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Abstract—A new, infinite series representation for the error This paper derives an infinite series representation for the
function is developed. It is especially suitable for computing error function. This series, based on the sampling theorem,
erfc(x) for large . For instance, for any«x > 4, the error function  oqires only eight terms to achieve a relative error less than

can be evaluated with a relative error less than 10'° by using 10 - .
only eight terms. Similarly, the error function can be evaluated 1x10 for all z > 4. Similarly, the error function can be

with a relative error less than 8 x 10~7 for any = > 2 using evaluated with a relative error less thalX&O_7 for anyx 2 2

just six terms. An analytical bound is derived to show that the using just six terms.
total error due to series truncation and undersampling rapidly
decreases ag increases. Comparisons with two other series are

. Il. DERIVATION OF THE SERIES
provided.

Index Terms—Error function, Fourier analysis, numerical A. Sampling Theorem for Non-Bandlimited Functions

methods, sampling theorem. According to the Shannon sampling theorem, an arbitrary
band-limited function can be reconstructed exactly from its
samples taken at a sufficiently high rate. If one, however,

attempts to reconstruct mon-bandlimited functiorusing its
N MANY communications problems, noise is often charsamples, then

acterized using a Gaussian distribution. Therefore, the error
function = . [(t—nh
. o= Y sonse ("5 v @
-~ —t*
erfe(z) = N /m et dt 1)

I. INTRODUCTION

n=—0oo

whereh is the sampling periodsinc(¢) 2 sin (wt)/(wt), and
expresses the error probability. The tail probability of a unit)

variance Gaussian random variali}éxr) = 1/2erfc(z/+/2) is 2 /oo

also called the error function. In this letter, we shall use the first le(®)] < -

|F(w)] dow. @3)
definition. Without loss of generality, we only consider the case w/h
x > 0. There is no known closed-form expressiondofc(x). This bound shows that if (¢) is bandlimited, i.e., its Fourier
Several numerical or approximation methods have been giteansform (FT)F'(w) = 0 for |w| > = /h, thene(t) vanishes,
in the literature [1]-{4]. Some of these may not be accuratesulting the Shannon sampling theorem. There are two condi-
enough for some applications. For instance, the approximatidons for (2) to be really useful for numerical purposes. First,
[1] for Q(x) gives only about three significant figure accuracy (nh) must decrease rapidly as| increases. Secondk(¢)]
for x > 0. The series by Beaulieu [2] is much more accuratejust be very small. These conditions translate to the require-
with a relative error less than 63 107 forall 0 < x < 6 ments that bottf () and F'(w) simultaneously be localized in
using only 17 terms. However, we found that this series exhibtimme- and frequency—domains. These are mutually exclusive
poor convergence for large Therefore, it is not efficient for conditions—a function and its FT cannot both decay too fast.
computing the error function for large arguments. In fact, this fact, of all functions, the Gaussiaf(t) = e~ is the most
series is best suited for computing the error function near thepidly decaying in both andw [6]. Its FT F(w) = y/me=="/4
origin (asz — 0). is Gaussian too. Therefore;** can be reconstructed from its
samples with arbitrary accuracy. Using (2), we find
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erfc(z) wherez is complex. However, his series only holds foiThe series»(z) is treated as an error term in (8) because the
Imag(z) > 0 and hence cannot be used to computfe(x) for ratio|ex ()| to the first series in the right-hand side of (8) is less
real . thane=7*/" /22, Soey(z) is a negligible error term as — oc.

For convenience, we rewrite (8) as
B. Error Function

2 — 22

—x n=N
We now use the above representation to derive a series for theg. () — hx(; <$_12 +2) 6h2 — ) +ea(z) (12)
=1

