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An Unified Numerical Approach for Computing the
Outage Probability for Mobile Radio Systems

C. Tellambura,Member, IEEE, and A. Annamalai

Abstract—A general finite-range integral for the probabil-
ity of outage in mobile radio systems is derived. The method
handles noninteger Nakagami-fading indexes, unequal Rice fac-
tors, unequal shadowing spreads, and unequal transmitted pow-
ers as well as all the common fading distributions (Rayleigh,
Rice, Nakagami-m, Nakagami-q, lognormal-Rice, Suzuki, and
lognormal-Nakagami-m). The integral expression can also be
approximated by a Gauss–Chebychev quadrature (GCQ) formula
requiring the knowledge of moment generating function at only a
small number of points. An estimate of the remainder term is also
derived. This numerical technique allows computing the outage
with arbitrary precision and it is extremely easy to program.

Index Terms—Cochannel interference, Gauss–Chebysev ap-
proximation, mobile radio systems, Nakagami fading, Rician
fading, shadowing.

I. INTRODUCTION

I N CELLULAR radio systems, the spectrum utilization
efficiency may be increased by reducing the cluster size

but at the expense of increased cochannel interference (CCI).
The probability of outage is a useful statistical measure of
performance in the presence of CCI [1]. The outage perfor-
mance has been studied extensively (see [2]–[7] among many
others). The statistical fluctuations of the signal amplitude are
often modeled by a Rayleigh, Rician, Nakagami distribution,
or compound distributions like lognormal-Nakagami-. These
distributions can model most fading environments.

Consider evaluating the probability of outage (outage) in a
mobile fading environment. The instantaneous signal powers
are modeled as random variables (RV’s), ,
with mean . Subscript denotes the desired signal and

are for interfering signals. The outage is given
by

(1)

where and is the power protection ratio,
which is fixed by the type of modulation and transmission
technique employed and the quality of service desired. Typi-
cally, dB. For instance, dB for the digital
pan-European GSM system using GMSK modulation [1].

Numerousad hocattempts have been made to obtain closed-
form expressions for the outage. To do so often requires
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making restrictiveassumptions (e.g., positive integers for the
Nakagami fading figure or identical statistical distributions for
all interferers) orapproximations(replacing a Rician RV by a
Nakagami RV). If the probability density function (pdf) of
is known, then the outage can readily be obtained. The PDF,

, can be expressed as an-fold convolutional integral.
However, there is no analytical solution to this integral in gen-
eral. Another approach is to use the moment generating func-
tion (MGF). If the RV’s are independent, the MGF of,
is the product of the individual MGF’s. While, in principle, in-
verting gives , closed-form expressions are difficult
or impossible under general conditions. From (1), we have

(2)

where is the cumulative density function (cdf) of
. If consists of terms of the form , then the

derivatives of yield the outage. By approximating a
Rice RV by a Nakagami RV, the above method can also
be used for the Rice-faded desired signal.

In this letter we unify the previous results by expressing
the outage as a finite-range integral for all the common
fading distributions. The MGF’s of the desired and interfering
signal powers constitute the integrand. Exact analytical
evaluation of the integral appears to be impossible, except
for some isolated cases (e.g., Rayleigh fading). However,
using mathematical packages such as Maple and Matlab, it is
extremely simple to evaluate (numerically) the integral with
high accuracy. Whereas explicit closed-form solutions tend
to require much more programming effort. Our approach
here is partly motivated by this consideration. Moreover,
we advocate the use of a GCQ formula for the integral. This
turns out to be remarkably accurate. For instance, in some
cases, the GCQ sum evaluates the outage with an error of
less than 10 percent using only eight samples.

II. MGF’ S FOR COMMON FADING DISTRIBUTIONS

Given an RV , the MGF is given by . We
next identify several common MGF’s of the signal power,.

A. Rician and Rayleigh Fading

The MGF of for a noncentralized chi-squared RV (Rice
distribution) is given by [8, p. 44], which can be expressed
in terms of , the usual Rician parameter. The MGF for the
Rayleigh fading case is obtained by setting .

