounds. Related aspects on sam-
pling theorems and sampling series are also discussed.

Index Terms—Band-limited function, peak-to-average power
ratio, sampling series, sampling theorems.

I. INTRODUCTION

I N peak-to-average power ratios (PAPR) reduction tech-
niques for OFDM, the PAPR of a continuous analog signal

(denoted by ) is approximately evaluated from that of the
signal’s samples (denoted by ). In [1], it is shown that
reducing does not necessarily result in a similar reduction
of . Recently, Wulich [2] constructed a band-limited
function from a series (of samples) and showed that is
finite but is infinite. At first sight, the example appears
to be wrong because the variations of a band-limited function
must be bounded (i.e., such a function cannot take infinite
values between two finite samples). This example therefore
raises a number of fundamental questions. Firstly, “under what
conditions, if any, can a band-limited function take infinite
values between finite samples?” To answer this, we present
several bounds for a function , its first derivative and
its variation in terms of bandwidth and signal
energy or power. These bounds follow readily from the use of
the Cauchy–Schwarz inequality and are instructive in their own
right. Secondly, “does an arbitrary sequence represent the
samples of a band-limited function?” We show that Wulich’s
sequence does not satisfy the necessary conditions.

II. WULICH’S EXAMPLE

In OFDM, we are dealing with periodic signals which have
infinite energy. Hence, the average power is used for normaliza-
tion purposes. The example in [2] deals with a nonperiodic func-
tion. While the peak of such a function can still be found, it is not
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meaningful to define the PAPR because the average power in this
case would be zero for a finite energy function. Thus, [2, Defini-
tion (2)] appears to be ill-advised but the example worked only
because the function used is of infinite energy. On the other hand,
the PAPR for an OFDM signal is upper bounded as ,
where is the number of subcarriers. This means Wulich’s ex-
ample is clearly not relevant for normal OFDM. Let us consider
Wulich’s example, [2, eq. (5)], which can be expressed as

(1)

where is the discrete-time Dirac delta function and is
the discrete-time unit step function. Applying

where indicates Fourier transform and
, the Fourier transform of is givenby [3]

(2)

Consequently, the Fourier transform of , denoted by , is
given by

(3)

Wulich’s example can be explained qualitatively as follows.
In time domain, , [2, eq. (1)], is an infinite sum of

functions. varies as and changes sign
as crosses integer values. We know that the infinite series

(4)

diverges to infinity. It can be shown that Wulich’s function be-
haves approximately as this series and hence has an infinite am-
plitude for any time instant that is not a sampling instant. Math-
ematically, for a time instantwith but ,
( an integer), the function value is given by

If for are alternating signs with equal amplitude
and , then the second summation in the above
equation will behave as in (4) while the first summation has a
finite amplitude, hence resulting in an infinite amplitude for that
time instant. Wulich’s samples are exactly of the type described
above. Hence, except at sampling instants (where the contribu-
tions from all other samples are all zeros), the function has infi-
nite amplitude for all other time instants, excluding .
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III. B OUNDS FOR ABAND-LIMITED FUNCTION

The bandwidth is a measure of how fast a function varies;
consequently, the variations of a band-limited function between
its two adjacent samples will be finite and bounded, due to the
finite bandwidth. This is provided that the function is either of
a nonperiodic, finite energy type or of a periodic, finite power
type. So, in general, the function cannot take infinite values if the
two samples are finite. In the following, we explore the bounds
for a band-limited function.

A. Periodic Function

Let us consider a band-limited periodic function , whose
power spectral density is zero for . It can be expressed
by a Fourier series as

(5)

where are Fourier series coefficients for . Applying the
Cauchy–Schwarz inequality, , to
(5), we obtain

(6)

From Parseval’s theorem we know , the total
average power of . Hence, we obtain

(7)

Similarly, we can proceed for the derivative of and obtain
the following:

(8)

Alternatively, we can find as follows:

Using and Parseval’s theorem, we get

(9)

Hence, for an OFDM signal with subcarriers, similar to
(7), we see that

(10)

and consequently, if signal constellations that have
unity amplitude, such as quadrature phase-shift keying (QPSK),
are used. We are also aware that

(11)

(12)

where is the subcarrier spacing of an OFDM signal. It is noted
that the signal amplitude does not depend on the absolute
bandwidth, but only on the number of subcarriers, regardless
of . But the variations of the signal and
depend on both and .

B. Non-Periodic Function

For a nonperiodic function with energy and Fourier
transform where for , using
Cauchy–Schwarz inequality and Parseval’s theorem would lead
to the following bounds [4]:

(13)

(14)

(15)

Thus, both the function and its variations are bounded in terms
of its energy and bandwidth. For , we have the fol-
lowing expression:

(16)
Using the mean value theorem, we can obtain

(17)

where
. The energy of Wulich’s function is given by

(18)

Hence, (13) indicates that Wulich’s function can have infi-
nite amplitudes, while (14) and (15) suggest that the variations
of can be infinite. Alternatively, (17) suggests that the vari-
ations of Wulich’s function can be infinite since
has an infinite amplitude.

