
94.0% under the same conditions. We believe that this enhanc- 
ment is due to the global optimisation function of the GA. 

Conclusion: A method for using genetic algorithms to train 
HMMs has been successfully developed. The main contribution of 
this study is that it presents the idea of searching for the most 
optimal HMM. The experiments also show that the approach is 
superior to the classical method. 
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nalysis of MPSK and MDPSK with 
reception in different fading 

environments 

A. Annamalai, C. Tellambura and V.K. Bhargava 

Computationally eficient expressions are presented for evaluating 
the symbol-error rates of coherent and differentially coherent M- 
ary phase-shift-keying signalling in conjunction with maximal- 
ratio combining diversity receivers in fading scenarios. 

Introduction: The evaluation of symbol error rates (SERs) for M- 
phase signals with diversity combining and fading has been stud- 
ied extensively (see [l] and its references). Most authors place the 
emphasis on deriving explicit closed-form solutions for the SER 
and bit error rate (BER). When it is diMicult to obtain exact 
expressions, bounds are derived instead. Proakis [2] provides a 
comprehensive treatment of the problem for maximal-ratio com- 
bining (MRC) under Rayleigh and Ricean fading, and presents a 
general closed form expression for all signalling with alphabet size 
M and order of diversity L. However, the evaluation of the gen- 
eral expression requires (L-1 jth order derivatives for L channel 
reception. Alternative expressions have been derived in [I] for the 
Rayleigh fading channel. The derivation of these closed-form for- 
mulas tends to be rather ad hoc, requiring some ingenuity in eval- 
uating the necessary integrals. With the proliferation of standard 
mathematical software such as Maple and Matlab, it is extremely 
simple to evaluate (numerically) these integrals with htgh accuracy, 
whereas explicit closed-form solutions tend to require much more 
programming effort. Our approach here is motivated by this con- 
sideration. Moreover, the integrals can be approximated by 
extremely accurate sums requiring knowledge of the moment gen- 
erating function (MGF) at only a small number of points. 

In this Letter we unifj? and add to the previous results by pro- 
viding a unified and convenient method to compute the exact SER 
for M-ary phase-shift keying (MPSK) and M-ary diversity PSK 
(MDPSKj signals in conjunction with MRC, and presenting new 
results for SER in Nakagami and lognormal-Rice fading channels. 
In contrast to [l, 21, our approach relies upon knowledge of the 
MGF of the received signal-to-noise ratio ( S N R ) .  The resulting 
expression is an integral over a finite range of integrands contain- 

ing only elementary functions. This new expression can be further 
approximated using Gauss-Chebychev quadrature (GCQ) formu- 
las, which lends itself to an eficient method for evaluating the 
SER via a rapidly converging series. 

Statistical representation of fading channel: Given a random varia- 
ble X, the probability density function (PDF) p(x) indicates the 
relative frequency of occurrence of any Tied value of x. The MGF 
can then be defied as 

00 

$ (z )  = E[e-””] = e-“”p(z)dz (1) L 
which is simply the Laplace transform of the PDF. ax] in eqn. 1 
denotes the expected value (mean or average value) of X. Note 
that the MGF is closely related to another statistical function, the 
characteristic function, and is easily translated by the variable sub- 
stitution z = -jv. 

Since our new approach for computing the error performance 
only requires knowledge of the MGF of the SNR, in the following 
we will summarise the MGFs for several commonly used fading 
channel models. 

Ricean and Rayleigh fading: The MGF for the non-centralised chi- 
squared distribution is given by [3] 

(”4 
where Q, = qyJ and K, denote the average received SNR and the 
Rice factor of the lth diversity branch, respectively. In a limiting 
case when the power in the line-of-sight path approaches zero, K 
-+ 0 and the channel reverts to the Rayleigh fading channel. Then 
the corresponding MGF of the centralised chi-squared distribution 
is 

( 3 )  

Nakagami-m and Nakagami-q (Hoyt) fading: The MGF of the 
SNR for the Nakagami-m fading channel is given by 

where m, denotes the fading figure. It is evident that eqn. 4 reduces 
to eqn. 3 when m = 1 (i.e. Rayleigh fading). 

It can be easily shown that the MGF of the S N R  for 
Nakagami-q [4] fading is 

where b, = [ l -q~]/[ l+q~] and q, (0 5 q, 5 -) is the fading parame- 
ter. The Nakagami-q distribution reverts to the Rayleigh and the 
normal distribution when b, = 0 and b, = 1, respectively. 

