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Error Rates for Nakagami: Fading Multichannel
Reception of Binary and/-ary Signals

A. Annamalaj Member, IEEEand C. TellamburaMember, IEEE

Abstract—This paper derives new closed-form formulas for rapid calculation of error rates, provide useful insights into
error probabilities of single and multichannel communications  system behavior and can assist design parameter optimization.
in Rayleigh and Nakagamisn fading. Closed-form solutions to Over the past four decades, many solutions ranging over
three generic trigonometric integrals are presented as part of the bounds, approximations, integral expressions, and closed-form

main result, providing a unified method for the derivation of exact f las h b d f . f dulation f
closed-form average symbol-error probability expressions for ormulas have been presented for a variety of modulation for-

binary and M-ary signals with L independent channel diversity Mats, diversity reception techniques and fading distributions.
reception. Both selection-diversity and maximal-ratio combining Nevertheless, exact closed-form solutions are not available
(MRC) techniques are considered. The results are generally for the multichannel reception of arbitrary two-dimensional
applicable for arbitrary two-dimensional signal constellations that (2-D) M-ary signaling constellations with polygonal decision
have polygonal decision regions operating in a slow Nakagamix boundaries M-ary differential phase-shift keying (MDPSK),

fading environments with positive integer fading severity index. . . - .
MRC with generically correlated fading is also considered. The 2nd differential quadrature phase-shift keying (DQPSK) over

new expressions are applicable in many cases of practical interest. Nakagam_im fading (POSitin_a integer fading severity ind_ex_). In
The closed-form expressions derived for a single channel reception fact, previous related solutions have been generally limited to
case can be extended to provide an approximation for the error integral expressions. Where closed-form solutions were avail-

rates of binary and M-ary signals that employ an equal-gain gple, they were restricted to Rayleigh fading and/or confined

combining diversity receiver. to M-ary phase-shift keying (MPSK) ani/-ary quadrature
Index Terms—Digital communications, diversity methods, Nak- amplitude modulation (MQAM) signaling. To the best of our
agami fading, wireless communications. knowledge, this paper provides the most general solution to
date.

In [1] and [2], Proakis derives the average symbol-error
3 INTRODUCTION_ .. probability (ASER) of MPSK with maximal-ratio combining
A N EXPLODING demand for wireless communicationg\rc) in Rayleigh fading. His final expression [1, eq. (22)]
/\ has rekindled interest in accurate methods for charactgfyolves the evaluation of agf, — 1)th-order derivative, which
izing the performance of digital communications systems ovgs, pe cumbersome for large alphabet sizes > 4) with
fading channels. Nakagami- distribution (also known as the 4 high-order of diversity. In [3], Chennakeshu and Anderson
m-distribution) is the widely accepted statistical model due {qrive an alternative closed-form ASER for MRC and selec-
both its good fit with experimental results and its Versat”i%on-diversity combining (SDC) in Rayleigh fading: = 1).
Them-distribution covers a wide range of fading scenarios byhe ey to their solution is an expression for the distribution
varying its f:_:ldlr)g mdem, |nclud.es the Rayleigh and one_—S|deq3f the signal phase of MPSK signaling in Rayleigh fading,
(_Baussmn distributions as special cases for the respective fadifhined after a lengthy derivation. An approximate solution
figures ofm = 1 andm = 0.5, and can closely approximate ¢, MpSK with equal-gain combining (EGC) is also obtained.
the Rician and Hoyt distributions. Nakagami-distribution - gyanayake [4] derived closed-form solutions for MPSK over
also models channel conditions more severe than Raer'IQElerighfading channels. In [5], Miyagad al.derive a recur-
fading (when0.5 < m < 1). Given this, the theoretical per-gjye formula for the ASER of MPSK in a Nakagamifading
formance of communications systems in Nakagamiading channel with positive integer.. An approximate solution for
is valuable. Particularly important are exact closed-form errgde MRC case is also provided. Aalo and Pattaramalai [6]
probability expressions because such expressions facilitate e [3] for MRC reception of MPSK in Nakagamifading
for positive integefn. In [7], Lu et al.present a closed-form so-
lution for M -ary QAM employing SDC and MRC in Rayleigh
Paper approved by Y. Li, the Editor for Wireless Communications Theofading. The MRC analysis is extended to Nakagamfading
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can be large at the deep tails of the distributions. to the above by deriving new exact closed-form solutions for
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the multichannel reception (MRC and SDC) of arbitrary 2-Ibrom [15, eq. (2.148.4)], we know that
M -ary signals with polygonal decision regions, MDPSK and

7/4-DQPSK over Nakagamir fading for positive integer ( )= /b dx
m. Our approach also directly leads to closed-form solutions * ™ ™ o (L4 ax2)n
for MRC in generically correlated Nakagami-fading (with _ oy

VinL - - (2n — 3)N 1 1
positive integer fading severity index). = m(tam b—tan™" a)

In Section I, we derive closed-form solutions to three generic ’ .

