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ABSTRACT 
This paper outlines a unified approach to performance evalua- 
tion of a broad class of coherent, differentially coherent and 
noncoherent digital communication systems with dual-branch 
switched diversity (SWC) reception over generalized fading 
channels. The moment generating function (MGF) of the signal 
power at the output of the SWC combiner and the first-order 
derivative of the MGF with respect to the switching threshold 
are derived. These expressions are obtained for the general case 
of correlated fading and nonidentical diversity branches, and 
hold for any common fading distributions (e.g., Rayleigh, Naka- 
gami-m, Rician, Nakagami-q). The optimum switching thresh- 
old (in a minimum error rate sense) is obtained by solving a 
nonlinear equation which is formed by using the first-order 
derivative of the MGF. This nonlinear equation can be simpli- 
fied for several special cases: (a) closed-form expressions for the 
optimal switching threshold are derived for three generic forms 
of the conditional error probability by assuming independent 
and identically distributed diversity branches; (b) a closed-form 
formula for the optimal switching threshold is derived for the 
non-coherent binary modulation formats in correlated Rayleigh 
or Nakagami-m fading with identical fading statistics. 

1. INTRODUCTION 
The ideal selective combining (SDC) that selects the branch 
with the highest signal-to-noise ratio (SNR) may not be practi- 
cal for radio links that use continuous transmission (e.g., 
FDMA systems) because it  requires continuous monitoring of 
all the diversity branches. This problem can be circumvented 
by adopting a suboptimal switched diversity scheme. 

Previous related studies on the switched diversity system 
include the following: In [ I ] ,  Rustako et. al. theoretically and 
experimentally examined a switched diversity system on inde- 
pendent Rayleigh channels using a continuous time signal 
model. In their switch-and-stay strategy, switching between 
the two antennas only occurs if there is a downward threshold 
crossing. Shortall [2] builds a prototype of a switched diver- 
sity system and experimentally examine the effect of the sig- 
nal correlation on the receiver performance. Subsequently, 
Adachi et. al. [3] investigated the performance of a periodic 
switching diversity technique using digital FM with discrimi- 
nator detection on Rayleigh fading chanrlels. Blanco and 
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Zdunek [4] theoretically examined the performance of 
switched diversity system initially proposed in [ 11 for nonco- 
herent frequency shift keying (NCFSK) in independent Ray- 
leigh fading channels based on a discrete-time approach. Their 
analysis was extended in [5] for the Nakagami-m fading chan- 
nels. In [6], Abu-Dayya and Beaulieu proposed a different 
switch-and-stay strategy (which is referred to as SWC in this 
paper) and analyzed the performance of binary NCFSK on 
Nakagami-m fading channel based on a discrete-time model. 
Different from [4], the antenna switch in the SWC scheme is 
activated in the next switching instant as long as the measured 
local power in the current antenna is below the threshold level 
(i.e., the envelope of the received signal need not necessarily 
cross the threshold in the negative direction). Therefore, it 
does not require comparison of present samples with past sam- 
ples. Moreover, the rate of branch switching is reduced with 
respect to the ideal selection diversity, which translates into a 
reduction of transient effects due to switching. Their analysis 
for both independent and correlated Nakagami-m signal fad- 
ing has been extended to Rician fading in [7]. Numerical 
results for BPSK, 8-PSK and 16-QAM with independent and 
identically distributed dual-branch SWC in Nakagami-m fad- 
ing can be found in [8]. The authors' also derived the optimum 
switching threshold for BPSK in a closed-form in Rayleigh 
and Nakagami-m fading channels. 

By contrast, here we derive a generic formula to study the 
performance of SWC for a broad class of binary and M-ary 
modulation formats in a myriad of fading environments. Dif- 
ferent from [6], [7] and [8], we directly determine the MGF of 
the resultant signal power statistic without imposing any 
restrictions. In fact, the signal statistics from different diver- 
sity branches may even be modelled using different families of 
distribution (i.e., mixed-fading). In particular, we examine the 
effect of power imbalance on the diversity receiver perfor- 
mance and the optimal switching threshold. This is an impor- 
tant consideration because in practice identical fading 
statistics across the diversity branches are rarely available. 
However, all the previous theoretical studies only considered 
the case of identical diversity branches for analytical simplic- 
ity. Once the MGF is available, we can express the average 
symbol error rate (ASER) in terms of a finite-range integral 
involving only the MGF. Since the derivative of the MGF with 
respect to the switching threshold can be obtained at once, the 
optimum switching threshold can be readily expressed in  a 
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closed-form in many instances 

