
Unified Analysis of Equal-Gain Diversity on Rician and 
Nakagami Fading Channels* 

A. Annamalai’, C. Tellambura2 and V. K. Bhargaval 

Department of Electrical and Computer Engineering, University of Victoria, PO Box 3055 STN CSC, Victoria 
BC V8W 3P6, Canada, Tel: +1-250-72 1-6043, Fax: +1-250-721-6048, E-mail: bhargava@ece.uvic.ca 

School of Computer Science and Software Engineering, Monash University, Clayton, Victoria 3 168, Australia 
Tel: + I  -613-9905-3296, Fax: +1-613-9905-3402, E-mail: chintha@dgs.monash.edu.au 

1. 

2. 

.- 
ABSTRACT 

Exact analytical expression in a simple form for computing the 
average symbol error rate (SER) of an arbitrary two-dimension 
signaling format with equal-gain diversity (EGC) receiver is not 
available in the literature despite its practical and theoretical 
importance. The principle difficulty is finding a closed-form 
expression for the probability density function (PDF) of a sum of 
L (i.e., diversity order) random fading amplitudes. In this 
paper, we develop an alternative, direct technique to evaluate 
the exact performance of EGC diversity systems (expressed in 
terms of a single or double finite-range integrals) in Rayleigh, 
Rician and Nakagami fading channels. Our new approach relies 
on the use of Parseval’s theorem to transform the error integral 
into the frequency domain. Since the Fourier transform of the 
PDF is the characteristic function (CHF), which is available in 
this case, our solution is general and exact. The CHF method 
also circumvents the need to perform an L-fold convolution 
integra! which is usually encountered in the calculation of the 
PDF of the sum of the received signal amplitudes. Interestingly, 
we can also get some new closed-form solutions for binary 
CPSK and CFSK in Nakagami fading channel for all L 53. 
Closed-form formulas for binary DPSK and NCFSK with EGC 
may also be obtained for L < 3 . 

1. INTRODUCTION 
In recent years, multi-level modulation schemes have received 
considerable attention for facilitating high-rate data transmis- 
sion over wireless links due to their inherent spectral effi- 
ciency. However, some form of diversity reception is usually 
needed to mitigate the effects of deep fades experienced on 
wireless channels as well as to reduce the penalty in sig- 
nal-to-noise (SNR) associated with a larger alphabet size (i.e., 
denser signaling constellations) and the cochannel interfer- 
ence. Besides, diversity techniques- play an important role in 
minimizing the transmit power requirements, particularly in 
the reverse link, because of ‘the limited battery capacity of 
handheld subscriber units. 

The EGC is of considerable interest since it appears to 
offer comparable performance to the optimal maximal-ratio 
diversity combining (MRC) with much greater simplicity, 
making it hardware feasible and cost viable. Despite its practi- 
cal interest, exact analysis for EGC diversity receiver for the 

general case of two-dimensional M-ary signalling in a general- 
ized fading channel is not available in the literature. The prin- 
ciple difficulty is determining a closed-form expression for the 
PDF of the sum of random fading amplitudes. In fact, comput- 
ing the PDF of the sum of multiple Rayleigh variable has been 
dilemma for many years, dating back to Lord Rayleigh him- 
self, but has never been solved in terms of tabulated functions 
for L 2 3 [I]. There is also no closed-form solutions for the 
PDF of a sum of Nakagami or Rician random variables (RVs). 
A detailed discussion of these problems are highlighted in [2]. 

