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2. 

Abstract - The efficacy of an hybrid M/L-SCIMRC receiver 
structure (also known as generalized selection combining) in a 
variety of fading environments i s  analyzed by deriving consid- 
erably simpler expressions for the statistics (i.e., moment gener- 
ating function (MGF) and cumulative distribution function 
(CDF)) o f  the combiner output signal-to-noise ratio (SNR) on 
Nakagami-m channels with arbitrary parameters. Different 
from previous studies, these results hold for arbitrary orders of 
M and L as well as for any real values of fading severity index 
m 2 0.5. A simple procedure for deriving an exact closed-form 
expression for the MGF of SNR when the fading index assumes 
a positive integer m value is also outlined. These MGFs are 
then used to derive the average symbol error probability 
(ASEP) for a broad class o f  binary and M-ary modulations 
employing coherent SClMRC receiver. Analytical expressions 
for computing the outage rate oferror probability and the aver- 
age combined output SNR are also derived. Finally, computa- 
tionally efficient but approximate solutions for the M G F  of 
SNR are presented. 

I INTRODUCTION 
Hybrid SC/MRC diversity scheme has received consider- 
able attention in the literature owing to its ability to counter 
balance the detrimental effects of deep fades on wireless 
channels, while achieving a good compromise between the 
receiver performance and the implementation complexity 
(fewer electronics as well as lower power consumption) 
[I]-[7]. In an M/L-SCIMRC system, M strongest diversity 
branches out of a total of L diversity branches are first 
selected and then they are coherently combined in a MRC 
combiner to produce the decision statistic. The study of 
hybrid SC/MRC receiver is important both from a practical 
viewpoint and theoretical standpoint because this model 
encapsulates both SC (A4 = 1 ) and MRC (A4 = L )  receiver 
performance as limiting cases. Also, in some situations 
such as in wideband CDMA applications, the number of 
available correlator resources limits the number of multi- 
paths that can be utilized in a typical rake combiner. Obvi- 
ously, in such a scenario M/L-SCIMRC receiver merits 
consideration because it outperforms M-MRC (i.e., signal 
combination from the first A4 fingers) receiver configura- 
tion owing to the improved SNR statistic at the output of 
the hybrid combiner [3]. It is also attractive for reduced 
complexity implementation of antenna array in millimeter 
wave communications [ 6 ] .  
Most of the previous studies with the exception of [3]-[5] 
only examines the performance of SC/MRC in Rayleigh 

fading. In [3], the analysis proceeds in similar manner to 
that of put forward by [ I ]  and therefore, the final result 
involves the computation of multiple integrals (which is 
not desirable for larger values of M). In [4], the perfor- 
mance of 2/3-SC/MRC and 2/4-SC/MRC are examined 
over Nakagami-m fading channels. As in [3], the results are 
also limited to BPSK modulation. Besides, the final expres- 
sions require the evaluation of multiple infinite series (i.e., 
(L-2)-fold infinite series even for the specific case of 

= 2 )  and their method is not amenable to analysis for 
any M >  2 or other modulation formats such as MPSK, 
MQAM, DQPSK, to name a few. In [ 5 ] ,  the authors applied 
the Dirichlet transformation to simply certain multiple inte- 
grals that arise in the distribution theory of ordered Gamma 
random variables (assuming positive integer fading index) 
and subsequently outlined a procedure for obtaining the 
ASEP suitable for numerical computation. Their expres- 
sion for the MGF [ 5 ,  Eq. (15)] for non-integer m will 
require the evaluation of (L- 1)-fold nested integral, which 
can be tedious and complicated, particularly for large L 
values. Even for the positive integer m case, one have to 
simplify the (L-l)-fold integral for the MGF for each dif- 
ferent A4 and/or L values. As such, this approach does not 
lend itself to the analysis of average combined output SNR. 
By contrast, in this paper we first derive a considerably 
simpler expression for the MGF of SNR at the output of 
hybrid M/L-SCIMRC combiner. Different from [5], our ini- 
tial formulation of the above ordered statistics problem will 
require evaluation of an M-fold integral for the MGF and 
this expression holds for arbitrary L. Further simplifica- 
tions of this integral are possible and they are also dis- 
cussed in this paper. This MGF is then used to derive ASEP 
for a broad range of modulation formats (including CPSK, 
CFSK, DPSK, M-ary square QAM, star-QAM, arbitrary 
two-dimensional signal constellations, MPSK, MDPSK, 
DQPSK with Gray coding and MFSK) employing 
SC/MRC receiver. It is also important to note that the MGF 
expression also applies to the performance evaluation of 
SC/EGC quadratic receiver. 

