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ABSTRACT - Using a circular contour integral representa- 
tion for the generalized Marcum-Q function, Qm(a, b )  , 
we derive a new closed-form formula for the moment 
generating function (MGF) of the output signal power of 
a dual-diversity selection combiner (SC) in bivariate 
Nakagami-m fading with positive integer fading severity 
index. This result involve% only elementary functions and 
holds for any value of the ratio a / b  in Qm(a, b )  . As an 
aside, we show that previous trigonometric integral rep- 
resentations for Qm(a, b)  can be obtained directly from 
this contour integral. The MGF is used to unify the evalu- 
ation of average error performance and outage perfor- 
mance of a dual-branch SC for coherent, differentially 
coherent and noncoherent communications systems. 

I. Introduction 
The evaluation of symbol error rate for several common 
modulation formats with dual-branch selection diversity 
in independent and correlated fading channels has been 
reported in [ 11-[5]. The recent work [5] has rekindled the 
interest in this subject. In [5], the authors first derived an 
integral expression for the cumulative distribution function 
(CDF) of the combiner output signal-to-noise ratio (SNR) 
by exploiting the trigonometric integral representation for 
Q,,,(a, b )  [7] and then differentiated it to get the probabil- 
ity density function (PDF). Their resulting expressions 
depend on the branch power ratios as well as the power 
correlation coefficient p [5, Eq. (3)] (i.e., their result take 
different forms depending on a > b , a = b or a < b ) .  
Finally, they employed the classical PDF method to 
obtain the average error rates. 
Alternatively, if one derives the SC output MGF first, 
then the performance of a broad class of modulation for- 
mats can be obtained at once using the MGF method [SI! 
Previously, Okui [2] derived a Gauss hypergeometric 
series for the MGF of the SC output SNR. However, his 
result [2, Eq. (7)] holds for the case of equal average 
SNRs only. Fedele et. al. [4] generalize the results in [2] 
by considering the effect of dissimilar mean received sig- 
nal strengths. Motivated by Simon and Alouini's work and 
recognizing the fact that SC output MGF is the key to the 
performance analysis, we attempted to derive closed-form 
solutions for the MGF (involving only elementary func- 
tions) in correlated Nakagami-m fading channels. 

The major results and contributions of this paper include 
the following: (a) we derive a closed-form expression for 
the MGF for integer m via a circular contour integral 
representation for Q,,,(a, b )  . Simon and Alouini only 
obtained an integral representation for the MGF. Further- 
more, in contrary to [ 5 ] ,  our final expression applies 
regardless of the values of the branch power ratios and p . 
For instance, the independent fading case can be treated 
directly by setting p = 0 in the expression for the MGF'. 
Therefore, our solution leads to a compact, unified analy- 
sis of a broad class of modulation formats for dual-diver- 
sity SC in correlated Rayleigh and Nakagami-m fading; 
(b) we show that the two previously reported alternative 
integral representation for Q,,,(a, b )  can be directly 
obtained from the contour integral representation; (c) the 
MGF is used to derive error rate expressions for a broad 
class of modulation formats employing dual branch SC 
in Nakagami-m and Rayleigh fading channels; and (d) 
we also derive a new, exact integral expression for the 
outage rate of error probability using the Fourier inver- 
sion formula. 

11. Integral Representations for Q,(u, b )  
Proakis [ 10, pp. 8851 provides the contour integral repre- 
sentation for the generalized Marcum-Q function, 

where g(z) = a*( l / z -  1 ) / 2  + b2(z- 1)/2 and r is a cir- 
cular contour of radius r that encloses origin. The singu- 
larities of the integrand are at z = 0 and z = 1 .  
Therefore, by Cauchy's theorem we can choose any 
O <  r < 1 .  Now if we choose r = 1 , then we need to 
remove the singularity at z = 1 on r by suitably 
deforming r (see Fig. lb). This representation holds 
regardless of a > b ,  a = b or a < b ,  and for any positive 
integer m . In the following, we will show that both Hel- 
strom's [7] and Simon's [6] integral representations 

1. In fact, closed-form expression for a broad class of modula- 
tion formats (including CPSK, CFSK, MQAM, MDPSK, 
MPSK, noncoherent MFSK, star-QAM, nI4-DQPSK and arbi- 
trary two-dimensional M-ary signal constellations) can be 
derived in a straight-forward fashion for this special case [12]. 
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readily follow from (1) for integer values of m . 

