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Abstract- A fast computation method for the tap 
weights of a linear equaliser is developed. By approxi- 
mating the channel autocorrelation matrix, which has a 
Toeplitz structure, by a circulant matrix, the tap weights 
can be solved via discrete fourier transform (DFT) tech- 
niques. For an equaliser with N taps, the approximate tap 
weights approach the exact tap weights as N 3 CO. Excess 
mean-square error and bit error rate (BER) degradation 
caused by the approximate tap weights are computed for 
a representative channel. 

I. INTRODUCTION 
An equaliser is a filter that compensates intersym- 

bo1 interference (ISI) in communication channels and 
is indispensable in some receivers such as high-speed 
modems. Consider a linear equaliser with the tap weight 
vector 2 = [cl, . . . , &I’ where prime indicates transposi- 
tion and N is the number of taps (equaliser span). The 
cardinal question is, then, how to select in the face of 
unknown and possibly time-varying channel characteris- 
tics. Thus, the equaliser is ’trained’ at the begining of 
each data transmission. 

The mean-square error (MSE) criterion is commonly 
used for this purpose where the MSE is a convex function 
of &, giving rise to the existence of a unique global 
minimum. The optimum tap weights vector Copt that 
minimizes the MSE is given by [l, (6.4.48)] 

RCopt = x ( 1) 

where x is the N x 1 cross correlation vector between 
the equaliser input signal vector and the error signal 
and if the channel correlation matrix R = [q,j], then 
ri,j = p(i - j )  where p(z)  is the channel correlation 
function (for details see [l]). In general, R is Hermitian 
and positive semidefinite (however, it does sometimes 
have the stronger property of positive definiteness). In 
addition, it is a Toeplitz matrix (for a symbol-spaced 
equaliser), i.e., equal elements along diagonals parallel to 
the principle diagonal. The optimum equaliser achieves 
the minimum MSE (MMSE) given by 

Jmin = 1 - c,X,,R-lcopt (2) 
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where the superscript X indicates conjugate transposi- 
tion. 

To solve (1) in practice, almost invariably, a known 
training sequence is embeded in the signal, so that the 
difference between a locally synthesised copy of this se- 
quence and the output of the equaliser can be used to 
derive an error signal to drive an iterative algorithm to- 
wards Copt. For example, the least mean-square (LMS) 
algorithm is one of the most commonly used iterative 
algorithms in practice. However, owing to the use of 
noisy gradient estimates, the LMS algorithm only pro- 
vides an approximation to Copt. Nor can it attain the 
MMSE, &in. Moreover, its convergence rate is highly 
sensitive to the channel characteristics and decreases as 
N increases. Despite these drawbacks, it is widely used 
for its simplicity and robustness. 

Unlike the LMS algorithm, the noniterative (direct) 
method of equaliser training requires a full matrix in- 
version to solve (1). This approach can be divided into 
two distinct phases: estimating the channel impulse re- 
sponse (CIR) and solving for Copt. While not denying 
the importmce of channel estimation, this paper concen- 
trates on solving for Copt given the CIR. CIR estimates 
can be obtained accurately using correlation techniques, 
least-squares filtering, and DFT methods with periodic 
estimation sequences [2]. 

At first glance the direct method appears computa- 
tionally less efficient than the iterative approach, since 
matrix inversion (e.g., using Gaussian elimination) is 
an O ( N 3 )  process in general. In contrast, the LMS 
algorithm has complexity per iteration 0 ( N ) .  How- 
ever, since R is Toeplitz, using the Levinson-Trench al- 
gorithm, the direct method will only cost O ( N 2 )  [3]. 
Thus, much work has been done on developing direct 
equaliser training methods: for linear equalisers E31 and 
decision feedback equalisers (DFE) [4]. These rely on 
the Levinson-Trench algorithm, which involves exploit- 
ing the symmetric properties of R-l, arising out of R 
being Toeplitz, to reduce computation. Further, it in- 
volves an iterative solution of (I) for all its principal 
submatrices. To ensure stability, R and all its principle 
submatrices must be nonsingular (i.e., “strongly nonsin- 
gular”), in addition to being Toeplitz 151. Implementing 
such algorithms can be tricky in practice. 
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DFT based techniques for direct tap computation have 
also been derived before [SI, [7]. These cyclic equal- 
isation methods require a periodic training sequence 
whose period is equal to the equaliser span, N .  This 
approach can be viewed as frequency domain equalisa- 
tion in which, under noise-free conditions, the periodic 
equaliser inverts the channel frequency response at N 
discrete frequencies. This will not attain the MMSE 
with random input data. In contrast, the DFT method 
developed here does not require any special training se- 
quence and is not a frequency domain approach. It is 
based on the assumption that the channel span is short 
compared to the equaliser span. It is also possible to em- 
bed an N x N Toeplitz matrix in a 2N x 2N circulant 
matrix, which can be used to solve a system of Toeplitz 
equations iteratively [8]. 

