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Error Performance of MPSK Trellis-Coded
Modulation over Nonindependent
Rician Fading Channels

C. Tellambura and Vijay K. Bhargav#&ellow, IEEE

Abstract—This paper presents new upper bounds on the pair- when given only two choices. To compute the PEP of TCM
wise error probability (PEP) of trellis-coded modulation (TCM)  schemes in fading channels, the probability that a quadratic
schemes ovemnonindependenRician fading channels. Cases con- decision variable (i.e., the difference between the two path

sidered are coherent and pilot-tone-aided detection and dif- tri ina Viterbi d di f the t d d
ferential detection of trellis-coded multilevel phase-shift keying metrics, assuming Viterbi decoding, of the two codewords)

(TC-MPSK) systems. The average bit-error probability P, can be I complex normal variables is less than a certain threshold
approximated by truncating the union bound. This method does must be calculated. In general, this probability cannot be
not necessarily lead to an upper bound onF%, and, hence, the obtained analytically, although the characteristic function of
approximation must be used with simulation results. In addition, the decision variable is known in closed form

for Rayleigh fading channels with an exponential autocovariance A | 1 t vsis of imal-rati
function, bounds resembling those for memoryless channels have n early paper [1] presents an analysis of a maximal-ratio

been derived. The bounds are substantially more accurate than combiner for nonindependent fading among the signals. The
Chernoff bounds and hence allow for accurate estimation of sum of the received powers is a positive-definite quadratic

system performance when the assumption of ideal interleaving form, and the characteristic function method provides the
is relaxed. density function of the sum. Because of the duality between
Index Terms—interleaving, Rician fading, trellis coding. diversity methods and coding, for instance, for binary convo-
lutional codes the PEP can be obtained similarly [2].
The performance of coding schemes in correlated fading
channels has been examined mostly through computer simula-
HE USE of trellis-coded modulation (TCM) for theseton, but [2]-[8] provide both analytical and simulation results.
mobile communication channels, typically modeled aReferences [2]-[6] deal with convolution codes, while [7]
Rician or Rayleigh, has recently received wide attentioand [8] with trellis-coded modulation in correlated Rayleigh
Interleaving is a commonly used technique to break up bugling. Direct extension of the results in [2] to the TCM case
errors caused by amplitude fades. The duration of the fadgfay not be fruitful because the Chernoff bound is known to
an indication of the channel memory, depends on the Dopplgs weak when applied to TCM schemes [9].
Spread of the fadlng process. Given a block interleaver OfFor TCM over Ray|e|gh fad|ng channels, the PEP can be
size Nqg x N, as result of interleaving/deinterleaving, thexpressed in terms of the eigenvalues of a weighted covariance
fading process experienced by the receiver vangstimes matrix. In [7] and [9], a method to compute the exact PEP for
faster than that of a noninterleaved case, i.e., the effectiffs case has been given; it involves evaluating residigs.
channel memory is reduced by a factorlgiV,. Accordingly, s estimated by computing exact PEP's for a set of dominant
a channel is said to beleally interleavedif N; — co and error events. However, for Rician channels, computation of
nonideally interleavedf N is finite (correlated fading). the exact PEP is possible only via numerical integration.
ThUS, it is clear that the channel memory is reduced, but n0t|n this paper, we present two new upper bounds on the
eliminated with nonideal interleaving. In this work, the effecbEp for a correlated Rician fading channel. The method
of this residual memory on the average bit error probabiliquires computing eigenvalues, but avoids integration, and is
P, of TCM is addressed. In particular, consideration is givegignificantly more accurate than a Chernoff bound for this case.
to how large Ny should be in order that’ approaches that The bounds are derived assuming the pilot-tone concept, and
of ideal interleaving. To compute the union bound &) one hence can be modified to several useful cases including ideal
needs formulas for the pairwise error probability (PEP), théherent detection, coherent detection based on a pilot-tone,
probability that the decoder selects the erroneous codewgigl differential detection. The average bit-error probabifity
can be approximated by truncating the union bound to include
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Fig. 1. Baseband system model.

a Rayleigh fading channel with exponential correlation, byhere s(t) is a unit-energy pulse that satisfies Nyquist's
assuming the worst codeword to be the one in which all erroonditions for zero intersymbol interferencg, is the symbol
symbols are consecutive, the PEP bound can be simplifieddwration, and

a form resembling that of memoryless channels. Tliys;an TC-MPSK

be bounded using the transfer function technique, based on the v = {vk_lwk TC-MDPSK ()
method of Zehavi and Wolf [10]. Comparisons with simulation

results show that the estimates Bf are quite accurate whenwherez;. denotes théth convolutional encoder output. Here,
the interleaving depthV, is sufficiently large. the acronym TC-MDPSK denotes trellis-codgfl-ary differ-

The paper is organized as follows. Section Il describes tRatial phase-shift keying. The transmitted sequence, because
system model used here and the characterization of Ricifinterleaving, will be a scrambled version of the encoder
fading channels. The bounds are derived in Sections Ill apdtput sequence; to simplify notation, this rearrangement is
IV. Several examples are presented in Section V. Finallgot explicitly shown in (1). Instead, the effect of interleaving
conclusions are provided in Section VI. is accounted for by increasing the effective Doppler rate.