error function. Using [3, eq. (7.4.11)], we can write, for> 0 n? 2
pe— [ ot where IV is the series truncation point and the total approxi-
erfe(z) = . /_ 212 dt. (6)  mation errore,(z) arises from the following three factors: 1)
the series truncation error in (8); 2) the sampling series error
We can show that for non-bandlimited functions (4); and 3) the second right-hand
oo term in (7b). Using (10) and (11), the absolute approximation
. t—nh 1 .
sinc ——dt error is therefore bounded as
oo h 12 + z2
R 2hae™® [ "X W
_ " jonh—z|w| d 7a )| < —— T r-am—
2z /_w/h ¢ “ (7a) lea(@)] 7r n:z]\;+l n2h? + 2
h h —zx/h —1)n ~ v
— _ € ( ) (7b) T.
712}7,2 —+ .’L’2 (712}7/2 + .’L'Q) R T efacz —zx/h
+ 20 erfe (—) S (Jath) (13)
wheren is an integer@, +1, £2, ---) andy = +/—1. Equation N 2h T

v

(7a) follows from the use of Parseval’s theorem to transform the Se
left-hand integral into the frequency-domain. The integrati
limits are+ /h because the functiatine(¢/h) corresponds to
an ideal low-pass filter of bandwidthr /h in the frequency-
domain. Combining (4), (6), and (7b), we obtain

C{HhereTe and S, are the series truncation and undersampling
errors, respectively. Therefore, the approximation error depends
on the three parametets: i, and N. Moreover, for fixedh and
N, the error boundlecreasesvith increasingz. This suggests

2? M=o _n?n? that once suitable values farand V are chosen for, say, =

Z ZRE + a2 +e1(x) +ea(z) (8) o, those values can be used foralb> xg.

erfc(z) = hae”

™

where the error term due to the second right-hand termin (7b) is lll. DiscussioN

We next compare the series (12) with two other methods for

e(z) = I computing the error function.
o(z) =
e s
e e © A. Fourier Series Expansion
' ;::1 n?h? + 2? Beaulieu [2] derives a series solution f9¢z) which can be

modified to give the series
and using (5) in (6), the error term dued@) in (4) is bounded

2N—1 22 .
as 4 —n“h nh
erfc(z) =1— = E c s;n( nhz) +ea(z)  (14)
—x? ™ —
ler(2)] € 2e™ erfe (ﬁ) (10) =l

since [*°_1/(#* 4+ 2?)dt = w/x. Term-by-term integration Where the parametef in [2] has been replaced by for the
used to arrive at the series (8) is justified because (8) is ab§gse of comparisom:(= v/2r/T) andn = 2N — 1 is the
lutely convergent for any positive except forz = 0. If, say, Series truncation point. Using another one of Beaulieu’s results
h = 0.2, the magnitude of, () vanishes rapidly. For example,[7: €d. (29)], we write

for x = 2,4, 8, the bound is in the order of 1%, 10735,

109, respectively. These values are upper bounds and the ac- o0 RPN
. : : o e sin (2nhx) ™
tual error is even smaller! Taking the magnitude of the series ila, ()] < |= > +erfc (— - a:)
) T n 2h
(9), we find n=2N+1
nodd Se
he—acz—wac/h 2hxe—m2—7rac/h n=oc e CZ‘:
ex()] S =+ T > (15)
) \ , , n=l using ourh notation.Z,, andS. are the series truncation and un-
che® —rz/h N 2pe=> —m=/h / ot dt dersampling errors, respectively. This bound illustrates the dif-
- T u +=0 ficulty with (14) in computing the error function for large ar-
o—r2—mz/h guments. For fixedh and N, asz increasegfe in (13) rapidly
<———(h+ V7). (11)  decreases due to the multiplicative factof, while 7. in (15)
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remains more or less constasit((2nhx) terms are simply os- TABLE | )
cillating terms, which may do little to reduce the truncation USE OF(12)T0 COMPUTEric(r). PARAMETERS ] AND N TO ACHIEVE
error). Again, for fixedh, asx increases$. in (13) rapidly de- =

creases whiles, in (15) increase.sOveraII,. for fixedh and NV, | BN erfec (zo) RE 22) | Jea(z0)| | bound (13)
asz increases, the above bountreasesn contrast to (13).