11. FAST COMPUTATION OF TAP WEIGHTS 

Here it is assumed that the input signal autocorrela- 
tion function (ACF) has a finite duration, i.e., p(k)  = 0 
for Ikl 2 L. Clearly, L is an indication of the chan- 
nel memory. This assumption is quite reasonable in 
practice, and most channels are characterized by an 
exponentially-decaying impulse response. The relevant 
ACF is 

where z ( t )  is the overaEl channel impulse response pre- 
sented to the equaliser, the samples, taken at T intervals 
where T is the data symbol duration, are z(n)=z(nT), 
and NO is the additive noise spectral density. Here 
z ( t )  is the convolution of the channel impulse response 
with transmitter and receiver pulse shaping. Any excess 
bandwidth used in raised-cosine filtering will also result 
in narrow pulses in the time domain, which can reduce 
the spread, L. 

Under this assumption, R becomes a banded matrix, 
i.e., ~ i j  = 0 for li-jl 2 L. Now consider the case 
when N >> L. It has been shown [9] that R can be 
approximated by a circulant matrix (the first row is 
sufficient to determine an entire circulant matrix, and 
each row is a cyclic shift of the preceding row). Let 
C1 = [cg, c1,. . . , cN-11 denote the first row of the circu- 
lant matrix C. Choose c k  = p(-k)  for k = 0,1,. . . , L-1, 

otherwise. Then, C is asymptotically equivalent to R 
[9]. Therefore, instead of (l), the following should be 
solved: 

A 

Ck = P(N - k) for k = N - L + 1,. . . , N - 1, and Ck = 0 

CC,,, = x (4) 

The idea of using the circulant approximation for tap 
computation was first proposed by Lee and Cioffi [lo] to 
develop a tap solution method for a frequency domain 
DFE. Moreover, they assumed that the noiseless chan- 
nel output is periodic to ensure the correlation matrices 
being circulant. However, this paper is only concerned 
with linear MSE equalisers and the following develop- 
ment is quite different from theirs. 

To establish the asymptotic equivalence between the 

error --,,,i"i...l-, 

input AC DFT 

Fig. 1. DFT calculation of the tap weights. Cross Correlation 
(CC) and Auto Correlation (AC). 

two solutions, i.e., for a given vector norm I / . / / ,  

provided L/N -+ 0, consider C as a perturbation of R. 
The inherent relative error is then bounded as [ll] 

provided I (R-l(C - R)I I < 1. Since C is identical to 
R everywhere except the upper right hand and lower 
left hand corners, there exists [9] a K < 00 such that 
/l(C -R)ll 5 KN-'I2 . Further assume that IIR-'II < 
w (well-conditioned). Combining these two inequalities 
yields the limit above. 

Having established the asymptotic equivalence, con- 
sider how Capp can be computed. A circulant matrix has 
the decomposition 

C = PG APN (6) 

where PN is the N x N Fourier matr$ with 
pr,* = exp(-j2rrs/N)/fl ,  j = &i, and 
T,S = O , l , .  . . ,N - 1. And the eigenvalue matrix 
A = diag(X0, XI, . . . , AN-I) where [XO, AI,  . . . , AN-']' = 
PNCl', the DFT of the first row. Thus, the tap weights 
are given as 

Here the existence of A-' (see below) is assumed. Thus 
the sequence of operations necessary for computing capp 
is as follows: compute DFTs of C1 and x, perform 
element-wise vector division, and take the IDFT. Fig. 
1 shows all the steps involved. Since in general com- 
puting the DFT or IDFT is an O ( N  log N )  process, this 
method will also cost O(N1og N ) .  