The signal is demodulated using a filter matcheds{o).
Hence, the received sample corresponding to tie coded

symbol can be denoted by
The system under consideration, as described in [11] and

[12], is shown in Fig. 1. Binary input data is convolution- Yk = Uk + Nk 3)
ally encoded at rate:/(n + 1), wheren is the number of
information bits per encoding interval. The encoded 1 bit mean and variance? = (2v,)~!, wherev, = E,/No. Here,

words are block interleaved and mapped into a sequence E,/N, denotes the average signal energy-to-noise spectral

(€1, @2,---,2y) of M-ary PSK symbols, which constitute 3density ratio. The channel gaim, is complex Gaussian with
normalized constellation, meaning that the averages

x; € {exp (j2xk/M) : k=0,1,---, M — 1} () = A %((ak—A)(ak—A)*>:bo ()

Il. SYSTEM DESCRIPTION

wheren;, is a complex-Gaussian random variable with zero

for all symbols. The receiver deinterleaves and then applie PP
soft-decision Viterbi decoding. A block interleaver o¥; Wihere the constant mean denotes the line-of sight (LOS)

: ) . ) and specular components of the received signal, anis
columns (|nt_erleaV|r_lg span) an, (interleaving depth) rows the variance of the diffuse component (Rayleigh fading) of
of memory is considered here.

. . . . the received signal. The normalization¥ + 2b, = 1 and
The transmitted signal in the baseband is [9] K = A?/2by enable the Rician channel to be characterized

°o by a single parameteK. For Rayleigh fading,A = 0 and
e(t) = Z vgs(t — kT5) (1) by = 0.5. Note that in (3) the fading process, although
k=—o0 fluctuating from one symbol interval to the next, remains

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 17:55 from IEEE Xplore. Restrictions apply.



154 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 1, FEBRUARY 1998

constant over the duration of a symbol [piecewise constantFollowing [9], we take the Viterbi decoder metric to be
(PC)]. The PC approximation holds for a Doppler rate ledsuclidean, that is

than 5% of the symbol rate (i.efp 1, < 0.05). For a baud rate ) )

2400 symbols/s, this corresponds to a Doppler rate of 120 Hz, m(y, Tk) = — |y — Gran|” (6)
which is a worst case rate for current mobile communicati%w
systems. Reference [13] discusses the validity of this mod8
Also, in [4] and [5] the authors evaluate the performance Q
coded binary PSK in Rician fading channels, with or WithOLg
the PC approximation.

ote that decoding with this decoding metric is not necessarily
timum for nonideally interleaved channels. The optimum de-
oder metric would presumably take into account the residual
orrelations [14, Ch. 11]. However, for ease of analysis and

Clearlv. th t of thew's f PC imation t implementation, this metric is used.
carly, the set of the,'s Torms a FL approximation 10 +pe pep p(y —, £) is defined to be the probability of

the continuous random_procesaét), and th|s approximation choosing the coded sequende— (#1,4s,---,2y) when
converts, in effectp(t) into a process with a discrete time ) A )
was transmitted. Lety={k : 23, # 31}

parameter. Recognizing that the, in (3) have been dein- & = (21,2, ", 2y) . 7~ Lk

terleaved, which increases the time separation between, &f}fl et L denote the number of elements ip which is

ar, anday, in (3) to NyT,|ky — ko| instead ofT,|k; — ksl known as the “length” of the error event. The smallest possible
V1 v2 8 8 . . .

(for nointerleaving), two possible models for the normalize: Lmin, 1S known as the codeiversity. Also, S = max (1) —

autocovariance function of this discrete channel are min () + 1 is called the “span” of the error event [7].
Obviously, if L = S, then theL elements of; are contiguous;

p(k1 = k2) that is,n = {ko, ko + 1, -, ko + L — 1} for someko. Unlike
_ [Jo@mfpNaTs|k1 — kal) k1,k2 € {0,1,2,---} (5) for binary convolutional codes, this condition holds for most
" lexp (=2n fpNyTs k1 — k2) 2 Platat] error events in typical TCM schemes.

where fp is the Doppler spread of the fading proceaé; The PEI_D, by using the fact that the_ totz_il metric for a
. ) . ; codeword is the sum of component metrics, is

is the interleaving depth, andy(-) is the zero-order Bessel

function. Alternatively, (5) can be interpreted as indicating P(x — &) = Pr{Z > 0}

that the effective fade rate at the decoderNgfp. In the

above, the Bessel autocovariance corresponds to the lawtiere
mobile spectrum, while the exponential corresponds to the
first-order Butterworth spectrum. Other possible correlation
models are given in [12].

