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Channel Estimation Using Aperiodic
Binary Sequences

C. Tellambura, Y. J. Guo, and S. K. Barton

Abstract— Estimating a channel impulse response using a
known aperiodic sequence is considered. The problem can be
reduced to minimizing the trace of the inverse of a Toeplitz ma-
trix. An efficient algorithm for computing this trace is developed
and optimal binary sequences up to length 32 are found and
tabulated. The use of complementary sequences in this context
is also investigated. It is shown that the eigenvalues of the
autocorrelation matrices of a pair of complementary sequences
sum to a known constant.

Index Terms—Channel estimation, complementary sequences,
equalization, Toeplitz matrices.

I. INTRODUCTION

BURST-TRANSMISSION digital communication systems
require channel estimation (CE) for optimal receivers and

fast startup equalization. Therefore a known training sequence
(TS) is transmitted before the data. This letter describes how to
find optimum aperiodic sequences. For time-domain channel
estimation, training sequences can be classified broadly into
two classes: periodic and aperiodic. This will affect how the
autocorrelation function (ACF) is defined and the spectral
properties of the sequence. Some practical systems (e.g., GSM)
use periodic or cyclically extended training sequences. The
subject of periodic sequences for CE has received much atten-
tion (e.g., [1], [2], among many others), while the aperiodic
case has received scant attention.

II. CHANNEL ESTIMATION

A. Performance Measure

The complex channel impulse response is assumed to be
given by the tap vector for taps,

Manuscript received February 18, 1997. The associate editor coordinating
the review of this letter and approving it for publication was Prof. H. V. Poor.
This work was carried out at the University of Bradford, West Yorkshire, U.K.,
supported by the U.K. DTI/EPSRC LINK project PC2011 “High Throughput
Radio Modem” under EPSRC Grant GR/K 00318 in collaboration with
Symbionics Networks Ltd.

C. Tellambura was with the Telecommunications Research Group, Depart-
ment of Electrical and Electronic Engineering, University of Bradford, West
Yorkshire BD7 1DP, U.K. He is now with the School of Computer Science
and Software Engineering, Monash University, Clayton, Vic. 3168, Australia
(e-mail: chintha@dgs.monash.edu.au).

Y. J. Guo was with the Telecommunications Research Group, Depart-
ment of Electrical and Electronic Engineering, University of Bradford, West
Yorkshire BD7 1DP, U.K. He is now with Fujitsu Europe Telecom R&D
Center Ltd. (FTRC), Stockley Park, Uxbridge UB11 1AB, U.K. (e-mail:
Y.Guo@fujitsu.co.uk).

S. K. Barton was with the Telecommunications Research Group, Depart-
ment of Electrical and Electronic Engineering, University of Bradford, West
Yorkshire BD7 1DP, U.K. He is now with the Institute of Integrated Infor-
mation Systems, School of Electronic and Electrical Engineering, University
of Leeds, Leeds, LS2 9JT, U.K. (e-mail: S.Barton@elec-eng.leeds.ac.uk).

Publisher Item Identifier S 1089-7798(98)04208-2.

which remain constant at least for the duration of the training
sequence. is estimated by processing the received signal
samples. A sequence is initially trans-
mitted for this purpose, where . The received
signal samples are given by

(1)

which can be written as where the noise vector
and is an matrix. The

least-squares estimate of the channel vector is [3]

(2)

and is the autocorrelation matrix of the
training sequence; the aperiodic ACF is

(3)

and . The covariance matrix of the estimate
(for white noise with variance ) is , and a perfor-
mance measure for comparing the quality of different training
sequences can be defined as

(4)

where (trace) is the sum of the main diagonal elements
of matrix . The lower bound (LB) follows from
and .

In [2], least-squares filtering (Wiener filtering) for CE is
considered and optimal binary sequences up to length 22 are
found by exhaustive computer search. The search criterion
above is used for two cases—nonzero amplitude precursors
and zero-amplitude precursors. The resulting sequences offer
the best possible signal-to-estimation-error ratio (SER) at the
output of the channel estimator.

