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ABSTRACT 
New, simple yet very accurate closed-form expressions for calcu- 
lating the symbol error probability (SER) of multilevel quadrature 
amplitude modulation (MQAM) in conjunction with L-fold 
antenna diversity on a Nakagami fading channel are presented. 
Both maximal-ratio (MRC) and equal-gain (EGC) predetection 
diversity combining techniques have been considered. The exact 
closed-form formula for MRC diversity system removes the limita- 
tions of previous studies in the literature which have been limited 
to Rayleigh fading. Moreover, an exact analysis of EGC for 
MQAM has not been reported previously despite its practical 
interest. The exact SER is expressed as a finite-range integral. Our 
unified expressions are sufficiently general to handle arbitrary fad- 
ing parameters as well as dissimilar mean signal strengths across 
the diversity branches. The generality and computational effi- 
ciency of these new formulas render themselves as a powerful tool 
for SER analysis in different fading conditions. 

I. INTRODUCTION 
In recent years, MQAM modulation scheme has received much 
attention for facilitating high-rate data transmission over wire- 
less links due to its inherent spectral efficiency. For instance, 
using 16-QAM modulation scheme coupled with pilot symbol 
assisted fading compensation technique and two antenna diver- 
sity reception, it is possible to facilitate 64 kbps transmission 
with almost same channel spacing as that of present analog sys- 
tems [l]. While M-ary QAM may be employed to increase the 
bandwidth efficiency, antenna diversity is usually needed to mit- 
igate the effects of deep fades experienced on wireless links as 
well as to reduce the penalty in signal-to-noise ratio (SNR) due 
to co-channel interference. Besides, diversity methods play a 
crucial role in minimizing the transmit power requirements, par- 
ticularly in the reverse link, because the battery capacity of 
handheld subscriber units is limited. Owing to the growing inter- 
est in MQAM modulation scheme, the importance of accurate 
and efficient computation of SER of MQAM with antenna diver- 
sity reception in different fading environments cannot be under- 
stated, and is of practical interest. 

Previous work has included the following. The SER of 
MQAM in the additive white Gaussian noise (AWGN) is fur- 
nished in [2, 5-2-79] while the bit error rate (BER) of MQAM 
with two branch MRC diversity reception in Rayleigh fading is 
given in [3]. Subsequently, Kim et. al. [4] derived the BER of 
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MQAM with L-branch MRC diversity reception in Rayleigh 
fading using series expansion of the complementary error func- 
tion, and the error rate expression is obtained in the fonn of infi- 
nite series. Lu et. al. [5] attained a new exact expression 
involving finite summations of hypergeometric functions for the 
SER with L -branch MRC diversity reception, also in Rayleigh 
fading channel. In [6], we derive a simple expression (involving 
finite summations of the MGF) for the SER of MQAM with 
MRC diversity over a Nakagami fading channel with arbitrary 
parameters by invoking a two-dimension GCQ formula. More 
recently, Alouini and Goldsmith [7] presented an expression for 
MQAM in terms of a finite-range integral by utilizing the alter- 
native representation for the two-dimension Gaussian probabil- 
ity integral derived in [8] and the MGF method developed in [9] 
and [lo]. By contrast, in this paper we enhance of our previous 
work by deriving several simple closed-form expressions for 
MQAM with L -fold MRC diversity on a Nakagami fading chan- 
nel which require significantly fewer samples of the MGF than 
in [6]. Further, exact closed-form SER expressions are presented 
for three special cases of Nakagami fading. 

In a related work on EGC, Altman and Sichak [ I l l  have 
found an exact solution for the dual diversity system operating in 
a Rayleigh fading environment. For higher order of diversity, 
some approximations have been pursued in literature. 'This is due 
to the difficulty of finding a general closed-form express ion for the 
resulting probability density function (PDF) of the sum of Nakag- 
ami distributed (or even Rayleigh distributed) random variables 
(RVs). For instance, Jakes [ 121 has made use of a smal i argument 
approximation for the PDF suggested by Schwartz et. al. [13]. 
Recently Beaulieu [14] has devised an infinite series technique 
to compute the PDF for the sum of independent Rayleigh RVs. 
Applying this technique, Beaulieu and Abu-Dayya [ 151 present a 
comprehensive study of EGC for coherent and differential binary 
signaling schemes by deriving a convergent infinite series for the 
complementary probability distribution of the SNR at the output 
of equal-gain combiner. Although their Fourier series approach 
may be extended to MQAM, but the analysis is rather involved 
and tedious. Since this method is computationally demanding, in 
this paper we developed an alternative, considerably simpler 
technique to evaluate the exact performance of EGC diversity 
systems. The new method requires only the knowledge of two 
Fourier transform identities and the application of the Parseval 
theorem. The finite-range integral can be estimated very accu- 
rately with only a few MGF samples using the GCQ formula. 
Our method is much simpler than that of suggested in [15] 
because the required characteristic function (CHF) can be found 
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easily, and application of Parseval theorem circumvents the need 
to find the PDF of sum of Nakagami distributed RVs. The gener- 
ality and computational efficiency of our new expressions render 
themselves as a powerful tool for SER analysis under a myriad 
of fading scenarios. 