(a ) r=a /b  < 1 ( b ) r = a / b =  1 

Fig. 1 Contours of a line integral for: (a) r < 1 ; (b) 
r = I ; and(c )  r > l .  

(i) Consider the case a < b (see Fig. la) where the cir- 
cular contour r encloses origin with a radius less than 
unity. Therefore, z in (1) can be written as z = reJ0 

with r < 1 and 0 5 8  < 2n.  Now select r = a / b  , so we 
immediately get 

where 2 is the set of positive integers. Taking the mag- 
nitude of the integrand, we obtain the new bound 

(3) 

which holds for any integer m 2 1 , whereas the bound 
due to Simon [6, Eq. (12)] holds only for m = 1 . 
(ii) Consider the case a = b (see Fig. lb). Now 
g(z) = a 2 ( z +  1 / z ) / 2 - a 2  and as shown in Fig. lb. 
Hence, 

where rl is the half-circle contour centered on z = 1 
with radius E .  On rl , z = 1 - EeJU and -n/2 I a 5 n/2.  
Taking the real value of the first integral on the right 
hand side and letting E + 0 ,  we obtain 

This result (i.e., Eq. (5)) is in fact identical to [7, pp. 
5281 derived by Helstrom. 
(iii) If a > b , r = a / b  is greater than unity. So we need 
to consider the closed contour shown in Fig. IC. The 
inner circle I? has a radius less than unity, while the 

outer circle rl has a radius of a / b .  Inside the closed 
contour, the only singularity of the integrand occurs at 
z = 1 . Hence using Cauchy's theorem, we find 

The first integral is Qm(a, b )  and z = (a/b)e" on r,. 
Therefore, we get 

Note that (2) and (7) are identical to Helstrom's results 
[7], except the integrands are in a complex format, and 
hence are slightly more compact. Since the integrals are 
real-valued, taking the real parts of the integrands in (2) 
and (7) gives the exact same integral representations of 
Helstrom. Similarly, Simon's results [6] are very closely 
related. For instance, consider the a < b case. As in the 
derivation of (2), we can select z = ( a / b ) j e J e .  Note that 
the magnitude of z is still less than unity, i.e., Izl< 1 . 
Hence using this new substitution in (l) ,  we find 

Again, this representation is very compact, yet it is iden- 
tical to [6, Eq. (7)] and [6, Eq. (lo)]. 

111. Derivation of the MGF of SNR at the Output 
of a Dual-Branch SC Combiner 
The joint probability density function (PDF) of the 
bivariate Nakagami-m fading is given by [ 111, 

4bY)" 
r(m)QlQZ(l  - P,(&GGP,--' 

f ( X > Y )  = 

- - 
where x 2 0 ,  y10, Q, = { x 2 / m ) ,  Q 2  = { y 2 / m ) ,  

p = cov(x2, y')/../var(x')var(y') (p # 0,1), and m is a 
positive number greater than 1 /2 . 
Then the cumulative distribution function (CDF) of sig- 
nal envelope at the output of SC combiner is 

F ( r )  = (,j&>Y)'XdY (10) 

Now differentiating (10) with respect to r , we obtain the 
PDF of the signal envelope, 

(1 1) f(r) = (,m r ) b  + (,m, Y)dY 

From the definition of the m -th order generalized Mar- 
cum-Q function [ lo], 

2 2  

Qm(a, b )  = 1 -P ,x (~ )m- lexp( -~ )Zm- l (ax )dx  (12) 

Substituting (9) into (1 1) and using identity (13), we get 

0-7803-5718-3/00/$10.00 02000 IEEE. 1032 VTC2000 

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 14:13 from IEEE Xplore.  Restrictions apply. 



