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Abstract—A new, infinite series representation for the error
function is developed. It is especially suitable for computing
erfc(x) for large x. For instance, for anyx � 4, the error function
can be evaluated with a relative error less than 1010 by using
only eight terms. Similarly, the error function can be evaluated
with a relative error less than 8 10 7 for any x � 2 using
just six terms. An analytical bound is derived to show that the
total error due to series truncation and undersampling rapidly
decreases asx increases. Comparisons with two other series are
provided.

Index Terms—Error function, Fourier analysis, numerical
methods, sampling theorem.

I. INTRODUCTION

I N MANY communications problems, noise is often char-
acterized using a Gaussian distribution. Therefore, the error

function

(1)

expresses the error probability. The tail probability of a unit-
variance Gaussian random variable is
also called the error function. In this letter, we shall use the first
definition. Without loss of generality, we only consider the case

. There is no known closed-form expression for .
Several numerical or approximation methods have been given
in the literature [1]–[4]. Some of these may not be accurate
enough for some applications. For instance, the approximation
[1] for gives only about three significant figure accuracy
for . The series by Beaulieu [2] is much more accurate,
with a relative error less than 6.3 10 for all
using only 17 terms. However, we found that this series exhibits
poor convergence for large. Therefore, it is not efficient for
computing the error function for large arguments. In fact, this
series is best suited for computing the error function near the
origin (as ).
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This paper derives an infinite series representation for the
error function. This series, based on the sampling theorem,
requires only eight terms to achieve a relative error less than
1 10 for all . Similarly, the error function can be
evaluated with a relative error less than 810 for any
using just six terms.

II. DERIVATION OF THE SERIES

A. Sampling Theorem for Non-Bandlimited Functions

According to the Shannon sampling theorem, an arbitrary
band-limited function can be reconstructed exactly from its
samples taken at a sufficiently high rate. If one, however,
attempts to reconstruct anon-bandlimited functionusing its
samples, then

(2)

where is the sampling period, , and
[5]

(3)

This bound shows that if is bandlimited, i.e., its Fourier
transform (FT) for , then vanishes,
resulting the Shannon sampling theorem. There are two condi-
tions for (2) to be really useful for numerical purposes. First,

must decrease rapidly as increases. Second,
must be very small. These conditions translate to the require-
ments that both and simultaneously be localized in
time- and frequency–domains. These are mutually exclusive
conditions—a function and its FT cannot both decay too fast.
In fact, of all functions, the Gaussian is the most
rapidly decaying in both and [6]. Its FT
is Gaussian too. Therefore, can be reconstructed from its
samples with arbitrary accuracy. Using (2), we find

(4)

Applying (3), we find

(5)

Thus, if , ! This idea to expand
was suggested by Rybicki [6], who then derived a series for
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where is complex. However, his series only holds for
and hence cannot be used to compute for

real .

B. Error Function

We now use the above representation to derive a series for the
error function. Using [3, eq. (7.4.11)], we can write, for

(6)

We can show that

(7a)

(7b)

where is an integer ( ) and . Equation
(7a) follows from the use of Parseval’s theorem to transform the
left-hand integral into the frequency-domain. The integration
limits are because the function corresponds to
an ideal low-pass filter of bandwidth in the frequency-
domain. Combining (4), (6), and (7b), we obtain

(8)

where the error term due to the second right-hand term in (7b) is

(9)

and using (5) in (6), the error term due to in (4) is bounded
as

(10)

since . Term-by-term integration
used to arrive at the series (8) is justified because (8) is abso-
lutely convergent for any positive except for . If, say,

, the magnitude of vanishes rapidly. For example,
for , the bound is in the order of 10 10
10 , respectively. These values are upper bounds and the ac-
tual error is even smaller! Taking the magnitude of the series in
(9), we find

(11)

The series is treated as an error term in (8) because the
ratio to the first series in the right-hand side of (8) is less
than So is a negligible error term as .

For convenience, we rewrite (8) as

(12)

where is the series truncation point and the total approxi-
mation error arises from the following three factors: 1)
the series truncation error in (8); 2) the sampling series error
for non-bandlimited functions (4); and 3) the second right-hand
term in (7b). Using (10) and (11), the absolute approximation
error is therefore bounded as

(13)

where and are the series truncation and undersampling
errors, respectively. Therefore, the approximation error depends
on the three parameters: and . Moreover, for fixed and

, the error bounddecreaseswith increasing . This suggests
that once suitable values forand are chosen for, say,

, those values can be used for all .

III. D ISCUSSION

We next compare the series (12) with two other methods for
computing the error function.

A. Fourier Series Expansion

Beaulieu [2] derives a series solution for which can be
modified to give the series

(14)

where the parameter in [2] has been replaced by for the
ease of comparison ( ) and is the
series truncation point. Using another one of Beaulieu’s results
[7, eq. (29)], we write

(15)
using our notation. and are the series truncation and un-
dersampling errors, respectively. This bound illustrates the dif-
ficulty with (14) in computing the error function for large ar-
guments. For fixed and , as increases in (13) rapidly
decreases due to the multiplicative factor , while in (15)
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remains more or less constant ( terms are simply os-
cillating terms, which may do little to reduce the truncation
error). Again, for fixed , as increases, in (13) rapidly de-
creases while in (15) increases. Overall, for fixed and ,
as increases, the above boundincreasesin contrast to (13).
Therefore, as increases, should decrease to keep the total
error small. The series (14) then converges much slower (see
Table II). However, unlike (13), the error bound (15) decreases
as . The series (14) is in fact a special instance of the more
general series derived by Beaulieu for the distribution of a sum
of random variables (rv’s) [8], which is exact only for bounded
rv’s. So to derive the series (14), a Gaussian rv is truncated to a
finite interval. If is computed for small , this truncation
does not limit the accuracy, but for large, it does.

