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Abstract—Performance analysis of equal-gain combining This lack may have stemmed from the difficulty of finding
(EGC) diversity systems is notoriously difficult only more so given the probability density function (pdf) of the EGC output
that the closed-form probability density function (pdf) of the EGC signal-to-noise ratio (SNR) (traditionally, the performance is

output is only available for dual-diversity combining in Rayleigh . L -
fadﬁ]g. In thi)é paper, a powerful frequeﬁcy-domaig appro)gchg is €valuated by averaging the conditional error probability (CEP)

therefore developed in which the average error-rate integral is OVer the EGC output pdf), which depends on the square of a
transformed into the frequency domain, using Parseval's theorem. sum of L fading amplitudes. A closed-form solution to the pdf

Such a transformation eliminates the need for computing (or of this sum has been elusive for more than 80 years (dating
approximating) the EGC output pdf (which is unknown), but —pa01 1o Lord Rayleigh himself [1]) and indeed, even for the

instead requires the knowledge of the corresponding character- . - . . e
istic functign (which is readilygavailable). The Requer?cy-domain case of Rayleigh fading (mathematically simplest distribution)

method also circumvents the need to perform multiple-fold convo- N0 solution exists fo. > 2 [2]. No closed-form expressions
lution integral operations, usually encountered in the calculation for the pdf of a sum of Nakagami», Nakagamig, or Rician

of the pdf of the sum of the received signal amplitudes. We then random variables (RVs) exist either.

derive integral expressions for the average symbol-error rate Clearly, if the average error rate can be evaluated without

of an arbitrary two-dimensional signaling scheme, with EGC . .
reception in Rayleigh, Rician, Nakagamim, and Nakagamiq knowing the pdf of the combiner output then the EGC case can

fading channels. For practically important cases of second- and b€ analyzed readily [3], [4]. One way to achieve this is to elim-
third-order diversity systems in Nakagami fading, both coherent inate the pdf using Parseval’'s theorem to transform the error
and noncoherent detection methods for binary signaling are integral into the frequency domain. Since the Fourier transform
analyzed using the Appell hypergeometric function. A number of =1y f the pdf is the characteristic function (CHF) and since
closed-form solutions are derived in which the results put forward the ET of th diti | babilit b d
by Zhang are shown to be special cases. e FT of the conditional-error probability can be expresse
. . - analytically, the resulting integral solution is both general and
Index Terms—Dbiversity systems, equal-gain combining, fre- t Thi hi | dt luate th t f
guency-domain analysis, generalized fading channels, mobile exact. 1his approach is employed to evaluate the exact perfor-
radio systems. mance of EGC receivers for MQAM over Nakagamifading
[4]. Zhang [3] also developed a CHF approach to analyze the
EGC performance of binary signaling schemes over Rayleigh
fading. In this paper, we extend [3] and [4] to obtain the
N RECENT vyears, diversity reception and multi-leveiverage symbol-error rate (ASER) of a broad class of coherent,
modulation schemes have received considerable attentibifierentially coherent, and noncoherent modulation formats
for facilitating high-rate data transmission over wireless linkgvith predetection EGC in different fading environments. Sub-
Equal-gain diversity (EGC) is of a practical interest becausequently, we show that the generic expression can be further
it provides performance comparable to optimal maximal-rat&mplified given one of four particular forms of the CEP. The
combining (MRC) technique but with greater simplicitycontributions of this paper include the following: 1) derivation
Surprisingly, published results concerning EGC receivef simple yet exact analytical expressions for the ASER of
performance in fading have been scarce when comparedbioary and two-dimensional signal constellations in Rayleigh,
those for other diversity combining methods such as MR®ician, Nakagamin, and Nakagami fading channels with
EGC; 2) derivation of the CHF of the fading amplitude in
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Previous related studies on EGC diversity include th m®
following. In [6], the pdf of a dual diversity EGC output in /L
Rayleigh fading was derived. For higher order of diversity | si® h &

combiner
output

[1] made use of a small argument approximation [7]. In [2]
the author devised an approximate infinite series technique : L ® : Yol
compute the pdf for the sum of independent Rayleigh RV : ) ( >
Applying this technique, [8] and [9] analyzed the performancY /L ' /
of EGC for coherent and differential binary signaling scheme L0 d—/ gL
in Nakagamim and Rician fading channels. Subsequently.
[3] presented some closed-form solutions for binary signaling s,(1) = agexp(jey)exp(j(wt +8))
schemes in a Rayleigh fading channel. In [10], the authors  ypere o : carrier frequency
presented yet another approximate solution for the binary i fdescilredphasle, tmgdulation (fading)
phae-shift keying (BPSK) case on Nakagamiading channel ¢ miformly distributed random phase process
using Hermite integration. This has been extended in [16] N P
by considering two-dimensional signal constellations in a ~ MRC: 8 = xexp(=je)/m(n)
variety of fading environments. More recently, [11] provided =~ EGC: & = exp(-j&x)
an accurate analysis for six 16-ary signal constellations Wighy 1 Gain combining predetection diversity systems.
EGC by using the approximate infinite series technique initially
developed in [2]. 2 /4

This paper has the following organization. Section Il il?rf(j (v7) = (4/@ 0/ eXp(._’V csc® 9).d9 [14].2 we can See.
lustrates the applications of two distinct frequency-domamat each en.try in the table is a special case of the following
methods in the analysis of EGC diversity systems over geg]gnenc form:
eralized fading channels. The generality of the CHF method Tu )
based on Parseval's theorem is highlighted in Section II-A Py (elr) :Z/ au(0) exp[—~bu(6)] dO )
by explicitly deriving the FT of the CEP for a broad range u 70
of modulation schemes. A thorough discussion on anothgherex = /v, indexw corresponds to the number of distinct
variation of CHF method (that exploits a desirable exponentigkponential integrals, and both (6) andb,,(8) are coefficients
integral representation for Gaussian probability integral) jadependent of though they may be dependent énin some
presented in Section II-B. While the latter approach tends ¢ases (e.g., BDPSK,,(8) = 6(8), whereé(-) denotes the im-
yield considerably simpler and computationally more efficierjulse function. The ASER in fading channels can be obtained
formulas, its application, however, is restricted to coherepy averaging the CEP over the pdf of the combined signal am-
binary signaling schemes. The derivation of C|Osed-f0rmitude at the output of the EGC combiner, namely
average bit-error probability expressions for CPSK and CFSK
in conjunction with EGC on Rayleigh and Nakagamifading P, = /Oo Py (e|z)pa(z) dz ©)
environments are outlined in Section Ill. Selected numerical
results are also presented in Section IV. Finally, the main pOi%Sqere
are summarized in Section V. P

(-) denotes the pdf of R¥.