Equation (5) may not be true in some cases, and hengg Vi denote the X 1 column matrixVy, = (6 vx)T. The
its validity must be qualified as follows. Consider a set Qfgcision variables can then be represented as

[1]

= Zyk&z(-%k —zk)" +ynar(Tr — z1). (7
ken

N channel gains in (3X«y,---,an) corresponding to a
transmitted codeword of the same length. The above time == ZVJ PV, =ViFV (8)
separation relation holds only if all components of the trans- kCy

mitted codeword had been confined to a single row of the )
transmitter buffer. Fortunately, for most dominant error eventdnere the danger denotes conjugate transpdée, =
N < N,, and hence we assume that this condition is true. T 'gl’_V?’ -+, V)", and F' is a diagonal matrix with diagonal
phenomenon has been described in detail in [7] for the bloERINES being
interleaver. 0 (21 — x1)*
Fk o <(3A7k - a:k) 0 ) (9)
I1l. PAIRWISE ERROR PROBABILITY

. . Erom (3) and (4), it follows that each, is Gaussian with the
In the following, we derive an upper bound on the PE T . )

) . ! : ; mean(V) = (A, Az;)! and the 2x 2 covariance matrix
when nonideal interleaving exists. The upper bound is quite
general in that it is derived for the pilot-tone concept [9], [14], R — by v/ bob1zy 10
which encompasses cases such as ideal and partial coherent k= w*bobizt o +g2 ) (10)
detection, differential detection, etc. .

According to the pilot-tone concept, an estimate of the We also need the covariance matfof the random vector
true channel gainy;, is obtained by processing samples of th&, and R is defined as
pilot-tone, which is transmitted along with the data. In order 1 . -
to evaluate the error performance, a statistical description of R= §<[V -WI'V - (11)
&y, Is necessary. Namelyy;, is Gaussian with meaf,,) and

variance For ideally interleaved channels, this matrix will be tridiago-

1 nal, consisting only ofz;. terms as defined by (10). To see how
by = 5((6% — () )(Gr — (G))"). R is obtained for nonideal interleaving, consider the case of
) . . . ideal coherent detection. Thus, the channel estim@tes oy,
The normalized correlation coefficient betweep and éy is  tyeir varianceb; = by, and the correlation coefficient = 1.
1 N JUNN Assuming, without loss of generality, that the all-zero symbol
(e = () (G = (Ga))")/ V/bobs. J S e Y

b= 2 sequence is transmitteft;, can be readily obtained. To find the
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remaining elements aR, we note tha¥; = («;,v;)? and that be less than the minimum pole on the right-hand plane, the
the covariance betweén andV; (i # j, 4,5 =1,2,---,L)is range ofj3 is

T U TN (e e ) 0<p< 5] (16)

p(li—31)  p(li = J) 2P max
(12) where ¢, denotes the largest positive eigenvalue, i.e.,

max (¢r| &k = L +1,---,2L). Having established the range
A similar approach can be taken for differential detection ang 3, we combine (13) and (15) to obtain

pilot-tone-aided detection [15].

Plx — %)
A. The PEP oo 4
| | <5/ [l 4 ay)
To upper-bound the PEP, we introduce the following lemma, = 27 /_. (/a2 + /32 Pt |1 — 258¢r — 25y
which is a slight modification of a lemma derived in [3, B
Appendix 2]. where
Lemma 1: Let U be a random variablew; () its prob- o = Real < (/3+ja)¢k|<77k>|2> 8)
ability density function (pdf), andby (w) 2 exp (jwU) its 1 —20¢y — 2jagy,
characteristic function. Then By multiplying the numerator and the denominator of this with
|pu (o = 313)| the conjugate of the denominator and selecting the real part of
Pr[U > 0] < - on / W da, fo>p3>0  the resulting expression, it can readily be shown that
B, ) 2
(13) o < /ff'g}}ﬁ' ' (19)
m?eegrreaflio is the boundary of the convergence region of th?hus we have *
wy (x) exp (Pz) dx. B ()
/—oo b( ) p(/ ) < 1 /oo 1 2L eXp( filé,ggkl ) d (20)
il : o
Proof: From [3] 2T J oo a2 + B2 ) 11— 2Bk — 25y
= pp(a—jp) In principle, we need to find th@, which minimizes this upper
PrU 201 = 27r ' B-ja da, fo>f3>0. bound, a quite difficult task. Instead, we may choose
14
(14) /3:%{2(7)1 } 1)
S|nce max
and evaluate (20) numerically, which again is computationally
‘/gda < /|g| do intensive. Dividing each square root in the product4a,
(20) can be recast as
the lemma follows immediately. When using this lemma, one . exp [B(V)(F~1 — 28R*)~" (V)]
needs to know the value g¢fy, which, as will be seen next, Plz — &) < A(B) * (22)
" . N |det (2 R*F )|
depends on the largest positive eigenvalu®tF'. For ideally
interleaved channelgd, can be found easily. where| o | denotes the absolute value
Now, the characteristic function & (7) is given by [14, oo 2L
Appendix B] (23)