11. STATISTICAL CHARACTERIZATION OF THE SNR AT 
THE OUTPUT OF THE SWC COMBINER 

Table 1 in [SI summarizes the instantaneous SER for a wide 
range of modulation schemes in an AWGN channel. Recog- 
nizing the alternative exponential form for the complementary 
error functions, i.e., erfc (&) = exp (-ycsc28) de and 
erfc'( 4) = :Jy exp (-ycsc20) d e ,  we can express these con- 
ditional error probabilities (for binary and M-ary signal con- 
stellations) as a special case of the following generic form, 

2 
n o  

P S ( E I " f )  = ~I,""A(e)exp(-yh,(e))de (1) 

where aA ( e )  and hA (e )  are coefficients independent of y but 
may be dependent on 8 .  

The ASER in the fading channels with switched diversity 
can be derived by averaging the conditional error probability 
over the probability density function (PDF) of SNR at the out- 
put of the switched combiner in a specified fading environ- 
ment. It is more insightful if we employ the MGF approach 
[IO]-[I21 since the ASER can be expressed in terms of only 
the MGF of the resultant SNR. Further, closed-form formulas 
for the computing the optimum switching threshold can be 
determined in a straight-forward fashion for all common fad- 
ing channels and for different modulation schemes if the 
diversity branches have identical fading statistics. Hence, in 
the foilowing we will derive the MGF of the local power at the 
output of the switched combiner for both correlated and inde- 
pendent signal fading cases. 

A. Correlated Fading and Nonidentical Diversity Branches 
Similar to [4]-[7], our analysis is based on a discrete time 

model. The switching is performed at discrete instants of time 
t = n T ,  where n is an integer, and T is the interval between 
switching instants. The cumulative distribution function 
(CDF) of the resultant signal power at the output of the SWC 
combiner can be written as [6, Eq. (4)], 

F:,, (U) = Pr { z,, I U }  
(2) 

where x,, and y,, denotes the local powers of the signals 
received by the two antennas at t = n T ,  and z,, is the local 
signal power at the output of the switched diversity receiver at 
t = nT (see Fig. I ) .  
The corresponding MGF of z,, has been derived in [ 141, 

= P r { z , , = x , ,  and x , , < u )  + P r { z , , = y , ,  and y , , I u }  

4 (s) = [I+ C-su)f, ( u ) d u  +c+, ( s , x ) d X ] P r  { z  = X I  

+ [IT exp (--su)f; (U) du + C+! (s, Y) dY]Pr  { z  = y }  (3) 
where the parameters (s, Y) = j,'f, I (U, Y) exp (-su) du and 
+) (s, X )  = jzL , ( X ,  U) exp (-su) du are the marginal MGFs. 
Notations f ;  ( .) and F ,  (.) correspond to the PDF and CDF of 
the signal power for antenna x , respectively; and f ,  , (., .) is 
the joint PDF of x,, and y,, . 

db Transmitter 

T 
Dao 

Fig 1. Block diagram of a predietection switched diversity system. 

Now let us calculate tht: antenna selection probabilities 
Pr  { z  = x} and Pr { z  = y }  . If both diversity branches have 
identical fading statistics, then each of the two antennas will 
have an equal chance of being selected. However, when the 
sequences {x,} and ( y , , }  are not identically distributed due 
to power imbalance, then the likelihood of staying in a "good" 
diversity branch will be higher because a branch with a higher 
mean received signal power will be favored most of the time. 
The branch selection probabilities may be computed using a 
two-state Markov chain shown in Fig. 2. 

Pup = Fr(5) 

porn = I - F d 5 )  63 F'pa = F,(5) ppp = I - F, (5) 

Fig 2. A two-state Markov (chain for calculating the antenna 
selection probabilities. 