If the fading amplitudes are assumed to be independent, then
the evaluation of the ASER [for the CEP given by (2)], using
the classical solution in the form of (3), will require @nfold

In an EGC combiner (see Fig. 1), the output of different dsonvolution integral. This is because we can replacd tfield
versity branches are first co-phased and weighted equally befexerage in (4)
being summed to give the resultant output. The instantaneous - oo oo
SNR at the output of the EGC combinerjs= 22, wherex is P, = Z / au(9)/ /

u o 0 0
L

defined as
2
L E
_ | Es X exp | —b,(0)— <Z m)
T=VIN ; “ (@) LNo \i=

X Poy (1) -+ poy (ap) dog -+ -dap df ()

Il. ERRORPROBABILITY ANALYSIS

for which «; is the fading amplitude that may be modeled
as a Rayleigh, Rician, Nakagami; or a Nakagamiy RV, Wwithasingle average ovet Finding thisp.(-) (i.e., determining
E, /Ny is the SNR per symbol and denotes the diversity the convolution of the pdfs af;) can be very tedious and com-
order. Table | summarizes the CEPs for binary avdary plicated, particularly for largd.. Also, notice that we cannot
signaling constellations. By recognizing the alternativeartition theZ-fold integral illustrated in (4) into a product of
exponential form for the complementary error functiongne-dimensional integrals. This is possible for MRC (e.g., [10])
e, erfe(yy) = (2/7) foﬂ/Q exp(—ycsc26)df [12]2 and but not for EGC because of the presence of dhe; cross-
product terms. As such, it is more insightful if we transform the

2This alternative form may also be obtained from [13, eq. (7.4.11)]. 3This form can be obtained using [13, egs. (7.4.12), (7.4.11)].
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TABLE |
INSTANTANEOUS SEROF SEVERAL COMMON MODULATION SCHEMES
Modulation Scheme Conditional Error Probability Py(¢| v)
Coherent binary signalling:
(a) Coherent PSK 0.5erfc(y)
ittty oncodedpSK ST~ 3o ()
(c) Coherent FSK 0.5erfc(Jy/2)
Noncoherent binary signalling:
(a) DPSK 0.5exp(-y)
(b) Noncoherent FSK 0.5exp(-y/2)
Quadrature signalling:
(a) QPSK erfc(Jy72) - 0.25erfc> (W 72)
(b) MSK erfe(y72) - 0.25erfc (W7 72)
(¢) W4-DQPSK with Gray 1 mexp(—¥(2—2c0s8)) o _ 1" 2y
coding 2ﬁfo 2 - cosB 4 = 27‘5'|.0 eXP(Z—A/QCOSG )de

Multilevel signalling:

(a) Square QAM 2qerfe(/py ) - grerfeX(WJpy )
where g = 1-1/JM and p = 1.5/(M-1)

(b) MPSK R
IJ"'"/M ~ysin“ (/M)
2 exp| X M) e
o sin”0
(c) MDPSK [23] sin(n/M) J-m exp(=y[1 - cos(n/M)cosB]) o
T 0 1-cos(m/M)cos6

or 1.["‘"/’”6)( ( —ysinz(n:/M) )
nlo 1+ cos(n/M)cos6
(d) Two-dimension M-ary signal

N vk sinZ
i 1 M, YK, sin2(‘¥,)
tellat 11,12 — —s ¥
constellations [ ] 5= Z‘III’r(.‘iu)J‘0 exp[ a0
u=

sin’(0+¥,)
where N is the number of signal points, and Pr(S,) is the
a priori probability that the « th signal point is transmitted.

p=(+) into frequency domain, since the CHFfi.e., sumofL.  wherev; = «;\/ Es /Ny ande,,(-) for all common fading envi-
fading amplitudes) is simply the product of the individual CHFgonments are tabulated in Table Il. Alternative expressions for
However, it is difficult (in general) to invert,.(-) in order to get the CHF in Rician and Nakagamiehannels are derived in Ap-
the pdf ofz in a closed form. Previously, it was for this reasompendix A. Next, we will focus on the derivation of the FT of the
that a Fourier series approach was used [8], [9]. CEP for various modulation formats. The FT of the generic CEP

i.e., (2)] is given by [8], [16
A. CHF Method with Parseval’'s Theorem [ @lis g y 8], [16]

By contrast, applying Parseval’'s theorem [15, p. 371] to the T oo ) .

product integral (3) directly leads to Glw) = / au(0) / exp{—27bu(0) + jwz}dz df

1 =9} “ N 2
Po=g [ FIREDIE@L ) Iy [ O e (5

2 ) 2 ), @ VO (7

where notatio’ (-) denotes the complex conjugate of the CHF ) 3 —w?

of z. In fact, (5) can also be obtained by using the inverse FT + jwd <17 2 4b (9)> } do

representation of the pdf, then rearranging the order of integra- ¢ @)

tion. It should be pointed out that the use of (5) circumvents the

need to find the pdf of. But, that being the case, we also nee%here@
¢(-) and the FT ofP,(e|x). Fortunately, this turns out to bey, . st
very easily computed. The CHF ofis given by

ol (i) e () @ -2
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TABLE I
PDFAND CHF OF FADING AMPLITUDE FOR SEVERAL FADING CHANNEL MODELS

Channel Model PDF and CHF of fading amplitude of the [-th branch v, = « E,/N,

Rayleigh
! !