B. Asymptotic Series

The following asymptotic expansion has widely been used in
various numerical libraries (e.g., GNU libc, Matlab) to compute
the error function for large :

(16)

where from [3, eq. (7.1.24)], the relative error term is bounded
as

(17)

It is clear that this series diverges for all (because, for
fixed , as ). However, for a given ,
a good approximation of can be obtained by taking a
fixed number of terms in the sum [see (20)]. However, for fixed

, taking more and more terms of the series does not improve
the accuracy, since the series diverges. Note that is less
in absolute value than the first neglected term.

What is the value of to minimize for a given ?
Using [3, eq. (6.1.12)] in the above, we find

(18)

where is the Gamma function. Taking the logarithm of this
and differentiating over , the optimum given by

(19)

where is the Digamma function [3, eq. (6.3.1)]. Using the
asymptotic expansion [3, eq. (6.3.18)], the optimum number of
terms is given by

(20)

Combining (18) and (20) and using Stirling’s approximation for
[3, eq. (6.1.37)], we can bound the relative error [see (22)]

as

(21)

TABLE I
USE OF(12) TO COMPUTEerfc(x). PARAMETERSh AND N TO ACHIEVE

A RELATIVE ERRORLESSTHAN 1� 10 FOR ALL x � x

TABLE II
USE OF(14) TO COMPUTE erfc(x). PARAMETERSh AND N TO ACHIEVE

A RELATIVE ERRORLESSTHAN 1� 10 FOR ALL x � x

Here one cannot do much to control the accuracy because it
is a function of itself. Whereas in (12), the accuracy can be
increased by finer sampling (decreased).

C. Numerical Results

In the following, the relative error is defined as

(22)

where the numerator is defined in (12) or (14). The reference
error function is from the standard Maple implementation. In
the following tables, denotes .

For a given , there exists an optimumvalue for the use of
(12). If is too small, then in (13) tends to be large. If is
too large, then in (13) tends to increase. However, it is un-
necessary to perform a fine search for this optimum. In Table I,
using Maple with 200-digit precision, we have empirically de-
termined suitable and values so that the relative error is less
than 10 . The series is highly accurate and gets even more ac-
curate as increases. Also, a relative error of less than 10
is a rather stringent requirement (not even necessary). For in-
stance, using (12) with and , the error function
can be evaluated with a relative error less than 210 for any

.
Table II shows numerical results for the use of (14). Unlike

the trend exhibited in Table I, the number of terms required to
achieve a specified relative error increases with. This trend
occurs becausedecreases for increasing, making it increas-
ingly difficult to compute using (14) for large . As well,
small values make (14) much more susceptible to round-off
errors. For instance, some entries in Table II cannot be obtained
using double precision arithmetic (provided by Matlab) but re-
quire arbitrary precision arithmetic (provided by Maple). The
series (12) does not suffer from these drawbacks.
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TABLE III
EQUATION (12) VERSUS(16)

TABLE IV
EQUATION (12) VERSUS(16)

From Table I and (21), it is clear that both the new series
(12) and the asymptotic series (16) can provide extremely ac-
curate estimates of for large . So Tables III and IV
show timing comparisons between (12) and (16), which were
performed on a Sun Ultra SPARC 10 machine by repeatedly
computing for 10 times. For each , is the ratio
of the time taken by (16) to that by (12). The bound is
computed using (21) or (17). For the use of (12), and

. This combination guarantees a relative error less than
4 10 for (12) for all . The exponential factors
in (12) are precomputed and stored in an array. This array imple-
mentation improves its speed dramatically. Table III shows the
case where is the optimum number of terms given by (20).
Not surprisingly, increases with . In Table IV, (16) is ter-
minated when is the smallest integer to guarantee

. For , even with optimum , (16) does not
achieve this accuracy level (hence marked N/A). However, for

, both (12) and (16) take roughly the same amount of time
to execute for the same accuracy level.

Some rational approximations to can also be found in
[3]. However, they guarantee only an upper bound on the abso-
lute error. This means for large, the relative error can be fairly
large. For instance, the rational approximation [3, eq. (7.1.25)]
guarantees for . However, the

relative error is 3 10 , 4 10 , and 1 at and
, respectively. Also, the routine [4, p. 221] based on Chebysev

fitting, computes for all with relative error less than
1.2 10 .

IV. CONCLUSION

An infinite series representation for the error function has
been developed. It becomes more accurate and efficient as
increases. The total approximation error has been bounded to
show its decay with increasing. In comparison to (14), this
series solution is more accurate and requires less terms asin-
creases. However, the series (14) is useful where averaging of
the error function is required over the distribution of(average
of is simply given by the imaginary part of the char-
acteristic function of ). Such applications include intersymbol
and cochannel interference problems [7]. The new asymptotic
expansion of can be useful for numerical computations
in cases where standard library functions are not sufficiently ac-
curate. Unlike the asymptotic series, the accuracy of the new
series can be improved by decreasing the sampling interval. Fi-
nally, the paper considers three infinite series representations for
the error function. Mathematically, both (12) and (14) are abso-
lutely convergent series for any . Whereas (16) is diver-
gent for any . Numerically, (14) is most useful as ,
while (12) and (16) are most useful as .
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