The states CL and p correspond to the event that antenna x 
and antenna y is selected, irespectively. The state transition 
probabilities, p, ,  , is dictated by the probability that the power 
on a specified branch is either greater or smaller than the pre- 
set threshold. The steady-state solution to this Markov chain 
yields the antenna selection probabilities: 

Since cexp(-su)f,(u)du = + 3 ( s )  -fexp(-su)f,(u)du and 
substituiing (4) and ( 5 )  into ( 3 ) ,  we obtain a general expres- 
sion for the MGF of the local signal power at the output of the 
switched combiner taking into account of the branch correla- 
tion as well as the dissimilar fading statistics, i.e., 

4: ( y )  = A ( 5 )  { h (s) + [O, (.& x) - exp (--Srn3f, (x )  1 w 
+ - A  (511 {+,  (s) +[ [+\ (s, Y) -exp (-sY)f;  (Y) 1 d Y }  (6) 

where +) (.) and +, (.) are the MGF of the signal power in 
antenna x and y , respectively (see Table 1 for a list of MGF 
of the signal power for several common fading channels). To 
the best of our knowledge, this result is new. From ( I ) ,  the 
ABER or-ASER with SWC is simply 

ps = yo q " A ( 8 ) $ . ( b A ( e ) ) d e  (7) 
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B. Independent Fading and Nonidentical Diversity Branches 

If the antenna separation is greater than half-wavelength 
then it  is reasonable to assume that the two diversity branches 
will be independent. However, their signal strength and fading 
severity index may be different in an actual mobile link since 
the radio waves take different propagation paths and may 
undergo different fading before arriving at the receiver. Rec- 

when. the two diversity branches are statistically independent, 
the MGF of z,, shown in (6) reduces to 

ognizing 44 (&x)  = .L (x )  4, (SI and 4, (s, r)  = f ;  ( r )  

Notice that (8) is still valid even if the received signal enve- 
lope in different antennas are modelled from different families 
of the fading distribution (i.e., mixed-fading model). As 
before, the ASER of the SWC with uncorrelated diversity 
branches is given by (7). However, I & ( . )  is evaluated using 
(8) instead of (6). 

Table 1. PDF and MGF of signal power for several common fading models. 

Channel PDF and MGF of signal power X 

Ray'eigh PDF: f i  (4 = 

I MGF: Q , ( s )  = - 
I +sR 

Rician . P D F : f , ( X )  = - e x p ( - K - ~ ) / , , [ 2 / ~ )  I + K  
( K > O )  R R 

1 
J [sR ( 1 + h )  + 1 ] [SO ( 1 - b)  + I ]  

MGF: $, (s) = 

It, x'" - 1 Nakagami-m PDF: f , (X)  = ("1 - ("1 ( m  2 0.5 ) n r ( m ) e x p  R 

where p is the power correlation coefficient. 

C. Correlated Fading and Identical Diversity Branches 

If the samples x, and y ,  are identically distributed, then 
P r { z = x }  = P r { z = y }  = 1/2,  ~ $ ~ ( s , . )  = +,(s, . )  and 
F ,  (.) = F,  (.) . Owing to the symmetry, the MGF of z,, illus- 
trated in (6) may now be simplified as 

4: (.TI = + >  (s) + f [$\ ( s ,  r)  - exp (-SOX (0 I dy (9) 

D. Independent Fading and Identical Diversity Branches 

Following our treatment in Section IIC, it  is straight-forward 
to show that (8) reduces to (1 0) for the independent and identi- 
cally distributed diversity branches: 

9, (cy) = OY (s) F ,  ( 5 )  + I; exp (-su).f (U) du (10) 

111. OPTIMIZATION OF THE SWC STRATEGY 

If the switching threshold 5 is set to be very large, then 
there will be constant switching between the two antennas 
because the probability of the received signal exceeding 5 will 
be small. In this case, the performance of SWC will be equiva- 
lent to the performance of a diversity branch selected in ran- 
dom, which resembles the behavior for no diversity case. On the 
other extreme (i.e., the value of 5 is set to be very small), the 
SWC combiner will be stuck in one of the diversity branches 
because the likelihood of received signal power staying above 
the specified threshold increases. Once again, the performance 
of the SWC will be close to the single diversity branch case. It 
is evident that the performance of switched diversity strategy 
is dependent on the selection of the switching threshold, and 
proper choice of 5 will minimize the average error probabil- 
ity. Hence in this section, we will derive analytical expressions 
that will allow us to compute the optimum switching threshold 
(in the minimum error rate sense) either in a closed-form (for 
identical fading statistics) or numerically (for nonidentical 
fading statistics) for a broad class for a broad class of digital 
modulation formats in arbitrary fading environments. 