-2 - o2
CHF: %,(“’) = cl{l;%;ilm—] +jo ny,exp( Y0 J [21(5]

& E, .
PDF: ful(z) = zv—zexp(yi], 220 where 7, = FXE[OL?] = average SNR per symbol
0

4 4 4

2
. 2(1+K 1+K K (K;+1
Rician PDF: f,(z) = K el =k, - LKD), [ KK ),zZO
Yy Yy P ! Y: 0 Y

where Rice factor K; 20

o0 Ki o 2
[ O W L
CHF: ¢,(0) = exp(-K,) ¥, 5 <I>[1+ 1;5;4(+K1))
i=0

— P i o2
K7 TG+3/2)K; ( 33 -0
+jo |—=exp(-K;}) ) ——— ®| i+ 3;5;——nr | [9]
1+K; ’Efo (i1y? 22’4(1+K)

Nakagami-q 2z - blzz

(-1<b<1) PDF: ful(z) = - 2exp( 7 )IO[ T J, z20 [24]

T Yij1-b; [1-71Y, [1-517,
where b; = (1 —q,z)/(l + qlz) and the fading parameter 0 < g, <o
26, . 2
2 (b,/2) T(2i+1 Y[l -b]]®
CHF: ¢, (@) = J1-5] Y, (—’—-—)?—‘;(5-——-) d:(zn 1;%;%7
i=0 &
2. - 2
= 2. o (5,/2) " T(2i+3/2) . 33 -0l-b/lo
+,mﬁ,[1-b,]27 @ 2i+ 55—
i=0 (i)
2
Nakagami-m 2 (ml)”‘l 2m, -1 -z
PDF: ) = —if =— exp| — 1|, 220 [21
o = T 7, o [21)

where Nakagami-m fading parameter m; 2 0.5

-2 = = .2
] _ 1Y _ T(my+1/2) 1§, 13 -Y,0
CHF: %I(m) = d{ml, 2,4—"11] + jo Tomy) '—”_zq) my+ ii,m‘ [4][8]

and(a), =ala+1)---(a+n+1) =I(a+n)/I'(a)is the the generic expression given in (9) to be further simplified into

Pochhammer symbol. The confluent hypergeometric functi@nsingle finite-range integral. This simplification is attributable

can be computed efficiently using a convergent series for smiaithe availability of closed-form formulas for the FTBf(e|x).

arguments and via a divergent expansion for large argumentd) Exponential FormP;(e|x) = aexp(—bz?): The instan-

[4]. taneous BER of some noncoherent binary modulation schemes
Substituting (6) and (7) into (5), while realizing that the imagfe.g., DPSK and NCFSK) can be expressed in the exponential

inary part of this integral is zero (since the ASER is real), we gégrm. In this case, the FT af exp(—bx?) is given by

an analytical ASER expression for binary ahtiary modula-

tion formats with predetection EGC a [V7m —w? . w
Glw) = — | X= — )+ jF | —= 10
e @ = Fow( G )+ir ()] ao
B= n /0 Real{GHw)¢(w)} dw whereF(-) denotes the Dawson’s integral:
1 oo
== Real{G* - d @
7T /o 16 (@)daw)} do F(z) = exp(—a:Q)/ exp(t?) dt = z® <1, g, —a:2> . (11)
T Jo sin(2¢) The corresponding ASER is obtained by substituting (10) into

, 9).
whereV¥(w) = Real{wG(w)¢%(w)}. The representation of (9) 2) Complementary Error  Function: P,(e|x) _

is exact. The last integral in (9) can be estimated accuratelygégfc(\/gx): The CEP of some coherent binary modula-
using a Gauss-Chebyshev quadrature (GCQ) formula [13, §g schemes (e.g., CPSK and CFSK) are in the form of a

(25.4.38)] to obtain a rapidly converging series expression f@BmpIementary error function. The FT aérfc(v/bz) can be
the EGC receiver performance over generalized fading chayown as

nels [4]. Also, note that the evaluation of (9) for the most gen-

eral case involves two-fold integrals. Now, we will identifyfourG a2 e il —w? 12
special cases of the CER,(¢|x) that allow the evaluation of (w)== v \am) T - (12)
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TABLE il x1 andb,(8) in (7) is either in the form of:y/ sin®(6 + k3)
PARAMETERS @ AND b FOR DIFFERENT BINARY MODULATION FORMATS or /«;2/ C082(9 + ﬁg)' where/«al, Fo and/«ag are constants (inde-
AND DETECTION SCHEMES L2 .
pendent o). This is becausBeal{G(w)} can be expressed in

G 12 1 closed form (see Appendix B). For instance, the performance of
172 | Orthogonal CFSK | Orthogonal NCFSK MPSK with predetection EGC can be evaluated using (17) in
1 Antipodal CPSK Antipodal DPSK conjunction with (9), instead of directly applying (7)

1 w —w? 9

Therefore, the ASER can be computed efficiently by substi- Glw) = VTw {F <2\/,?2> TP <4_,i2 St (77)>
tuting (12) into (9). N g 2

3) P,(elz) = aerfe(vbz) — cerfc?(vbz): The instan- xF <w2cos(77)>} +jw2i/ sin (6)
taneous SER for QPSK, MQAM, and coherent detection of 2\/'?—22 T Jo 2
differentially encoded PSK can be expressed in the form < & <1 3. —wsin (9)> do 17)
aerfe(v/bz) — cerfc®(v/bx). Utilizing the results of (12) and T2 4ro
recognizing that the FT of therfc?(v/bz) term can be derived
using integration by parts, we get [4]

wheren = 7 — n/M andry = sin®*(x/M). For M = 2,
(17) reduces to (12). By equating the imaginary part, we get the

Glw) = 2a <L) e following integral identity:
wVE T \2vB) T wvE o ; 2 _
—w? in“(6)® 1, —; —Osin“(8) } df = —[1 — -3
Jr() (5 ) () [ snern (1. 5 —psinie)) do = 01— exp(-5)
2v/b 2v/2b 8b
2
+J {ﬁ [1 — exp <4_wb>} B. CHF Method with a Desirable Exponential Integral Form
v 5 4 for Q(x)
N Y _Ep2 v - ; -
» {1 eXp< b ) 7rF <2\/%)}} Inthe preceding section, the average error rate calculations al-

(13) ways involve a two-step procedure [see (9)]. First, the FT of the
CEP need to be determined. Subsequently, replacing the com-

4) Py(e|z) = [(a, bz?)/20(a): A unified BER expression plex conjugate of the CHF into (9), we get the desired results

for coherent, differentially coherent, and noncoherent detectiBht€ms of a single finite-range integral. However, for the spe-

of binary signals transmitted over an AWGN channel is pré:jal case of coherent binary signaling, the requirement to find
sented in [18] (see Table III) the FT of the CEP is no longer necessary because the Gaussian

probability integral (or the complementary error function) has a
desirable exponential integral form.
SinceQ(z) is the tail probability of a zero-mean, unit vari-

) ance of the Gaussian random variable (GRV) exceeatsd the
wherel'(-, -) denotes the complementary incomplete Gammayk of GRV is¢(t) = exp(—t2/2), we immediately get
function andI'(-) is the Gamma function. Using identity [19,

I'(a, bz?)