Previous related studies on the EGC diversity include the 
following: In [3], Altman and Sichak have found an exact 
solution for the dual diversity system operating in a Rayleigh 
fading environment. For higher order of diversity, Jakes [ I ]  
has made use of a small argument approximation for the PDF 
suggested by Schwartz et. al. [4]. The small argument approx- 
imation method becomes inaccurate when L increases. A 
more refined analysis was presented recently by Beaulieu in 
[2], where he devised an approximate infinite series technique 
to compute the PDF for the sum of independent Rayleigh RVs. 
Applying this technique, [SI and [63 analyze the performance 
of EGC for coherent and differential binary signalling 
schemes in Nakagami and Rician fading channels. Subse- 
quently, Zhang [7] presented some closed-form solutions for 
binary signalling schemes in a Rayleigh fading channels. In 
[8], Simon and Alouini presented yet another approximate 
solution for the BPSK case on Nakagami fading channel using 
Hermite integration. Differently in [9], we have developed a 
direct technique to evaluate the exact performance of MQAM 
with EGC. Our new approach relies on the use of Parseval’s 
theorem to transform the error integral into the frequency 
domain. Since the Fourier transform (FT) of the PDF is the 
CHF and the FT of the conditional error probability can be 
expressed in a closed-form, our solution is general and exact. 
Moreover, the resulting single finite-range integral can be 
approximated very precisely using the Gauss-Chebychev 
quadrature (GCQ) formula. More recently, Dong et. al. [ lo]  
provides an accurate analysis for six 16-ary signal constella- 
tions with EGC by using the approximate infinite series tech- 
nique initially developed in [2]. 

. .  By contrast, in this paper we generalize our previous 
results [9] by deriving an exact analytical expression for the 

noncoherent modulation formats with predetection EGC. Sub- 
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sequently, we show that the generic expression can be further 
simplified for four special forms of the conditional error prob- 
ability. The contributions of this paper include: (a) derivation 
of simple yet exact analytical expressions for the SER of 
binary and two-dimensional signal constellations in Rayleigh, 
Rician and Nakagami fading channels with EGC; (b) deriva- 
tion of a new expression for the CHF of the fading amplitude 
in Rician fading; (c) derivation of a rapidly converging series 
to precisely estimate the finite-range integral(s); (d) derivation 
of a desirable exponential form for the Gaussian probability 
integral which is'suitable to perform averaging over the fading 
amplitudes; and (e) derivation of some new closed form 
expressions for coherent, differentially coherent and nonco- 
herent binary modulation formats in Nakagami fading envi- 
ronment with integer fading severity index. 

11. STATISTICAL CHARACTERIZATION OF THE EGC 
COMBINER OUTPUT 

In an EGC combiner, the output of different diversity branches 
are first co-phased, equally weighted, and then summed to 
give the resultant output. The instantaneous SNR at the output 
of the EGC combiner is y = x2 where x is defined as 

where a, is the fading amplitude which may be modelled as a 
Rayleigh, Rician or a Nakagami RV, and L denotes the diver- 
sity order. 

A. Nakagami Fading 

The CHF of x in a Nakagami fading has been derived in [9] 
and is given by 

where m, denotes the fading figure of the k-th diversity 
branch, D-, (.) is the parabolic cylinder function of order v , 

h, = m , / y h  where y, = -E { ai)  = vh corresponds to the 

average received SNR of the k -th branch, and CD (a,  b;c)  is 
the confluent hypergeometric function of the first kind. The 
confluent hypergeometric function can be computed effi- 
ciently using a convergent series for small arguments and via a 
divergent expansion for large arguments [9]. 

B. Rician Fading 

The derivation of CHF of x in Rician fading channel is 
slightly more involved compared to the Nakagami fading case 
because the PDF of the Rician RV contains an explicit term of 
a modified Bessel function of the first kind. Closed-form 

Eh 
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expression for the FT of the PDF is not known. Hence in [6], 
Abu-Dayya et. al. obtained an expression for CHF by replac- 
ing the Bessel function with its infinite series representation, 

where 5 = 1/d2L (1 + Kk) / y k .  

By contrast, here we exploit the exponential integral repre- 
sentation for Io (.) and therefore the individual CHFs can be 
expressed as a finite range integral: 

x D-, (-jog - $i&osB) de ] (4) 
In particular, the development of (4) circumvents the need to 
compute the confluent hypergeometric functions recursively 
(i.e., Eqs. (12) - (14) in [6]). Now using variable substitution 
t = cos0 and then applying the GCQ formula [12, (25.4.38)], 
we have yet another series expression for the CHF of x in a 
Rician fading channel, 

X D-2 (-Jag - m k c o s x , )  ( 5 )  
where x, = (2i- 1) x/2/n.  Note that there is a trade-off 
involved in the choice of the value of n . A greater accuracy 
may be obtained using a larger value of n , but at the expense 
of increased number of terms. A bound on the approximation 
error for the truncated series is also provided in [ 1 I]. 