A. Correlated Fading and Nonidentical Diversity Branches 

Differentiating (6) with respect to 5 ,  we obtain 
a -4: (SI = '4 ( 5 )  [$, (s, 5 )  - exp (-sS)f,  (5) 1 a5 

+ 1 - A  ( 5 )  1 (s, 5 )  - exp ( - s t ) f ;  ( 5 )  1 
+B(S) [d) , ( s ) -4 , ( s )  +t { W , ~ ) - + , ( s , u ) l d u ]  

+ B ( S ) [  v ; ( u )  -.L(U)lexP(-su)du ( 1  1) 

where A (5) is defined in (4) and 

Now our task is to find the optimum E,* that minimizes the 

ASER. This value can be determined by solving = 0 for 

5. By differentiating (7) under the integral sign, and exploiting 
the results of (1 l), we get 

a5 

- dPs = xj:' L A  ( 5 )  $1 ( 'h  (e) 9 6 )  + { - A  ( 5 )  I $\ ( b k  (e),  5 )  1 
d6 1 

x a, (0) d e  -p ,  (E 1 5) [ A  ( 5 ) ~  (5) + { 1 - A  ( 5 )  I f ;  (5) 1 
+ B ( s )  [ p : ' ) - p : " + p ~ ' a , ( e ) t  {+, (.w - g , ( ~ , ~ ) w d e ]  

+ m ) $ ' ^ a , ( e ) ~  { X ( U )  - m i )  e x ~ ( - s m u d e  (13) 

where notation PJ" and Ph') correspond to the ASER of the 
diversity branch x (i.e., obtained by replacing &(s)  in (7) 
with 9) (s) ) and y , respectively. For this general case, no 
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closed-form solution for 5* exists. Hence, this value will be 
determined numerically. 

B. Independent Fading and Nonidentical Diversity Branches 

If the diversity branches are assumed to be statistically 
independent, then we may replace the marginal MGFs in (13) 

it can be easily shown that the optimal threshold is obtained by 
solving the following expression: 

with 9, (s, U )  = f, (U) 4 (s) and h (s, U) = f ;  (U) 9, (s) . Then 

A ( S ) L ( t ) P Y ’ +  {1-A(5)} f ; f ; (5)Plr ’+B(5) [FI(5)P:’’ 
-F, (5)P:”+Ej’oAa,(e)j; i { f ; ( u )  - f ; ( u )  1 exP(- .wude]  

-Ps(EI  5 )  [ A  ( < I f ;  ( 5 )  + { 1 - A  ( 5 )  I f ;  (511 = 0 (14) 
C. Independent Fading and Identical Diversity Branches 

If both the diversity branches are assumed to be indepen- 
dent and identically distributed, then the PDF, CDF and MGF 
of x,, and y,, are interchangeable. Moreover, A ( 5 )  = 1 /2 and 
B ( 5 )  = 0 . In this case, (14) reduces to 

(15) 
where P F  or P i )  corresponds to the ASER without diversity 
reception. Next we will identify three special cases of the con- 
ditional error probability Ps(&I y) which lend themselves to 
closed-form formulas for the calculation of <* in all common 
fading environments. 
C. I Exponential Form: P, ( E  I y) = a exp (-by) 

The instantaneous BER of some noncoherent binary mod- 
ulation schemes (e.g., DPSK and NCFSK) can be expressed in 
the exponential form. Then P, = a+,(b) for the switched 
diversity receiver, and their corresponding optimum switching 
threshold is (directly from (1  5)), 

Ps(EI 5 )  = P;“ = Pj” 

Substituting b = 1/2 and using appropriate expression for 
9, (.) , we arrive to the previous expressions for the optimum 
threshold of NCFSK in Nakagami-m [6, Eq. (14)] and Rician 
[7, Eq. (1 2)] fading channels, respectively. 

c.2 P ~ ( E I  y) = aerfc (../&I 
The ASER of some coherent binary modulation schemes 

(e.g., 2,CPSK and CFSK) with SWC is given by 
P ,  = -r’2&(bcsc2€))dCl. Using (15), we get 

(17) 
1 
b 

where erfcinv (.) denotes the inverse of the complementary 
error fimction. 

c.3 P , ( E I  y) = aerfc(fiy)<erfc’(fiy) 
The ASER for square QAM, QPSK and coherent detection 

of differentially encoded PSK with SWC is given by 

P, = Gr12+z (bcscze) d e -  - ~ ’ ~ 9 ~  (bcsc2e) d e .  BY solving 

the quadratic problem cerfc’( 5 5 )  -aerfc (55 ) + P;‘) = 0 

for 5 (i.e., Eq. ( 1  S)), we obtain a closed-form expression for 

n o  
5* = - (erfcinv [P;”/U]  1’ 

4c 
n o  n o  

the optimal switching threshold, 

E,* = i; I {  erfcinv [+J?]}’ - 

For instance, the optimal switching threshold for the QPSK or 
the 4-QAM modulation scheme is given by 

1 where P;” = zr” I$> ( csc’e) d e  - -111’4 + t  (csc’e) d e  . 