Py(elz) = 20(a)

(14)

eq. (6.452.1)], with some additional algebraic manipulations, 11 /°° 1
the FT of P,(]x) can be shown as @) = 2wy t ¢ sin(te) dt (18)
j 1 T(2) —w? —jw by invoking the Gil-Pelaez inversion theorem (Fourier inversion
G(w) = w [5 T T(a)2° exp < ]b ) —2a <—\/%>} formula) [25]. This form is suitable (i.e., in a desirable expo-

(15) nential form) for performing an average over the distribution of
the fading amplitudeésbecause the integrand can be written in
whereD_ () denotes the parabolic cylinder function, or altera product form, which facilitates averaging over the individual

natively statistical distributions of the;’s and then perform integration
overt. Hence, an exact analytical expression for the coherent
Glw) = I'(2a) \/fq) <1 ta 3. —_¢02> binary signaling schemes with EGC is given by
[[(a)]?22¢ Y b 2 720 4b 11 =
44 F _ @y <a L __“2)} Py=g = / t~e™"*Imag{p.(2v/at} dt
w|2 D@l(a+1/2)22e \" 2 4b | ™
(16) =5 5 ; t~le  Tmag{$.(2Vat} dt (29)

For the special cases af= 1 anda = 1/2, (16) agrees with ;o0 — | for CPSK ands = 1/2 for CFSK.
(10) and (12), respectively. Thus, substituting (16) into (9), we
obtain a unified ABER expression for all the binary modulation “This particular form may be obtained using identities [19, egs. (3.952.6),
schemes employing EGC treated in [8] and [9]. 8'5253'1)] after some alge.bralc r.nampmat'?ns' . .
In addition to the forms listed in Sections 11-A-1—11-A-4, we Using¢(t) for the GRV in conjunction with the Laplace inversion formula,

A ] ™~ j we can derive Craig’s representation@fx), which is in a desirable exponen-
can also increase the computational efficiency of (2),f¢) = tial form suitable for the analysis of MRC systems [26].

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 13:52 from IEEE Xplore. Restrictions apply.



ANNAMALAI et al: EQUAL-GAIN DIVERSITY RECEIVER PERFORMANCE IN WIRELESS CHANNELS 1737

Sinceg, (2y/at) = [;° €72Vt p, () dw (by definition), we  A. Coherent Detection

can show that Although closed-form solutions for coherent BPSK in Nak-

1 ) % sin(2/atw) agamism and Rayleigh fading channels can be obtained using
}53% t Imag{¢.(2vat)} = }E%/O t Pa(w) dw the CHF methods outlined in either Section II-A or II-B, the
°o derivation using the latter approach appears to be simpler. For
= /0 2V awpe(w) dw instance, substituting (6) (using entry 4 of Table Il) into (19) and
—2\/aE|x] using identity [19, eq. (7.621.4)], we immediately get an exact

closed-form solution for the performance of binary CPSK and
whereE|[z] is the mean value aof. The above observation sug-CFSK without diversity (i.e., L = 1) in Nakagamim fading
gests that the first integral in (19) is well behaved, even-as0  with an arbitrarym
(i.e., no singularity at = 0), and is therefore suitable for nu-

merical integration. Using variable substitutibr= tan 8, we P, = 1 Y I'(m+1/2)
obtain 2 (mé+7)m  [(m)
1 2 [™? exp(—0.5tan?6) < 13 Y )
P === _ XQFl 1_m7_7_7 — (22)
’ 7r /0 sin 20 272" mb+7y
x Imag{¢.(2v/atan6)} df whereé = 1 for BPSK,§ = 2 for BFSK, andy 1 (-, -; -; -) is

the Gauss hypergeometric function

Imag{¢..(2Vatan 6)} d6. b
@ antked =3 Gt

n=0

2
11 /'77/2 exp(— tan 6)
2 7w J sin 26

2| <1. (23)

Since (20) is considerably simpler than (9), it is recommended

for the error-rate calculations of coherent binary modulatid?nurthermore' it orb (or both) in (23) is either zero or a negative

schemes (CPSK and CFSK) integer, the series is finite and thus converges for alonse-
' quently, (22) reduces to a finite polynomial for integersince

lll. CLOSED-FORM SOLUTIONS IN RAYLEIGH AND Y () (B)n 2"
NAKAGAMI FADING 211 (—w; b c; 2) :ZW e w=0,1,2.-.

n=0 " :
In a related work, [3] formulated the problem of computing (24)

the ABER for coherent binary PSK with EGC diversity in the
framework of statistical decision theory, and was then able The simplicity of our derivation should be compared to a rather
obtain closed-form solutions faE < 3 in a Rayleigh fading long derivation, of an equivalent result, found in Appendix A of
channel. His solution to binary noncoherent FSK and DPSK sy[g0]. In addition to this, whem = 1/2, (22) may be simplified
tems in Rayleigh fading is restricted to a second-order diversityto
By contrast, in this section, we derive some closed-form for- 11 5
mulas for the ABER with EGC in a Nakagamifading channel P,=-— —sin?! < i _) (25)
viathe CHF methods (Sections II-A and II-B). By utilizing iden- 2w 6+27
1) (C2) i ossible L e s o oo O SO, (12, 125/ ) = (in™ )

L y ! y modu 1) CaseL = 2: Similarly, for L = 2, we need to evaluate
lation schemes for any. > 1 in terms of the Appell hyper-

geometric function. However, in this paper, we shall restrict our P 11 °° =Lt
attention to the practically important cases of second- and third- T2 o o
order diversity. Our results are sufficiently general to handle ar- [ ( ) ( )
. . S A1 (2 2) By (2 2
bitrary fading parameters and dissimilar branch powers. In some | 2 ? /9,
cases (if the fading severity indexesare restricted to posi- Ay (2 /t]6, 2) B, (2 /t]s, 2)} dt  (26)

tive integers or are multiples of half of odd integers), the Ap-
pell function can be further simplified into either a finite sum ofvhere A, (w, L) = ®(my, (1/2); (—w?¥,/4Lmy)) and
Gauss hypergeometric series or a finite polynomial.