trigonometric integrals that arise in the analysis of binary and 2n — 3N & (n—Fk—1)!
M -ary signals over Rayleigh and Nakagamifading channels. (n—1)! 2k Iy — Qk — 1!
Several new closed-form solutions for single channel reception b
of M-ary signals in Nakagami: fading with positive integer X [ — @ } n>1.
m are derived in Section Ill. In Section IV, we present new re- (1+2)n=k - (1+a2)n—F
sults for M -ary signals employing MRC in both independent )
and correlated fading cases by exploiting the integral |dent|t|es
derived in Section II. Next, in Section V, closed-form solution¢here (2n. — 3)!! = 13-.-(2n — 3) and (n — 1)! =
for M-ary signals employing SDC are derived. In Section ViL-2.3---(n — 1). Now we have a complete closed-form

we derive approximate closed-form solutions for arbitrary 2- @olution foric(6r, Ou, a, b)
M -ary signals with polygonal decision regions that employ an
EGC receiver. Finally, the main points of this paper are summalc (0L, bu, a, b)

rized in Section VII. Pt VRS AN
= (bu—0L) +Z Z 1+a)n 1/2<>< r )

Il. DERIVATION OF CLOSED-FORM SOLUTIONS FOR ACLASS

OF TRIGNOMETRIC INTEGRALS 1+4+a
x P cot Oy,
In this section, we derive closed-form solutions for definite a

trigonometric integrals oftheforrﬁf:' (cos? 6/a+cos? 6) db,
¥ (sin® 6/a + sin® 6)? d6, and f,"[1 + ¢ cos /a + 1 +
c cos )" dé for positive intege > 1. These integrals are not 0 1 gn2e 1°
(0, Ov, a, b) / { } 9

or

¢ cot 0, 1 +7’> (4)

whereP(., ., .) is defined in (3). Furthermore, recognizing that

listed in well-known standard tables of integrals such as [15],
yet the integrals are known to arise in the analysis of single
and multichannel reception of both binary ablary signals in . /6‘ /2 [ cos? 6 } b 5
Rayleigh and Nakagamiz fading channels. Although it is pos- N o,4x/2 La+cos?f

sible to express the solution to these integrals by equivalence,

with the results obtained from [3] or [6], here we derive therfleriving a closed-form solution fafs(6r,, 6, a, b) becomes
directly. Interestingly, the final results obtained via these tw@raightforward

approaches are slightly different (see the Appendix). But more

importantly, our derivation is short and simple, unlike the dels(Or; Ou, a, b)

velopment in [3]. Several applications of these new expressions

b — avre 1/2 b n—1
will be discussed in Sections I1I-VI. = (6 —0L) + Z( Z Qiay 2 < ) < . )
To begin, let us define n=1 =0

, 1 1
le(Or, v, a, b) x P /2% tan 67, /= tan 6, 141 ] . (6)
cos2 9 1° a a

8.
_ / [—29} 4,  a>0
6, L@ cos In [5 eq. (24)], Miyagak'et al.presented a recursive solution

b bu T I to fo (d6/(14 ¢ sin® 6)™) for ¢ > 0 and integer > 1. Using
= (0u—0r) + Z < )/ [1"‘5 cos 9} df. 3 variable substitution = /T + ¢ tan # and then following
n=1 o the development of (2), it is possible to derive a nonrecursive

@) formula for computing the sine integral

Lettingc = (1/a) and subsequently using variable substitution

a + sin® 6

1+ ¢ cot 6, we immediately get /“’U d
/*’U dé o, (14 csin?@)m
g9, [L+ccos®f|" n—l o n—1
1 Ve cot b1 (1 4 z?) L B ,Z:% W( T )
1+C)n (I+o)y17? /\/@ cot 6y (1422)" ) x P(vV1+ctan 0, v1+ctan 6y, 1+7r). (7)
n—1

r n—1 V1< cot 6 1 ) ] ]
ey < ) / S ey d».  Infact, our closed-form solution (7) is more general yet simpler
1+C r Vi cot 0y (142%) than [5, eq. (24)]. Note that by mimicking the development of
(2) (1) and then using (7) in (5), we can again obtain (6).

r=0
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Now we shall consider evaluation of the trigonometric intewherep.,(.) is the probability density function (pdf) of instan-

gral taneous SNR ang is the average SNR per symbol. Next, we
0 14 ccos 6 \Y derive closed-form solutions for several modulation formats in
Iy (6L, 6y b) = —_ 0 b>1 i i [ itive i i
v(0r,0u,c a,b) /eL <1+a+c o 9> , Nakagamim fading with positive integern using the MGF

method [9], [10] and the trigonometric identities derived in the
(®) preceding section.
which is commonly encountered in the analysis of MDPSK and
7 /4-DQPSK over Rayleigh and Nakagamifading channels. A. BPSK and Binary Frequency-Shift Keying (BFSK)

Following the development of (1), the above expression can ré-the conditional-error probability (CEP) for coherent binary

stated as phase-shift keying and frequency-shift keying can be expressed
Iv(0r, 0u, c, a, b) as [9, eq. (26)], [10, eq. (5)]
_ B Py(y) = 4§ exfe( /@)
= (v — 1) +Z <><1+a+cc089> 40 2 /2
N 8y :l/ exp(— @ )d9
(6 —6r) +Z /Ld—e T Jo cos? 0
vouE 1+a 9, (14¢Ccos ) 1 /2 ary
) =— / exp <— — ) de (13)
T Jo sin” 6

whereé = ¢/(1 + a). Using trigonometric identityos(2z) =

2 cos?(z) — 1 = 1 — 2 sin(z), it can readily be shown that wherea = 1 for BPSK anda = 1/2 for BFSK. The ad-

vantage of these exponential representations for analysis over
/QU df 2 /0U/2 do fading channels is that the final average error rates can be ex-
6, ( 6

