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Abstract 

This paper addresses the problem of selecting the opti- 
mum training sequence for channel estimation in commn- 
nication systems over time-dispersive channels. By pro- 
cessing in the frequency domain, a new explicit form of 
search criterion is found, the gain loss factor (GLF), which 
minimises the variance ofthe estimation error and is easy 
to compute. Theoretical upper and lower bounds on the 
GLF are derived. An efficient directed search strategy 
and optimal sequences up to length 42 are given. These 
sequences are optimal only for frequency domain estima- 
tion, not for time domain estimation. Subject areas: Mod- 
ulation and Synchronisation and/or Signal Processing for 
Communications 

1 Introduction 
For burst-transmission digital communication systems, 
channel estimation (CE) is required for maximum like- 
lihood sequence estimation receivers [l]  and nonitera- 
tive equalizers [2]. A typical data burst consists of sev- 
eral blocks of user data and a pre-determined training se- 
quence (TS) which is used to estimate the channel impulse 
response (CIR). This paper addresses the problem of se- 
lecting optimal CE sequences for frequency domain pro- 
cessing. 

CE can he done using a Wiener filter or the DFT. In 
general, to estimate L channel taps with alength N CE se- 
quence, the Wiener filter needs to store the complex filter 
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coefficients (which can be pre-computed given the auto- 
correlation hnction of the CE sequence) and to compute 
complex multiplications. Similarly, the DFT method in- 
volves sending a CE sequence whose DFT is stored at the 
receiver. Each bin of the N-point DFT of the received se- 
quence is divided by the corresponding bin of the stored 
DFT to give an N-point vector, the inverse DIT  (IDFT) 
of which gives the channel estimates. 

Sequences with impulse-like correlation functions are 
suitable for CE (and other applications [31), and the prob- 
lem of finding such sequences has received a great deal 
of attention in the past [41. For instance, [5-8]  consider 
CE given a known Uaining sequence. Following the least- 
squares (LS) philosophy, [5] presents algorithms for opti- 
mal unbiased CE with aperiodic spread spectrum signals 
for white or nonwhite noise. Optimum unbiased CE given 
white noise is considered in [6] following a maximum- 
likelihood (ML) approach. For fast start-up CE, optimal 
training sequences of two-level, three-level, and four-level 
symbols (non constant amplitude) are reported for lengths 
up to sixteen. Milewski [71 provides a construction for 
some poly-phase (but not binary) perfect autocorrelation 
sequences. 

In [8], LS filtering for CE is considered and optimal 
binary sequences up to length 22 are found by exhaustive 
computer search. The search criterion is: 

F = t r ( P - l )  (dB) (1) 

where tr(.) is the trace of a matrix and P is the L x L cor- 
relation matrix ofthe training sequence. The resulting se- 
quences offer the best possible signal-to-estimation-error 
ratio (SER) a1 the output of the channel estimator. 

This paper takes an approach similar to that of [XI, but, 
importantly, all processing occurs in the Bequency do- 
main. This leads to an explicit expression for the search 
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criterion, termed the gain loss factor (GLF), which is only 
a function of the power spectrum of the training sequence. 
A CE sequence is optimal if it minimises the GLF. Equiv- 
alently, an optimal sequence maximises the output SER. 
However, sequences given in this papcr are not optimal 
for time domain estimation. In fact, they have marginally 
worse performance (Section 4). This paper provides a fre- 
quency domain approach (i.e., using the DFT), hounds on 
the GLF and an optimal periodic sequence search. 

This paper is organised as follows. Section 2 introduces 
the GLF, derives upper and lower hound for it, and uses 
GLF invariance transformations and a hound on the GLF 
of a set of constant weight sequences to find optimal pe- 
riodic codes. Section 3 provides two channel estimation 
examples. Section 4 compares the performance of time 
domain and frequency domain techniques. Conclusions 
are given in Section 5 .  