, j E { 1,2} is introduced 2r2"-' 
r(m)Q; 

where \Y, (r )  = - 

for ease of notation. 
Now, the desired MGF may be evaluated as 

@(s)  = (exp(-sr')f(r)dr (15) 

Clearly, the solution to the definite integral (16) is 
required to solve our problem on hand: 

(16) Im(p, a ,  b )  = (x'"-'exp(-px')[l -Q,(ax, bx)]dx  

where Real{ p} > 0 .  From (1), we have 

where g(z) = a'( l/z - 1)/2 + b'(z - 1)/2 and r is a cir- 
cular contour of radius less than unity that encloses ori- 
gin. This representation holds regardless of a > b , a = b 
or a < b .  Now substituting (17) into (16) and performing 
the integration with respect to x first (changing the order 
of integration is valid because both the integrals are con- 
vergent),'we find 

where a. = (2p+aZ+bz)/bz and a, = ( a / b ) ' .  The 
denominator of the integrand in (18) has two positive 
roots. Therefore, applying the residue theorem, we get 

Now invoking the Liebnitz' differentiation rule and after 
simplifications, we obtain a closed-form solution: 

where X = 2p + a' - b' . 
Obviously (20) holds only for integer m .  Besides, we 
would like to point out that (20) is equivalent to [2, Eq. 
(6)] but simpler than the latter. Therefore, the MGF of 
SNR at the SC combiner output in bivariate Nakagami 
fading can be conveniently evaluated using 

~ ( s )  = t =  i l , J # , r ( m ) S 2 ?  2 I m ( s + k l J * ; J & )  

JQ]( 1 - p)/2 
51,/51, - 1 + S Q l (  1 - p )  

where C,(s) = ( 1  + sQ,)-"', A,] = 

+/[s51,51,( 1 - p) + 51, + Q,]' - 4p51,Q1 
s51,51,( 1 - p)  + 51, - 51, 

and B,J = 

In [9, Appendix A], we have shown that it is possible to 
derive yet another closed-form formula (finite series 
expression) for the MGF with the aid of the integral for- 
mula identity [2, Eq. (6)]. 

IV. Error Rates for Binary and M-ary Signals 
A. Average Error Probability 
In this subsection, the MGF formula is used to derive 
error rate expressions for a broad class of modulation 
formats employing dual branch SC in Nakagami-m and 
Rayleigh fading channels. Craig outlined a simple 
method for computing the conditional error probability 
(CEP) of an arbitrary two dimension signalling constella- 
tion. Exploiting his result and some others, we can show 
that the CEP of a wide range of binary and M-ary signal- 
ling schemes (with coherent, differentially coherent and 
noncoherent detection) as a special case of the following 
generic form 

P,(EIY = ~ca,(0)exp(-ybk(O))dO (22) 

where uk( 0) and b,( 0) are coefficients independent of y 
but may be dependent on 0 .  Then, the ASER can be 
expressed in terms of only the MGF of the combiner out- 
put SNR (by taking the Laplace transform of the PDF): 

PS = F c a d 0 ) @ ( b d 0 ) ) d 0  (23) 

It is clear that the evaluation of generic ASER expression 
only involves a single integral with finite integration lim- 
its since we have a closed-form solution for the MGF. 
Unlike the development of [5, Eq. (59)], no further 
manipulations are necessary. Furthermore, the evaluation 
for the independent fading case can be directly obtained 
by substituting p = 0 in our expressions. More impor- 
tantly, our expressions (e.g., (21), [9, Eqs. (A.2), (A.4), 
(A.5)]) are not conditioned on the ratio between the argu- 
ments of the Marcum-Q function. 
If the conditional error probability is in the exponential 
form, P s ( ~ I y )  = aexp(-by), then we also have a 
closed-form expression for the ASER. For instance, the 
average bit error rate performance for binary DPSK and 
noncoherent FSK with dual-branch SC is given by 

