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ABSTRACT - Performance evaluation of equal-gain (EG) 
diversity systems is notoriously difficult - a classical 
problem dating back to Lord Rayleigh himself almost a 
century ago. A number of references to this problem and 
to its difficulty can be found in the research literature and 
textbooks. In this paper, we derive exact analytical 
expressions for the EG receiver performance in Rayleigh, 
Rician, Nakagami-m and Nakagami-q fading channels in 
terms of the Appell hypergeometric function. Our meth- 
odology and analytical framework can readily handle any 
order of diversity as well as arbitrary fading statistics 
(including mixed-fading). The method also applies to a 
broad class of coherent, differentially coherent and non- 
coherent modulation formats. For coherent BPSK and 
BFSK, the solution is particularly simple because a desir- 
able exponential integral representation for the Gaussian 
probability integral is available. 

I. Introduction 
Despite its practical and theoretical importance, the litor- 
ature on EG diversity systems is barren compared to that 
of other diversity combining methods. This lack may 
have stemmed from the difficulty of computing the prob- 
ability density function (PDF) of the EG output sig- 
nal-to-noise ratio (SNR) which depends on the square of 
a sum of L-fading amplitudes. In fact, a closed-form 
solution to the PDF of the sum has been elusive for 
almost a century, and indeed even for the case of Ray- 
leigh fading (mathematically simplest distribution), no 
solution exists for L > 2 . 
In the past, some approximation techniques have been 
employed to characterize the EG receiver performance 
(see [ l]-[S]). While the convergent infinite series tech- 
nique suggested in [4] and [5] is accurate, the solution is 
still an approximation. Zhang [9] and Annamalai, Tel- 
Iambura and Bhargava [6] were first to derive exact solu- 
tions for L S 2  in Rayleigh and Nakagami-m fading 
channels, respectively. In [9], only binary signalling 
schemes are considered and the author's closed-form 
solutions are restricted to second (for noncoherent detec- 
tion) or third order diversity (for coherent detection) in 
Rayleigh fading. More recently, [6] developed a powerful 
frequency-domain technique and subsequently derived a 
single finite-range integral expression for calculating the 
error probabilities of binary PSK and multilevel QAM 
with L -branch EG diversity over the Nakagami-m chan- 
nel. The analysis was extended to different modulation 
formats and a variety of fading channel models in [SI and 
[ 101. Some closed-form solutions for binary signalling 

schemes in Nakagami-m fading were also derived in 
[lo]. Building on our previous work, in this paper we 
derive exact analytical expressions for a broad class of 
modulation formats with EG diversity in all common 
fading channel models (Rayleigh, Rician, Nakagami-m 
and Nakagami-q): Different from [6] and [SI, our final 
result is expressed in terms of the Appell hypergeometric 
function. The key to our solution is the reformulation of 
the error probability expression in the frequency domain 
[6, 101 and the solution to a Laplace transform integral 
involving the product of Kummer functions. As an aside, 
we show that Zhang's closed-form formulas in Rayleigh 
fading as special instances of our general expression. 
The contributions of this paper include: (a) the develop- 
ment of a simple and direct approach for calculating the 
error rates for coherent binary signalling schemes by 
exploiting a desirable exponential form for the Gaussian 
probability integral. This alternate form is suitable to 
perform averaging over fading amplitudes because the 
L -fold convolution integral may now be partitioned into 
a product of one-dimension integrals (without any 
cross-product terms). Moreover, we point out (through 
change of index) that the computation of a convergent 
Appell hypergeometric series will require only the evalu- 
ation of a single infinite series of finite sums (i.e., the 
upper limit for the rest of the series will be finite); (b) 
derivation of some closed-form and exact infinite series 
solutions for a broad class of binary and M-ary modula- 
tions in Rayleigh, Rician, Nakagami-m and Nakagami-q 
fading. It is further highlighted that the advantage of our 
infinite series solutions (inherent in the CHF of Rician 
and Nakagami-q random variables, due to the Bessel 
function) is two-fold: (i) first, its representation is exact 
- this is in contrast to the infinite series solution devised 
by Beaulieu because his representation introduces some 
systematic errors for unbounded random variables (i.e., 
signal reconstruction error in addition to the series trun- 
cation error); (ii) secondly, it is considerably simpler and 
computationally very efficient in comparison with the 
approximate infinite series method suggested in [5]. 