11. SER OF MQAM WITH MRC DIVERSITY RECEIVER 

In the MQAM, a symbol is generated according to l o g N  bits of 
source data, and each symbol in a quadrant has different SER. 
Among the various known signal constellations, rectangular 
QAM signal is the most frequently used in practice because [2]: 
(a) its signal constellation is easily generated as two PAM sig- 
nals impressed on phase-quadrature carriers; (b) the task of sig- 
nal demodulated can be performed without much difficulty; and 
(c) the average transmitted power required to attain a given min- 
imum distance with rectangular QAM is only slightly higher 
than that of the best MQAM signal constellation. When log# is 
even (i.e., square QAM), the exact SER for MQAM in the 
AWGN channel is given by [2], 

'F) Y b )  = 2qerfc(&b) -qZerfC2(f ib)  (1) 

where q = 1 - l / m ,  p = lSlog#/(M-l) ,  and yb is the 
average received SNR per bit. On the other hand, when log@ is 
odd, there is no equivalent -ary PAM system. In this case, the 
symbol error probability is tightly upper bounded by, 

pT' Y b )  2erfc ( f i b )  - e r f c 2 ( f i )  (2) 

if the detector bases its decisions on the optimum distance metric 
(maximum likelihood criterion). 

Next we outline several methods for computing the SER of 
MQAM with MRC diversity reception on a Nakagami fading 
environment. Each of this method is unique, interesting and 
novel in its own right. Hence, we are presenting them in the hope 
of stimulating further applications. It is also straight-forward to 
extend the analysis presented here for other fading distributions. 

A. Computation of SER using PDF of yb 
The average symbol error probabilities in a slow and flat 

Nakagami-fading channel may be derived by averaging the error 
rates for the AWGN channel over the PDF of the SNR at the out- 
put of the diversity combiner, 

piE' = [piE) ( E l  Yb)pyb(Yb)dYbEII-z2 (3) 

where y b  = ( E b / N a )  i a: = 2 y I  is the instantaneous SNR per 

bit with L-fold MRC diversity. The PDF of yb is readily obtained 
by invoking the Fourier inversion theorem and noting that the 
PDF is real and symmetric about t = 0 : 

, = I  , = I  

where +yb ( t )  is CHF of Y b  [2], 

(4) 

( 5 )  

with the assumption that the fading statistics across the L anten- 
nas are uncorrelated (achieved through sufficient antenna separa- 
tion). The parameter m, in (5) denotes the fading figure of the 

lth diversity branch (i.e., antenna) and 3, = (Eb/Na)Q corre- 
sponds to the average received SNR of the I th antenna. 
In order to evaluate (3), let us first consider the following two 
Fourier transform identities: 

G,(o) = [exp(-jot)erfc(fit)dt = 

G 2 ( 0 )  = cerfcZ(&)exp(-jon)dx 
,I\ 

Substituting (1) and (4) into (3), and then using the identities (6) 
and (7), we get an exact analytical expression for SER of 
MQAM in Nakagami fading channel with arbitrary parameters: 

This one-dimension integral can be computed numerically (e.g., 
adaptive Simpson integration rule). 

In some previous work (e.g., [I ,  3, 16]), the authors have 
used an approximate SER formula for MQAM in fading channel 
by ignoring the second integral in (3) since 
erfc2(fib) (( erfc (fib) as yb + 0 0 .  However, the discrepancy 
between the exact SER and that of calculated via the coarse 
approximation described above can be quite large even for mod- 
erate values of yb [6]. 

B. Computation of SER using PDF of yb and GCQ Formula 

substitution ? + 1 /2 = 1 / ( 1 + x )  , (8) may be re-stated as 
By expressing (5) in the polar form and then making variable 

(9) 

where < ( t )  = fi [ 1 + ( t / h , )  '1 m"2,  1, = m,/~,, 
I =  I 

and 8 ( t )  = k Wan-' ( t / h , )  . 