C. Rayleigh Fading 

Substituting rn, = 1 in (2) or Kk = 0 in (4) for all 
k E { 1, .. ., L} , we get the CHF of x in a.Rayleigh fading, i.e., 

111. ERROR PROBABILITY ANALYSIS 
Table 1 summarizes the instantaneous SER for a wide range of 
modulation schemes in an AWGN channel. Recognizing the 
alternative exponential form for the complementary error 
functions, i.e., erfc (h) = -p" exp (-ycscz8) dB and 
erfc2( 4) = 41"" exp (-ycsc28) d e ,  we can express these con- 
ditional error probabilities (for binary and M-ary signal con- 
stellations) as a special case of the following generic form, 

2 
710 

n o  

ps ( E  I Y = Tj:L a, (0) exP (h'b,  ( e) de  

P ~ ( E I  x) = ~j : ' a , ,  (e) exp (-x'b,, (e) de  

(7) 

where a, (6) and b, (e) are coefficients independent of y but 
may be dependent on 0 .  Since y = x2,  we can rewrite (7) as 

(8) 
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The average bit or symbol error probability (ASER) in fading 
channels can be obtained by averaging the conditional error 
probability over the PDF of the combined signal amplitude at 
the output of the EGC combiner, namely 

p, = ~ ~ s ( E l X ) P A X ) ~  (9) 

where pr (.) denotes the PDF of RV x . 
A. CHF Method using Parseval’s Theorem 

If the fading amplitudes are assumed to be independent, 
then the evaluation of ASER using the classical solution in the 
form of (9) will require an L-fold convolution integral. It is 
more insightful if we transform the PDF into frequency 
domain since the CHF of x (i.e., sum of L fading amplitudes) 
is simply the product of the individual CHFs. However, it is 
difficult (or impossible) to invert (.) to get a closed-form 
expression for the PDF of x .  Therefore, a Fourier series 
approach has previously been used [5, 61. 

Using the inverse Fourier transform representation for the 
PDF,.and then rearranging the order of integration, (9) can be 
restated as 

I ps = [ P S ( E I X )  [,QMW)exP(-jmx)dw 1 dx 

= &L +, ( w ) [ [ P, (E Ix) exp ( j o x )  dx] d o  (10) 

1 - -  - 2 ,pT[Ps (EIX)19 ,* (o )do  

where notation I$,* (.) denotes the complex conjugate of the 
C H F o f x .  - 

In fact, the final result of (10) follows directly from the 
application of Parseval’s theorem [14, pp. 3711 to transform 
the product integral in (9) into the frequency domain, thereby 

- circumventing the need to find the PDF of x . But we then also 
need the FT of P,(E~X) , which surprisingly turns out to be 
very easily computed. 

The FT of the generic conditional error probability (i.e., 
Eq. (8)) is given by 

G (0) = ‘$“a,, (0)  exp { -x2b,, (0) + j o x }  dxd0 

Substituting (11) into (IO),  and realizing that the imaginary 
part of this integral is zero (since the ASER is real), we get an 
exact analytical SER expression for binary and M-ary modula- 
tion formats with predetection EGC: 

4 (12) 
1 2 n/2 w (tan<) P, = - r R e a l { G ( o j + , * ( o ) } d o  = -I - 
R O  R 0 sin (21;) 

where w (0) = Real { o G  (0) I$,* (0) } . Notice that the eval- 
uation of (12) for the most general case involves two-fold inte- 
grals. Next we will identify four special cases of the 
conditional error probability P, ( E [  x) which allow the evalu- 

ation of the generic expression given in (1 2) to be further sim- 
plified into a single finite-range integral. This simplification is 
attributed to the availability of closed-form formulas for the 
FT of P,(E~ x) . 