11. EXACT ANALYSIS 
In this section, we first derive the hybrid combiner output 
statistics by modelling the branch amplitudes as i.i.d. Nak- 
agami-m random variables and then proceed with their 
applications to develop concise analytical expressions to 
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compute the ASEP and outage probability for different 
modulation schemes and to determine the mean combined 
output SNR. 
From [8], we know that the joint probability density func- 
tion (PDF) of selecting M strongest diversity branches from 
a total of L available diversity branches is given by 

where y, 2 . . . 2 yu 2 0 ,  p ( . )  and F(.) correspond to the PDF 
and CDF of SNR for a single diversity branch, respectively. 
Recognizing that the MGF of combiner output SNR &(.) is 
the key to unified analysis of a wide range of modulation 
schemes over wireless channels, in the following we will 

immediately derive the desired MGF. Let y = cyl denote 

the combiner output SNR, and therefore we have 

I /  

/ =  I 

Q, (s )  = ~ ~ e - ' * I ~ X I e - ' Y ~ , . . ~ ~ - ' e - ~ Y ~ '  Pr,, , YJY 1, " ' 7  YnOdY I / .  . . dY2dY I 

where yll = 00, 

and y is the average SNWsymbol per branch. 
Careful examination of (2) in conjunction with (3) and (4) 
reveals several interesting results: (a) If the fading ampli- 
tudes follow Rayleigh or Nakagami-m distribution with 
positive integer m, the M-fold nested integral can be evalu- 
ated in closed form using identities [9, Eq. (3.351.1)] and 
[9, Eq. (3.351.3)]; (b) For Nakagami-m fading with real m, 
an infinite series solution can be readily obtained with the 
aid of [9,  Eq. (3.381.1)] and [9, Eq. (6.455.2)]. The result- 
ant expression is considerably simpler then [4] and more 
importantly, it holds for arbitrary M and L values; (c) Eq. 
(2) removes the inherent disadvantage of the Dirichlet 
transformation technique particularly for large values of L 
since it only involves the evaluation of M-fold integral 
instead of (L-  1)-fold integral. Furthermore, it circumvents 
the need to perform simplifications of the nested integral 
for each different L for a specified M. At this juncture, it is 
also worth highlighting that (2) holds for other common 
fading distributions (e.g., Rician and Nakagami-Hoyt) pro- 
vided all the diversity branches are independent and identi- 
cally distributed. Next, we will consider the simplifications 
of (2) for Nakagami-m fading with positive integer fading 
index and the real valued fading index cases explicitly. 

A. Real Valued Fading Severity Index 
In order to simplify (2), we first exploit identity [9, Eq. 
(0.3 14)] to rewrite [ F ( x ) ] "  ( V  is a natural number) as 

ca = a: = m-' and (--171 / 7)" 
n ! ( m  + n )  ' where a, = 

Next, substituting (5) into (2), we obtain 

where 
- r , ( v + h )  ,,,.I 7, - y 2 C q + A )  ,,,-I rAI.2 -rtr ~ ( r + l )  n J - ~  

G ( m , h , n , M ) = f y e  Y I  j , ,e ~2 ...I,, e YII-I 

(7) 
- r d t  + 1) t, + ,n(L - I / +  I)-  I 

x 1:;' ' e yI/ &.v...dy2dyi 
It is apparent that if we can find an analytical solution to 
the nested integral G(m,  h, n, M) depicted in (7), then we 
can achieve our goal, namely to obtain a simple analytical 
solution for (2) which holds for arbitrary order of L. Fortu- 
nately. this integral can be evaluated without great diffi- 
culty and the results are summarized below for different 
values of M :  