Now applying the GCQ formula of the first kind in (9), we get 
I =  I 

x(2k-1) JT (2k- 1) 
4n 2 n  

Since the remainder term R, vanishes quickly as n increases, 
(10) is a rapidly converging series. 

C .  Computation of SER using MGF of y b  and GCQ Formula 
Different from the conventional method for computing SER 

(i.e., direct evaluation of (3)), our third approach relies upon the 
knowledge of the MGF of y b  , the use of an alternative exponen- 
tial forms for one-dimension and two-dimension complementary 
error functions as well as the application of GCQ rule [20-221. 
The MGF technique has been applied successfully in [6]  but the 
second integral was evaluated with the aid of a two-dimension 
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GCQ formula. In the following, we derive a much simpler 
closed-form, SER formula for MQAM modulation scheme on 
Nakagami fading channels. The new expression reduces the 
number of MGF samples required to achieve a specified accu- 
racy from n (n + 1) to 2n . This is mainly attributed to the alter- 
native exponential representation of the two-dimension 
complementary error function: 

<:rfc2(Jx) = 4 -r’4exp [-xcsc’(O)]dO 
x o  

Since the MGF of y b  can be obtained from the CHF shown in (5) 
via relationship $ (s) = $yb u s )  , the SER of square QAM may 
be evaluated as 

or more conveniently using (1 3): 

where ei = (2 i - l )n /4n.  The remainder term R, can be 
bounded using the results of Appendix A in [21] and/or [22]. 
However, this is not necessary in practice, since one simply com- 
putes (13) for several increasing values of n , and stops when the 
result converges to a prescribed accuracy. Since (1 3) can approx- 
imate the true SER within any degree of accuracy, it can be 
viewed as an exact closed-form solution. Note the implications 
of (13): we are simply sampling the MGF at n points. So as long 
as the MGF exists and computable, this method can work very 
effectively. In fact, its accuracy will be high if the high-order 
derivatives of the MGF vanishes rapidly. 

D. Computation of SER using Parseval b Theorem 
Our fourth technique for evaluating the SER of MQAM with 

MRC diversity relies on knowledge of two Fourier Transforms 
(FTs), the application of the Parseval’s theorem and GCQ for- 
mula. By applying Parseval’s theorem in (3), we get 

(14) 

where +7, (0) , GI (0) and G, (0) are defined in (9, ( 6 )  and 
(7), respectively. Notice that our method 11-A and 11-D are essen- 
tially the same. But the development of (14) is interesting 
because it lends itself into a unified-form of SER for MQAM 
with MRC diversity on arbitrary fading environments (not 
restricted to only Nakagami fading). 
Now using variable substitution o = tan0 in (14) and then 
applying GCQ formula, we get 

P?) ( E )  = --jy2S(tani3) 1 sec2edf3 

where S ( o )  = Real{ [2G,(o) - q G , ( o ) ] $ y b ( ~ ) } .  

E. Exact Closed-Form Formulas for SER of MQAM with MllC 
In this subsection, we will present exact closed-form SER 

formulas of MQAM with MRC diversity for three special cases 
of Nakagami fading: (a) identical h, = m,/g,  acro,ss the diversity 

branches and Eml is a positive integer; (b) fading severity index 

assumes an integer value and is common to all diversity 
branches, but h, for 1 = 1 ,  ..., L are dissimilar; and (c) distinct 
diversity branches and integer rn, ’s for 1 = 1, . . ., I ,  . 
Case (a): Let us assume h, = h for I = 1, ..,, L and C m ,  = D is 

a positive integer. In this case, the random variable y b  has a 
gamma PDF (obtained by inverting (5)), 

1 

I 

(16) 
hD D - l  

PY,(Y) = - (D- 1) !Y exp (-AY) 
Then, 

using identity (14-4-15) in [2], and 

by exploiting the Fourier transform identity in (7). For small val- 
ues of D ,  the (D- 1) -th order differentiation in (1 :3) can be 
computed by hand. For instance, 

1 - 4 3 : + 2 ~ h - -  23’] f o r D  = 2 ;  
P + h  

for D = 3 ; 

If D is large, then I ,  may be computed recursively (in terms of 
Gauss hypergeometric series): 

Case (b): Let us assume that the fading severity index is common 
to all diversity branches and assumes an integer value. However, 
the average received SNR per branch pI may be different. In this 
case, we can write the PDF of yb in the form, 

where 
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Then it is straight-forward to show that the SER may be 
expressed as, 

P:"'(c)=444: &&4/k[;(1-p/)]k y ("i+i)[ ;('+")Ii 
/ = I  k = I  i = 0  

where pI = J p j J  ( m  +ppJ . For the particular case of m = 1 , 
(22) reduces to the SER formula for square MQAM on Rayleigh 
fading channel derived in [5]. 