The results in Section I11- A are based on the following obBk(w, L)
servation. When evaluating (19) for arorder diversity system _ Plme+1/2) T o 1 3 —why,
in Nakagamim fading, the imaginary part 6f,.(-) is a sum of v [(my) Lmy, < s 272" 4Lmy ) )
2571 terms, each of which is a product bfconfluent hyperge- _ .

Equation (22) can also be used to analyze EGC receiver performance (ap-

ometric functions (see the.IaSt entry in Table II). Therefore, Wg,imate analysis) with independent and identically distributed (i.i.d.) diver-
need to solve the generic integral sity branches by replacing and — m L andy — 7 + (L — 1)7T2(m +
1/2)/mI?(m) =~ LF(1 — 1/5m) as suggested by Nakagami [21]. However,

o0 1 n we would like to highlight that the application of this approximate analysis is
I= / e H O(ay; by; cpz) dx. (21)  quite limited because in practice i.i.d. branches are rarely available and the ac-
0 1 curacy of the approximation is inadequate for small values obetails of the
EGC approximate analysis can be found in [27], which also treats the unequal
Some solutions to this are provided in Appendix C. signal strength scenario.
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It is apparent that we need to find solution to the integrals inthe  formula [19, eq. (9.131.1)] and then using (24). Further-
form more, by substitutingn; = mo = 1 in (30) and recog-
nizing thats F1(a, b; b; =) = (1 — 2)~%, we get

I[m17 ai, ma, a?]

so 11| V731 +26) + V72 (72 + 26)
_ _ aita 1 1 P _ - _Zz 1 1 2 2 32
:/0 712 (Hataa)ty <§ -y, o alt) T2 2 Y1+ 72+ 26 (32)
x P <1 — Mo, §; aQt) dt (27) which is identical to [3, eq. (23)]. .
2 b) If bothm; andm, are assumed to be multiples of halved
_ _ odd integers, then (29) can also be expressed in a closed
after applying Kummer's transformation formula [19, eq.  form similar to (30). As a resultz(z, ¥, &) is now given
(9.212.1)] to Ap(w, L) and By(w, L). This integral can be by
evaluated using (C.1), i.e.,
IQ(-Tv Y, 6)
I[ml, ai, ma, CLQ] F(my + 1/2 — mlz:l/Q
— i J 28 1; l_mb 1 — mo; 17 %; -~ wl(my) 2my
l1+a1+ae 2° 2 272 ok
ay ag ) (28) X <7nﬂc - 1/2> (k + 1/'2') <_,Ya;>
1+ai+as’ 14+ai+as k (2k — Dt mzé o
2mgmy 6 H1/2)
which holds for any realn;, > 1/2, k € {1, 2}. Therefore, x F M + oy + 2mem,6
an exact closed-form solution to (26) (expressed in terms of the 13 7 m
Appell hypergeometric function of the second kind) is given by X 2 1< —my, k+ = 27 3 ’yymm—lr'y,;my—ermmmy&)
33
1 22: C(m + 1 /2) 7 (33)
2 Mo wl'(my) 2m Itis apparentthat 1 (-, -; -;, ) in (33) reduces to a finite
_ _ polynomial fork > 1 from the definition of Gauss hy-
x I {mk, L, mi, T } . (29) pergeometric function. For the particular casenof =
2myb 2myd mo = 1/2, we can show that the ABER for binary CPSK

. L - and CFSK with second-order EGC diversity is given by
Now, we will show that (29) can be further simplified into finite

polynomials, if bothm;, (k = 1, 2) are assumed to be either pos- 1 1 5

. . . . . _ o—1 z

itive integers or alternatively, multiples of halved odd integerd = 5 — —sin 7 +7. 46

This is becausé(+; (1/2) — m;, 1 —my; -, - -, ) reduces to v

afinite series ifn; = (1/2), (3/2), ..., orm; is a positive in- 1. 4 Yy 34
teger (or both). So, the development of (31) and (33) relies on T ot T, +6) (34)

these observations.
a) If bothm; andm, are assumed to be positive integers, 2) CaselL = 3: Using (19) and (C.1), the ABER of binary

then (29) reduces to CPSK and CFSK with third-order EGC diversity is given by
1
Py= 5~ D(1,2,8) - B2 1, ) 30) D=gF (1239
— (1, 2,3, 6) + I34(1, 3, 2, 6) + 13,(2, 3, 1, §)]
where (35)
IQ(‘Tv Y, 6) Where
_ T(my+1/2) Z <my - 1) Ll +1/2) La(x. y. 7, )
wlmy) i Nk Gk = [ B, (2135 3)
5 m k+(1/2) 27 Jo
x {%mx T 2mxmy6} B, (2478, 3) B. (2V/1/5. 3) at
1 11 ¥.m, 2l (mgy + 1/2)L'(my + 1/2)'(m. + 1/2)
F . Y = Cacc Cz
X 2 1<2 My, k+2 2’ ’yymx+7xmy+2mxmy5> ﬁf(mm)F(my)F(mZ))\?’/? \4 Y
(31) XFA(g;vl_mwvl_myvl_mz§
Also, note thab (- --) in (31) can be replaced by a 333 G & & (36)
finite polynomial by applying Kummer's transformation 2797927 A7 A7 A
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and where

Isy(z, y, 2, 6) :% /00 t7 et A, (2\/t/_5’ 3) Lo(z, y, 6) = 1 /00 Ar(w, 2)Ay(w, 2)C(w) dw