Table 1. Instantaneous SER of several common modulation schemes. 
Modulation Scheme Conditional Error Probability fs ( E /  y )  

Coherent binary signalling: 

(a) Coherent PSK O.Serfc (4) 
(b) Coherent detection of 1 

differentially encoded PSK erfc (4) - (h) 
(c) Coherent FSK O.5erfc (&E) 
Noncoherent binary signalling: 

(a) DPSK 0.5 exp (-U) 
(b) Noncoherent FSK 

Quadrature signalling: 

(a) QPsK 

(b) MSK 

(c) d4-DQPSK with Gray 

0.5 exp (-y/2) 

erfc (4) -0.25erfc2 ( J u )  
erfc (4) -0.25erfc2 ( J u )  
‘j” exp (3 (2-ficose) ) de 

coding 2 n  0 Ji - case 

Multilevel signalling: 

(c) MDPSK [I61 

where N is the number of signal points, and 

signal point is transmitted. 
(S,,) is the a priori probability that the U th 

A .  1 Exponential Form: Ps ( E [  x) = aexp (-bx2) 
The instantaneous BER of some noncoherent binary mod- 

ulation schemes (e.g., DPSK and NCFSK) can be expressed in 
the exponential form. In this case, the FT of aexp (-bx’) is 
given by, 

where F (.) denotes the Dawson-integral, 

F(x)  = exp(-x’)cexp(t2)dt = x@ ( 1 ,;; --x ’) (14) 

Dawson’s integral can be computed more efficiently using a 
direct method (based on sampling theorem) suggested by 
Rybicki [ 151 instead of evaluating sufficiently large number of 

terms in the series representation of @ 1, -;-x . For this rea- 

son, we have expressed G (o) in terms of the Dawson’s inte- 
gral. The corresponding ASER is obtained by substituting (1  3 )  
into (12). 

( ; 9 
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1 1  
2 l + x  Now using variable substitution a* + - = - in (12) and 

then applying GCQ formula [ 121, we get a rapidly converging 
series representation for the EGC receiver performance on 
generalized fading channels, 

112 

where R,  denotes the remainder term. A simple bound for R, 
is also derived in [ 111 using a complex-variable method. 

I12 I 

Orthogonal CFSK Onhogonal NCFSK 

A.2 Complementary Error Function: P, (E I x) = aerfc (fi x) 

The conditional error probability of some coherent binary 
modulation schemes (e.g., CPSK and CFSK) are in the form of 
complementary error function. The FT of aerfc (fi x) can be 
shown as 

I 

Therefore, the ASER can be computed efficiently by substitut- 
ing (16) into (12) or (15). 

A.J ~ ~ ( € 1  x) = aerfc (fix)-cerfc2(fix) 

The instantaneous SER for QPSK, MQAM and coherent 
detection of differentially encoded PSK can be expressed in 
the form aerfc ( f ix)  -cerfc2 ( f ix)  . Utilizing the results of 
(16) and recognizing that the FT of cerfc2(fix) term can 
derived using integration by parts, we get 

Antipodal CPSK Antipodal DPSK 

~ . 4  ~ ~ ( € 1  X) = r (U, bx2) 121- (U) 

In [ 181, Wojnar presents a unified bit error rate expression 
(due to Linder) for coherent, differentially coherent and non- 
coherent detection of binary signals transmitted over AWGN 
channel (see Table 2), 

or alternatively, 

For the special cases of a = 1 and a = 112,  (20) reduces to 
the familiar form similar to (1 3) and (1 6), respectively. 

B. PDF Method using Fourier Series Approximation 

Although it is difficult to invert 4A (.) to get the PDF of x 
in a closed-form, we can easily derive an approximate of the 
desired PDF using a Fourier series technique. Let us assume 
0 I x < T (i.e., upper limit of x is limited to T although it has 
an infinite range) where T is selected such that Pr (x > 7") E , 
and E can be set to a very small value. Therefore, the PDF of 
x can be expressed by a Fourier series, 

x 

(21) 
/ n o o r  

PA (x) = c c,,e 
"=--I 

where wo = 2n/T and 

(22) 
I T  + n o o r  1 

cn = TfOPX ( X I  e dx z3 $(-no,) 

by our assumption. Thus substituting (21) into (9), we have 

(23) 

where G (.) is the FT of P, ( E [  x) as before. Notice that the 
final result (23) is equivalent to [ 5 ,  Eq. (29b)l or [ lo,  Eq. (14)] 
but in a slightly different form. 

