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Derivation of Craig's formula for Gaussian 
probability function 

C. Tellambura and  A. Annamalai 

A recent work provides two proofs for Craig's formula, which is 
an integral formula for the Gaussian probability density function. 
It also highlights the fact the original proof of the Craig formula 
is somewhat unclear. The authors of the work provide two proofs, 
one based on the Stieltjes transform of a Gaussian pulse and 
another based on the moment generation function (MGF) of a 
unit Gaussian random variable (GRV). Another. integral formula 
for a x )  based on the characteristic function (CHF) of a unit 
GRV is also provided. This formula can be applied to the analysis 
of coherent predetection equal-gain combining diversity receivers. 

Introduction: A recent Letter [l] by Lever furnishes two interesting 
but long proofs for the so-called Craig formula: 

for x 0. Lever further comments that 'there is little indication of 
the origin of this result'. The purpose of this Letter is therefore 
two-fold: (i) to show that an equivalent integral form has been 
known for a long time, and (ii) to offer a simple proof based on 
the definition of Q(x) itself. Apart from the proofs in [l], there are 
at least three ways of deriving eqn. 1. First, the finite integral with 
trigonometric argument for the Gaussian Q-function can be 
obtained in a straightforward fashion from a standard mathemati- 
cal integral (see [2] and eqn. 2 below) based on the Stieltjes trans- 
form. Secondly, the proof due to Craig has evolved largely 
through geometric relations (i.e. from the study of the symbol 
error probability for MPSK [3 - 51 as a special case when M = 2). 
It should be highlighted that even though the finite integral 
expression for MPSK can be traced back to Weinstein [3], and a 
few years later in [4], only Craig [5] pointed out the 'new' definite 
integral form for the ax). Thirdly, we offer a new proof based on 
the MGF of a GRV. Finally, we also derive another integral for- 
mula for ax) using the CHF of a unit GRV. 

Integral representations for  Q(x); ' 

(i) Stieltjes transform method: From [6], we find that 

00 e--"2( t2+1)  

erfcx = :l dt  z > O  (2) 

Using the substitution t = cote and ax) = O.Serfc(x/d2), we 
immediately obtain Craig's formula. So we can see that eqns. 1 
and 2 are equivalent forms. Incidentally, see [7] for the use of 
eqn. 2 to analyse the performance of trellis coding in various fad- 
ing channels. 

Curiously enough, the proof of eqn. 2 itself is not mentioned 
anywhere in [6]. Hence, we next give a direct proof for eqn. 2. The 
single-sided Stieltjes transform of a signal x( t )  is defined as [8]: 

X s ( z )  = 2 dt 

We can modify the integration range to be --CO to -. Therefore, the 
modified Stieltjes transform of a Gaussian pulse e-t2 is defined to 
be 

where j = 4-1. By substituting t - z = y ,  this can be rewritten as 

s ( z )  = - dY (4a) 

dY (4b) 

Y 

where the constant c is negative if Im(z) > 0 or is positive if Im(z) 
< 0. Note that we can fix the limits of the integral from km - z to 
+m + j c ,  because there are no singularities in the integrand, except 
at y = 0 (so the Cauchy theorem implies that the value of the inte- 
gral in eqn. 4b is only changed when c changes from positive to 
negative, or vice versa). Multiplying both sides of eqn. 4b by e'2 
and differentiating over z ,  we find 

The error function is defined as [6] 

Therefore, the derivative over z is given as 

(7) 
d[erfc(-jz)l 2jez2 

az J;; 
- 

Comparing eqn. 5b and eqn. 7, we may write 

s(z)ez2 = erfc(-jz) + c (8 1 
where C is a constant independent of z. It can be easily verified 
numerically that C = 0 if Im(z) > 0. Hence from eqns. 3 and 8, we 
have 

Note that eqn. 9 is given in [6] without any proof at all. Now sub- 
stituting z = jx(rea1 x) in eqn. 9 and after some minor simplifica- 
tions, 

which yields eqn. 1 after the substitution t = xcot8, or equiva- 
lently eqn. 10 yields eqn. 2 if t is replaced by tx in eqn. IO. Note 
that in this derivation, we have used a more general definition for 
the error function. In the communications literature, erfc(x) is 
always defined for real x. This restriction is not necessary and the 
error function can be defined for complex arguments. In the sum, 
this derivation rests on the fact that the Stieltjes transform of a 
Gaussian pulse e-r2 is erfc(-jz). 

(ii) MGF method; From its definition, Q(x) is the tail probability 
that a zero-mean, unit-variance GRV X exceeds x. The MGF of 
such an RV is @(s) = = e2/2. Therefore, Q(x) can be written 
as a standard Laplace inversion integral. So using [9], we find 

The vertical contour of integration can be placed anywhere in the 
regularity domain of @(s), which in this case is the entire left-half 
plane. Therefore, for x > 0, we choose c = -x. Using the variable 
substitution s = -x + j t ,  we find 

which is equivalent to 

because the imaginary part of the integrand in eqn. 12 is an odd 
function (hence, the integration from - to m equals zero) and the 
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real part of the integrand is an even function (hence, the integra- 
tion from --cx) to - equals two times the integral from 0 to -). 
Using the substitution t = xcot8 in eqn. 13, we obtain the Craig 
formula (eqn. 1) at once. The above derivation is much simpler 
than those due to Lever. 

