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Abstract - The two-ray Rayleigh fading model accounts for the fre- 
quency selective fading experienced by the received signals in some 
digital cellular systems. For such fading channels, binary error 
probabilities of GNISK with discriminator detection or differential 
detection are considered in the presence of multiple, Rayleigh-faded, 
independent, cochannel interferers. The paper drives an exact solu- 
tion for the average error probability and a near-exact but less com- 
putationally intensive solution. The near-exact solution is virtually 
indistinguishable from the exact solution for large carrier-to-inter- 
ference ratios (CIR,. To establish the accuracy of the results, numer- 
ical examples are given. 

I. INTRODUCTION 

Gaussian minimum shift keying (GMSK) modulation is used in 
Global System for Mobile communications (GSM) and has been 
proposed for DECT (digital European cordless telephone sys- 
tem). As the name implies, GMSK is obtained by pre-filtering an 
MSK waveform with a Gaussian-shaped low-pass filter. The pre- 
filtering introduces a controlled amount of intersymbol interfer- 
ence (ISI) but in exchange reduces both the sidelobe power level 
and the width of the mainlobe of the power spectrum. Many 
authors have analyzed its performance in fading channels [ 1-41. 

In cellular mobile: radio, cochannel interference (CCI) signifi- 
cantly influences tlhe achievable capacity. Thus, we study the per- 
formance of GMSK in the presence of multiple CCI signals in a 
frequency-selective Rayleigh fading environment. This problem, 
to the best of the authors' knowledge, appears to have received 
little attention before. To describe the problem precisely, consider 
an idealized hexagonal cell layout in a cellular system. Then, at a 
given time, for a 7-cell cluster, there could be up to six active 
cochannel interferers operating at the reuse distance from the 
point of reception.. The CCI originating from the second-tier and 
higher-order tiers can usually be neglected. Each interferer is 
characterized by at least four parameters: carrier frequency offsgt 
6w , phase offset Sq , bit timing offset z , and power level (3 . 
Since only CCI is considered, the interfering signals are assumed 
to have exactly the same frequency as the desired signal (i.e., 
60 = 0 ). We also ignore the constant phase offsets of the inter- 
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ferers, since they are cancelled out by both limiter discriminator 
detection (LDD) and differential detection (DDi). Considering the 
bit timing delay, we distinguish two cases: (1) where the bit tim- 
ing offset (say) z of an interferer is random and distributed in the 
interval (0, T) where T is the symbol duration, and (2) where 
z = 0 .  Since Case (1) is the most general and realistic, we ana- 
lyze it in detail, and for compxison, we also treat Case (2). The 
power level of an interferer can be accommodated into the analy- 
sis by defining a CIR. 

n. GENERAL ANALYSIS 

A. System Model 

The transmitted GMSK modulated signals have the generic form 

where i = 0 denotes the desiired signal and 1 S i < L denote the 
interferers, and qS ( t  - zi, ai)i is an information-bearing phase 
given by 

t M  
i (pS ( t  -Ti, ai> = 2 zfd I a k g ( v - k T - z i ) d v .  (2) 

- .x ic  = --M 

The basic pulse +ape is g ( t  1 . In this j d  is the phase deviation 
constant and T is hie bit duration, and z, is a time delay. Without 
loss of generality, bpon settirig zo = 0 ,  the random variable z2 
denotes a possible offset between the symboll timing epochs of 
the desired signal and the i thi interfering signal. To make further 
analysis feasible, we ma$, the following assumptions. For all the 
signals, the data bits ak ( - ~ < k S c = ,  01 i < L )  , which are 
equiprobable binary symbols fiom the set { k 1 } , are assumed to 
be independent and identically distributed (iid). The random vari- 
ables { z,, i = 1,2, . . ., L )  are iid with each z, uniformly dis- 
tributed in the interval [O, Z'J . 

To represent the fading of the desired signal, we use the two-ray 
multipath model, as recomnn ended by the Telecommunication 
Industry Association (TIA) standard committee [7]. This model 
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implies that the delay-power density spectrum can be expressed 
as 

(3) 

where os denotes the power of the main signal, od is the power 
of the delayed signal, and zd is a delay. Note that for simplicity, 
the interfering signals are modelled by non-selective Rayleigh 
fading only. Since the power of the delayed ligna' is considerably 
weaker than that of the main signal (e.g., os D o,), this assump- 
tion is justifiable for the interfering signals which are weaker than 
the desired signal in any case. 