C. CHF Method with a Desirable Exponential Integral Form 
for the Gaussian Probability Integral 

Since Q(x) is the tail probability of a zero-mean, unit 
variance Gaussian random variable (GRV) exceeds x , and the 
CHF of GRV is Q ( t )  = exp (-t2/2) , we immediately get 

1 "  
p s s -  c G(noo)Q,( -nwo)  

T" = -z 

(24) 

by invoking the Gil-Pelaez inversion theorem (Fourier inver- 
sion formula). This new form is suitable for performing the 
average over the distribution of the fading amplitudes. Hence, 
an exact analytical expression for the coherent binary signal- 
ling schemes with EGC is given by 

Q (x) = ! - sin (tx) dt 2 n o t  

where a = 1 for CPSK and a = 1 /2 for CFSK. 

D. PDF Method using Hermite Integral Approximation 

tion for BPSK with EGC receiver. Using the PDF method with 
Hermite integral approximation, the ASER of the generic error 
probability (8) (i.e., for binary and M-ary modulation formats) 
with predetection EGC may be computed as, 

In [8], the authors presented yet another approximate solu 
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where x, and w, are the n -th abscissa and weight respec- 
tively of the H-th order Hermite polynomial [ 121. 

Eq. (26) generalizes the result found in [8] for an arbitrary 
two dimensional signal constellations. It is further pointed out 
that the computational complexity of (26) for BPSK, QPSK 
and MQAM modulation formats is actually much poorer than 
the CHF methods or the Fourier series approach because (26) 
involves an evaluation of a double integral. 

E. Closed-Form Solutions for EGC in Nakagami Fading 

In [7], Zhang formulated the problem of computing the 
ABER for coherent binary PSK with EGC diversity in the 
framework of statistical decision theory, and then obtained 
closed-form solutions for L I 3  in a Rayleigh fading channel. 
By contrast, here we derive new closed-form formulas for the 
ABER with EGC in Nakagami fading via the CHF methods 
(IIIA and IIIC). While the results are restricted to positive 
integer values of the fading severity index, m, need not be 
identical. If we further assume that m, is common to all the 
diversity branches, then we can also get closed-form formula 
for the case m = 0.5 with two or order-three diversity. A 
detailed treatment of this problem is discussed in [ 1 11. 

For binary CPSK and CFSK, the performance of nondiver- 
sity system (i.e., L = 1 ) in a Nakagami fading channel with 
arbitrary m can be readily shown as 

where ?F,  (., .;.;.) denotes the Gauss hypergeometric function, 
6 = 1 for BPSK, and 6 = 2 for BFSK. For L = 2 ,  we can 
show that the ABER for binary CPSK and CFSK is given by 

(28) 
1 
2 

P, = --12(1,2,6)-12(2,  1,6) . 

where 

Substituting m, = m, = 1 in (28) and recognizing that 
?FI ( U ,  b;b;u) = ( 1  -x)-’ ,  we get 

which is identical to Eq. (23) in [7]. Using this idea, one may 
also derive a closed-forrb expression for EGC in Nakagami 
fading with three diversity branches. Closed-form expression 
for noncoherent binary modulation formats in Nakagami fad- 
ing is derived in [ 111 for L = 2 case. 

IV. CONCLUSIONS 

This paper presents a concise, unified approach to evaluate 
the performance of predetection equal-gain diversity for a broad 
class of modulation formats and fading environments, Our results 
are sufficiently general t o  allow for arbitrary fading parameters 
as well as dissimilar mean signal strengths across the diversity 
branches. The generality and computational efficiency of the new 
results presented in this paper rendering themselves as powerhl 
means for both theoretical analysis and practical applications. 
Some new closed-form solutions for the EGC receiver perfor- 
mance in Nakagami fading environment are also derived. 
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