L+ccos 0)r (1= Jo, 0 2¢ , 4| Ppressed strictly in terms of the MGF. Therefore, the ABER can
14— cos 0 be readily shown as
2 /av/ 2 db 1 “
= - 7 P,== —~ ) d
(1+0)" Jo 2 [1_ 2¢ sin? 9} ’ 7r/0 % (COS2 9)
1+¢ /2 2 m
1
(10) = _/ <2COS—9_> do

7 Jo cos? 6+ ay/m

and thus a complete solution by (61,, 6, ¢, a, b) can be ob- 1

tained using (10) and (2) or (7) == 1.(0, 7 /2, ay/m, m) (14)

Iy(8r, bu, ¢, a, b) or alternatively

= (6y—6r) —i—ZZ( ) <c )n:io ﬁb:l/oﬁp% <L> do = %15(07 T/2, ay/m, m)

T w sin? @
y n—1 /1—|—a—c (15)
T 1—|—a+c 1—|—a+c
1+a—c 6, [1+a—c where the closed-form solutions fodc(., ., .,.) and
Py Ttate tan 50\ Ttate Is(., ., ., .) are given by (4) and (6) (or the equivalent

expressions in the Appendix). A slightly more general solution
(1) for this specific case (i.ef, = 0 andéy; = =/2) can be

Note that it is fairly easy to prograd(., -, ., .), Is(., ., ., .) obtained by expressingrfc(.) in terms of the incomplete

and Iy(., ., ., ., .) in common mathematical software suchsamma function and then using identity [15, eq. (6.455.1)],

as Matlab and Mathematica. Furthermore, the binomial cosfz.,

ficients can be easily computed in a recursive fashion. Thus,

exact error rates can be computed in closed form for marﬂfﬁ(ov 7/2, ¢, m)

different cases (see the following sections). _ [(im+1/2) L 1, e 1 el 1
2ml(m)(1+c)™ \ 14¢? 1+c¢
[ll. SINGLE CHANNEL RECEPTION (16)
For L = 1, the moment generating function (MGF) of >
signal-to-noise ratio (SNR) in Nakagami-fading is given by which holds for any positive reak = 0.5.
[10] N B. MPSK and MDPSK
Py(s) = / exp(—sv)p(v) dy The CEP for MPSK is given by [13, eq. (5)]
0
m " 1 1 M — sin*(7 /M)
= > = 12 P == — =12 db. 17
irs) e mzy @ pe=r [0 e (TR a an)
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Hence, the closed-form formula for the ASER in Nakagami- In fact, the ASER for this special case of interest can be ob-
fading with positive integem can be obtained immediately bytained directly from (22) by substituting = /2 — /2 and

inspection

Py = % 150, 7 — 7 /M, (5/m) sin(x /M), m)

which is considerably simpler than [5, eq. (22)].

Pawula has recently shown that the CEP of MDPSK can

written as [16, eq. (3)]

Ps(y) =+ /0 o exp|: — sin®(r/M) } dé. (19)

™

1+ cos(m/M)cos 6
Therefore, the corresponding ASER is given by

1 M sin?(n /M)
PS_;/O ¢7<1+COS(7r/M)COS 9) 40

1 w—7/M
:;/0

N < 1+ cos(n /M) cos 6

1+ cos(n/M)cos 8 + (F/m) Sin2(7r/M)> i
- % 1v(0, 7 — 7/ M, cos(r /M), (7 /m) sin®(x /M), m)

wherely (., ., ., ., .) may be computed using (11).

C. Noncoherent Detection of Equiprobable Correlated Binary

Signals andr/4-DQPSK

The CEP for noncoherent detection of equal energy,
equiprobable, binary nonorthogonal complex signals can be

written as (with the aid of identity [16, eq. (10)])

Pe() = Qav/A, by3) — 5 Tofaby)exp [~ 2 (a2 +7)

1 (" —(? — a?)?
= dé (21
27 /0 P <2(a2 + b?) — 4ab cos 8 (21)

wherea = \/(1— T— [p/2), b = \/(1+ T [7P/2

and0 < |p| < 1 is the magnitude of the cross-correlation coe
ficient between the two signals. In a similar fashion to the dev
opment of (20), the desired ASER can be deduced by inspect

o1 —2ab (B - a®)2(7/m)

P I .
S o v <07 U (CL2 +b2)7 2(@2 +b2) 7m> (22)

In recent years, performance analysis of DQPSK has recei

b= v/2 + v/2. Note also that (24) is considerably simpler than
[18, eq. (52)] and does not require the evaluation of higher-order

(18)  derivatives (which can be cumbersome wheris large).

D. MQAM and QPSK

By utilizing the exponential integral representations for
erfc(.) anderfc?(.), the exact CEP ol/-ary square-QAM can
be expressed as

PS(’Y) = — exXp <— Sin2 9 d9 I

T Jo T Jo
Py
X € — do
P < sin? 9)
4 ~7T/2 4 2 ~7T/2
- exp (_ pz ) do — 24
T Jo cos? 6 T Jra
py
X exp (— — 9) a9 (25)

wherep = 1.5/(M — 1)andqg = 1 — 1/ M. From these we
immediately get closed-form solutions for the ASER in Nak-
agamismn fading (positive integern)

= 4q _ 4q°
PS :?IS(Oa 71'/2, pv/m’ m) - 7

X IS(Ov 7r/47 pﬁ/mv m)

4 4q°
==L 1c(0, /2, p7/m, m) - =
X IC(W/47 7T/2, pi/mv m) (26)
where Io(., ., .,.) and Is(., ., .,.) are calculated using