- 

(iii) CHF method: From its definition, Q(x) is the tail probability 
that a zero-mean, unit-variance GRV X exceeds x. The CHF of 
such an RV is +(t) = kJe“xl = ef2/2. The Gil-Pelaez inversion the- 
orem [ 101 expresses the complementary distribution function of an 
RV in terms of its CHF. Hence we immediately obtain 

power 
command . 
decision interference 

&(r) = + f Im [ d ( t ) e ~ ~ ~ ” ]  d t  ( 1 4 ~ )  

Conclusions: Two proofs for the Craig formula have been derived, 
one based on the Stieltjes transform of a Gaussian pulse and the 
other based on the MGF of a unit GRV. We also provide another 
integral formula for Q(x) based on the CHF of a unit GRV. The 
Craig formula and its equivalent (eqn. 2) are suitable for the fad- 
ing averaging required in maximal ratio combining (MRC) type 
problems (i.e. averaging of erfc(dy)) Because they express the error 
function as an integral of form Je-X2f(f)g(t)dt, erfc(dy) is trans- 
formed to an integral of form j d ( l ) g ( t ) d t .  Hence the average of 
erfc(-\iy) directly relates to the MGF of y. However, the integral 
representation given in eqn. 14b is not suitable for this case. On 
the other hand, it is suitable for performing the average over the 
distribution of the fading amplitude, encountered in the analysis 
of coherent predetection equal-gain combining (EGC) diversity 
receivers. In this case, we have the CHF of x = dy [ll]. So the 
average error rate is directly obtained by averaging eqn. 14u over 
x, which expresses the average error rate in terms of the CHF. 
Hence, we can anticipate that the integral representations emanat- 
ing from the MGF of the GRV are suitable for MRC type prob- 
lems, while those arising from the CHF of the GRV are suitable 
for EGC type problems. 
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DS/CDMA closed-loop power control with 
adaptive algorithm 

Sang Kyu Park andHo Sung Nam 

Closed-loop power control in the reverse link of a DWCDMA 
system is analysed. The transmittedreceiver based on IS-95 and 
the radio propagation channel under mobile communication 
environments are modelled and a new power control algorithm is 
proposed. This algorithm utilises the burst error characteristics of 
the channel and can be directly applied to the current IS-95 
system. The new power control algorithm, with respect to the SIR 
(signal to interference ratio), increases the service quality, and 
finally, enhances the system capacity. 

Introduction: Direct sequence code division multiple access (DSI 
CDMA) is a strong candidate for future personal communications 
systems because of its robustness to multipath interference and 
varying channel conditions [l, 21. A difficult problem in applying 
DSiCDMA to cellular mobile radio, however, is the near-far prob- 
lem. The capacity of a DSiCDMA cellular system is limited by the 
total interference generated by other users [3] .  Thus, the power 
control technique which equalises the average signal power of all 
users received at the base station is a major design criterion in DSI 
CDMA systems. 

A number of power control algorithms have been proposed to 
minimise the effects of fading, shadowing and near-far effects 
[4, 51. These algorithms need several bits to form a power control 
command (PCC) for updating a transmitter’s (mobile) power. The 
IS-95 DSiCDMA system’s base station, however, uses a traffc 
channel to deliver PCC bits to the mobile [6]. These power control 
algorithms decrease the capacity of the forward link traffic chan- 
nel. In this Letter, we propose an adaptive closed-loop power con- 
trol algorithm which does not decrease the capacity of the forward 
link and has better performance than that of the conventional 
algorithm. 

determine l-7 channel 
updating 

value 

P(t) =P(t-Tp) +Pc(t-Tp)*Ap 

updating 
value 

P(t) =P(t-Tp) +Pc(t-Tp)*Ap 

I I 

a 
Fig. 1 Close&loop power control model 

Adaptive algorithm for  closed loop power control: The power con- 
trol function of the IS-95 reverse link consists of two main parts: 
open-loop power control (OLPC) and closed-loop power control 
(CLPC). In OLPC, which is an average power control technique, 
attempts are made to compensate for slowly varying shadowing 
and for path loss. CLPC, or feedback power control, is used to 
mitigate the effects of rapid fading [4]. In this Letter, we only treat 
CLPC and do not consider path loss. 

Fig. 1 shows the CLPC model. The transmitted signal power of 
the mobile, P(t), is updated by Ap every T, (1.25ms in IS-95) sec- 
onds. As shown in Fig. 1, the reverse link receiver estimates the 
SIR of the received signal every T, seconds. If the SIR exceeds a 
threshold, a power-down power control bit ‘-1’ is sent. Otherwise, 
a power-up power control bit ‘1’ is transmitted to the mobile via 
the forward link. 

For conventional CLPC, Ap is futed (typically at 1dB). In this 
Letter, we propose CLPC using an adaptive algorithm, the main 
characteristic of which is that Ap is not fmed. This algorithm 
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