0

Ay (2\/t/_5, 3) B, (2\/%, 3) dt \/7mmlmmy

2my6+’}’ )n)l—1/2(2m 6_’_,}/ )rn y—1/2

X
_DPm.+1/2) [¢ (2mamyé 4+ 7, my +7,me)m=tmy—1/2
X o1 | = =My, - —my; =
11 1 2 2 2
X Fy — Mgy = — My, 1 —my; _
2 2 2 V= Vy
— — (40)
113 ¢ ¢ ¢ (2 +7,)(2med + %)
3 50 o va va f) (37) see also (41), shown at the bottom of the page, and

1 o>
which are valid for any reab;, > 1/2, k € {1, 2, 3}, where Dre(z, y, 8) = - /0 Au(w, 2)By(w, 2)D(w)dw  (42)
A =14 + ¢y + G, forwhich ¢, = 7, /(3mué). . _ _
Using the above idea, one may also derive closed-form fé’?é':th L) arr\]dB t(h ; L) defined as they are in (26). Using
mulas for EGC in Nakagami» fading for any value of. using (C.1), we can show tha

(C.1). Besides binary modulation schemes, the method also ap- §T(my + 1/2) / Ty
2mm,,

plies to QPSK andV/-ary QAM, given thatG(w) can be ex- Le(z, y, 6) = 16Y3/2T ()
pressed in terms of the confluent hypergeometric series. In Ap- Y

pendix D, we show that the Appell function in (36) and (37) may I <§ 1 g 1 —m, 1 13 §.
be replaced by a finite sum of the Gauss hypergeometric series T2 ’ vt

or a finite polynomial for the positive integer fading severity Y Yy =6

i 1 i ’ s A (43)
index. However, the number of terms grows exponentially with 8m, T 8m, T 47T

the increasing value ofix, k € {1, 2, 3}- which holds for any realn > 1/2 andT = (7,/8m,) +
B. Noncoherent Detection (’yy/87.ny).. If my is a positive integer, then (42) can be restated
as (using identity [8, eq. (14)])

Let us denote&(w) = (1/4)V7é exp((—w?6/4)) andD(w)

= (w§/4)®(1, 3/2; (—w?/4). Using the CHF method based on

My —

6T (my +1/2) ’Vy

Parseval's theorem, we can show that the performance of bma?ﬁl( v 8) = 8rl'(my) My Z 2k +1)!
NCFSK (¢ = 2) and DPSK § = 1), without diversity reception,
in Nakagamim: fading with an arbitraryn is given by ~ <myk_ 1) <_’7y> x I(x,y, 6, k) (44)
4my ? ? ?
1 o>
p=1 / [41(w, 1)C() + B (w, 1)D(w)] dw where
T Jo i 1 1 t
m I(z, ,6, k :/ tk+1/26—tT(I> <_ — g, - Ve )
2\mé+7
x ¢ < 5. 6t> dt
with the aid of [19, eq. (7.621.4)] and (C.4). Equation (38) is 2° 4
identical to [18, eq. (11)]. _ Dk +3/2)
Now, for L = 2, the ABER with predetection EGC may be o TkE3/2
evaluated as 31 1 3
F oy a T 17 a0 o
. 2<k+2’ g~ M By
Pb :Iga(l,z,é)—Igb(l,z,é)—i-lgc(l,z,&)+IQC(2,1,6) 77‘ -6 45
(39) T H) (45)
1 o
B, 8) = [ Bul, DB, 20) d
T Jo
~ D(ma +1/2)I(my + 1/2)(2myé +7,)™ ~H(2mad +7,)™ !
o 22U (mg)L (my) (2memyd + 7, my + ﬁymx)mr'i'my—l/?
— _ 3 Yo,
Moy [ Fill-m., 1—m,; = Y 41
o 2t (1= e 1 5 <2my6+vy><2mm6+%>) “

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 13:52 from IEEE Xplore. Restrictions apply.



1740 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 10, OCTOBER 2000

The integral in (45) can be expressed as a finite sum using the integral in (48) can be replaced by a sumibfterms. In
procedure suggested in Appendix D. For the dase0, using particular, (48) reduces to a strikingly simple solutiondey =
(C.4), we obtain (46), shown at the bottom of the page. my = 1/2

It should also be pointed out that fér> 1, the final result
from (45) will be a sum of x 4* terms. Lettingn,, = m, = 1 1 s
(Rayleigh fading) in (44), we obtain an equivalent expression fo.(, v, ¢) = o | / Y
that derived in [3] but in a slightly different form. Alternatively, TNVt Ty
by replacing®(1, 3/2;2) = [®(1, 1/2;2) — 1]/22 [19, eq. . 5,0
(9.212.2)] and: = 0 in (45), we get (47), shown at the bottom X sin = 1= \(= (50)

) ) . (T +7y) (T +6)
of the page, after simplification of the resultant integrals using
[19, eq. (7.621.4)] and (C.5). Now, it is easy to verify that (44)
reduces to the familiar expression in [3] for Rayleigh fadin
(my = my = 1). If my = (1/2), (3/2), ..., then (42) may
be rewritten as

At this juncture, it is also worth noting that the ASER ex-
8ression forM/-ary modulation formats (e.g., MPSK) with dual-
branch EGC can be reduced into a single finite-range integral in
a Rayleigh fading environment and some special cases of Nak-
agamism fading, owing to the availability of the closed-form

Le(2, y, 8) solutions found in Section IlI-B.
_ST(my +1/2) [7F, P 1
~ 8nl(my) 2m, kZ:o (2k — 1)1 IV. NUMERICAL RESULTS
My —1/2 7, k In this section, we provide several representative numerical
< L ) <4mx> curvesillustrating the EGC receiver performance over Rayleigh,

oo Rician, and Nakagami= fading channels using the analytical
X / thtL/2e=tHE@memy 547, my +7,me )/ (Smamy ) results derived in the preceding sections. These results are val-
0 _ idated using a quasi-analytical (QA) simulation technique. In
% P <1 —my, §; 7_yt> o <17 §; ﬁ) dt (48) our simulations, each data point is obtained by generatifig 10
2" 8my 272 4 random samples of, defined in (1).
Fig. 2 depicts the average error rate performance of coherent
BPSK employing EGC that combines two and three i.i.d. di-
m—1/2 . versity branches in a Nakagamn-environment, for several
> <m 1 _a> o Z (-2) <m - 1/2> o positive integer fading several indexes. Since the curves ob-
T2’ P (2k — 1! k ’ tained using (30) (foi. = 2) and (35) (forL = 3) coincide
1 3 with their QA counterpart, this observation validates the accu-
=5 g (49) racy of our derivations. Similarly, the performance of QPSK
with second- and fourth-order EGC diversity in Nakagami-
Once again, the closed-form solution for (48) may be attainéatling (for real fading severity index) is plotted in Fig. 3. These
using the iterative method outlined in Appendix D. In this caseurves are generated using (9), (13), and the fourth entry of