A. Asymptotic eigenvalues 
As an aside, the eigenvalues of R and C coincide as 

N + 00 [9]. Based on this fact, it can be shown that 

lThat means, for an N x 1 vector z, its DFT and inverse DFT 
(IDFT) are PNZ and P ~ z ,  respectively 

capp = P&A-'PNx. (7) 
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[12] the eigenvalues of C are given by the samples of the 
aliased or folded spectrum 

2 
%- 

R ( w ) = -  i/ E x  ( w+-  2y)l +No 1.15, (8) 

where X ( w )  is the Fourier transform of z(t) ,  defined in 
(3). Let N = 2K + 1 and the equi-spaced frequencies 
wi = 2ni/NT, -K 5 i 5 K ,  sample the Nyquist band- 
width. Thus, as N + CO the N eigenvalues of R are 
given by 

In other words, the N equi-spaced samples of the folded 
spectrum in the Nyquist band (IwI < n/T) are the eigen- 
values (this analysis matches with that given in [13]). 
Thus, any null in the folded spectrum, caused by nulls in 
the overall channel response, X ( w ) ,  or cancellation due 
to spectral aliasing, will result in some eigenvalues that 
are nearly zero (as NO + 0). Since the convergence rate 
of the LMS and other iterative algorithms is determined 
by the minimum eigenvalue, which is now nearly zero, 
these algorithms will exhibit poor convergence rates in 
such a channel [l]. Conversely, when noise is present 
the eigenvalues are always positive (i.e., positive defhite 
R). Since z(t) is the overall impulse response presented 
to the equaliser, any sampling time errors can be incor- 
porated into it. Thus, let the timing error be t o ,  i.e., 
samples are taken at nT + to  Vn.  Then, the folded spec- 
trum becomes 

x i  = R ( W i )  i = -K, . . . ,K. (9) 

(10) 
for IwI 5 n/T. The summation should be done before 
taking the magnitude. This means depending on the 
sampling phase, t o ,  spectral nulls can occur in the folded 
spectrum, especially near the band edges (lwl x s / T )  
in excess-bandwidth systems. This cancellation is more 
likely to occur as to  + T/2, which can result in small 
or nearly-zero eigenvalues. Thus, for the synchronous 
equaliser, the eigenvalues can be sensitive to the timing 
phase, which explains its poor performance observed in 
the presence of such errors [14]. In fact, assuming the 
excess bandwidth is less than loo%, let the fractional 
excess bandwidth be 0 < Q < 1, i.e., IX(w) (  = 0 for 

I -  wI > ( l + a ) n / T .  Thus, 

where the first expression is for Iw[ 5 (1 - a)n/T and 
the second for IwI 2 (1 - a)r/T.  The minus signs in 
the lower expression corresponds to the positive rolloff 
region, %-/T > w > (1 - a)%-/T, and the plus signs to the 
other side. Thus, we see that (1 - ct)N eigenvalues are 
not sensitive to the timing errors, but ctN eigenvalues 
are. Thus, the larger the excess bandwidth, the worse 
the effect of timing errors. 

Finally, the DFT based solution (7) is not immune 
to the problems caused by small eigenvalues. A possi- 
ble solution is to add a small positive quantity to the 

diagonal terms of R, which is akin to replacing NO by 
No + A. This is obviously called “prewhitening” and 
results in a well-conditioned system of equations, but 
introduces some performance penalty. Usually, the cor- 
rection quantity is less than 5% of p ( 0 )  f15]. 

Any mismatch between capp and Copt is likely to man- 
ifest as excess MSE and BER degradation. These are 
addressed in the next two subsections. 

B. Excess MSE 

Since Capp # Copt, the approximate equaliser cannot 
attain the MMSE in (2). The excess MSE can readily 
be shown to be 

If capp = Copt, then Je, 
Fig. (2) shows IOlog,, (Jex) for a linear equaliser in 

a typical data-quality telephone channel. The CIR used 
is that given by the discrete channel tap weights (6) 
found in [l, Fig. 10-2-5(a)] and the channel span is 11 
symbols. The equaliser input signal-to-noise ratio (SNR) 
is defined as y = C i f k 1 2 / N ~  where NO is the additive 
noise level. Even for N = 2L, the excess MSE is less 
than -20 dB. At N x 3L, the excess MSE is -40 dB. 
These small values show that the performance with Capp 

is indeed very close to that with Copt. Also, the excess 
MSE decays very rapidly for low y values, indicating 
the improved accuracy at low SNRs. This is because, 
for low y, NO is relatively large, which imparts impulse- 
like characteristics to p(z). In other words, for large NO, 
noise swamps the signal. Then, as the ACF of noise is an 
impulse function, R approaches a diagonal matrix (i.e., 
already approximately circulant) . 