B. Fast Computation of

Search for optimal training sequences is facilitated if a
fast computation method for the trace of the inverse of a
Toeplitz matrix can be found. The number of multiplications
required for the inversion of an arbitraryth-order matrix is
proportional to . However, this can be reduced to for an

th-order Toeplitz matrix, say, . Moreover, to compute the
trace only the elements of the principal diagonal of are
required. Furthermore, only of them are required;
because if then . Below is
an algorithm designed to exploit these properties using the
classical algorithms of Durbin and Trench.
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TABLE I
HEXADECIMAL VALUE OF BEST APERIODIC BINARY TS’S

TS length(N)
L

2L 2L+ 1 2L+ 2 2L+ 3 2L+ 4
3 4 9 9 12 24
4 11 1A 58 53 A6
5 53 53 A6 CA 298
6 12E CA 328 32B 6A6
7 32B 59D 6B9 CAC 2474
8 3056 CAC 2474 298B 14FCD
9 3257 4E5D D419 320D4 15B38
10 D419 2CBDC 8A1EC 6A67D A62F9
11 8A1EC 6A67D 2D111E 10DCBA 92A073
12 2D111E 10DCBA 92A073 C1772D 66B7C5
13 92A073 4D78DD 12F8EED 653E6A AFCD67C
14 66B7C5 653E6A B350 163 163A0299 2C111DA1

Algorithm 1: Given a real autocorrelation sequence
and that is positive

definite, the following algorithm [4] computes such
that . Initial conditions: ,

, and .

For

For

(5)

This algorithm requires multiplications [5].
The following algorithm based on [6] computes the neces-

sary elements on the main diagonal of .
Algorithm 2: Given a real autocorrelation sequence

, is positive definite,
and , the following algorithm computes

for .

Use Algorithm 1 to solve

For

(6)

These will give . Algorithm 2 requires about
multiplications after Algorithm 1, which needs
multiplications. So the total number of multiplications is about

. Note that this algorithm may also be derived from a
triangular decomposition approach [7].

A computer search has been performed to find the best
binary nonperiodic sequence for a given number of channel
tap weights and sequence length, using the figure of merit,
as given in (4). Table I lists the best binary sequences found
up to length 32, represented in hexadecimal. If the sequence
length is not a multiple of four, as many zeros as is necessary

are added/neglected to form the hexadecimal number (e.g.,
1A denotes 010 110 000 and 58 denotes 0 001 101 000). The
bits can be mapped to BPSK signals according to:
and . In many cases several sequences achieve the
minimum for given and . Only one representative is
listed in such cases.

The best sequences provide a quality factor that is within
a fraction of a decibel of the lower bound. With the number
of channel taps held fixed, the quality factoralso tends to
become closer to the LB as the TS length increases.

C. Complementary Sequences

While the sequences shown in Table I are optimal in the
sense of maximizing the output SER, finding long optimal
codes is computationally prohibitive. Long complementary
sequences offer a solution to this problem since they can
easily be obtained by recursive methods and are known to
have reasonably flat spectra.

To get an idea about the degree of optimality of comple-
mentary sequences, the following figure of merit is defined.
Let be the autocorrelation matrix associated with a TS of
length and be the largest eigenvalue of. The figure
of merit is

(7)

For a perfect TS [i.e., where is the impulse
function], , where is the identity matrix, and .
Otherwise, .

Two sequences and of length form a comple-
mentary pair if their aperiodic ACF’s (3) satisfy [8]

(8)

Therefore, the corresponding correlation matrices satisfy

(9)

It follows that eigenvalue pairs, and , of and ,
respectively, satisfy

(10)

Thus, for a pair of complementary sequences, pairs of eigen-
values of the associated matrices are themselves comple-
mentary. Since the eigenvalues of a correlation matrix are
nonnegative, , . That is, for
a complementary sequence. Thus, the figure of merit .
Therefore, complementary sequences perform quite close to
the ideal sequences.

III. CONCLUSIONS

In this letter a performance measure has been proposed to
assess the quality of binary sequence for CE, using the trace
of the inverse of its associated autocorrelation matrix. An
algorithm for fast computing this trace has been developed and
used to find optimal aperiodic codes up to length 32. For longer
lengths, complementary sequence pairs are proposed and it is
shown that these codes are quite close to ideal, by reference
to a figure of merit which, for a given , is proportional to
the largest eigenvalue of the associated autocorrelation matrix.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 17:18 from IEEE Xplore.  Restrictions apply. 



142 IEEE COMMUNICATIONS LETTERS, VOL. 2, NO. 5, MAY 1998

Moreover, the autocorrelation matrices of a complementary
sequence pair have eigen spectra that sum to a constant.
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