(4) and (6), respectively. Although further simplifications
of (4) and (6) are possible whefl;, = 0, 8, = = /2] and
[fr, = 0, 8;; = w/4], we refrain from doing so because once the
generic closed-form expressions (4) and (6) are implemented,
they can immediately be used to compute the error rates of a
proad class of modulation formats (e.g., star-QAM, MPSK,
rbitrary 2-D M-ary signal constellations)—with or without
jyersity reception, by simply varying their arguments. In
addition, recognizing that the signal constellations for QPSK
and 4-QAM are very similar, the performance of QPSK can be
calculated directly from (26) by substitutidg = 4.

d

%D M-ary Signals

considerable attention, owing to its adoption in the second gen- _ _ _ _
eration of North American and Japanese digital cellular stan-In [13], Craig derived the CEP for arbitrary 2-I-ary sig- -
dards (see [17]-[19] and their references). The CEP for tHigling constellations with polygonal decision boundaries, using

modulation format can be expressed as

1 [T exp(—(2 — V2 cos 6))
PS(W)_%/O V2 — cos 6

o ()
=— exp| ————
27 Jo p2—\/§C059

do

geometric relations, namely

Ps(y) = = ES:W /m e [_'y‘”“ SmQ(‘P"‘)} o (27)
¥) = o= : Xp | ——5
o 27 — b 0 sin?(8 + o)

(23) whereS is the total number of signal points or decision sub-

regions,W,, is thea priori probability of the symbol to which

and hence the ASER far/4-DQPSK with Gray coding may be subregiork correspondsyy,, 7. andg;, are parameters relating

computed efficiently using
1

Po=
o 27

IV(07 7, _\/5/27 7/m7 m)

to decision subregioh and they are independent of the instan-
taneous SNRy. Since most constellations have symmetry, the
number of subregions with distinct geometries is usually less
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than$. For our subsequent development, it will be more conve-a) BPSK and BFSKP;, = (1/7)1(0, 7/2, ay/m, mL);

nient to express (27) as b) MPSK:Ps = (1/7)Is(0, 7 — x /M, (7/m)sin®(x /M),
L;
RS o {—’Wk Sin2(¢k)} &) MDPSK: Ps = (0, ® —
Py = LS, o [ %S 0R)] 4 Ps = (Ym0, 7 — /M, cos(n/M),
s(7) 27 ;::1 k/% P sin? 6 (7/m) sin®(x /M), mL);

(28)  d) DQPSKwith Gray codingPs = (1/27)Iy (0, 7—/2/2,
so that we can immediately get a closed-form solution for the 5 /m, mL);

ASER e) MQAM: Ps = (4¢/m)Is(0, ©/2, p7/m, mL) —
S (°/m)Is(0, /4, py/m, mL);
Ps = o Z Wilsor, e + or, (F7/m)ag sin? o, m] f) 2-D M-ary signalsPs = (1/27) >, _, Wils[pr, m +
k=1 29) ok, (F/m)ay sin® pr, mL].
wherels(.. .. . .} is defined in (6). The previous result in theIt should be noted that the restriction of a positive integer fading

: ) - ) severity index is rather stringent and may be unnecessary. In
literature has been restricted to a finite-range integral exXpress|an, o .an obtain closed-form formulas as lonana is an
for anym 2 I(see [11, eq. (7)]). integer. Thus, many more cases sucliras= 0.5, L = 2} and

As an illustrative example, let us consider the error rate cgl- .
! . . ) . .. = 1.2, L = 5} could be handled using the above expres-
culation of 16-star QAM in Nakagamiz fading with positive a{llm ’ o 9 P

integerm. The corresponding ASER can be readily evaluatesdons'
using (29) with the following parameters [11]: B. Independent and Nonidentical Fading
S=4 If the diversity branches are distinct and ad}'s aLssume in-
2 2 teger values, we can show that the MGFgf= > can
—az=as=—— |(B—1)2 2-1) (B+1)? 9 ’ 121 Vi
1= = A=y + 2 [(/ ;A (\/_ ) (B+1) } be expressed (by partial fractions) as
8 g+1
=— =175 = tan~! 2-1)2—= L my
N (b e o0 =11 (55)
_ I 7 o\t s
M2 =7 — 7T e = 3 n 1= ¥3 = 2 T L m ( o -
_7 _T _ = AT (31)
p2=7¢ <p4—8+771 Wi =1, for 1,...,4 ;k:l l <mz+8’yl>

where/3 denotes the ring ratio and equally-likely transmissiongnere
of signals are assumed. For the particular case 6f 1, (29)

reduces to [11, eq. (13)] as expected. A=) _ (7, /)" H mi\"
! o (ml — k)! iy 71
IV. MAXIMAL -RATIO DIVERSITY ’ .
my —k
In this section, we show that it also straightforward to derive X % H %m .
closed-form ASER expressions for a broad class of modulation dim i=1, il (£ +mi/7) b/
=—my 1

formats that employ MRC in Nakagami-fading. Specifically, (32)

the following four cases can be treated easily: 1) independent

and identically distributed (i.i.d.) diversity branches wheté  Once again, by noting the similarities between (31) and (12),
is a positive integer; 2) dissimilar diversity branches with inwve can directly obtain closed-form solutions for the ASER of