9 m, M . 6+_ me—(1/2)
I(z, v, 6, 0) —8my, | — T Ty [ ( _y ’Yy)_ }
Yoy + VyMa | 2Memyé + Y,my + 5, My

[ 2m? } 11 3 27,m6
X — — 2P | =, o —mai — =
2mamyd 4+, my + Fy M 272 27 (2myd+ ’yy)(’ymmy + ’yymm)
1—2m, 1 3 3 25,m2§
+4m_2F1 <—7 5 Me; 53 oy )} (46)

with the aid of the identity

m

2’2 27 (2myd +7,)(Fomy +7yma)

v 0 = [ (DY 2, (i 5,
Ter s Y Yy My + VyMa 6\ (2my6 +7,)(2memy 6 + 75, my +75,ms)

2mgmyd + 7, ma e 1 11 25,m2§
X [ AR } 2F1 | 5 —ma =55 5 et LT (47)
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Fig. 2. Errorrates for coherent BPSK employing second- and third-order E

diversity over Nakagamir channels q—% 4. Error probability performance of a dual-diversity EGC receiver for
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Nakagamim fading channels.
Fig. 5. Error probability performance of MQAM employing EGC diversity in
a Rician fading environmenfy{ = 4.5).

Table 1. QA simulations are also performed to serve as a

“sanity check” on the analytical results. In Fig. 4, we plot the

error performance of MPSK employing second-order EGC di- V. CONCLUSIONS

versity in Rayleigh and Rician fading channels. We have alsoThis paper presents a concise, frequency-domain approach
validated that the curves obtained using (9) and (17) yield idefar evaluating the performance of a broad class of modulation
tical results when (17) is replaced by (12) (for BPSK) and (13kthemes employing predetection equal-gain diversity receivers
(for QPSK). Finally, Fig. 5 presents the average error probara variety of fading environments. The results are sufficiently
bility performance of MQAM employing predetection EGC ingeneral to allow for arbitrary fading parameters, as well as dis-
Rician fading channels. Once again, the results obtained ussigilar mean signal strengths across all the diversity branches.
(9), (13), and the second entry of Table Il agree with thoSehe generality and computational efficiency of the new results
obtained via QA simulation. presented in this paper rendering themselves as powerful means
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for both theoretical analysis and practical applications. Somereé;(6) = jw\/(%,(1 — b?)/2(1 — b; cos 8)). For the spe-
new closed-form solutions for EGC receiver performance incal cases ob; = 0 andd; = 1, the Nakagamiz distribution re-

Nakagami fading environment are also derived. verts to the Rayleigh and the one-sided normal distribution for
the respective values. Using (A.2) and the GCQ formula, we can
APPENDIX A also derive an expression similar to (A.3) for the Nakagami-

IJ]?sv To the best of the authors’ knowledge, all the results de-

In this appendix, we derive finite-range integral expressio
i 9 9 P rived in this Appendix are new.

for the CHF of Rician and NakagamiRVs. This representation
has an advantage over its infinite series expression because it
circumvents the need to compute the confluent hypergeometric APPENDIX B
series recursively (i.e., in [9, egs. (12)—(14)]). In this appendix, closed-form solutions for the real part of

Different from [9], we replace the modified Bessel functioz(w) in (7) are derived for two special cases as follows: 1)
of the first kindZy(-) with its exponential integral representatior,, (§) = xy/sin’(6 + s3) and 2)b,(0) = ra/ cos?(6 + k3).
[19, eq. (8.431.3)] to derive the CHF of in Rician fading This is achieved by assuming that(¢) = x; andxy, x2 and

r3 are constants. Initially, from (7), we have

exp(—K =
o) = ZXEED [ icz0) D al-0)) .
0 7(/431
(A1) Real{G(w)}= Z / J* exp < ) de.
(6
where(;(6) = jw/7;/2(1 + K;)++/2k; cos 8 and the second- (B.1)
order functlon of the parabolic cylindeb_,(-) may be ex-
pressed as For case 1), substitutinig, () = o/ sin(8 + x3) in (B.1) and
then using variable transformatien= 6 + ~3, we obtain
D_y(2) = exp(—2%/4) — zexp(22/4)ﬁerfc <L> .
2 V2 \/—h1

(A.2) Real{G(w)} =

Sren(3o)y [

Now, using variable substitutioh = cos# and then applying o ex _2 co? o) sinada. (B.2)
the GCQ formula [13, eq. (25.4.38)], we have yet another series p 4ro ’ '
expression forp,, (-) in a Rician fading environment

Now, using variable substitution = (w cosa/2,/r2), (B.2)

v, (W) = exp(—K)) {1 + %\/g zn: G(8;) reduces to
_Q(gi)} } Real{G(w)}

\/i 2 (wcos k3/2\/Ka2)
(A.3) = VT eXp<i>Z/ v exp(t?) dt.
w A2 ) S (o cos(n.+ra)/2/R2)

wheref; = (2i — 1)x/2n. Note that there is a tradeoff involved (B.3)
when selecting a value far: greater accuracy may be obtained
using a larger value, but at the expense of increased numb&his can be written in a closed form as
of terms. A bound on the approximation error for the truncated
series can be derived using the procedure outlined in [17] and N < 2)

< oxplcP(6) 2lertc |

[22]. Real{G(w)} = =
In a similar fashion to our development of (A.1), the CHF of

v; for Nakagamig fading derived in Table Il (entry 3) may be w2 ) W COS K3
restated as a single finite-range integral x Z {eXP <@ cos Iig) F < )