D. Correlated Fading and Identical Diversity Branches 

If the assumption of branch independence is slightly 
relaxed, then we may only get the optimal 5 in a closed-form 
for the exponential form of , P s ( ~ l  y) in correlated Rayleigh 
and/or correlated Nakagami-m fading channels. Following our 
treatment for the independent signal fading, the optimal 
switching threshold for the differentially coherent or the non- 
c herent binary modulation format is obtained by solving 
-I$:(b) = 0 for 5: 
85 

Substituting the marginal MGF for the correlated Nakagami-m 
fading channel with identical mean received signal strength 
(see Table 1) in (20), we get 

n o  n o  

8 
9, (b ,  5) -L (5) ‘ZXP (-W = 0 (20) 

which is a generalization of Eq. (24) in [6] for the differen- 
tially coherent binary signalling scheme and for arbitrary m 
values. By setting the power correlation coefficient p = 0 ,  
(21) reduces to (16). For other modulation formats listed in 
Table 1 of [9], 5* is given by the unique real positive root of 
(22), which will be determined numerically: 

(22) 

As an illustrative example, let us the characterize the SWC 
performance (with optimum switching threshold) for different 
M-ary signalling constellations in Rayleigh and Rician fading 
channels. For the Rician fading channel, the CDF of signal 
power (for a single branch) is given by 

(23) 

g ‘ a I  (0) 9, ( b k ( e ) ,  5)d0-L(5)P,(El 5) 

( 5 )  = 1 - Q cm;, J 2  ( 1 + K , )  U Q , )  
and 

j: exp (-su)f;  (U) du = -- 

2 m u  2 (sa, + K, + 1) 6 

where Q ( s a ,  &) = j: exp (- t -a) Zo (2&) dt is the Mar- 

cum-Q function and i E { X, J)} . If the received signal enve- 
lopes from the two antennas are assumed to be independent 
and identically distributed, then Q, = Q and K ,  = K .  Substi- 
tuting (23) and (24) into (IO), we get a closed-form expression 
for 9: (.) , i.e., 
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2 K ( K +  1)  2 ( s Q + K +  l ) k *  
[I  + e ( dsn+g+l’ in 

and the optimal threshold k* is calculated using (18). For 
Rayleigh fading, (25) reduces to 

[ I  - exp (-t*/a) + exp ( - (sa  + 1 )  k* /n ) ]  (26) 1 
4: (s) =m 
since Q ( O ,  p) = exp (-p2/2) . 

0 5 10 15 20 25 30 35 40 
Average SNR per Channel (in dB) 

Fig 3. Performance of MQAM with SWC in Rayleigh and Rician 
fading channels. 

From Fig. 3, i t  is apparent that the diversity reception is a sim- 
ple yet powerful technique for mitigating the effect of deep 
fades experienced in wireless channels. For instance, the 
dual-branch SWC system can reduce the penalty in the 
required SNR to achieve an error rate of P, = IO-’ for the 
64-QAM by approximately 1 1  dB in a Rayleigh fading chan- 
nel with respect to the no diversity case. The diversity advan- 
tage is greater for a larger alphabet size and in a poorer 
channel condition (i.e., as K -+ 0 ), as anticipated. 

IV. CONCLUSIONS 
This paper presents a concise, unified approach for evalu- 

ating the switched diversity performance for a wide range of 
modulation formats and fading environments. Recent studies 
[8-131 have shown that the MGF enables the rapid computa- 
tion of the ABER and ASER. Therefore, this paper derives the 
MGF of the SWC output directly. As well, the derivative of 
the MGF follows at once, which is used to determine the opti- 
mal (in the minimum error rate sense) switching threshold. 
Commonly used MGFs are tabulated for the use with our 
generic expressions. Results of [6]-[8] are presented as special 

cases of our analysis. Closed-form expressions for the optimal 
switching threshold are derived for three generic forms of con- 
ditional SER probability by assuming identical fading statis- 
tics across the statistically independent diversity branches. 
When the effect of branch correlation is taken into account, a 
closed-form formula for the optimal switching threshold is 
only available for the exponential form of conditional error 
probability in Rayleigh and Nakagami-m fading channels with 
equal mean received signal strength. A comprehensive study 
of switched diversity systems with arbitrary fading parameters 
can be found in [ 141. 
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