G ( m ,  h, n, 1) = 
(s + ,)"+"'L 

L 
X L' (10) 

[2(s  + h)]"+" 'L 

a ( - 1 / 2 ) " ~ ( ~  + n ,  + n ,  + m L )  
, , F , , n 2 ! [ n  + n ,  + n2 + m ( ~  - 2 ) l [ n  + n ,  + n,  + m ( ~  - I ) ]  

x F 1 , n , + n 2 + n + m f , ; n l + n 2 + n + m ( L -  I ) +  1;- I[ 2 '1 (11) 

To obtain the above results, we have utilized the following 
three integral identities and an infinite series representation 
for the incomplete Gamma function: 

a "-le-h'dt = r ( a ) / b "  

Iit"-le-h'dt = y(a, bz)/b" 
I,, 

From the above developments, one may observe that the 
M-fold nested integral G ( m ,  h, n, M) for M 2 3 may be com- 
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puted using (M-2)-fold infinite series, viz., 

m 

x ... -1 /2)"' 
, I ,  c - 0 n 2 ! [ n + m ( ~ - M + 2 ) + n 1 + n 2 1  

J ' t w - 3  = " n m !  Ln + m ( L  - 3 )  + ny 
y =  I 

" = I  

v =  1 1 
1 1 - 2  

y =  I 

By invoking Gil-Pelaez's inversion theorem (which gives a 
relation between the CDF and MGF of a random variable) 
and then using trapezoidal rule approximation, we get a 
numerically efficient formula (i.e., rapidly converging 
series) for calculating the CDF of hybrid SC/MRC com- 
biner output SNR: 

.. , 
,I odd 

where coefficient T is selected sufficiently large such that 
PU(X > T )  c. E ,  and E can be set to a very small value. To the 
best of our knowledge, analytical expressions for comput- 
ing the CDF of SC/MRC output SNR have been restricted 
to Rayleigh fading only in the literature and there is no 
result available for Nakagami-m fading. 
The applications of the MGF and CDF expressions for 
characterizing the performance of SC/MRC diversity sys- 
tems in terms of ASEP, outage probability and the mean 
combined SNR are briefly discussed below. 

A .  I ASEP Analysis 
Let us first consider coherent BPSK and BFSK modulation 
schemes. Using a desired exponential integral representa- 
tion for the complementary incomplete Gamma function 
[12] or complementary error function, the ASEP can be 
readily shown as 

where a = 1 for BPSK and a = 1/2 for BFSK, and by(.) is 
defined in (6) .  The above integral can be further simplified 
using integral identity 

= r(i - v ) a ' r ( p + v )  
2 r ( p +  i ) ( a + ~ ) ~ + "  

x , F ,  l , p + v ; p + I ;  A] for o < ~ < I  [ a + P  
(15) 

which reduces to 

,+! 
2 r (v  + + P) 

when v = 1/2 ,  which is exactly the identity needed in our 
case. For instance, (14) reduces to (1 7) and ( 1  8)  for A4 = 2 
and M = 3 cases, respectively: 

r ( n  + m L )  

(-1 /2)"' 

+ n + m L )  ,(a,:,n+mL) 
[ n  + n ,  + m ( L  - I ) ]  y 

x *FI 1, n ,  + n +  mL;nl + n +  m ( L -  I ) +  I ; -  '] (18) 

As a check, we find that (17) agrees with [4, Eq. (1 I)] for 
the special case of 2/3-SC/MRC receiver. 
It is evident that for any Mt 2 ,  our final solution for the 
ASEP (which holds for arbitrary order of L )  can be written 
as (M- 1 )  order infinite sum whose individual terms will 
involve a product of two Gauss hypergeometric functions. 
The above development is interesting since [4] concluded 
their work by stating that it is not possible to derive an infi- 
nite series solution for the ASEP for any M >  2 .  Even for 
M = 2 ,  their solution will require the computation of 
( L - 2 )  order infinite sum whose individual terms will 
involve a product of two Gauss hypergeometric functions. 
Whereas in our case, it only requires the evaluation of a sin- 
gle infinite series! 
We would like to emphasize that the ASEP for many other 
modulation schemes that employs SC/MRC receiver can 
also be expressed in terms of a single finite-range integral 
with the integrand composed of MGF I$,(,) similar to (14). 
For example, the ASEP for arbitrary two-dimensional sig- 
nal constellations may be computed using 