11. Error Rates for Coherent Binary Signals 
Using an alternative exponential integral representation 
for the Gaussian probability integral [ lo ,  Eq. (18)], it is 
easy to verify that 

aerfc(bx) = a - ~ ~ ~ e - ' * s i n ( 2 b t n ) d t  7c o t  (1) 

Thus, the averaging over the PDF of sum of fading 
amplitudes for the average symbol or bit error rates cal- 
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culations for coherent BFSK ( a  = 112, b = I / & )  and 
BPSK ( a  = 1 / 2 ,  b = 1 ) can be accomplished without 
much difficulty (since the L-fold average can be parti- 
tioned into the product of L independent one-dimen- 
sional integrals): 

2a e-'' 
P b  = E . . . [ [ a  - 7 Imag { ex p( j 2  bt 

a,) ).] LNo, E 1 

where L denotes the diversity order, & / N o  is the SNR 
per bit, fa,(.) corresponds to the PDF of the fading 
amplitude in the I-th branch (a, 's are assumed to be 
either Rayleigh, Rician, Nakagami-m or Nakagami-q 
random variables) and &,(.) is the CHF of the fading 

envelope where U, = a i m o .  
Letting t = tan0 in (2), we may also express the ABER 
in terms of a finite-range integral expression: 

The CHF of the fading envelopes for all common fading 
channel models are listed in Table 1. 

A. Identical Fading 
For independent and identically distributed (iid) diversity 
branches, (2) can be further simplified as 

Pb = a-' 

where 

L k - 1  

(-1)'(~)G(Re[~,,(z)l, ~m[@ul(Z)l ,  k, L )  (4) 
k = l  
kodd  

G ( A ,  B, x, y )  = [r-'e-'B'AY~"dt ( 5 )  

and z = 2 b m L ,  by exploiting ( A  + B),  = 

Note that (4) holds for all values of L 2 1 (i.e., no restric- 
tion is imposed on the order of diversity). At this juncture, 
it is also worth noting that both the real and imaginary 
parts of the CHF of the signal amplitude can be expressed 
in terms of only the confluent hypergeometric series 
andor the exponential functions (see Table 1). Hence, it is 
apparent that only the solution to the integral in the form 
of (6) (i.e., involving the product of Kummer functions) is 
further required to obtain an exact analytical solution for 
the EG receiver performance in a myriad of mobile radio 
environments: 

(k)BkA"k 
k = O  

= L t v - l e - b ' f i  @(al;bk;Ckt)dt (6) 
k =  1 

Fortunately, the solution to this integral is known, and has 
been reported in [IO]: 

= b-'r(v)F,[v;a, ,  ..., a.;bl ,  ..., b . ; 2 ,  ..., 5 
b b ]  (7) 

if bk > 0, v > 0, )I.ck < b .  Notation FA( . ; . ; . ; . )  denotes the 
Appell hypergeometric function, which is defined as [12, 
Eq. (9.19)] 

FA(a;PI, ..., 6 n ; Y l r  ' . . r Y n ; Z l ,  ..., zn) 5 ,,, c ( a ) m l +  + m , , ( P l ) m , . . . ( P n ) m n  - - ZY'Z? ... ZP (8) 
m , = O  m 2 = o  m n = O  ( Y I ) m , . . . ( Y n ) m " ~ l ! . . . m . !  

Table 1 .  PDF and CHF of fading signal amplitude for several 
fading channel models. 

Channel 
Model 

Rayleigh 

Rician 

Nakagami-q 
( - l S b 5 l )  

Nakagami-m 

PDF f u l (  .) and CHF Qvl( .) of fading amplitude of the 

l-thbranch U, = a l m o  

Although the computation of (8) appears difficult (i.e., 
need to evaluate the multiple infinite series), but it can be 
greatly simplified for many cases of practical interest. 
For instance, (8) reduces to a finite series if all 
P,, i E { 1, ..., n }  are either zero or negative integer 
regardless of the values of z ,  . This is because (P,),,,, = 0 
for all m, > -P, . Furthermore, if the Appell hypergeomet- 
ric function is absolutely convergent (i.e., if all I z , ]  < 1 , 
i E { 1 ,  .. ,, n} ), then it is possible to replace the multiple 
infinite series by a single infinite series of finite sums. 
This property is particularly useful in numerical compu- 
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tation, and is further elaborated in the Appendix in con- 
nection with the Cauchy product of infinite series. As it 
will become apparent in the later part of this section, all 
of our calculations for the Appell hypergeometric series 
fall in one of the above two categories. Also, for the par- 
ticular case of n = 2 ,  the Appell function in (7) can be 
replaced by the series 

Fz(v;ai, az;bi, b2;Ci, cz) 

given that the conditions [ I C , [  + lc21 < 1 ,  b, > 01 are satis- 
fied. Following our preceding discussion, it is evident that 
(9) will reduce to a finite series, if v or a ,  or az (or all of 
them) is either zero or a negative integer. In addition to 
this, the Appell hypergeometric series of the second kind 
has the following property: 

Fz(b;ai, az;b, b;x, y )  

Next, we will summarize some exact infinite series 
expressions and closed-form formulas (where applicable) 
for the error rates of coherent binary PSK and FSK 
employing EG receiver over mobile radio channels. 
A.l  Rayleigh 
From Table 1, we know that 