—00 p— 0\/ 062+/32

2L . 2
a=©) =] 1(' exp {J€¢k|§ﬁk>| } (15) and wheredy = 8, B, = [(1/2¢x — 8)| for k =1,2, -+, 2L.
s L= 2580 1= 258¢ Since all other terms in (22) can be readily computed, it
. remains to compute\(3), and this is made difficult by the
mgfz%?kh{aﬂs_plo;tlve ;g;r\?atlzise'gbeurlvztfstf:i Zt?ituﬁ%;t that the integrand contains square roots. Fortunately, this
It b ted b Sch li
of F' the matrix R*F has L positive eigenvalues and iculty can be circumvented by using Schwarz's inequality.

negative ones. Thus, let;, < 0 for k = 1,2,---,L and Define L

¢or > 0for k=L +1,---,2L. To obtain this form of the é

characteristic function, the set of random variablgsmust i) = H N /32’ H \/m

be transformed to another set #f. independent variables, r=0 A (24)

where the transformation simultaneously diagonalizes Bbth

andF. Then,’s are the means of these transformed variableSchwarz’s inequality yields the following:

Details of this transformation are given in [14, Appendix B]. oo oo 1/2
To apply (13) to bound the PEP, one needs the rangg of A(B) < 1 </ P3a) da/ V3 (c) da) . (25)

which is related to the positive poles 6fz(£). Since/s must 27 \J —o0 —o0

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 17:55 from IEEE Xplore. Restrictions apply.



156 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 1, FEBRUARY 1998

Now, each integral can be evaluated by considering tkere

complex integral§ f(z)dz in a semicircular-shaped contour. 1= 1
X J . ; _ 30
The details of this t_echnlque cin bg four21d in many textbooks A () o /_Oo —(a2 VST do (30)
on complex analysis. Thud;;, = (57 — 5;)
1/2 12 Which can be evaluated in terms of the gamma function.

Using an identity involving the gamma function [16, (5.2)],

1 L 1 L 1 2L 1 2L 1
AP < = —1l— — the integral evaluates to
Q 2 kz_:_oﬁk gﬁzk k=sz+1 ﬁkiHIAik g
i#k itk 1 I'(1/2)I(L)
= 31

(26) M) 2r32L (L +1/2) (31)

In deriving this, it is tacitly assumed that th&,’'s (k = where

1,2,---,2L) are distinct. This is indeed the case for nonideal 00

interleaving. However, depending on the structure of the I'(n) :/ e F "l de (32)

0

error event, with ideal interleaving, there may exist repeated
eigenvalues. In this case (26) must be modified accordinglyonverges for alk > 0. Combining (29) and (31), we get

Combining (22) and (26), we get
B(L)exp [B(V)T(F~ — 2BR*)" (V)]

- TWF-L - *)—1 Ple—2) < (33)
Plo— #) < A2l <V>| ((ft . R*;ﬁ)? VN gy PETD (duan) 2L [ det (2R*F)]
: where
whereA(f3) is the upper bound oA(/3), as defined by (26). It 1 I(1/2)I(L)
will be shown later that this upper bound is extremely accurate B(L) R S ol Sl (34)

and remains so even when no interleaving is employed. 2r D(L +1/2)

Furthermore, little is to be gained by searching for theéhat \whjle simpler than (27), this bound is substantially weaker
minimizes this bound, and for this reason the choice (21) Wiy jimited interleaving with slow fading. The reason is that

be adequate. . . . in deriving this bound, the termis— 23¢;, in the denominator
Note that this bound can be readily used with a union bougg (20) have been neglected [cf. (23) and (30)].

