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Further Results on the Beaulieu Series
C. Tellambura, Member, IEEE,and A. Annamalai, Member, IEEE

Abstract—A frequent problem in digital communications is the
computation of the probability density function (pdf) and cumu-
lative distribution function (cdf), given the characteristic function
(chf) of a random variable (RV). This problem arises in signal de-
tection, equalizer performance, equal-gain diversity combining, in-
tersymbol interference, and elsewhere. Often, it is impossible to
analytically invert the chf to get the pdf and cdf in closed form.
Beaulieu has derived an infinite series for the cdf of a sum of RVs
that has been widely used. In this letter, we rederive his series using
the Gil–Pelaez inversion formula and the Poisson sum formula.
This derivation has several advantages including both the bridging
of the well-known sampling theorem with Beaulieu’s series and
yielding a simple expression for calculating the truncation error
term. It is also shown that the pdf and cdf can be computed di-
rectly using a discrete Fourier transform.

Index Terms—Characteristic functions, diversity, Fourier anal-
ysis, intersymbol interference and cochannel interference, outage.

I. INTRODUCTION

A FREQUENT problem encountered in the performance
evaluation of digital communications systems is the

computation of the probability density function (pdf) and
cumulative distribution function (cdf) of a random vari-
able (RV) given the characteristic function (chf) . This
problem occurs in many applications including signal detection,
linear equalizers, maximal-ratio and equal-gain diversity com-
bining, intersymbol interference, outage probability, cochannel
interference, coded modulation, and phase-jitter. Often, both
the chf and the moment generating function (mgf) are readily
available in closed form, but it is difficult or impossible to carry
out the inverse Fourier transform (FT) or Laplace transform
analytically to get the pdf and cdf in closed form. Instead,
moment methods, numerical quadrature formulas, Chebyshev
approximations, and other techniques have been developed
[1]–[3].

One method that has proven particularly useful in commu-
nications applications is the infinite series for the cdf, derived
by Beaulieu [4]. The cdf series was obtained by combining two
well-known and valuable techniques in communication theory;
wherein a Chernoff bound approach was applied to an approx-
imate Fourier series expansion of a periodic square waveform.
The Beaulieu series is important because it has been employed
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to solve many diverse problems [5]–[16]. While all of these pa-
pers deal withthe application of the Beaulieu series, in this
letter, we focus on some issues, not sufficiently elaborated in
the original paper [4], surrounding the series itself. Importantly,
we rederive the Beaulieu series using the Gil-Pelaez inversion
formula and the Poisson sum formula. The alternative deriva-
tion exploits the fact that the pdf and chf together form an FT
pair, and it provides insights into the uses and limitations1 of the
Beaulieu series. Specifically, our alternative derivation provides
the following.

• For unbounded RVs, the total error has two components:
the series truncation error and the aliasing error (or the
domain truncation error). Explicit expressions for both the
terms are derived.

• The series truncation error bound can now be expressed
using the chf. Whereas the truncation error bound given in
[4, eq. (16)] is less useful because it is expressed in terms
of the pdf samples, which are unknown.

• The convergence conditions of the series are made more
explicit.

• The relationship to the sampling theorem is made more
explicit. For instance, the truncation error bound for the
Beaulieu series has the same format as the aliasing error
bound for the reconstruction of a nonband-limited signal
that uses the sampling theorem.

Aside from [4], there have been several key studies dealing
with the numerical computation of pdf and cdf given a chf
[18]–[23]. Reference [18] is concerned with numerical in-
version of Laplace transforms using the finite Fourier cosine
transform and provides an approximate series for function
given its Laplace transform . This does not use either the
Gil-Pelaez theorem or the Poisson sum formula. Reference
[19] contributes a sine series for the cdf. In [20], the author
proposes a windowing function to apply to the chf and derives
the error terms. Reference [21] treats the fast FT inversion of
transforms. In [22], a general method for approximating a cdf
from its chf is given. This paper also derives an error bound.
Reference [23] considers the computation of the cdf of an
integer-valued random variable.

II. A LTERNATIVE DERVIATION

To begin, let be an RV with pdf and cdf and
complementary cdf defined as

and (1)

1The main limitation of the Beaulieu series is that it can lose accuracy when
computing the tails of a distribution (e.g., error rates less than 10). Helstrom
thus suggests the use of saddle-point integration [17].
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The characteristic function of is given by

(2)

where .
The Gil-Pelaez theorem [24] states

(3)

i.e., the cdf is given as an integral of the chf. In fact, if one
approximates this integral by a trapezoidal sum, one gets the
Beaulieu series. However, Beaulieu’s original approach both
avoids a problem with a discontinuity at the origin ( ) and
provides rigorous bounds on all the systematic sources of error.
Our approach both clarifies the method and improves the error
bounds. The following theorem leads to our new derivation of
the series.

Theorem 1: For a pdf , which is bandlimited or almost
bandlimited (i.e., there are positive constantsand for which

for all real )

(4a)

(4b)

where and denote the real and imaginary parts of,
is a parameter governing the sampling rate in the frequency

domain, , and the error terms are

(5a)

(5b)

Note that the two series in (4) are periodic with periodand
that (4a) can exactly compute for either or

for bounded two-sided or bounded one-sided positive RVs,
respectively. The terms and are the domain
truncation errors for unbounded RVs.