Therefore, as: increasesh should decrease to keep the total 1 |024| 19| 1.57299207050(1) | 5(11) | 8(11) 4(7)
error small. The series (14) then converges much slower (se 2 g"s‘i 180 g'ggggigggéggg 283 i’ggg ?Egg
Table I1). However, unlike (13), the error bound (15) decreasesy | o6 | 7 | 154172579002(8) | 5(11) | 8(19) 5(11)
asx — 0. The series (14) is infact a special instance of the more s | 0.6 | 7 | 1.53745979442(12) | 2(11) | 3(23) 6(15)
general series derived by Beaulieu for the distribution of a surr 8 | 0.6 | 7 | 1.12242971729(29) | 5(11) | 5(40) 7(32)
of random variables (rv’s) [8], which is exact only for bounded 101 06 | 7 | 2.088487583762(45) | 5(11) | 1(55) | 2(47)

rv's. So to derive the series (14), a Gaussian rv is truncated to a
finite interval. Iferfc(z) is computed for smalt, this truncation TABLE I

i ; UsE OF(14) To CoMPUTE erfc(a). PARAMETERS h AND N TO ACHIEVE
does not limit the accuracy, but for largeit does. A RELATIVE ERRORLESSTHAN 1 x 1010 FOR ALL 2 > 4

B. Asymptoti ri
symptotic Series T h N erfe (xq) RE (22) | |ea(z0)| | bound (15)
The following asymptotic expansion has widely been used ir oy O @ ) )

: C ol A ; 102598 | 9 | 1.57299207050(1) | 1(12 2(13 2(12
v:rlous anJmer!caIfhbrlarles -(e.g.,GNthc, Matlab) to compute2 02116 | 12 | 467773498105(3) | 9(12) | 4(14) 5(14)
the error function for large: 3 | 0.1806 | 15 | 2.209049699858(5) | 7(11) | 2(15) |  2(15)

4 [ 0.1511 | 20 | 1.541725790028(8) | 2(11) | 3(19) 6(19)
erfc(x) = 5 | 0.1326 | 25 | 1.53745979442(12) | 2(11) | 3(23) 8(22)
- N-1 1-3---(2n-1) 8 | 0.0896 | 51| 1.12242971729(29) | 2(13) | 2(42) 3(41)

NG 1 +nz::1 (_1)nW + Ry(z) (16)

: _ Here one cannot do much to control the accuracy because it
where from [3, eq. (7.1.24)], the relative error term is boundqgi a function ofz itself. Whereas in (12), the accuracy can be
as increased by finer sampling (decreaggd
1-3---(2N - 1)

|Rn(z)| < (222)N . (I7)  ¢. Numerical Results

It is clear that this series diverges for all> 0 (because, for In the following, the relative error is defined as
fixed z, Ry(x) — oo asN — o0). However, for a giver, |ea()]
a good approximation ofrfc(x) can be obtained by taking a = erfe(z)
fixed number of terms in the sum [see (20)]. However, for fixed

x, taking more and more terms of the series does not improwvgere the numerator is defined in (12) or (14). The reference
the accuracy, since the series diverges. Notef&hatr) is less error function is from the standard Maple implementation. In

(22)

in absolute value than the first neglected term. the following tablesa(n) denotes: x 10~ ™.
What is the value ofV to minimize Ry (z) for a givenz? For a givenz, there exists an optimutavalue for the use of
Using [3, eq. (6.1.12)] in the above, we find (12). If h is too small, ther¥ in (13) tends to be large. K is
too large, therS, in (13) tends to increase. However, it is un-
r <N + 1) necessary to perform a fine search for this optimum. In Table I,
1 2 (18) using Maple with 200-digit precision, we have empirically de-

R Hx)| < —= - A A X
(@)l < NZEEE G termined suitablé and N values so that the relative error is less
10 iasis hi -
wherel'(z) is the Gamma function. Taking the logarithm of thi%han 10 .The series is highly accurate and gets even more ac
. . . . curate asc increases. Also, a relative error of less tham 10
and differentiating overV, the optimum given by

is a rather stringent requirement (not even necessary). For in-

1 5 stance, using (12) witN = 5 and~ = 0.6, the error function
PN+ 2/ In(a%) =0 (19) " can be evaluated with a relative error less than 0~ for any
z > 2.