to get an upper bound of the bit-error probability

IV. RAYLEIGH FADING CHANNELS

We would like to further simplify (33) to a product form that
can be used in conjunction with the transfer function technique,
where w(j) is the number of bit errors associated with thas is the case in independent fading channels. This may not be
jth error event, anch is the number of information bits perdone for Rician fading since the exponential term in (33) may
encoding interval. Obviously, in order to limit computationsnot factor into a suitable product form. For Rayleigh fading
this summation must be terminated after a finite number ohannels, however, the exponential term in (33) is zero, and
error events, assuming that the remainder is negligible. #&ss enables us to reduce the other terms to a product form. For
observed in [2], for sufficiently large,, and N,fpTs, the this purpose, we select an exponential autocovariance function
union bound is dominated by a small set of error evenfsee (5)] since this function leads to expressions, as will be
However, for low values of;; and N, fp 7%, the union bound seen later, that are factorable, which may not be possible for

B< - w(i) iz — 8) (28)
j=1

itself becomes loose [2]. other covariance models. Also, in the following we assume that
for any error event, say, betwegrand, the elements in error
B. Simplified Error Bound are adjacent (i.exy, # 2y for k = ko,- -+, ko + L — 1 given

the length to bel). While this may not hold for some error
Fvents, it allows for a simple error bound because it enables the
}simplification of the determinant aR needed in (33). Since

In an exponentially correlated channel the correlation between
any two channel gains monotonically increases as the time
separation between the two decreases, this assumption leads
to a pessimistic error bound. A similar approach in the case
1 2 ) of convolutional codes over correlated Rician fading channels

<2¢max - /3> >f is considered in [2] and [4].

If the maximum eigenvalue),,,, can be bounded by a
the desired condition. Inserting this in (23) and combiningumber that is independent of the structure of an error event,
with (22) gives then (33) can be further simplified. This is possible for ideal

—— o1 interleaving, as the eigenvalues Bt F' can be determined by
exp [B(V)"(F - 26R*)" (V)] (29) considering each & 2 matrix productR;Fy. Let ¢_ and
| det (2R*F)| ¢+ denote these two eigenvalues. Assumintp be real and

Since computing (27) requires all the eigenvalyes),
simplifying it is desirable. The difficulty stems from the fac
that the 3,'s are distinct. This suggests the possibility o
replacing the3;’s with /3y in (23), which holds only if3? < 32
for V& (otherwise, (22) is no longer an upper bound). For t
choice = 1/4¢max, 1—48¢max > 0,VE, which implies that

P(z — &) < A(B)
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using (9) and (10), it can be readily proven that all positivB. Ideal Trellis-Coded Multilevel Phase-Shift

¢ satisfy the inequality Keying (TC-MPSK)
(1 = 12)bo + 02) In this case, it is assumed that prior measurements provide
Ort+ < 0 . (35) perfect channel estimation for each symbol interval. Thus, the
13/ bo /by channel estimated;, = «y, their variancé, = by = 0.5, and

It is conjectured that this bound on the,, .. also holds for the the correlation coefficient. = 1. Then, 5 would be (36)

case of nonideal interleaving. In other words, it is conjectured E,
that the largest positive eigenvalue Bf F' does not increase p= 2Ny
above the value given in (35) when the normalized correlati
between adjacent channel gainschanges fromg = 0 to

(41)

@ubstituting these values in (A.9) and (38) results in the

g > 0. This can be proven for error events of length thoIIowmg

(see Appendix I). In fact, all entries that contajrwill be off N L 1

the main diagonal ofR*F, which suggests that for smafl Pz — ) <BL)[] A=) L an =& (42)
values the eigenvalues change very little. We have observed k=1 a b

this numerically. Thus, from (21), the choice gfis which when substituted in (39) yields

5o 11/Do /b1 _ (36) P, < B{Lunin) > w(s H L(1-¢)% 1 )

4((1 = p?)bo + 0?)

i=1

Clearly, the eigenvalue bound (35) and hence (36) will |n comparison to ideal interleaving, the maximum signal-

be most accurate when the interleaving capacity is neathnoise ratio degradation due to nonideal interleaving will
ideal, otherwise, (for slow fading and low or no interleavinge

capacity,q = 1) it will be substantially weaker. This behavior )
will be considered later. © = 10log (1 —¢°) (44)
To further simplify (33), we also need the determinant

Whereq is th lati ' hannel gains. F
R, given in Appendix . Combining (29), (36), and (AlO) ereq is the correlation between adjacentc annel gains or

'example, when the produét; fp T, increases from 0.01 to 0.2

we get the loss decreases from 9 to 0.3 dB. We may conclude that

1 NgfpTs ~ 0.2 is practically equivalent to ideal interleaving.

Plx—#) <BL) || ——rs (37)
k1;[1 46Ty, — &xf? C. TC-MDPSK

where In this case, for any signaling period, the preceding signal
provides the channel estimate. Hence, the variance of the