2 Channel estimation 
We assume that the channel is represented as a finite im- 
pulse response filter with T-spaced taps, where T is the 
symbol period. The channel remain constant at least for 
the duration of the training sequence. The complex, low- 
pass channel impulse response (CIR) is given by 

L-1 

h( t )  = h g 6 ( t  - kT) (2) 
h=O 

where a ( t )  is the Dirac delta function, L is the total n u -  
her of taps, and hk is the complex tap weighting the 
kth delayed rcplica. We envision a data transmission 
of isochronous (time division multiple access) or asyn- 
chronous packets. Each packet contains information data 
and overhead symbols for several purposes( e.g., channel 
estimation and synchronisation). In our case we are only 
interested in the channel estimation problem. The packet 
structure is thereforc 

b t , .  . . , b ~ - i , b o ,  h i , .  . . , b N - - l , d i , d 2 > .  . . , d, 

where t 5 N - L + 1. Here bg E (1, -1) arc for chan- 
ne1 estimation and d k s  are information data. As we can 
see, TS is now a cyclic extension of the basic sequence of 
length N ,  N 2 L. A small t will facilitate receiver syn- 
chronization hut incrcase TS overhead. Since the TS is 

received 
samples 

Figure 1: Channel estimation using optimal sequences. 

periodic, its convolution with the CIR is periodic and CE 
is possible using the DFT. 

Fig. 1 shows the channel estimator. We assume the re- 
ceived signal samples contain a white gaussian noise with 
variance u2, Both DFT and IDFT are a set of orthogonal 
transforms, so will not change the correlation characteris- 
tics of the noise. We can therefore show that [91 the van- 
F c e  of all noise terms affecting the L useful estimates, 
{ f r o , .  . . , L L - ~ } ,  is given by 

The ratio M I L  can he considered as the maximum pm- 
cessing gain (PG) attainable by LS filtering, which is re- 
duced by the GLF (inherent to b) defined as 

(4) 

Ideally, if M(b) = 1, the maximum PG is realized dur- 
ing the channel estimation process. Heuristically, a good 
CE sequence should have a reasonably flat spectrum. To 
quantify this notion, a spectral flatness measure is in- 
troduced as follows. Define the spectral ma-min ratio 
(SMMR) of {B,} as 

It is expected that an optimal CE sequence has X(b) % 1, 
while poor CE sequences have X(b) > 1. Clearly, GLF 
and SMMR are closely related parameters. This is further 
evidcnced by the hounds [9]: 

1 
1 5 M(b) 5 [1+ ( N  - 1)X2(b)] . (6) 

If X(b) = 1, thc hounds converge and the CE sequence 
satisfies 

M(b) = 1, (7) 

which is the smallest possible value. This result is intu- 
itively pleasing and lcads to the following definition: a 
perfect CE sequence has unity SMMR. If a sequence has 
a spectral null (i.e., Bj = 0 for some 0 5 j < N ) ,  both 
GLF and SMMR are equal to infinity and thc sequence is 
unsuitable for CE. Define the loss factor (in dB) as 

P = 1 0 k O  [M(b)l. (8) 

A perfect CE sequence has a loss factor of 0 dB 

A. GLF Invariance Transformations 
Two sequences b and c have the same CLF provided: 

I1 phase shift of T :  c p  = -bk 
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I2 time reversal : ck = b N - 1 - k  

I3 cyclic shift : cle = bk+,modN 

I1 to I3 derive from the propexties of the DFT. The spec- 
trum of a cyclically shifted (q positions to right) sequence 
is given by C, = B,e32""q/N, leading to the same GLF, 

B. Constant weight 
Convert the br: E {-1,l) into as t {O,l}:  ar: = 
(1 - h k ) / 2 .  2N {b l ; } s  can be translated to { a k } ~ .  If the 
Hamming weight of a is w(a), let the sets 

Xi = {a I w(a) = I }  I = O , l , .  . . , N. (9) 

The size of X ,  is IX,l and El IXll = 2N. Below it is 
shown that the code search needs to he conducted only for 
afew selected Xis. As 1x11 << 2N for large N, this leads 
to significant reduction in computation time. 