wherey () is the Digamma function [3, eq. (6.3.1)]. Using the Taple 1| shows numerical results for the use of (14). Unlike
asymptotic expansion [3, eq. (6.3.18)], the optimum number gfe trend exhibited in Table I, the number of terms required to
terms is given by achieve a specified relative error increases withThis trend
occurs becausk decreases for increasing making it increas-
ingly difficult to computeerfe(z) using (14) for large:. As well,

Combining (18) and (20) and using Stirling’s approximation fogmall ~ values make (14) much more susceptible to round-off

I'(z) [3, eq. (6.1.37)], we can bound the relative error [see (225]70rs. For instance, some entries in Table Il cannot be obtained
as using double precision arithmetic (provided by Matlab) but re-

, quire arbitrary precision arithmetic (provided by Maple). The
|Ry(z)] < V2e™ . (21) series (12) does not suffer from these drawbacks.

N~z -0.5. (20)
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TABLE Il

EQUATION (12) VERSUS(16)

@ | N | |By(2)] | T(=)
319 | 24 | 10
416 207 | 13
5125 | 211) | 18
6 | 36| 316) | 25
7149 | 7(22) | 33
8 | 64| 228 | 43
10| 100 | 5(44) | 65
TABLE IV

EQUATION (12) VERSUS(16)

¢ | N ||Rn(2)] | T(2)
319 29 | NA
416 207 | Na
5 25| 2011) | N/A
6 14| 202) | 12
7(11] 202) | 10
8|9 412 | 10
10| 8| 813) | 09
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relative erroris 3x 1073,4 x 1072, and 1x "' atz = 2, 5, and

10, respectively. Also, the routine [4, p. 221] based on Chebysev
fitting, computeserfc(z) for all « with relative error less than
1.2x 1077,

IV. CONCLUSION

An infinite series representation for the error function has
been developed. It becomes more accurate and efficient as
increases. The total approximation error has been bounded to
show its decay with increasing. In comparison to (14), this
series solution is more accurate and requires less term&nas
creases. However, the series (14) is useful where averaging of
the error function is required over the distributionofaverage
of sin (az) is simply given by the imaginary part of the char-
acteristic function ofz). Such applications include intersymbol
and cochannel interference problems [7]. The new asymptotic
expansion obrfc(x) can be useful for numerical computations
in cases where standard library functions are not sufficiently ac-
curate. Unlike the asymptotic series, the accuracy of the new
series can be improved by decreasing the sampling interval. Fi-
nally, the paper considers three infinite series representations for

From Table | and (21), it is clear that both the new serigge error function. Mathematically, both (12) and (14) are abso-

(12) and the asymptotic series (16) can provide extremely agtely convergent series for any > 0. Whereas (16) is diver-
curate estimates afrfc(z) for large z. So Tables Ill and IV gent for anyz > 0. Numerically, (14) is most useful as— 0,
show timing comparisons between (12) and (16), which weyghile (12) and (16) are most useful as— c.

performed on a Sun Ultra SPARC 10 machine by repeatedly
computingerfc(z) for 10° times. For eachr, T'(x) is the ratio
of the time taken by (16) to that by (12). The boudth (x)| is "
computed using (21) or (17). For the use of (12 0.5 and

N = 10. This combination guarantees a relative error less than
4 x 10712 for (12) forallz > 3. The exponential factogs™ ** (2]
in (12) are precomputed and stored in an array. This array imple-
mentation improves its speed dramatically. Table Il shows the[3]
case whereV is the optimum number of terms given by (20).
Not surprisingly,T’(x) increases with:. In Table 1V, (16) is ter- 14]
minated whetV is the smallest integer to guarantégy (z)| <
4 x 10712, Forz < 5, even with optimumy, (16) does not [
achieve this accuracy level (hence marked N/A). However, for
z > 5, both (12) and (16) take roughly the same amount of time[s]
to execute for the same accuracy level.

Some rational approximationséefc(xz) can also be found in 7l
[3]. However, they guarantee only an upper bound on the abso-
lute error. This means for largs the relative error can be fairly (8]
large. For instance, the rational approximation [3, eq. (7.1.25)]
guaranteef, ()| < 2.5 x 10~° for 0 < = < co. However, the
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