tegermy, I =1, ..., L; 3) identicalm, /4; across the diversity different modulation formats in Nakagami-fading (positive
branches anl", m; is a positive integer; and 4) generically corintegerm) with dissimilar statistics. For instance, performance
related fading with integer. of the MDPSK and any 2-D signal constellation with polygonal
_ ) decision regions may be computed using (33) and (34), respec-
A. Independent and Identical Fading tively
When all the diversity branches are i.i.d., the MGF of the | Lo
i i j 5 my—k
combiner output SNR is given by Pg = - Z Z A§ 1—k)
m mL 1 =1 k=1
by, (8) = < _> ) m2z - (30) m m 5
s 2 i o o _l .2
m—+ sy - x Iy |:0,7I' M’COS(M)’ <ml>sm (W/M),k‘:|
where¥ denotes the average received SNR per symbol per (33)

branch. Comparison between (30) and (12) reveals that both L m s
MGFs are almost identical except for the power constant. GivelﬂsS _ 1 Z Z Almi=k) Z
this, closed-form ASER formulas for the i.i.d. MRC case can 2 : oy
be easily obtained from the results in Section Il by replacing

=1 k=1
x W_Is [goz, n. + @, (7;/m) a. sin ¢, k] . (34

m — mLinthe lastargument of(., -, ., .), Is(., ., ., .) and
Iv(., ., ., ., .). Consequently, we can immediately obtain th€or all the other modulation schemes discussed in Section I,
following closed-form solutions by inspection: the corresponding ASER formulas in closed form can be ob-
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tained by inspection, similar to the two examples illustrategor the particular case ef. = 1 (correlated Rayleigh fading),
above. (39) reduces to
Now we shall consider a special case whetg/y, = ¥,
l=1,..., L and}’, m; = D, whereD is a positive integer. L T L 1 Al
In this case, the random variabjg(i.e., combiner output SNR) P (5) = Z I+sN) Z 1+ s\ H N— N
also has a Gamma pdf, viz., ‘ (a1)
D
pr.(7) = ﬁ 7P exp(—0). (35)

Recognizing that the MGFs depicted in (39) and (31) are
almost identical, we can therefore derive closed-form ASER
expressions for a broad class of binary dddary modulation

1 b schemes in correlated Rayleigh and Nakaganfading cases
by () = <m) (36) (as we have done for the independent diversity branches with

. . dissimilar fading statistics scenario). Thus, the following
Therefore, closed-form solutions for the ASER can be Obta'”e%sed-form solutions are obtained by inspection from Sec-

following our treatment in Section IIl. As an example, the pet;o, |-
formance of MPSK is given by a) BPSK and BFSKP, = (1/r) Elel m ugmfk)lc

The Laplace transform of (35) yields the MGF

- 1 1 [0, (7/2), aXi, K];
P,==1 — /M, = sin®(x /M), D 7 ’ B ek
s . S |:Oa s 71'/ 3 ”(9 S11 (71'/ )a :| (3 ) b) MPSK PS _ -, (1/7r) ZlL:l ’Zl:l [/Lg k)IS
where we have replaced the final argumentlef., ., ., .) [0, m = (w/M), Avsin (m /M), Kl;

¢) MDPSK: Ps = (1/m) 3k, S ™ ™M1y o, = —

in (18) (single channel reception case) fream — D and (r /M), cos(r /M), i Sin2(7r_/M), i

let m/4¥ — ¢ in its third argument. In case of DQPSK or

MDPSK, the final solution is attained from the closed-form @ Nogorth(c:gggal signaling:Ps = (1/2m) 31,

ASER formula for single channel reception case by substituting >kt #_ dv [0, 7, (=2ab/(a®  + %)),

m/5 — 9 andm — D in I(., ., ., ., .)’s fourth and fifth (b — a®)2\/2(a® +17)), K], _ B

arguments, respectively. e) DQPSK with Gray coding:Ps = (1/2m)>,.,
M [0, 1 —v2/2, M, K]

C. Correlated Fading ) MQAM: Ps =  (dg/m iy S ™M
When the diversity branches are correlated, the analysis pro- (5[0 7/2, pAi, k] = qls [0, /4, pA, K]); .
ceeds in a similar manner to the independent fading scenario. I§) 2-D M-ary signals: P = (1/2m) 3 4
fact, the MGF approach for MRC only requires knowledge of o™y WL [0z 72 + ©2,

the MGF of the combiner output SNR in order to calculate the ~ \a. sin’ ., k.

ASER. For an arbitrarily correlated Nakagamifading envi- To the best of the authors’ knowledge, all of the above expres-
ronment (with the assumption that the fading severity index ésons are new. Previous results have been limited to MPSK in
common to all the diversity branches), the desired MGF may Bewyleigh fading [14] or a finite-range integral expression (e.g.,

written in the form [8], [20] [8)).
1

T — 38 V. SELECTION DIVERSITY
(1 + S)\l)m (38)

=

¢y, (5) =det(I + sRA)™™" =

=1

Recognizing that the MGF of combiner output SNR is the
where I is the L x L identity matrix, A is a positive def- key to unified analysis of a wide range of digital modulations
inite matrix of dimensionZ (determined by the branchover fading channels, in this section, we first derive the desired
covariance matrix), R is a diagonal matrix defined asMGF in Nakagamim fading (positive integer fading severity
R = diag(y,/m, ..., 7/m), and\; is thelth eigenvalue of index). Subsequently, closed-form ASER formulas for several
matrix KA. modulation schemes employing SDC are derived with the aid
Using partial fractions, (38) can be expressed in a more dgrtrigonometric integral identities presented in Section 1.