Let the DFT of { a h }  be denoted by {A,}. As bk = 
1 - 2ak, it follows that, 

where w = exp (-j2an/M). If w(a) = W, then Bo = 
17-ZW. Moreover,thecomputation of {A , }  is sufficient 
to determine GLE 

According to Eq. and (6), an optimal CE sequence has 
a nearly constant amplitude spectrum, i.e., 

lB,Iad?? n = 0 , 1 ,  . . . ,  N-1.  (11) 

Consequently, if BO is far away from a, such a se- 
quence is unlikely to be optimal. This in turn suggests 
that the optimality of a sequence somewhat depends on its 
Hamming weight. To make this notion precise, define by 
M(b1W) the GLF of a sequence with Hamming weight 
W (0 5 W 5 N). Thus, using Parseval's theorem, for 
such a sequence 

N-1 

IB,l2 = N 2  - ( N  - 2W)'. (12) 
,=I 

Now the best case occurs if IBnl, 1 5 n < N ,  are all 
equal (which also follows from using Cauchy-Schwarz). 
This means that 

This bound shows the smallest GLF for a set of 
constant-weight sequences. For an exhaustive search of 
optimal sequences, only Xl for I = {i, 2,. . . , iN /Z]}  
need he considered at most (this follows from 11). How- 
ever, this range can be further reduced by using (1 3), as 
exemplified helow. 
Example: Consider N = 16 and L = 2. For I.lr = 
{1,2 , .  . . , 7 } ,  M(b1W) is lower bounded by the set (13) 

{3.37,2.01,1.50,1.25,1.11,1.06,1.21}. Then a com- 
puter search in Xg yields a sequence with GLF equal to 
1.21. Thus, further search is required only in X ,  and X7 
yielding minimum GLFs of 1.37 and 1.30, respectively. 

C. Computer search 

A rough outline of the search program is as follows: 

1. In the first step, take the length N vector a = 
(1 ,1, .  . . ,0 )  and g = w. 

2. In the i th step, compute {Bn} and M(b) .  If 
M ( b )  <g, thensavebandg = M ( b ) .  

3. Update a keeping w(a) = W and repeat 2. 

The above procedure is repeated for a sufficient number 
of Hamming weights. 

I1 to I3 coupled with the weight analysis (Section 2.B) 
and incremental DPT allow substantial improvement in 
Computation time for the code search. More details can 
he found in [9]. Table 1 shows optimal sequences for 
25 5 N 5 42. Provided the cyclic extension is longer 
than the tail of the CIR, the entire CIR can be estimated 
(i.e., GLF is not a function of I,). I1 to I3 partition the 
2N sequence space into equivalence classes. In most 
cases, several equivalence classes achieve the minimum 
GLF. However, only one optimal sequence for given N 
is reported here. K indicates the number of equivalence 
classes with Mmin. Generally, p should decrease for in- 
creasing N ,  hut one should expect smaller p values for N 
such that fi is an integer (e.g., N = 36). 

Table 1: Optimal periodic CE sequences 
Length (N) Code K p(dB) 

25 EZCC21 3 0.49 1.75 
26 16C8701 8 0.51 1.98 
27 392B841 4 0.40 1.64 
28 D724301 8 0.53 1.72 
29 E9A1881 4 0.50 1.72 
30 131129F1 15 0.51 2.08 
31 3B446161 16 0.31 1.46 
32 5230F641 21 0.39 1.73 
33 849B88El 17 0.28 1.65 
34 1D18F4241 22 0.43 181 
35 22917E461 16 0.31 1.65 
36 5908973C1 33 0.19 1.38 
37 19C4848BAl 26 0.32 1.66 
38 ID70852361 28 0.37 1.86 
39 68892D7381 4 0.22 1.50 
40 4D73607281 24 0.24 1 6 2  
41 198ADlD3401 33 0.29 1.62 
42 08C65AZF881 20 0.32 1.75 
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3 Channel estimation examples 
Here, two examples are provided to compare periodic 
optimal sequences found by computer search with m- 
sequences. Firstly, the average distortion-to-noise ratio 
given by 

is computed as a function of input signal-to-noise ratio 
defined by 

Secondly, performance degradation when a linear equal- 
izer is implemented with channel estimates is computed. 

Fig. 2 shows 10 loglo(^/dis) for a channel estimator in 
atypical data-quality telephone channel. The CIR used is 
that given by the discrete channel tap weights {fk} found 
in [I ,  Fig. 10-2-5(a)] and the channel span is 11 sym- 
bols. Fig. 2 shows the distortion for two m,-sequences and 
optimal sequences of lengths 15 and 31 hits under vary- 
ing input SNR, 7:". The optimal sequences gain ahout 3 
dB noise margin over the m-sequences in the frequency 
domain. As noted by an anonymous reviewer, if this 
m-sequence is used in the time domain, thc loss factor 
is 0.064 dB. In this case, the optimal sequence, used in 
the frequency domain, is ahout 0.25 dB worse than the 
m-sequence used in the time domain. It should also he 
mentioned that a channel estimator based on m,-sequences 
can be implemented easily, even free of multiplications in 
some cases [8]. 