Thus, we have 

( L  - k )  times 
with the aid of (7). Now, substituting (11) into (4), we 
have a complete solution for CPSK and CFSK in Ray- 
leigh fading. For the special cases of L = 1 ,  L = 2 and 
L = 3 ,  we can show that this new expression agrees with 
those furnished in [9J and [lo]: 
(a) L = 1 (single channel reception) 

(b) L = 2 
2a 

Pb = a - -G(A, B,  1 , 2 )  

( c )  L = 3 

Now applying (10) into (14), we obtain the solution 
derived by Zhang, as expected. 
A.2 Nakagami-m 
For Nakagami-m fading, we have 

Hence, it can be readily shown that 

3 3  
' 2'""  2 ' 
. -  - 1 1 1-ml ,  ..., 1 - m ,  , 2 - m l ,  ..., 5 -ml  
'- 

k L - k  k 

? I b 2  ] (15) 1 1 . ylb2 
2' " "2  'L(m,+y,b*) '  " " L ( m , + ~ , b * )  
- -  

-, , 
L - k  L 

after simplifications using integral identity (7). 

0 2 4 6 8 10 12 14 16 18 20 
Average SNR per channel 

Fig. 1. Error rates for coherent BPSK employing second and 
third order EGC diversity over Nakagami-m channels. 

A.3 Rician 
The analysis in Rician fading is more involved compared 
to the Rayleigh and Nakagami-m cases, owing to 
unavailability of a closed-form solution for the CHF of 
the fading amplitude. However, the real and imaginary 
parts of the CHF can be expressed in terms of a single 
infinite series formula: 
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Next, we will show the application of (4) and (7) to 
derive an exact infinite series formula for the ABER of 
coherent binary signalling schemes employing dual 
diversity EG receiver: 

(16) 2( 1 + K ,  + p,b2)  1 
By substituting (16) into (4), we obtain the desired result. 
It is apparent that the above technique can be still applied 
for the analysis of EG systems with a higher order of 
diversity. But, further simplifications of the resultant 
expressions involving multiple infinite series to a single 
infinite series of finite sums is recommended (details 
may be found in the Appendix). 
A.4 Nakagami-q 
The analysis for Nakagami-q fading can proceed in a 
similar manner to the Rician fading scenario since the 
CHF of the fading amplitude can be represented by an 
infinite series expression. An illustrative example for this 
fading environment is provided in [ 131. 

B. Nonidentical Fading 
It is also possible to extend the analysis for the iid case to 
examine a more realistic nonidentical fading channel 
model. Our observation here is that if we can rewrite the 
imaginary part of product of CHFs in ( 2 )  as a partial 
sum, then we can derive the desired results using (7), as 
we have done in the iid case. A sketch of our derivation is 
outlined below: 

n n  A n  ” 
= n A , +  E B ,  n A , +  c 2 BIBl  n A,+ ... 

i = l  r = l  k r l  i = l  j = l  k = l  
k # i  j > i  k i i l  

n n  

+ E E ... B,B ]... B, n A,+ ... + nB, (17) 
r = l ] = I  w - 1  k =  I , = ,  

j , ,  w >  ... >,>! k # E, 1. . . .. w 

Suppose A,  = Re{&(.)} and B, = &Im{@”,(.)}, then 
the imaginary part of the product (17) is simply a collec- 
tion of the terms which consists of odd products of B, 
(i.e., the second term, the fourth term, and so on). A few 
examples illustrating the application of (17) in the study 
of the impact of dissimilar statistics as well as mixed fad- 
ing cases can be found in [13] (details are omitted here 
for the sake of brevity). 

111. Error Rates for Noncoherent Binary Signals 
and M-ary Modulations 
In this section, we are particularly interested in reporting 
how the analysis in the preceding section can be utilized 
and/or extended to consider several other modulation for- 
mats such as noncoherent detection of binary FSK, 
DPSK, QPSK and MQAM. These extensions are possi- 
ble because the Fourier Transform (FT) of their condi- 
tional error probability (CEP) can be expressed in 

closed-form (also, in terms of confluent hypergeometric 
series)’. For the sake of illustration, let us consider the 
case of iid fading and assume that notations C and D 
correspond to the real and imaginary parts of the FT of 
the CEP, respectively. Then, it can be readily shown that 
the average error rate is given by 