4[%2

2,/!432

Puw) = m / (i- bl cos ) mo <4w_; 05" (1 + ”3)>
XJ?—L%‘; (/)/4]11) b[ (9)] " X F <—” COS;% “3)>} (B.4)
— by cos

m 2 _ whereZ’(-) corresponds to Dawson'’s integral [see (11)].
% [1 + 5lw)\/QeXp[& (6)/2Nexicl~6(6)/V2 | db For case 2), wherig,(f) = r2/ cos®(0+r3), while following

(A.4) the development of (B.2)—(B.4), we can show tRatl{G(w)}
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is given by which reduces to a finite seriesgibr a; or a, (or all of them) in
(C.3) is either zero or a negative integer. Some functional rela-
Real{G(w)} tions between hypergeometric functions of two variables (trans-
LT —w? formation formulas) are given in [19, eq. (9.183.2)]. In addition
- €xp PR Z to this, the Appell hypergeometric series of the second kind has
5 ) the following property:
w 5 wsin K3
x{—exp<4—sm Iig)F( NG )
2 Fy(b; a1, az; b b; z, y)
w? sin nu—i—mg
+exp|— sin? (Mu+r3) .
ine 1— )" (1 — y)~2,F b 2y
(BS) —( —.’L') ( _y) 2471 <CL1, az; ,m>
(C.4)

The above formulas can be used to speed up the computation of

(9) for MPSK and other two-dimensional signal constellationgg 5 check, we find that (C.4) yields [19, eq. (7.622.1)]. Also,
(e.g., Craig's formula [12]) given that they collapse one of th@smg (C.1) and (C.4), we can show that
double integrals into a single integral.

- —1 _—st . .
APPENDIX C /0 e O(a, ¢; pt)@(a, ¢; M) dt
In this appendix, we provide some useful formulas that facili- [(c)sato—e i
tate the derivation of closed-form solutions for the EGC receiver = Gop(s—ae X ok <a, QG m) -
in Rayleigh and Nakagami: environments (see Section llI). (C.5)

Substitutingl,, ,,(z) = e #2221 2@ (p—a+1/2, 1+2p; 2)
in [19, eq. (7.622.3)], and after some algebraic manipulations,
we obtain an integral identity involving product of Kummer APPENDIX D

functions For integer values ofni.(k = 1, 2, 3), Is.(z, y, 2, §) can

o0 n be evaluated in a closed form
/ ¥l b H D(ay; by; cpa) dx
0 k=1 I3a(‘T7 Y, z, 6)
=b""TI'(v)F4 (v al,. .., 0n; b1, ... by %1, e, %)
B CeCyCe D(my +1/2)I(my, + 1/2)0(m. + 1/2)
|:bk >0,v >0, ch < b:| (C.1) - . F(mx)F(my)F(mz)
where M,, ,,(z) is Whittaker’s function of the first kind and " (2267 fma—1 my 71 (=2¢,)% (m,—1
F4(---) denotes the Appell hypergeometric function definedas < Z 2k +1) ,,< by ) Z m( ke )
[19, eq. (9.19)]viz,, k2=0
.—1
. . . (=2¢)% (m. — IN\NT(ky 4 k2 + k3 + 3/2)
( /317 M 7/3717’717 '..7,7717 Zl? tec ZTL) X Z 2k3+1 ”< kg ) )\k1+k2+k3+3/2

-3 > Z (0.1)

mq=0 mo=0

( )n7’1+"'+n7’n (/31)7711 e (ﬁn)nln my
X 2L,
(’Yl)ml T (’Yn)mnml! cemp! !

. which follows directly from the definition of (C.2) because
no- (8), = O0forn > —gif gis anegative integer. Similarly, by
(C.2) assumingthat.. isanintegers;,(x, y, z, §) canberestated as

Ifall 5;,4 € {1, 2, ..., n}, are either zero or negative integer, Ia(z, y, 2, 6)
then it becomes apparent that (C.2) reduces to a finite series be-
caus€ 3;)m, = 0form; > —p3;. Furthermore, for the particular I( mé + 1/2 ms m. K12
case ofn = 2, the Appell function in (C.1) can be replaced by = Z 2k n 1 T < 3 )Cz
the series k=0
x Iz, y, 2, 8, k) (D.2)

Fy(v; al, ag; bl, 52; c1, ¢2)
CL n n
= Z ©)nlan)n 2F1(v +n, az;by;co)
< M

= (b)an! 1 1
leal + lez] < 1, b > 0] (C.3) x® <§ — My, 5i Cyt) dt. (D-3)

where

g 1 1
I(‘Tv Y, 7, 67 k) = / tk_1/26_)\t(1) <_ — Mg, 53 Ca:t)
0 2 2

cy2 (v +mn, ar;biser)
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It is obvious that for our subsequent developments, we need to

evaluate the integral in (D.3) in closed form. Foe= 0, (D.3)
can be evaluated using (C.5)

I(‘T7 y? Z? 67 0)
= V(L + G G+ )T

X (1 Gy )™ VD G+ Gy

LU U § GG,
><2-Fl<2 T y727 (1+<y+<z)(1+<a;+<z))
(D.4)

Thus, for the particular case of Rayleigh fading(= m2 =

mg = 1) andL = 3, it can be shown that (35) reduces to [3, eq.

(21)], as expected.

For k = 1, we utilize Gauss’s contiguous relation [19, eq.

(9.212.3)]

O(a, ¢; z) = u<I>(a, c+1; a:)—i—g(b(a—i—l, c+1; z)
c c
(D.5)

to expand®(---) in (D.3). This results in a sum of four inte-
grals. Now, applying (C.5)(x, v, z, 6, 1) can be evaluated as

a finite sum of the Gauss hypergeometric series
I(:L’, y? Z? 67 1)

B \/;X;nwfl/QX;ny—l/Q

LT
X {2mmmy2F1 <% — My, % — My; g; X4)
+mz(1l— 2my)%2F1 <% — My, g — My; g, X4>
+my(1— 2mm)% 2k <% — My, g My g% X4>
+ %(1 — 2my)(1 — 2my)X§3
X o F <g — My, g — My; g% X4> (D.6)

WhereXl = 1+CJ)+CU+CZ1 X2 = 1+Cy+<za X3:

1+ ¢ + ¢ and xs = ¢/ x2x3. By performing the above
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