Lognormal-Rice and Suzuki fading: Expressing the received fading 
envelope as the product of independent Rice and lognormal distri- 
butions, the MGF can be shown to be 

00 

$ i ( z )  = J’ ~ ( Z N  e x p ( h w ) , K l )  exp( -z2)dz  (6) f i  -00 

where x = ln(Wp)/(d20), 0 is the logarithmic standard deviation 
of shadowing, and is the local mean power. By applying Hermi- 
tian integration, a closed-form expression for eqn. 6 is obtained: 

where abscissas x, (ith root of an nth order Hermite polynomial) 
and weights w, are tabulated in [5] for n 5 20 and RH is a remain- 
der term. 

Since the Suzuki distribution is a special case of the lognormal 
Rician distribution, its MGF is readily obtained by setting K = 0 
in eqn. 7 [3]: 
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where a, is equal to pexp [420xJ. 

Lognormal-Nakagami-m fading: As in our derivation of eqn. 7, the 
MGF of the SNR in a Nakagami-m fading channel with lognor- 
mal shadowing can be expressed as 

(9) 

where x, and w, correspond to the abscissas and the weights of the 
Gauss-Hermite integration formula, respectively. 

Assuming independent fading across the diversity branches, the 
MGF of the combined received signal power at the output of the 
maximal-ratio combiner can be readily shown to be 

L 

P(S) = E[exp[-s(yl+ 7 2  + ... + X)I] = n ~ l ( 5 )  (10) 
1x1 

SER analysis in fading environments: MPSK: Our derivation 
begins from the exact SER expression for MPSK in an AWGN 
channel provided in [6]: 

where b = (log2M)sin2(dM). The average symbol error probability 
in a slow and flat fading channel may be derived by averaging the 
error rate for the AWGN channel over the PDF of the SNR in a 
given fading channel, i.e. 

Psk) = LW PS(&I7)1)7(Y)dY (12) 

Substituting eqn. 11 into eqn. 12, and then interchanging the order 
of integration and recognising that the integral with respect to y is 
equal to the MGF of the S N R  evaluated at bcsc28, eqn. 12 
reduces to 

This form is both easily evaluated and well suited to numerical 
integration, since it only involves finite integration limits. The 
simplicity of this result should be compared with the more com- 
plex forms given by Proakis [2] and other references in the litera- 
ture. 

Using variable substitution t = cos(M8/[M-l]) in eqn. 13 and 
applying GCQ approximation [5], we obtain a closed-form expres- 
sion for the SER of MPSK in the form of a truncated series: 

where n is a small positive integer and the remainder term is 

R, = 
sin2 5 

for some 0 < 5 < (M-l)dM. Notations cp‘(s) and cp”(s) in eqn. 15 
are used to denote the first and second order derivatives of the 
MGF. When the derivatives are available, bounding on R, is pos- 
sible. The derivation of eqn. 15, details of which are omitted for 
brevity, relies on the fact that the GCQ rule collapses to the mid- 
point trapezoidal rule for the class of integral considered here. 

PS(EIY) = 
sin(n/M) lnl2 exp(-yIogz M[I - C O S ( T / M )  COSO]) 

Following our analysis for MPSK, the unconditional exact SER 
for MDPSK can be written in the form of a single integral with 
finite integration limits: 

di3 
T 1 - cos(?r/M) cose 

(16) 

PJMRC)(&) z 

sin(.ir/M) 1 ~ ’ ~  cp(log, M[I - c o s ( n / ~ )   cos^])^^ (17) 
T 1 - cos(-n/M) cos 0 

Applying the GCQ formulas on eqn. 17, we obtain a closed-form 
expression for the SER of MDPSK in different fading environ- 
ments: 

p y  ( E )  = 
‘(log, M[1 - cos(n /M)  cos.]) + Rn 

(18) 
where a = (2i-I)d4/n and the remainder term is given by 

7r2 S;(T!M) [P(p6) ( R, = 
2z2 sin2 c - 6z cos 5 

6 3  

( p z  sin C)’ 
S 

Spz cos c - 2pz2 sin2 c 
6 2  

where p = log2M, z = cos(dM) and 6 = l-zcos(. 

Conclusions: Previously, much effort has been expended to find 
closed-form SER expressions for different fading models. This ad 
hoc development has led to various formulas and error bounds. In 
contrast, we have developed unified SER expressions (in the form 
of a single finite-range integral) for coherent and differentially 
coherent MPSK signalling in conjunction with MRC diversity 
reception under many fading scenarios. These simple yet exact 
SER expressions require knowledge of the MGF. We also provide 
new closed-form expressions (based on the GCQ approximation) 
that offer a convenient method to evaluate the SER for higher 
orders of diversity and larger alphabet sizes. The results presented 
are sufficiently general to allow for arbitrary fading parameters as 
well as dissimilar signal strengths across the diversity branches. 
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