[ 2 

where S is the total number of signal points or decision sub- 
regions, W, is the apriori probability of the symbol to which 
subregion k corresponds, a i ,  q1 and (pi are coefficients 
(constants) relating to decision subregion k .  For our subse- 
quent developments, it is more convenient to rewrite (1 9) as 

where 6 ( m ,  n, M) = G(m,  h, n,  M ) ( s  + h)"""' (and therefore 
S ( m ,  n,  M) is independent of variable s). It is interesting to 
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note that the trigonometric integral in (20) can also be eval- 
uated in closed-form if m L  assumes a positive integer 
value [IO]. For the sake of brevity, we have omitted the 
derivations for other common modulation schemes such as 
MPSK, MDPSK, MQAM, DQPSK, star-QAM and so on. 
Each of these cases can be treated in a straight-forward 
fashion by utilizing the results found in [IO]-[12]. 
A 2 Average Combined SNR 
Average combined SNR is another useful performance 
measure of diversity systems. Since the average combined 
SNR Tprr is the first moment (mean) of the random variable 
y , it can be determined by differentiating the MGF (6) with 
respect to s and then evaluating the derivative at s = 0 : 

tgtC = - -I$,(s)l d 

(21) ds I ' l l  

-- - M! c) C c,,G(m, n, M ) ( n  + m L ) ( ~ ) " "  [ r ( m ) l L  m 

To the best of our knowledge, the above expression is new. 
Notice also that the above expression applies for any orders 
of M and/or L as well as for arbitrary fading index. 
A.3 Outage Probability 
The outage rate of error probability P,,,,, is defined as the 
probability that the instantaneous symbol error probability 
of the system exceeds a specified value (say P, ). This is 
equivalent to calculating the probability that the combiner 
output SNR falls below a predetermined threshold y* (a 
coefficient that is dependent on the modulation type), viz., 

p,,,,, = s " P , ( X ) d x  = F,(Y*) (22) 
which is essentially the CDF of SNR evaluated at y* . Con- 
sequently, (13) (in conjunction with (6) )  can be used to 
facilitate the outage analysis. The threshold y* can be 
obtained by solving P,(y*) = P, , where P,(.) corresponds 
to the symbol error rate in an AWGN channel. Closed-form 
solution for y* is available for several common modulation 
schemes and they are summarized in Table 1 of [ 1 13. 
B. Positive Integer Fading Severity Index 
Similar to the development for the real fading index case in 
subsection IIA, we first rewrite [F(x ) ] '  as 

by expanding the power term binomially and then utilize 
multinomial theorem to calculate the coefficients p( ., ., .) : 

p(q, 1,c) = I /q!  and P ( I , n , c )  = n .  

Using (23) in (2), the MGF of MIL-SCIMRC combiner out- 
put SNR may be simplified as 

x ( ~ ) " ' A ' + z F ( m / ~ ,  m, z ,  k ,  M) 

and yll = 0 0 .  

Once again, our task reduces to finding a simple analytical 
solution to the nested integral F ( h ,  m,  Z, k, M). Although (6) 
(in conjunction with (12)) encapsulates the positive integer 
fading index case, but the computation of &(.) will involve 
(M-2) order infinite sum. By contrast, here we show that it 
is possible to derive a closed-form expression for the MGF 
I $ , ( , )  when m assumes a positive integer value since (26) 
can be evaluated in closed-form for a specified M. It should 
be emphasized that our expression holds for arbitrary order 
of L and the simplifications of F( h, m, z ,  k ,  M) (M-fold inte- 
gral) only need to be carried out once for each different val- 
ues of M. These results, for several practical values of M, are 
summarized below: 

F ( h , m , z , k ,  I ) =  r ( z + m )  
(s + h + hk)""' 

F(h, m, z ,  k ,  2) = r ( z  + m )  T ( m )  '+t-'(s + h + kh)"' 
(s + h + hk)""'[(s + h)"' , , ( = ( I  RI !  