IV. SAMPLING SERIES

In [2], Wulich uses a function defined in (1) as a sampling
series and constructs a band-limited function. In what follows,
we present related aspects on sampling. From [5] we know that
the following sampling expansion

(19)

where , does not hold, in general, for finite power
signals. In fact, we can observe from (5) that it requires
coefficients of orthogonal kernels in order to completely de-
fine . From this fact, we can deduce that within one period
(which is enough to represent the periodic signal) it requires

orthogonal samples (we consider only equally spaced
samples) to completely define the signal without any additional
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knowledge of the signal or restrictions on the sampling. How-
ever, if we sample over more than one period, it is not necessary
to do so at a frequency of . It is sufficient to sample at
a frequency that gives samples in only one of the consid-
ered periods. If we sample over an infinite period of time, i.e.,

, then it is sufficient to use a sampling frequency
just greater than .
Consider a signal with for . In this case,

the support of or bandwidth can be given by a closed in-
terval, . For such a band-limited signal of finite en-
ergy, the sampling theorems of Shannon [6], Whittakers and
Kotel’nikov [7] state that the required sampling frequency is

. Later, Campbell [8] extended the sampling theorem
by considering a rather general scope, namely, distribution with
bounded support beyond the originally considered case, which
was of a band-limited finite energy signal. This scope encom-
passed band-limited periodic signals. It was emphasized that it
is a requirement that the support of for the integer

be disjoint from the support of the Fourier transform
of interpolating function (in our case, an ideal low pass filter).
From [8], we can see that by means of disjoint supports, it avoids
the case with a sampling frequencyand
where when extending the bounded sup-
port finite energy function to the bounded support distribution.

Let us consider an interpolating function
whose Fourier transform is given by

.

(20)

For a band-limited finite energy signal where
but , the reconstruction of

the signal from its sampling series will result in a frequency
spectrum that is exactly the same as the original one if the orig-
inal frequency spectrum has the same value at [i.e.,

]; need not be symmetric. Even
if this condition is not satisfied, the only difference between
the original frequency spectrum and the reconstructed frequency
spectrum will be at . For a finite energy signal, the
ratio of the energy content at to the total energy of
the signal is zero. Hence, the reconstructed signal is essentially
the same as the original one, justifying the use of the sampling
theorems of Shannon, Whittakers and Kotel’nikov [6], [7].

For a band-limited periodic signal with a maximum frequency
content of , if the frequency spectra are the same at

, the reconstructed signal is exactly the same as the original
one. An example of this type is . If the fre-
quency spectra are not the same at , the reconstructed
spectrum will not be exactly the same as the original one. The re-
construction error would depend on the ratio of the error power
at to the total power of the original signal. For an
extreme case where , whose spectrum at

are exactly opposite and the above power ratio is
unity, there would be a total loss of the original signal. This fact
can also be recognized from the signal’s sampling series, which
is a set of zeros. Hence, in general, for any band-limited signal
(regardless of finite energy signal or periodic signal) whose fre-

quency spectrum for , the sufficient sam-
pling frequency is . This reflects the requirement of
disjoint supports, as stated in [8]. This disjoint support require-
ment can also be observed in another treatment on sampling se-
ries for band-limited generalized functions (see [9, Lemma 1]).
The above statement, however, does not mean that any function
with bandwidth requires but simply means
that there are some functions with bandwidth that re-
quire , while the other functions require .

Another interesting point, made by Jerri in [10], is that a
sampling series given by an arbitrary sequence ,
lacking the assertion of , does not neces-
sarily imply that the series represents a band-limited function.
The sequence used in [2] is not a periodic signal and does not
satisfy this assertion. Moreover, from its Fourier transform we
can observe that it does not have a disjoint support as required
in [8], [9]. Hence, this sequence and its corresponding function
may not fall inside the scope of previous sampling theorems.

A closer look at the time domain function in Section II reveals
that except at the sampling points where the function has values
given by [2, eq.. (5)], the function has an infinite amplitude for
all other time instants (excluding ). This unusual nature
of the function result in the unusual outcome of an infinite dif-
ference between the peak factor of the series and the peak
factor of the function as reported in [2]. We may also con-
clude that arbitrarily chosen series may not necessarily represent
a band-limited signal that is continuous or has finite jumps.

V. CONCLUSION

For a band-limited periodic signal, the amplitude is bounded
by the total power and the number of constituent harmonic
tones. The signal variation is bounded by the total power and
the bandwidth. For a band-limited nonperiodic signal, the
amplitude and variation are bounded by the total energy and
the bandwidth. Using an arbitrarily chosen data sequence for
the sampling series may not necessarily result in a band-limited
signal of interest for communications systems.
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