Ps = a@(b)  (24) 
where {a = 1/2, b = 1) for binary DPSK and 
{a = 112, b = 1/2} for binary orthogonal FSK. As well, 
when m = 1 (Rayleigh fading), we get 

(25) 

where A,, and B,, are as defined in (21). Eqs. (31) and 
(32) in [5] follow at once from (25). Also notice that (25) 
(unlike Eq. (32) in [5]) is independent of the ratio 
between the arguments of the generalized Marcum-Q 
function even when p f 0 .  Similarly, for integer m and 
p = 0, Eq. (57) in [5] follows at once from (21). 
For noncoherent MFSK modulation [lo, Eq. (5-4-46)], it 
is straight-forward to show that the corresponding ASER 
is given by 

(2AZJ)Z 
@(SI = ,=l,,,,[Q,B,(l + BJ1 

If the CEP is of the form P , ( E ~ Y  ) = uerfc(.&) (e.g., 
coherent binary PSK or FSK), then the ASER can be 
expressed as 
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(27) 

Similarly for P ~ ( E I  y )  = uerfc(6y )-cerfc2(&) (e.g., 
square QAM, quaternary PSK, coherent detection of dif- 
ferentially encoded PSK) the ASER is given by 

Ps = gr’Z@(bcsc28)dB n o  -2[’4@(bcsc2e)dB (28) 

Finally, it is also possible to derive closed-form solutions 
for a broad class of coherent, differentially coherent and 
noncoherent modulation formats in Nakagami-m channel 
(positive integer m) for the independent fading case by 
substituting p = 0 in (21) and utilizing the solutions to 
three generic trigonometric integrals derived in [ 121. 

B. Outage Rate of Error Probability 
Recognizing that the CDF can be expressed in terms of 
only the MGF by invoking Fourier inversion formula, the 
outage rate may be computed as 

PO”, = F , ( x * )  

where the MGF @( .) ( in  closed-form) for positive integer 
m is given in (21). For noninteger m, it is probably more 
appropriate to use (29) in conjunction with the MGF for 
the dual-diversity SC combiner output SNR in Nakag- 
ami-m fading derived by Okui instead of [9, Eq. (28)]: 

x 2F,(1-m,m;l +m;(l-l/B,,)/2) (30) 
Notice that the above formula reduces to a single finite 
range integral expression when m assumes a positive 
integer value. This is because the Gauss hypergeometric 
series reduces to a finite polynomial. 
The advantage of our new CDF expression (using (29) 
and (30)) with respect to [5] is two fold. First of all, it 
handles all combinations of SNRs and power correlation 
coefficients in a single expression. Secondly, our expres- 
sion is also valid for any real value of m t 1/2.  
Comparison between (30) and [9, Eq. (28)] reveals that 
our new CDF expression can be computed more effi- 
ciently than the latter for any non-integer m since [9, Eq. 
(28)] involves the computation of a triple infinite series 
expression whereas the computational complexity of (29) 
is comparable to the evaluation of only two infinite 
series. For integer m, the computational complexity for 
both these expressions are almost the same, which is 
equivalent to the evaluation of a single infinite series. 

V. Conclusions 
A circular contour integral representation for the general- 
ized Marcum-Q function, Q m ( u , b )  has been used to 
derive a new closed-form formula for the moment gener- 
ating function (MGF) of the output signal power of a 
dual-diversity selection combiner (SC)  in bivariate Naka- 
gami-m fading with positive integer fading severity 

index. This result involves only elementary functions and 
holds for any value of the ratio u / b  in Qm(u, b)  . As an 
aside, we showed that previous trigonometric integral 
representations for Q,,,(u, b )  can be obtained directly 
from this contour integral. The MGF was used to unify 
the evaluation of average error performance and outage 
performance of a dual-branch SC for coherent, differen- 
tially coherent and noncoherent communications systems 
for both correlated and independent fading cases. 
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