B. Nakagami- and Nakagami- (Hoyt) Fading

The MGF of for the Nakagami- fading channel can be
obtained from [2, eq. (44)]. The MGF for Nakagami-fading
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is [9]

(3)

where and is the fading
parameter. In particular, the Nakagami-distribution reverts
to the Rayleigh fading case when .

C. Lognormal-Rice and Suzuki Fading

Expressing the received fading envelope as the product
of independent Rice and lognormal distributions, applying
Hermitian integration, we can show

(4)
where is the logarithmic standard deviation of shadowing,
is the local mean power, and . The abscissas
( th root of an th order Hermite polynomial) and weights
are tabulated in [10] for and is a remainder term.
The MGF for the Suzuki distribution is obtained by setting

in (4).

D. Lognormal-Nakagami- Fading

Similar to the derivation of (4), the MGF of the received
signal power in a Nakagami- fading channel with lognormal
shadowing can be expressed as

(5)

III. OUTAGE COMPUTATION

A. Exact Formula

Let

(6)

and the MGF of is given by

(7)

where is the MGF of and can be any one of
the MGF’s in Section II. Since the outage probability is

, this can be written as

(8a)

(8b)

where , with
being the th pole of in the left half plane (i.e., ).
Substituting in (8b), we get

(9)

where Real .
This form is both easily evaluated and well suited to numerical
integration since it only involves finite integration limits and
knowledge of the MGF.

B. Numerical Formula Using a GCQ Rule

Substituting and using the GCQ formula [10,
p. 889] gives

(10)

where the remainder term vanishes rapidly. Although
can be anywhere between zero and , the optimal location
ensures that decays as rapidly as possible for

. This rapid decay occurs if is the saddle point;
i.e., at , achieves its minimum on the real axis.
While this optimal requires a numerical search for the root
of , it sufficient to use . For
the MGF’s in the previous section, this value can be obtained
at once.

The use of the GCQ approach for computing the error rate
of coding schemes can be found in [11]. To the best of our
knowledge, the GCQ approach has not previously been applied
to the outage problem. We also have derived a new, simpler
expression for ,

for some (11)

The proof is sketched in the Appendix. Equation (11) only
involves a second order derivative of the MGF instead of 2th
order derivative using the formula in [10, p. 889].

IV. NUMERICAL RESULTS

We now provide a limited set of numerical results. Since
the application of (10) for complicated mobile radio scenarios
is straightforward, the main aim is to verify its accuracy.

is the GCQ sum in (10), excluding the remainder term,
and the signal-to-interference ratio (SIR) is defined as the
ratio between the desired user mean signal power to the sum
of all interfering mean signal powers (i.e., ). For
comparison purposes, the exact outage is computed by
evaluating (9) using Matlab’squad8function with an absolute
tolerance of 10 .

Table I examines the relationship betweenand for a
specified tolerance (% error ). The suboptimal choice of
does not preclude the use of (10) becausedoes not grow too
large as to become unmanageable (even with a relatively large
deviation from the optimum value). Interestingly, the rule of
thumb eliminates the need for a precise numerical search yet
works very well at most instances. Since a percentage accuracy
of may be adequate in practice, only six samples
are required.

In Table II we investigate the accuracy of the GCQ sum
for a Rician-fading channel with two unequal interferers.
Our numerical results reveal that the truncated series in this
scenario is converging very rapidly. Hence, an extremely high
accuracy can be easily attained with only a few number
of samples! Also, one may require a slightly larger to
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TABLE I
SENSITIVITY OF THE SELECTION OF PARAMETER c ON n̂ (THE NUMBER OF

SAMPLES REQUIRED TO ACHIEVE THE DESIRED ACCURACY) FOR P̂out WITH

L = 2, m0 = 1, mk = [1:3; 2:1], pk = [2:2; 1:6], AND SIR=q = 15 dB

c � P̂out n̂ Pout

1(�2) 3.096 086 3(-2) 6
1(�3) 3.096 382 8(-2) 131

2
amin

1(�5) 3.096 352 7(-2) 33
3.096 352 47(-2)