C. BER degradation 

Since the BER of an equalised system is a highly non- 
linear function of the tap weights, the effect of using 
capp instead of Copt must be estimated via simulation 
or numerical computation. Also, the MMSE system is 
not guaranteed to give the minimum BER receiver in 
general. However, for binary systems, an upper bound 
on the BER monotonically decreases with the MSE [16]. 
Thus, any excess MSE may be expected to translate into 
a BER degradation. 

For a data sequence In,  the equaliser output can be 
written as [l, eq. (10-2-56)] 

0. 

i n  = 401, + IkkQn-k + % z  (12) 
k f n  

where {qn) denote the convolution of the impulse re- 
sponse of the equaliser and equivalent channel, and qn 
the filtered additive noise. Thus, for a given channel, 
{Qn} c m  be computed for Copt or Capp. Since the output 
contains a non-Gaussian term, the BER cannot be com- 
puted in terms of the Gaussian tail probabilities. An 
infinite series developed by Bealieu [17, eq. (30)] has 
been used for this purpose. Fig. 3 shows the BER per- 
formance for the approximate and exact equalisers with 
BPSK modulation over the same channel used in the 
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previous example. Again at N w 3L, there is virtu- 
ally no difference between the performance of the two 
equalisers. 

D. Channel estimation 
Thus far it was assumed that the CIR is known at 

the receiver. In practice, however, it must be estimated. 
Since the approximate solution (7) leads to degraded 
performance (albeit a negligible loss with a perfect CIR 
estimate), channel estimation errors are likely to exacer- 
bate such a performance loss. To delineate the effect 
of channel estimation errors and of the circulant ap- 
proximation, an example is provided here. The same 
11 tap channel is used again with an m-sequence based 
channel estimator. As shown in [18], m-sequences are 
not the most efficient for this purpose2. However, they 
are characterized by a two-valued ACF, which leads to 
a very simple realization of the channel estimator. In 
fact, computational complexity is just O(L)  to estimate 
L channel tap weights (independent of the m-sequence 
length), and in some cases, the channel estimator is com- 
pletely multiplication-free, requiring only additions. Fig. 
4 shows the results for two m-sequences of lengths 31 
and 63 bits under varying input SNR, y, which is identi- 
cal for both the channel estimator and 31 tap equaliser. 
For comparison, the BER when perfect knowledge of the 
CIR is available is also given. The BER with channel 
estimation is ensemble-averaged over the noise samples 
presented to the channel estimator. The noise power, 
NO, itself is estimated at the input to the equaliser. For 
m = 63, and for BER of lo-‘, the use of channel esti- 
mates leads to a loss of about 0.5 dB and the use of the 
approximation (7) leads to a further loss of about 0.5 
dB. These losses decrease for high BERs (equivalently, 
for low SNRs), but increase for the case of m = 31 chan- 
nel estimator. Thus, it might be concluded that m = 31 
is inadequate in this case. Also, although it has 11 taps, 
this channel is a quite benign IS1 channel and hence, the 
equaliser can operate at low SNRs (e.g., 12dB). In con- 
trast, the channel estimator works best at high SNRs, in 
which case m = 31 should be sufficient. 

-80 

-90 

111. CONCLUSIONS 
This paper has shown that a circulant approxima- 

tion provides an efficient direct computation of the tap 
weights of a linear equaliser. Although the spread of 
the input signal ACF must be small compared to the 
equaliser span for this method to work best, the tap 
weights can be improved by decision-directed equalisa- 
tion to achieve the optimum tap settings. The precom- 
putation of eigenvalues highlights those values which are 
small or nearly-zero, giving prior warning of overlarge 
tap weights and dynamic range. From an implemen- 
tation point of view, DFT based solutions are attrac- 
tive because they can be implemented with off-the-shelf 
hardware. Finally, the approximate method can be ex- 
tended to the case of fractionally-spaced equalisers [12]. 

*Here most efficient implies yielding the smallest mean-squared 
estimation error for a given sequence length N ,  say, for estimating 
L channel taps. Thus, shorter binary sequences can be found to 
yield the same efficiency as a longer m-sequence, but the efficiency 
disparity diminishes as LIN + 0. 

- y = 10 (dB) ‘\ 

\ - -  - - _  - 
y = 12 (dB) 
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Fig. 2. The excess MSE due to the use of capp. 
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Fig. 3. The average bit error probability of an N tap equaliser 
with Copt (Exact) or cap* (Approx) tap weights. BPSK mod- 
ulation is used. 
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y?ydB$' 

5 6 7 8  

Fig. 4. The average bit error probability of a 31 tap equaliser 
with an m-sequence channel estimator. BPSK modulation is 
used. 
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