sirable form (i.e., which facilitates the derivation of closed-form By utilizing the Laplace transformation of a derivative prop-
ASER formulas in bivariate Nakagami-fading for positive in-  erty2 it is possible to describe the MGF in terms of the cumu-
teger fading severity index) lative distribution function (cdf) instead of the usual definition

L m . 1 k involving the pdf
by (s) = e <TS)\1> (39)
k=1

=t Py (s) = / exp(—s7)F,, (v) dy (42)
where 0
A= gmek L 1 sincef’,, (0) = 0 for all common fading channel models, and
Ngm—"‘) S — H S — the cdf of SDC output SNR is simply the product of the cdf of
(m — k)! dgm—* 1 i#l()\it‘i‘l)m
- t=—1/X 2Given an original functionf(¢) and its Laplace transformG(s),

(40)  (a/dt)f(t) & sG(s) = £(0).
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SNR from individual diversity branches, viz., receivers can be obtained by inspection. For instance, error rate
expressions for MDPSK and MPSK are given by (48) and (49),
= respectively
=[I 7(» (43)

n(m—1)

L
—= 1 nfL k!
whereF;(v) —’y(ml, myy/7,) /T (my) for Nakagamim fading Ps ~r 2_:<—1> <n> Z /3’"7 k
and notationy(a, z) = [, e~'t*~* dt denotes the incomplete =0 k=0

Gamma function. ) _ N2
X {Iy [0, ™ — 5 €08 (M) , - sin (n/M), k
A. Independent and Identical Fading [ 7r 7r
. . . . - ILI 70 COS (_) )
The SDC output SNR in Nakagami- fading (integerm) M M
with i.i.d. diversity branches can be expressed as T sin(r /M), k + 1} } (48)
nm

n(m—1)

o-[m(FEE )] o)l
= n=0
(i

k=0

S OeEEEE ] el e
T () e S (4 B O | O

(44)

Next, we demonstrate that itis possible to derive an even more
after expanding the first expression in (44) binomially and thesoncise solution for the ASER if we derive the MGF of SDC
using multinomial theorem. Coefficients,,, in (44) may be output SNR from its pdf. For the i.i.d. case, the pdf is given by
computed using [21]

=i (5) 77 e ()
3 = — — X —
_ oy foen DT\ T TP
Bin= Y 0—7)! Io, (n-1)(m-1))(n)  (49) ) e
i=k—m-+1 —mey m— my 1
I—exp| — Z = |
wherefoo = Bon = 1, Br1 = 1/k!, B, = n and v im0 \ 7 :
L—1
1 a<n<b L nfL—1 —my(n—+1)
b SnS =~ _SN"(-1)" —
Lo, 1(m) {0, otherwise. T(m) nz::O( ) < n ) P { 5
Thus, the MGF ofy, is given by (obtained by substituting the m—1) e
final expression in (44) into (42) and after simplifications) x Z Brn <§) 2 . (50)
k=0

L n(m koo . .
nfL k'm” sy
b (5) = Z(_l) < ) Z B o (46) Therefore, the desired MGF can be readily shown as

n=0 k=0
L—1 n(m—1)
. L Lk +m)
which can be restated as Pr.(s) = T(m) nz::o(— < ) Z Prn W
I, n(m—1)
L k! 1 mth
b= (1) X q } 51
=) 2 e I+ 7/ [m(n 1) D
o 1 _ ! . (47) Wwith the aid of identity [15, eq. (3.351.3)]. Now using (51), we
[1+sF/mn)]*  [1+s 7/ nm)]* get another closed-form solution for the ASER of MDPSK with
SDC
For the particular case ofi = 1, (46) reduces to the familiar
expression [9, eq. (17)]. Lt L—1\"3Y L(k+m
Now it should be apparent that we can also immediately dePs = . Z(—l)"( ) > Brn —F(m)((n n 1))m+k
rive closed-form ASER expressions for SDC systems in Nak- n=0 k=0
agamim fading, following our treatment for the MRC case. Ian 7r o
Thus, the solutions for a variety of digital modulations with SDC S R VAl (M) " m(n 4 1)
o el kw0 2) = (1 )4 = = Eie* ) o < s/ M), m 8] 2
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Since (52) is considerably simpler than (48), it is recommend&d Independent but Nonidentical Fading

that (51) be useq to derive closgd—form error rate. expre_ssion%onowing the development of (50), we can show that the pdf
for other modulation formats. For instance, we can |mmed|ate6\(% at the output of a dual-branch SDC with dissimilar fading

write the closed-form ASER formula for MQAM with SDC bystatistics is given by
inspection [using (51) and (26)]

2 m
1 i\ —myy
" ah p= Y o (B e (22

L—-1
— 4qL L-1 L'k +m) I=1, 25l R T
Ps=— -H" e, ————————— '~

s . Z( ) < n ) Z Pr T(m)(n + 1)m++ — N
n=0 k=0 —my mey 1
__ x [1— exXp — Z I | - (56)
7r ry i YV k!
x<Is |0, =, ————— m+k k=0
2" m(n+1)
- ~ Then, finding Laplace transform of (56), and after simplifica-
—qls |0, — P m+k| . (53) the MGF b d
"D mn+ 1) ions, the can be expressed as
Using the above technique, one can easily derive closed-form 2 1 my mel k4my—1
solutions for all other modulation schemes discussed in Sect+, (7) = Z <m> - Z < )
tion Il (omitted here for the sake of brevity). Moreover, it =1, 25l T k=0
should be noted that the advantage of the new results derived B o
in this section are twofold. First of all, our new expressions o ims)"(7m)™
hold for any arbitraryl. and this general case can be treated in (Fym, +7,my )kt
a single formula. More importantly, our solutions are in closed ketmy
form. Both these points contrast with the recent results put 1
forward by Donget al.[12] for the special case of 2-D signal X — e . (57
constellations with polygonal decision boundaries. For the 14—t
’YImZ—i_’Yzml