B(L) 4 channel estimate is given by = by + ¢2 and, assuming

B(L)T? an exponential autocovariance function, it follows that
. 2
b%((l - LLQ)bO + 0'2)2 - (boq)Q(bo + b1 — 2/ boby + 0'2)2 NQ _ bo exp_(47rf_DlTs) — ¢ — (45)
(38) bo + 0.5 14 s

where { = exp—(27fpT;). These values can be readily
substituted in (36), (A.9), (38), and (39) to get the union upper
L 1 bound onZ;. For ideal interleavingg = 0, and this reduces
B(Luin) Zw H ——————.  (39) to[12, 9.119]. Also, sinc& < 1, P, will not decrease to
4P Y |y — iy zero when the signal-to-noise ratip — oo, giving rise to
an error floor.

So, the bound on the bit-error probability is

8

j=1
Next, we specialize this bound to several cases.

D. TC-MPSK with a Pilot Tone

A. ldeally Interleaved Rayleigh Channels As an alternative to differential detection, thg,’s may

In this caseg = 0 and (39) simplifies to be measured using techniques such as a pilot tone [9] or
i . embedded pilot symbols [18]. Here, a reference pilot tone is
mm = 12)7s) transmitted alongside the data signal. Assuming ideal filtering
> w( H . (40) o . )
%|a;k - kuQ at the receiver, it can be shown that pilot estimate of the true

=t =l channel gain will be [9], [15]

This is the familiar Chernoff bound, with an additional mul- A
. . . X Qg = o + S (46)
tiplying factor. For codes wittL,,,;;, = 2, this factor tightens

the ordinary Chernoff bound by about 3.3 dB in terms of th@here ¢, is an additive noise term with a variance of
signal-to-noise ratiey,. This result is similar to the one derived0.5(B, T )(1")y;"1, in which B, is the bandwidth of the
by Chan and Bateman [17]. pilot-tone filter, » is the power ratio between the pilot
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04286 0.1 T T T .
Ny =1 Exact —
Bound eq. (36) > 1
Bound eq. (30} O
1537 | Ny =5 Exact — |
! Bé)unddeq. (1(’1:? +—
ound eq. <&
0.0 é\’d :d20 ?nggt —_
4 2 ound eq. o |
06 g Bound eq. 5303 *
5173 0.001
2604
0.0001 |-
3715
le-05
6240 e
7351 1e-06 I
10 15 25 30

2
Ea/NO (dB)

Fig. 3. Exact PEP [7] and the upper bound of an error event in a
Rayleigh fading with ideal coherent detection. Exponential correlation with
fpTs = 0.01.

0 of this trellis code, as defined by Zehavi and Wolf [10]. Here,
the set includes 14 dominant error events given in [7, Table 1]
as well as 50 error events whose span is equal to four. These
error events were found by searching through the error state
diagram given in [19]. The details of the transfer function of

Fig. 2. Trellis diagram for eight-state 8PSK TCM scheme [19]. this code can be found in [19].

Consider an error event of length two between the two
codewordse = (1,1,--) and& = (e/27/4 ¢i47/4 ...), For

Rayleigh fading channel with normalized Doppler 0.01,

signal and the data signal, ang. is the signal-to-noise

ratio (including the power consumed by the pilot signal). As. .
mentioned in [9], the bandwidth of the pilot-tone extractio ig. 3 depicts the exact PEP and the upper bounds (27) and

filter should be sufficiently wide to allow for undistorted>3) @S functions of the signal-to-noise raii /N and the

. . interleaving depthV;. The exact PEP is computed by using
measurement of _the fading process. Thitg, = 2fq. the residue method [7]. It is clear that the upper bound (27) is
It can be readily shown that [15]

extremely accurate while the accuracy of (33) increase§ as

var (Gg) = by = 0.5 +0-5(BpTS)<1 —1—7‘)7_1 increases. For Rician fadingk( = 5 dB) with normalized
T s Doppler 0.01, Fig. 4 shows the exact PEP and the upper
2 1 47 bound (27) as functions of the signal-to-noise rabig/Ny
lul” = 1+ (Bst)(¥)’ys_l' (47) and the interleaving deptiV,;. The exact PEP is computed

numerical integration of (14). It is seen that the upper
und (27) is very accurate faP, < 10=3. For instance,
the difference between the two curves can be as small as
0.2 dB asymptotically. To put this in perspective, we note
that the difference between the Chernoff upper bound, and
For several pertinent cases, the performance of the trelie exact result for this particular error event can be 3.6 dB
code shown in Fig. 2 has been analyzed by using the erféf. It is also noted that the accuracy of the bound increases
bounds developed earlier. To assess the accuracy of the easir 1) K decreases; 2y, — oo; and 3) Ny — oo. This
bounds, computer simulations have also been conducted. Fay be explained by noting that the bound ignores the phase
simulation results, the interleaving spah was chosen to be function of the integrand in (14). For the same error event, the
18 symbols. upper bound is plotted as a function of the interleaving depth
To computeP, given in (28), following [7], a set of error Ny in Fig. 5 for two autocovariance functions: Bessel and
events have been picked from the modified error state diagraxponential. For the exponential model, when the interleaving

Substituting these values in (36), (A.9), (38), and (39) resu@%
in the union bound.