1(�2) 3.096 200 2(-2) 15
1(�3) 3.096 378 6(-2) 161

4
amin

1(�5) 3.096 352 7(-2) 67
3.096 352 47(-2)

1(�2) 3.096 117 6(-2) 8
1(�3) 3.096 344 8(-2) 103

4
amin

1(�5) 3.096 352 7(-2) 12
3.096 352 47(-2)

TABLE II
COMPARISON BETWEEN (9) AND (10) FOR DIFFERENT

SIR=q AND VARIOUS n VALUES. L = 2, K0 = 2,
Kk = [1; 1:3], pk = [1:2; 1:7], AND c = (1=2)amin

SIR=q Pout n P̂out % error
4 4.747 656 219(-2 2(-1)
5 4.756 119 646(-2) 5(�3)10 dB 4.756 337 365(-2)
8 4.756 337 365(-2) 7(�9)
4 1.359 866 044(-2) 2(�1)
5 1.362 408 269(-2) 5(�3)15 dB 1.362 473 755(-2)
8 1.362 473 755(-2) 7(�9)
4 4.133 519 716(-3) 2(�1)
5 4.141 616 632(-3) 5(�3)20 dB 4.141 616 632(-3)
8 4.141 616 632(-3) 7(�9)

TABLE III
COMPARISON BETWEEN (9) AND (10) IN A MIXED FADING ENVIRONMENT.

L = 4, m1 = 0:5, m2 = 0:8, K3 = 1, K4 = 1:3,
pk = [0:6; 1:1; 1:2; 1:7], SIR=q = 20 dB, AND c = (1=2)amin

m0 Pout n P̂out % error

5 2.157 111 560 44(-3) 3(�2)
10 2.157 650 680 41(-3) 1(�5)1.4 2.157 650 942 95(-3)
50 2.157 650 942 82(-3) 6(�9)
5
10 1.722 972 862 17(-4) 2(�5)2.1 1.722 972 597 01(-4)
50 1.722 972 597 04(-4) 1(�9)
5 1.570 949 124 75(-5) 2(�3)
10 1.570 986 673 81(-5) 7(�6)2.8 1.570 986 559 28(-5)
50 1.570 986 559 28(-5) 2(�10)

achieve the same level of accuracy as the error rates decreases.
However, the increase (if required) is minimal.

Finally in Table III, we examine the accuracy of in a
mixed fading scenario. The received signal amplitude of the
desired user and the first two interferers are Nakagami faded,
while the signal amplitude of the other two interferers are
Rician faded. We observe that the error performance improves
as the fading severity parameter of the desired user increases,
as anticipated. The GCQ sum is simple yet yields remarkably
accurate results even with only ten sampling points of the
MGF over a wide range of fading severity parameter.

V. CONCLUSIONS

In the research literature, much effort has been expended
to find closed-form expressions for outage in mobile radio
systems. Thisad hocdevelopment has led to various formulas.

In contrast, we have developed a unified outage expression (a
single finite-range integral) for all common fading distribu-
tions. This exact outage expression requires the knowledge
of the MGF. We also provide a new closed-form expression
(based on the GCQ approximation) that offers a convenient
method to evaluate the outage. This numerical method allows
for arbitrary fading parameters as well as dissimilar signal
strengths, shadowing spreads and so on. It is a powerful tool
for outage analysis, not imposing any restrictions while being
easy to program.

APPENDIX

Consider the class of integrals . We can
use a midpoint trapezoidal rule to evaluate. The basic
element of this rule is, as tends to zero,

by expanding near
using the Taylor series. This rule for an extended

interval is

(12)

where is replaced by . If is continuous, then

(13)

for some . Now if we apply a GCQ formula to
using the substitution , we will get

(14)

where the remainder has the form [10]. Com-
paring (12) and (14), we see that the GCQ sum collapses to a
simple midpoint trapezoidal sum for. Thus, either formula
for the remainder can be used.
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