Proof: If and are an FT pair, the Poisson sum
formula [25, p. 395] yields

(6)

provided these series are convergent. The right-hand side (RHS)
is convergent if is bandlimited or almost bandlimited. If

is a pdf, then as and this is a necessary
condition for the convergence of the left-hand side (LHS). Note
that if for , the right-hand side can exactly
compute .

We will begin by proving (4a) and (5a). Suppose

(7)

then by the frequency shifting property of FTs

(8)

Substituting (7) and (8) in (6), multiplying both sides by ,
we get

(9)

Setting , using the relationship , while
noting that the term in the LHS gives , we can thus
obtain (4a) and (5a).

Now we will consider the derivation of the cdf series (4b).
Since in the Poisson sum formula (6) is the area under

, we have

(10)
The first sum on the RHS is a trapezoidal rule for the integral.
Note that if for , this rule is exact. We
can now set or to obtain useful formulas for the
integral.

Suppose

(11)

then using the identity in (3), we have

(12)

Substituting (11) and (12) in (10), setting in (10),
and letting , we obtain (4b). The error term
in (5b) is obtained by combining and in
(10).

A. Relationship to the Sampling Theorem

The sampling theorem shows that a function can be recon-
structed using its own samples [25, p. 378]

This reconstruction is exact if for where
is the FT of . Otherwise, undersampling and the con-

comitant spectral aliasing in the frequency domain occur. The
aliasing error depends on the behavior of for . By
contrast, in (4a) is reconstructed using its frequency-do-
main samples and the reconstruction is exact if for

for some constant . The aliasing error now depends
on the behavior of for .
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B. Convergence

The convergence of the two infinite series (4a) and (4b) is
ensured if is bandlimited (i.e., for ,
in which case the series terminate for some finite index) or
almost bandlimited. Since

(13a)

(13b)

convergence of the two series is assured.

C. Domain Truncation

Consider an RV with the range , denoted by ,
where and are finite. Therefore, if . From
(5a) and (5b), it follows at once:

for (14)

if . That is, the two infinite series expansions are
exact. On the other hand, if or is infinite, one has to truncate
the pdf so that most of its probability mass is concentrated on
a bounded interval. One selects this interval such that

, and can be made arbitrarily small.

D. Series Truncation

Suppose the two series are truncated at . The trunca-
tion error is given by

(15)

It is assumed that decreases monotonically for
. It can similarly be shown that

(16)

This series truncation error bound is expressed in terms of a
known chf. But the truncation error bound in [4] requires knowl-
edge of the pdf samples which are unknown and hence further
bounding techniques must be employed to use that bound. In-
terestingly, the truncation error bound (15) is twice the aliasing
error bound [26] when a nonband-limited function is recon-
structed from its samples taken at apart assuming is
bandlimited to . Note also that (15) and (16) imply that
if for , then the truncation error is zero.

E. Generalized Beaulieu Series

When deriving (4b), we set in the LHS of (10).
However, if instead we set (a variable parameter) and

use (11) and (12) in (10), then we get a slightly more general
infinite series for the cdf

(17)

where

(18)

This series depends on the sampling rate parameterand an
additional parameter. Note that if , then this reduces
to (4b), the Beaulieu series. If , (17) yields a slightly
different series for the cdf. If is between 0 and , the series
sum is complex.

III. D ISCRETEFT (DFT) IMPLEMENTATION

Ignoring (5a) for the moment, while setting
and limiting the series (4a) to terms, we obtain

(19)

There is a clear resemblance between this sum and the DFT.
This sum can also be recognized as a periodic Fourier series
expansion for a function in the region . Now let

and . Thus

(20)

Note that the phase factor arises because we use (7). Since
and is real-valued, we can write

(21)

where are the -point DFT of .
Next, we ignore (5b) for a moment, while setting

and limiting the series in (4b) to terms. It is
clear that this is a Fourier series expansion for a function in
the region . Now, let and

. Thus

(22)

where are the -point DFT of .
The above development indicates that Beaulieu’s series ex-

pressions for the cdf and pdf can be computed using a DFT.
That is, if the cdf is to be computed at equispaced points,
the Beaulieu series (4b) does not need to be computedtimes,
rather a single DFT provides all the cdf samples. This is a sig-
nificant reduction in computational complexity.
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IV. CONCLUSIONS

An alternative derivation has been developed, using both the
Gil-Pelaez inversion formula and the Poisson sum formula, for
the Beaulieu series for the pdf and cdf. This derivation has sev-
eral advantages including both the bridging of the well-known
sampling theorem with Beaulieu’s series and the yielding of a
simple expression for the truncation error term. For example,
if the pdf is computed using the series, the truncation
error depends on the area under the magnitude of the chf in
“out-band;” hence, the truncation error is similar to the aliasing
error in the sampling series. Another interesting conclusion is
that when the two series are truncated, they resemble an-point
DFT expression. Therefore, both the pdf and cdf can be com-
puted directly using DFTs. Beaulieu’s series expressions (4a)
and (4b) are very useful because the chf can be found easily in
many problems where the pdf is much more difficult to obtain.
Nearly ten years after their publication, the contribution of this
letter is hence to enhance the understanding of the Beaulieu se-
ries to help their use.
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