V. RESULTS
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0.1 T T T T T T T ] T T T ]

Ny =20 Exact — Exponential — ]

Bound eq. (30) 8- ] Bessel — -

b Nd =5 Exact — 1
Bound eq. (30) -©—

N; =1 Exact —
Bound eq. (30) *—

0.001 |

0.0001 |

1e-05 |

19—06 1 1 1 1 1 1 1 18-05' 1 i 1 1
6 8 10 _12 14 16 18 20 0 20 10 60 80 100
E,/N, (dB) Ny

Fig. 4. Exact PEP and the upper bound of an error event in a Rician fadifitg- 5. Upper bound on the PEP versus the interleaving depth. Rician fading
(X = 5 dB) with ideal coherent detection. Exponential correlation witlX = 5 dB). E,/No = 12.0 dB. Exponential correlation witfy, T, = 0.05.
fpTs = 0.01.

0.1 T T T T T T
depth is such thai, fp7T;s ~ 0.5, beyond which any increase Ny=1eq. Eérlzg —
of interleaving capacity does not reduce the error probability. simiation &
As a matter of factN,;fpT, ~ 0.2 appears to be sufficient in Ny=5eq. (47) — |

. - eq. (31) o—
this case. For the Bessel model, however, the error probability .1 zs(i)mulatjl%n o
- = 20 eq. — A

shows an oscillatory behavior; consequently, the optimum
interleaving depth for a given Doppler is naW,; fp7s ~ 6;,
where Jy(6;) = 0, ¢ = 1,2,--- and Jy(z) is the zero-order
Bessel function. These conclusions hold for most error events, 4o;
and thus the overall bit-error probability would be affected in i
a similar manner. P,
For Rayleigh and RicianK = 5 dB) fading with an
exponential autocovariance function, the bound in (43), ap-
proximate P, [see (28)], and simulation results are presented
for the same trellis code in Figs. 6 and 7, respectively. Sim-
ulation results and the approximatg agree quite well even
for the no-interleaving case. From Fig. 6, it can be seen that
the bound (43) is quite accurate when interleaving depth and
E,/N,y are large. When no interleaving is employed, some
of the simulation points are larger than the approximéje
This implies that more error events should be included in (28).

eq. (31) o— ]
simulation *

0.0001 |

le-05 |

. . . . le- 1 1 1 1
Also, an interleaving depth of 20 symbols, resulting in a total 0 T 1 6 18 20 22 24
interleaver capacity of 360 8PSK symbols, achieves almost Ey/Ny (dB)
6-dB energy gain over no interleaving. Fig. 6. Simulation, the approximaf@,, and the bound [43] of the eight-state

The performance of pilot-tone-aided detection is shown ireliis code. Rayleigh fading channel with ideal coherent detection. Exponen-
Figs. 8 and 9. Once again, the approximB&ses quite accurate tial correlation with /T, = 0.01.
for Ny = 20, implying that this amounts to almost ideal
interleaving. VI. CONCLUSION

Fig. 10 shows the case of differential detection. Unfortu- The error performance of TCM in correlated Rayleigh
nately, for an exponential covariance model, the quality éhding channels has been analyzed in [7] and [8]. However,
the channel estimates degrades rapidly even for small Dopdier general Rician channels, no comparable results exist in the
rates [see (45)]. This causes the bound (39) to be quite weblterature. In this paper, we have derived two general upper

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 17:55 from IEEE Xplore. Restrictions apply.