second and the third-order diversity, [12, egs. (27) and (28)]
require an evaluation of a single finite-range integrgl. Whereasgnce again, the closed-form error rates for a broad class of
for the general case of arbitray, [12, eq. (25)] involves igita modulations employing dual-branch SDC can be attained
a doubly |n.tegral expression. It is therefore evident thgt OH{ inspection. For instance, the ASER of 24D-ary signal con-
approach yields both exact closed-form and computationallys||ations and binary nonorthogonal signaling in Nakagami-
efficient results for the Nakagami- fading with integer fading fading with integern may be calculated using (58) and (59),

severity index. Note also that [12, egs. (27) and (28)] can begpectively, shown at the bottom of the next page. It is also pos-
readily transformed into an integral form identical to (5) (Usingjpe to derive closed-form error rate expressions forany 2

variable substitutior® = 6 + ) and we can immediately ot hractical interest. One way to achieve this is to substitute (43)

express these integrals in closed form into (42), and then evaluate the resultant integral (after the mul-
tiplication operation) using identity [15, eq. (3.351.3)]. Once the

1 Ao, MGF is obtained, we can make use of the identities in Section I

Pr=s = - Is [?/17 n+ 1, o P m} to get the closed-form solution for the ASER, as in our preceding

examples. Alternatively, the other approach is to determine the

m—1

_ Z 1 (m+k-1 I pdf first using
2rn+k7r k S
k=0 L 1 my
Aa . o P (V=D <@> 7™ exp <_TW>
X |:”(/), U +Z/}, % sin "(/), m+ k:| (54) s lz:; (ml - 1)' Vi Vi
3 A2 L —m, m.—1 B k 1
Pros=o-Is [w,nw,—“sin? v, m} x 11 1—e><p< T_’”) > (”i”) =

2 m z=1, z#1 z k=0 RE k!

m—1

(60)

3 m+k—1 7
B Z omtkog k o )
k=0 and then compute its Laplace transform to get the MGF (after
Ao, expanding the product term). The latter method is identical to
X [1/)7 Y g sinT g m k} the development of (57).

m—1m—1

(m+k+j— 1) 3t-m=i=k
I VI. EQUAL-GAIN DIVERSITY
2 Z (m — 1)Ik!! or  ° _ N _ _ _
k=0 j=0 Unlike MRC, EGC receiver analysis can be rather involved.

The principle difficulty is finding the pdf of the combiner output

Aa ., .
X [¢’ N, S st g, o k} - (59 gNR, which depends on the square of a suth gindom fading
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amplitudes. No closed-form solution for this sum is known fanstance, the performance of arbitrary 2AD-ary signal con-
the Nakagamin fading case. Even for the Rayleigh fading casetellations with EGC in Nakagamir fading (positive integer
no solution is found fod. > 2. In [22, eq. (82)], Nakagamin  m) can be evaluated conveniently using (63)

approximated the pdf of a sum éfi.i.d. Nakagamim variates o

by another Nakagami distribution, namel — 1
y ¢ y Ps=__ 3 Wils
. T k=1
2 Th m 2—1 < Th 2) FQ
pe(x) 2 —— =] " " exp|—==z (61) _ (m+1/2)
)= Ty <Q> O <t en (1HE - DR
whereé = Zle ar, aq(l = 1, ..., L), are Nakagamir dis- X % ax, sin® ¢y, mL}
tributed fading amplitudes); = E[a?], Q1 = - = Qp = Q
for i.i.d. case 1 & 1
=5 ZWkIS [%7 e+ P, <1 - 5m> (v/m)
~ k=1
m~mlL
and X ay sin® o, mL} . (63)
We would like highlight that the accuracy of the approxima-
A L2(m+1/2)
Q=L+ L(L-1Q-——"12

~ L2Q <1 1 ) ] tion model improves as the fading index increases, and our nu-
5 merical experiments reveal this model yields excellent approx-
imation form > 2, and thus very attractive from computa-
Using this approximate pdf, we can show that the MGF of SNfibnal efficiency point of view. It is also straightforward to ex-
at the combiner output is given by tend [22, eq. (82)] to take into account the effect of dissimilar
signal strengths but assuming that the fading indebs iden-
tical across the diversity branches. In this case, we obtain

mI2(m)

(1

b | ml

mL+sﬁ[1+(L—1)F2(m+1/2)/mF2(m)]} L
. a=yja S 3 v

{m+sﬁ(1—1 /5m) (62) =1 k=1, ket

1

_ ) since the meak[a] = (I'(m+1/2)/I'(m))+/ (€ /m). There-
wherey, = (.ES/LNO)SQ is the mstantaneous SNR atthe E,Gct;ore, the MGF of SNR of the combiner output is given by
output, andy is the average received SNR per symbol of a single

diversity branch.
Noting the similarities between (62) and (12) or (30), we L
can immediately derive the approximate ASER formulas in l

P, (5)

closed form for different modulation formats employing EGC.