4 Time domain vs. frequency do- 
main techniques 

Performance differences between the frequency domain 
(FD) and time domain (TD) [8] techniques are discussed 
here. Both rely on least squares filtering, and hence should 
give the same level of performance for cornparahle cases. 
Suppose L channel taps are to he estimated using N chan- 
nel measurements. The following comments directly ap- 
ply to the periodic case, where a cyclic extension of length 
L - 1 is utilised. Then the maximum achievable SER for 
either case is given by 

SER = 10 log,, (a> (dB). (16) 

With the FD approach, the output SER is less than this 
maximum by the loss factor 

Naturally, if p = 0 dB, such a sequence would he perfect. 
Various sequences given in ow paper comc close chis ideal 
to different degrees. For example, in Table 6, for N = 36, 
p = 0.19 dB. 

For the TD approach, the normalised output SER is 
given by [ 81 

SER = lOlog,, (l,'tr(F')) (dB) (IS) 

where P is an L x L autocorrelation matrix. Now if the au- 
tocorrelation sequence $ ( k )  of the TS is an impulse func- 
tion, its SER given by (18) achieves (16). In fact, it is 
sufficient to have 4 ( k )  = 0 for k = 1,. . . , L - 1, for a 
sequence to he perfect for estimating L channel taps. Note 
that 4 ( k )  is the cyclic autocorrelation. 

Therefore, a length N symbol sequence used for esti- 
mating L channel taps is perfect for time domain if 

$ ( k )  = 0 for k = 1 , 2 , .  . . , L  - 1. (19) 

This sequence is perfect for frcquency domain if 

I B , ~  = fi for n = 0. I , .  . . , N - 1 (20) 

which yields /I = 0 dB. In either case, the hest achievable 
SER is given by (1 6). So both approaches should result in 
maximum SER and as such are equivalent. It appears that 
TD estimation gets closer to or achieves (16) in all cases 
than FD estimation. Nevertheless, the sequences given 
in chis paper are quite close to (16) as can he seen from 
the tables. For example, for N = 40 thc periodic code 
achieves 0.24 dB (Table 1) within the upper hound (16). 

One point to note is that for given N and L, opti- 
mal codes may he easier to he found for TD than for 
FD, because the former involves minimising L - 1 auto- 
correlation values (19) whereas the latter involves con- 
verging all N spectrum amplitudes to a constant (20). 
Note that if 

$ (k)=O for k = l ,  . . . , A T -  1 (21) 

then such a sequence satisfies (20), being perfect for FD 
estimating L channel taps. Thus, (20) implies (19), hut 
not vice versa. 

That is, a sequence optimised for TD is not necessarily 
optimal for FD. For instance, consider N = 16 sequence 
constructed in Fig. 6 [SI for estimating 5 taps. For TD 
estimation, this sequence achieves the ideal performance 
(1) of an SER of 5 dB (16/5). If the same sequence is 
used for FD estimation, the output SER is found to he 
(from (16) and (18)) 1.35 dB. Similarly, m-sequences are 
nearly-perfect for TD estimation, hut incur a 3 dB perfor- 
mance penalty when used for FD estimation. There is no 
contradiction here, hut a sequence thal satisfies (19) does 
not necessarily satisfy (20). 

5 Conclusions 
Channel estimation using a known uaining sequence is 
required in various communication systems. I1 has been \ n l u n l  1 
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shown that, for CE with the DFT, optimal sequences must 
have the smallest GLF. By exploiting invariance proper- 
ties of the GLF and the hounds on the GLF for constant- 
weight sequences, optimal sequences up to length 42 have 
been found. While the sequences are optimal for fre- 
quency domain CE, they are marginally worse than op- 
timal codes for time domain CE [8]. Interestingly, for any 
sequence it appears that the SER for the FD case forms a 
lower bound on the SER for the TD case. Also, the FD ap- 
proach may be suited to applications where FFT process- 
ing is used anyway, such as orthogonal frequency division 
multiplexing systems. 
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