F( h, m, z ,  k, 3)  = ' ( ' + m )  [ p ( r ( m )  
(s + h + hk)""' s + h)2"' 

- T(n, + m) '+"'- ' (s + h + kh)"'r (n ,  + m )  T ( m )  '"-I 

" * = o  -) n,!2 - n1!(2s + 2h + ~ k ~ " " '  ((s + h)" 

(29) 
"""'-'(2s + 2h + kh)n'r(n,  + m )  

r 8 1 = o  n2!(3s+3h+hk)"'+"'  
- c  

Closed-form solutions for other values of M can be derived 
in a similar fashion. To obtain the these results, we need to 
simplify (26) with the aid of only the two integral identities 
listed below: 

I:t"-'e-h'dt = (n- I)!/LI" 

where n is a positive integer and b > 0 .  
Following the development of (21), it is also possible to 
derive a closed-form expression for the average combined 
SNR by utilizing (25). Similarly, the ASEP and outage 
analyses can be carried out using this MGF, leading to a 
simpler result for positive integer m case. These and more 
results will be discussed in our forthcoming work [ 131. 

Although it is clear from (1) that y I ,  y2, . . ., y,, are not inde- 
pendent random variables, but it is possible to derive a com- 

111. APPROXIMATE ANALYSIS 
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putationally efficient approximation for I$,( .) by treating 
them to be independent. Hence, the development of I$,(.) in 
this section rely on this assumption. 
Suppose there are L i.i.d diversity branches, it can be 
shown that the PDF of SNR of the k -th strongest diversity 
branch is given by 

The MGF of hybrid MIL-SCIMRC combiner output SNR 
can therefore be approximated as 

v 
4 4 s )  = n I $ k ( S )  (31) 

1= I 

by assuming yI, ..., yn, to be independent and Q k ( . )  repre- 
sents the MGF of k-th strongest diversity branch. Obvi- 
ously, the approximation for I$,( .)  collapses to the exact 
solution when M = 1 , as expected. 
A. Real Valued Fading Severity Index 
Substituting (3) and (4) into the third line of (30) and after 
simplifications, we get 

x exp(-F) c,,.x''-' (32)  
,I = I1 

where coefficients c,, can be computed recursively and they 
are defined as in (5). 
Taking the Laplace transform of the PDF (32) leads to 

Finally, substituting (33) into (3 1) yields the desired MGF 
of the hybrid SC/MRC combiner output SNR. Notice that 
(3 1) holds for any order of L and/or M, and all this are cap- 
tured in a single formula. 
B. Positive Integer Fading Severity Index 
Similarly for positive integer m, it is straight-forward to 
show that the PDF and MGF of the k-th strongest branch 
are given by (34) and (35), respectively: 

(34) 

For the special case of M = 1 , (3 1)  reduces to 

which agrees with the result in [lo] for SC receiver and 
(25) (in conjunction with (27)) as expected. 

IV. CONCLUSIONS 
This paper derives new, concise expressions for the MGF 
and CDF of the hybrid SCIMRC combiner output SNR 
operating on Nakagami-m fading channels. A procedure 
for handling the case of arbitrary orders of M and L is also 
outlined. The MGF is used to facilitate an unified analysis 
of ASEP for different modulation schemes as well as to 
gain insights into the average combined SNR. Outage rate 
of error probability is computed using the CDF. An approx- 
imate solution for the MGF is also obtained by assuming 
that the ordered SNRs are independent. Finally, we point 
out that using the derivative formulas for ASEP derived in 
[ 141 along with the MGF expressions derived in this article, 
one can also analyze the performance of SC/EGC quadratic 
receivers without much difficulty. 
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