In this case, the final argument @& (., ., ., .), Is(., ., ., .), mL
and Iv(., ., ., ., .) is equal tomL. Also, the third argument s [2(m+1/2) <&

of Ie(:, . . .) and Is(., ., ., ., .) or the fourth argu- mL—l-zZ 71+M Z Yk

ment of Iy(., ., ., ., .) should be multiplied by the factor =1 :

1+ (L - DI%(m + 1/2)/ml?(m)]/L ~ 1-1/5 m. For (64)

(1

2 S —_ m;—1 — . f—
- 1 v . (k4w -1 (Fm) ()™
Ps=5- > {ZWJS {%7 M+ P, #lau sin® g, mz} - < ) Gim.) (7, m)

=1, z#1 \v=1 prd k (Fym. + 7. my)k T
s __
X ZWV-[S |:<PV7 My + o, <$) X ay sin® Oy b+ ml:| (58)
1 Yz + 7.1y
2 m,—1 .
— 1 —2ab (b — a?)? . E+my—1\ (Fm)kFHm)™
PS =5 Z IV 07 , 2 o\ ,YI( 2 )2 My — Z ! S,YI ) _(,y 113 ™
2m =1, z5£1 (a + b ) 2ml(a + b ) k=0 k (r}/lmz + Wzml) e
—9ab (b2 _ a2)2 77,
Iv |0 : k : 59
X 1y [ )y T (a2+52)’ 2(a2 +02) \Fym- +7.my » Bty (59)
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As a check, we find that (64) reduces to (62) when all the di6). From Section IV-A, we know that the ASER of MPSK for
versity branches are i.i.d. As before, we can immediately geiiRC with i.i.d. diversity branches in Rayleigh fading can be
approximate closed-form solutions for a broad class of binaexpressed as

andM -ary modulation formats using (64). For instance, the per-

formance of arbitrary 2-0//-ary modulations employing EGC 1 /M sin2 6 L
with nonidentical fading in Nakagami: fading can be evalu- Ps = —/ < — —— ) de
ated using 7 Jo sin” 6 + 7 sin” (7 /M)
1
=1 [0, " — % 7 sin®(rr /M), L}. (A1)

1 S
Sg%;m@

Now, lettinga = 7 sin®(n/M) andfy = 7 — 7/M in (A.1)

1 £ as well as in [6, eq. (15)], we can get a closed-form solution for
X N\ @k, M + Py Ok Sin2 Pk ? Z IS(Oa 9[], a, L) Since]s(eln 9[], a, b) = IS(Oa 9[], @, b) -
it Is(0, 81, a, b), we have a complete solution for the integral (5)
_ I2(m+ 1/2 L
X {’Yl 4+ 7 mFQ 7122 mlL| . IS(9L7 9U7 a, b) -
- a - 1
®5) =ty [F e )] 3 gaigp
2k 1 2kN\ sin[2(k — Dada, 0y)]
VII. CONCLUSIONS X{<k>+};<z> T —1
=0
While the problem of A -ary signaling/diversity perfor- b1
mance in Nakagamin fading has been considered by many + @ [ + afa, 61) } ~
2

researchers, the closed-form solutions for many important a+1 k=0 a+1

cases have not been reported. In this paper, we have outlined a k1

simple, unified approach for deriving closed-form error rates % < ) + 1 <2k> sin[2(k — Dala, 61)]

for single and multichannel reception of binary afd-ary (et k—1

signals in Nakagamirn fading with positive integer fading (A.2)
severity index. The solutions are exact for MRC and SDC

receivers. Approximate solutions (but in closed form) for EGCherea(c 8) = tan—[\/(c/1 + &) cot(rr — 0)].

receivers with i.i.d. and dissimilar branches have also be&! . .
sing a similar approach, we can also derive yet another
derived. Many new closed-form expressions have been denvg

in this paper including the cases such as 24Bary signaling, mZ'cS(SSdfg;TGe)ézre(slssl;)]n fdts(0r, 6, a, b) using [3, €q. (21)]
DQPSK, MDPSK and so on. It is noted that the closed-form

solutions presented here are not an exhaustive list, and many

more cases such as analysis of narrowband digital frequency/s(fr., 0v, a, b)

modulation with integrate and dump and sample and hold a

bit detection strategies, binary continuous-phase FSK with = 0v — 0L — /- 7le(a, br) — afa, 61)]
coherent and noncoherent detection schemes, maximum-like- b1

lihood differential detection of DPSK with block-by-block N Z <2k> 1 _ — sinfa(a, 60)]
detection, exact pairwise-error probability for trellis and block [4(a+ 1)) a+1 Y

coded modulations, all in Rayleigh and Nakagamifading et
with positive integern, could be treated in a straightforward

manner by utilizing the results derived in Section II. Similarly, % Z Z
closed-form solutions for a wide range of modulation formats i
in conjunction with imperfect MRC (i.e., Gaussian distributed [ a . Tix
weighting errors) or a hybrid SC/MRC receiver over Rayleigh + 1 sinfa(a, 61)] Z
fading can be derived easily. These and more related results kil
(e.g., closed-form error rates for dual branch SDC in correlated x cos”* = a(a, 01)] (A3)
Rayleigh fading) can be found in [23].

- cos®™ D a(a, 6y)]

klzl CL+1

k=1:i=1

where notatioril};, is defined as

APPENDIX
In this appendix, we obtain closed-form solutions for <2k>
1,61, 6y, a, b) (where b is a positive integer) from the T — k
equivalence between [6, eq. (15)] or [3, eq. (21)] with (5). In ok 2(k — 1) 42 — ) 4 1 )
fact, this solution is in a slightly different form compared to k—1 [( 1) +1]
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