Case (c): If the diversity branches are distinct and mI 's assume 
integer values, we obtain, upon performing the inverse Laplace 
transform of (5), 

where 

Then, the corresponding exact SER may be evaluated as 

To the best of the authors' knowledge, all the exact closed-form 
expressions for MQAM on Nakagami fading channel presented 
in this section are new. 

111. SER OF MQAM WITH EGC DIVERSITY RECEIVER 
The EGC is of considerable interest since it appears to offer 
comparable performance to the optimal MRC with much greater 
simplicity. In the following, we will derive an exact analytical 
expression for EGC for MQAM on Nakagami fading channel in 
terms of a finite-range integral. Our new approach circumvents 
the problem of computing the PDF of the sum of RVs (corre- 
sponding to the amplitude of the received signal) which is nor- 
mally encountered in the analysis of EGC diversity receivers. 
Furthermore, the integral can approximated very precisely using 
the GCQ formula requiring the evaluation of a function at only a 
small number of points. This simple expression also handles arbi- 
trary fading parameters as well as dissimilar mean signal 
strengths across the diversity branches. 

In an equal gain combiner, the output of different diversity 
branches are first co-phased, equally weighted, and then summed 
to give the resultant output. The instantaneous SNR at the output 
of the EGC combiner is yb = x2 where x is defined as 

x = p LNO / = ,  4:a/ (26) 

where a, is a Nakagami RV with the statistical parameters m, 
and a, as defined in Section 11. Let j k  = R, (Eb/No) denote the 

average SNR for the k-th branch, which is consistent with our 
definition for the MRC case. The CHF of x (the sum of L Naka- 
gami RVs) in this case is simply the product of the individual 
CHFs, i.e., 

The confluent hypergeometric function of the first kind 
@(a, b;c) may be computed efficiently using a convergent 
series for small arguments and via a divergent expansion for 
large arguments [24]. 
From (I ) ,  the conditional error probability is 

P:) ( E I X )  = 2qerfc (&XI -q2erfc2(JPx) (28) 
and we are interested in calculating its average over the Nakag- 
ami PDF, i.e., 

Pi"(&) = p S E ' ( E ( X ) p , ( X ) d r  (29) 

where p ,  (x) is the PDF of the sum of L Nakagami random vari- 
ables. It is difficult to invert (27) to get a closed-form expression 
for the PDF of x . Therefore, a Fourier series approach has previ- 
ously been used. For our subsequent development, the following 
two Fourier transforms (FTs) are needed: 

where F (  .) denotes the Dawson's integral, 

F ( x )  = exp (--x2)[exp ( t 2 )  dt = x@( 1, i;-x2) (32) 

Now applying Parseval's theorem in (29), we get 

Since the imaginary part of this integral is zero, we may re-write 
(33) in a more desirable form, 

where 

Note that (34) is an exact analytical solutions for MQAM with 
EGC diversity. Yet making another variable substitution 
w2 + 1/2 = 1 /  (1  +x) in (34) and then applying GCQ formula, 
we obtain a converging series representation for the EGC perfor- 
mance on Nakagami fading channel, 
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P:” ( E )  = [ 1 tan( Kq)] /sin( 7K 7) (2k- 1 )  + R, (36) 
n k = l  J2 

It is also interesting to  note that (10) and (36) are in similar 
forms. 

I 

3 6 ~~~~~ L?i z 10-3 lo-‘ 

-- EGC - MRC 
+ m = 0.5 
o m =  1.0 
x m = 2.5 
* m = 5.0 

1 o - ~  

1 o+ 
i 

1 2  3 4 5 6 7 8 9 10 
Order of Diversity, L 

Fig 1. Symbol error probability versus order of diversity for 
64-QAM with MRC and EGC diversity receivers. All the diversity 
branches are assumed to have identical fading statistics and the 
received SNR per branch is assumed to be 7, = lOdB . 

IV. CONCLUSIONS 
New, simple yet  very accurate symbol error probability 

expressions have been derived for coherent MQAM systems 
employing MRC and EGC antenna diversity in a Nakagami fad- 
ing environment with an arbitrary fading severity index. The 
SER formula is exact for square QAM. A tight bound for the 
rectangular signal constellations was also presented. In particu- 
lar, the closed-form formula based on GCQ can be easily pro- 
grammed and evaluated efficiently. Our results are sufficiently 
general to  allow for arbitrary fading parameters as well as dis- 
similar mean signal strengths across the diversity branches. 
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