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Generation of Bivariate Rayleigh and Nakagami-m

Fading Envelopes
C. Tellambura, Member, IEEE,and A. D. S. Jayalath

Abstract—The letter presents an algorithm for generating bi-
variate Nakagami- distributed fading envelopes with any desired
power cross correlation. For this algorithm, the fading index
should be a positive integer ( = 1 for Rayleigh fading). Its ap-
plications include dual-branch selection combining diversity, dual-
branch switch diversity systems, and wireless channel modeling.

Index Terms—Correlation, diversity, Nakagami- fading,
Rayleigh fading.

I. INTRODUCTION

DUAL DIVERSITY systems are perhaps the most widely
used diversity techniques because of the diminishing re-

turns yielded by higher order diversity systems. Rayleigh and
Nakagami- distributions are widely accepted for system per-
formance studies. The effect of correlation on dual diversity sys-
tems has been analyzed by several authors, often deriving com-
pletely analytical solutions [1]. However, it is useful to simulate
the performance of such systems and this requires the generation
of bivariate Nakagami- distributed random variables (RV’s).
This problem will be addressed in this letter. A recent letter
[2] derived a procedure for the generation of two equal power
Rayleigh-fading envelopes with any desired correlation-coeffi-
cient. The method of [2] was extended and improved in [3]. In
this letter, we develop a more general procedure for the genera-
tion of two Rayleigh or Nakagami- fading envelopes with any
desired power cross-correlation. For this procedure, the fading
index can be any positive integer ( for Rayleigh fading)
and the average powers need not necessarily be equal.

II. PROBLEM AND THE PROCEDURE

The pdf of a pair of correlated Nakagami-distributed fading
envelopes is given by [4], [5]

(1)

where ; ;
; and . Here is the power

correlation coefficient. Our problem is to generate pairs
distributed as above for integer . For this, we modify the
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well-known inverse transform method and develop a complete
procedure for generating pairs.

A. Inverse Transform Method

A general method for generating an RVwith continuous cdf
is the inverse transform method [6]:

1) Compute the root of where
where is the uniform distribution from 0 to 1 and
is read: “ is distributed as .” This method requires one to
generate a uniform RV in and solve . It
can easily be shown that the distribution ofis [7]. The
procedure can be repeated as many times as is necessary, but
its usability depends on how easy it is to compute the root,

. For instance, consider generating an exponential RV with
: from the above algorithm, if is an uniform

RV, then 1 is an exponential RV. By
generating an uniform RV and using this relationship, an expo-
nential RV can be generated. This method is particularly useful
in this case since the above root can be obtained analytically. In
general, is computed using numerical techniques.

B. Modified Inverse Transform Method for a Pair of RV’s

We now extend the above method for generating a pair of
correlated RV’s. Suppose the joint cdf , the marginal
cdf and the conditional cdf are all known.

1) Generate .
2) Compute from where .

It can readily be shown that the pair is distributed as
(the heuristic explanation is that steps 1 and 2 gen-

erate two RV’s distributed as and respectively; but
). Note that step 1 itself may use the in-

verse transform method. The cdf is a function of . The
required steps are to generate and and
to obtain from both and . So to apply the method to the
problem at hand, we need to find the conditional cdf
and a method for inverting .

C. Complete Procedure

In (1), the marginal densities of and are given by the
Nakagami distribution. For instance, the pdf ofis

(2)

which is obtained by integrating (1) over.

1If u � U(0; 1), then(1� u) � U(0; 1). Thus,1� u can be replaced by
u.
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From the definition [6, eqs. (7–14)], the conditional pdf is
. Combining (1) and (2) thus yields

(3)

Therefore, the conditional cdf is

(4)

where is the generalized Marcum function and
(4) follows from [8, eqs. (2-1-122)].

From step 2 in the modified inverse transform method, it fol-
lows that is obtained by solving the equation

(5)

where ; ; and
. Since monotonically decreases

from 1 to 0 as varies from to , (5) has a unique solution.
This root can be readily obtained by the use of the bisection
method [9, pp. 353–354], which requires an initial interval that
contains the root. If , then the root is in .
If , then we try the intervals ,
and so on, until the root is initially bracketed. Finally, the initial
interval is halved repeatedly until the root is located with enough
accuracy.

So the full procedure for generating the correlated Nak-
agami- fading envelopes is as follows.

1) Generate

where for .
2) Compute from where ,

e.g., (5).
Step 1 follows from the fact that is a Gamma RV and, for
integer , is equal to the sum of exponential RV’s. The
right-most formula saves the evaluation of the log function
times. Note that, as pointed out by an anonymous reviewer, Step
1 can also be replaced by the square root of the sum of
squared Gaussian RV’s. Step 2 involves solving (5) for. The
pair is distributed according to the pdf in (1).

III. A PPLICATIONS

A. Estimated Correlation Coefficient

To test the accuracy of the above algorithm, we generate
pairs of , , using it for a given . The

correlation coefficient can be estimated as

(6)

TABLE I
ESTIMATED �

Fig. 1. Selection diversity combiner performance. For all curves,y = 1. For
curves 1–3,m = 3 and for curves 4–6m = 1. Curve 1:x = 2 and� = 0:2.
Curve 2:x = 1 and� = 0:1 Curve 3:x = 1 and� = 0:7 Curve 4:x = 2

and� = 0:1. Curve 5:x = 2 and� = 0:5. Curve 6:x = 1 and� = 0:5.

where and are the estimated means of and and the
theoretical means and are normalized to unity. Table I
shows the relationship between the actual correlation coefficient
and the estimated one. Using the percentage relative error given
by , one can see thatextremelyaccurate generation
of correlated fading envelopes is possible—the relative error can
be as low as 0.02%! Note that the relative error increases as
decreases but this trend can be overcome by increasing.

B. Selection Diversity Combining

Selection diversity is the simplest and perhaps the most
widely used diversity technique. It is, for example, a selection
diversity technique that is used in the current digital cellular
system IS-54. The output of a dual branch selection diversity
combiner is given by . The cdf of can easily
be obtained if the joint cdf of is known: [6, eqs. (6-54)]

. Tan and Beaulieu [5] derive an infinite
series expression for the bivariate cdf . Therefore,
using [5, eq. (3)] the cdf of the output is given analytically by

(7)
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where is defined in [5]. Fig. 1 shows the simulated
system performance and that which was computed using (7).
Again, analmost exactmatch occurs between the two. Note,
however, that only pairs have been generated. So the simu-
lation points in the region may not be estimated
very accurately. Thus, the procedure derived in Section II-C can
be used to study the performance of dual diversity systems.

IV. CONCLUSIONS

In this letter, we have developed a procedure for generating
correlated Nakagami- fading signal pairs. The fading severity
index can be any positive integer and the average signal
powers need not necessarily be equal. This procedure will be
useful for studying the effect of correlation on dual diversity
systems such as selection combining, switch and stay, switch
and examine, and so on. Several improvements to the procedure
in Section II-C are possible. Its major shortcoming is the use
of the bisection method in (5), which can be slow. First, (5)
may be solved using a more efficient method such as the secant
method. The Newton–Raphson method may also work since
the derivative of is known. Second, the solving of (5)
may be completely avoided. The rejection method [7, p. 565]

may be used to generate instead. The improvements
have not been pursued further because of the page limitation.
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