160 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 1, FEBRUARY 1998

0.1 [ T T T T T 0.1 F T T T T T 3
Ny=5eq. (31) o Ng=5eq. (31) o ]
simulation ¢ simulation <
Ny=20eq. (31) o Ny =20eq. (31) e -
simulation O | simulation O
Ni=40eq. (31) o Ny =40eq. (31) o |
0.01 simulation * | simulation *
0.01 |- 9
0.001 | ]
P, P, 0.001}F
0.0001 [
0.0001 |
1e-05 | [
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Fig. 7. Simulation and the approximaf@, of the eight-state trellis code. Fig. 9. Simulation and the approximaf@, of the eight-state trellis code.
Rician fading (¢ = 5 dB) with ideal coherent detection. ExponentialRician fading ¢ = 5 dB) with pilot-tone coherent detection. Exponential
correlation with fpTs = 0.01. correlation with fpTs = 0.01.
0.1 [ T T T T T T ] 0-14 T T T ]
Ny=1eq. 53139—_ [ Ng =50 eq. (31) ©— ]
_€q. 53 — I eq. {b0) +—
simulation < Ny =100 eq. (31) &
Ng=5eq. (31) e | - eq. (50) »—
) eqi 15,3 D_ | Ng=200eq. (31) & |
simulation i . (580
0.01 Ny=290eq. (31) o 1 | € =
eq. (83) — | 1
simulation *
0.01 |- .
0.001 [
Pb Pb
0.0001 |
0.001 |
1e-05 [
i O
\
1e-06 L L L L L _— 0.0001 ' L L
10 12 14 16 18 20 22 24 10 15 25 30
Ey/Ny (dB)

—_ 20
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Fig. 8. Simulation results, the approximakg, and the bound [39] of the Fig. 10. Simulation and the approximafg of the eight-state trellis code.
eight-state trellis code. Rayleigh fading with pilot-tone coherent detectioRayleigh fading with differential detection. Exponential correlation with
Exponential correlation withf,,7, = 0.01. foTs = 0.001.

bounds on the PEP, which are significantly more accurateay not be accurate when the correlation is high (due to
than a Chernoff bound. These bounds can be used to providgufficient interleaving capacity). The main problem then
an approximation toF, by truncating the union bound tois that the tail of the union bound may even diverge. For
include a set of dominant error events. However, this approaeayleigh fading channels with exponential correlation, a bound
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on the PEP resembling that for memoryless channels has b&amsideringL = 3, we have the following matrix:

derived. The bounds have been obtained assuming the pilot-
tone concept, and hence can be modified to several useful
cases. Comparison with simulation results shows that quite
accurate estimates aP, are obtainable with the use these

bounds.

APPENDIX |
BOUND ON EIGENVALUES

Here, we would like to prove one case that supports the
conjecture that the largest positive eigenvalueRSF' does
not increase above the limit given by (35) @ghanges from

161
Ry Ry qit
R=|R Ry R (A.7)
iy, R R
which can be manipulated to find its determinant as
Dy~ 7TD, (A.8)
where
T = (by — boq®)(bo + b1 + 02 = 2p\/boby)
— (b2 — 2ub1/boby + 112boby). (A.9)

q = 01to ¢ > 0. We prove this only for error events of lengthin (A.8), we use the approximation sign because two terms of

two and ideal coherent detection.
Consider an error event of length two betweer= (1,1)
and& = (x1, z2). In this case, the covariance matrix (11) is

bo bo , bog  bog
bo bo+o° bog  bog

R= A.l
bog  bog bo bo A1)
boqg  bog bo  bo+o?

the expansion have been neglected. The neglected terms tend
to zero asg — 0 ando? — 0.
Continuing in this manner, we get

Dy ~TE2D,. (A.10)
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matrix R* F — ¢1 is equated to zero. After some manipulation,
it can be shown that

det (R'F — ¢I) = Di(¢)D2(d) = 03a*(¢ = 0*)* (A2) W

where (2]

Dy (o) 2 </)2 + bo|51|2</) — bo|(51|202
Do(¢) 2 ¢ + bo|8s|2h — bo82|202

61 = z1 — 1 andé; = z2 — 1. Denote byp;, and ¢, the
two positive roots ofD;(¢) = 0 and D3(¢) = 0. From (35),
max (14, P2+ ) < 2. Let ¢ denote the maximum positive
root of (A2), which satisfies the condition

Dy (¢4)Da(py) = big* (¢4 — 0%)*. -

By considering the graphs of these two curves (left and right
sides of the equality sign), it can be shown that the solutiorg)
¢4+ satisfies (35).

A3) g

(4]
(5]

[6]
(A.4)

El

APPENDIX Il
DETERMINANT OF R

We wish to find the determinant aR, denoted byD;, [11
as defined in (11). For this purpose, it is assumed that the
positions of differing code symbols are adjacent in error everits]
between codewords.

For L = 2, we have the following matrix:

_(Ro R
2= (i &)
where R, is obtained from (11) withzy, = 1 and R; is

obtained from (12) withp(|¢ — j|) = ¢. The determinant of
R is found to be

D, :b%((l—u2)b0+02)—b3q2(2u\/ bob1 —bg — by —0'2)2.
(A.6)
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