1 = . n o  -rRe{(C+jD)(A + j B ) L } d r  

k odd 

k even 

where A = Re[@,,(t/&)], B = Im[@,+(t /h)]  and 

H ( a ,  @, 6, X, y )  = cay-”p”6dt (19) 
It suffices to state here that the integral (19) can be evalu- 
ated in closed-form for Rayleigh and Nakagami-m fading 
channel models with the aid of identity (7). Details may 
be found in [13]. Also, comparison between (4) and (18) 
reveals the similarities between both these expressions: 
they both rely on (7) for their subsequent simplifications 
to get the desired closed-form or infinite series solutions. 
However, it should be emphasized that we have 
employed two distinct frequency domain techniques to 
arrive at these expressions in the first place. The CHF 
method using Parseval’s theorem is more general and 
applicable for a broader class of modulation formats. But 
the competing technique tends to yield a very concise 
formula if the CEP takes the form of a complementary 
error function. 
Further extensions of (18) to take into account of the 
effect of nonidentical and/or mixed fading can also be 
treated quite easily (similar to the approach discussed in 
Section IIB). To summarize, in this section we have high- 
lighted the availability of a simple yet general procedure 
for deriving closed-form and/or infinite series expres- 
sions for the ASER of several binary and M-ary modula- 
tion formats in a variety of fading environments. A 
comprehensive treatment of this subject will be dealt in 
our forthcoming work [13]. It is further noted that the 
mathematical approach as well as the results presented 
herein may also be directly used in the analysis of several 
other modulation formats such as MPSK, MDPSK, 
star-QAM, DQPSK etc. In these cases, the final results 
will be expressed in terms of a single finite range integral 
and the integrand will take a form similar to that of the 
results obtained for noncoherent BFSK or DPSK signal- 
ling scheme. Finally, we would like to point out that it is 

1. The readers are referred to [6] and [IO] for a more thor- 
ough discussions on the development of a fre- 
quency-domain technique which is utilized in this section 
for calculating the average symbol error rates (ASER) of 
a wide range of modulation formats over generalized fad- 
ing channels. Also, FTs of the CEP for all common mod- 
ulation formats are listed in [ IO]. 
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also straight-forward to derive simple closed-form 
approximation formulas for a broad class of coherent, 
differentially coherent and noncoherent modulation for- 
mats in Nakagami-m channel with iid diversity branches 
and E m k  is assumed to be a positive integer. To achieve 

this, we utilize the approximate PDF of the EG combiner 
output [3] and the solutions to three generic trigonomet- 
ric integrals derived in [ 111. 
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Appendix 
In this appendix, we show that it is possible to express 
the solution to a product of two or more convergent infi- 
nite series as a single infinite series of finite sums, by 

making a change of index. This facilitates rapid compu- 
tation of our final error rate expressions for the EG 
receivers (usually involves the computation of the Appell 
hypergeometric series and/or as a product of multiple 
infinite series) in a myriad of fading environments. Aside 
from the above, the simplified expression allows the 
errors due to the series truncation to be quantified more 
systematically. 
Let us first assume that a double infinite series is abso- 
lutely convergent. By introducing the change of index 
n = m ,  + m 2 ,  it is quite easy to show that - -  O D “  

E A m , , m 2  E A n - m 2 . m 2  (20) 
n = 0 m2 = O  m ,  = O  m 2 =  0 

since for m, 2 0, the index m2 must satisfy the condition 
n - m z > O ,  or equivalently m 2 5 n .  Similarly, we can 
deduce that 

- - ’ P  ‘ P W ”  

C C C A m , , m 2 . m , =  C 2 C A w - - n . n - m , . m ,  (21) 
m,  = O  ml= 0 m, = 0 w = 0 n = 0 m, = 0 

by making the change of indexes n = m2+m, and 
w = n + m, , given that the series on the left-side is abso- 
lutely convergent. Following this logic, we get 

F*(a;P1, Pz;Y1, Y2iZ1, zz) 

if lzIl < 1 and lzzl < 1 . 
The corresponding single infinite series expression for 
the hypergeometric series with multiple variables can 
also be derived in a similar fashion: 

Fda;P1, . . . I  P.;y I ,  ..., y.;z1, ..., 2.) 

for all I z , ~  c 1 , iE { 1, ..., n}. 
Finally, we would like to point out that (20) is related to 
the Cauchy product of two series. For example, if E a k  
and xbk are both absolutely convergent series, then so is 
their Cauchy product: 

O D -  

am bt = C, (24) 
m = O  k = O  n = O  

where 
c. = Ukb,-k = a.-kbk 

k = O  k = O  

It is apparent that we can also replace the product of mul- 
tiple convergent infinite series by a single infinite series 
of finite sums, as before. This technique, is therefore rec- 
ommended to improve the computational efficiency of 
the average error probability expressions of EG systems, 
particularly for Rician and Nakagami-q channels. 
Another useful property is the extension of Cauchy’s 
product to the power formula: 

P -  (2 a..’) = cnxn, p = 2,3,4, ... (25) 
n = O  n = o  

1 ”  where cO = U: and c ,  = - ( k p  - n  + k)akc,_k, n > 1 . 
sank = I 
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