2 2 G (T) = os& (T) + o,& (T - 7,) 

2 2 

2 

The total input to the detector can be expressed as follows: 

where i = -1 corresponds to the delayed component of  the 
desired signal, i = 0 to the main part of the desired signal, and 
the remaining values to the interfering signals. This means that, 
in keeping with the definition in (3), z-l = zd and zo = 0. The 
zero-mean, complex, wide-sense stationary, independent, Gauss- 
ian random processes xi ( t )  account for the Rayleigh fadmg 
experienced by the received signals and their autocorrelation 
functions are as follows: 

where the overbar represent the average operation, .To (x) is the 
zero-order Bessel function of the first kind, and f D  is the maxi- 
mum Doppler p q u e n y  ATording to our notation and (31, we 
have o-l = od and oo = os. 2 

In (4), the zero-mean, complex, additive noise process n ( t )  is 
also Gaussian with the autocorrelation function 

where sinc (x) = sin (nx) / (xx) . Note that since the interme- 
diate frequency (IF) filter is assumed to be an ideal rectangular 
bandpass filter, the autocorrelation is the sinc function. Referring 
to (4), the total input to the detector can be alternatively 
expressed in polar notation as e ( t )  = /e ( t )  lexp 0 ' ~  ( t )  ) . Con- 
ventionally, the ratio of signal and noise powers and the ratio of 
signal and CCI powers determine the average probability of 
error. Hence, we define the follywigg measures: signal-to-noise 
ratio ( S N R )  is defined as r = os/on, and carrier-to-interference 
ratio (C21R1 in relation to the ith interferer, is defined as 
Ai = o$/oi, 1 5 i 5 5, and the carrier-to-delayed signal power 
(CDR) is A, = os/od. 

2 

B. Exact Error Probubility 

Assuming ideal conditions, the output of limiter and discrimina- 
tor elements is proportional to the instantaneous frequency of the 
input signal (i.e., the output is proportional to @((t) ). For DD, 
the phase difference between adjacent samples determines the 
output of the detector. Thus, given these idealizations, our a 
generic detector d ( t )  is given by 

Real { -je* e ('I } for LDD, 
d ( t )  = le ( t )  I *  (7) 

\Real{-je(t+T/2)e* ( t - T / 2 ) }  for DD. 

For the sampling instances t = kT, k = 0, kl ,  k2, ... , the 
sampled output of the detector may be expressed as 

dk = Real { -jXkYk* } (8) 

where ( X k , Y k )  = ( e ( k r ) , e ( k r ) )  for LDD and 
(Xk,  Y k )  = ( e  ( ( k  + 1/2) T)  , e ( ( k  - 1 /2) r )  ) for DD. 

Without loss of generality, the error performance is evaluated 
based upon the d o ,  which is a quadratic in two complex Gauss- 
ian variables. The estimate of a. is obtained as follows: 2, = 1 
if do > 0 and 2, = -1 if do < 0 .  So the conditional error proba- 
bility equals to P (do  < 0) for a. = 1 and P (do > 0) for 
a. = -1 . Using the results given in reference [6], the probability 
of error can be expressed as 

where p is the correlation coefficient between X o  and Yo given 
by 

As will be sfen shortly, p is a function of the binary data 
sequences { ak> and the bit-timing delays. Since g ( k r )  in rap- 
idly decreases as Iq increases, it is convenient to neglect the 
effect of data bits ak for Ikl > N .  Previous studies indicate that 
N can be as s m a l l  as unity if B T Z  0.3. Let us introduce the fol- 
lowing notation: z = (zl, z2, ..., zL}  and 

0 0 L L 
a = {a-N, ..., aM ..., ..., a-hn ..., a N }  . (11) 

We use the notation Pe (g, Z) to signify the fact that Pe in (9) is 
in fact a function of the two variables above. To obtain the aver- 
age error probability, the following two steps need to be carried 
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out: first, integration of Pe (a,  z) over the L -dimensional space 
0 5 z 1  I T, 052, I T, ..., 0 5 z L I  T yields the data-sequence 
dependent average error probability 

se nd b no 'ng that the data sequence vector a assume only 
2 'N '' + distinct values, the average error probability can 
be expressed as 

- ( 2 N +  1) ( L +  1)  
Pe = 2 p, ( a )  

where the summation extends over the all possible values of the 
vector U in (11). To compute the exact average error probability, 
we must calculate a large number of L-dimensional integrals. 
For example, for N = 1 and L = 6 ,  this amounts to 2*l of six 
dimensional integrads, which is computationally infeasible. 

111. LIMITER DISCRIMINATOR DETECTION 

In order to compute: the probability of error, we simply 9 p in 
(10) to-befvaluated for this case. By denoting pL1 = lXol and 
p2 = I Yol , and using the definitions in (8), we can readily show 
that 

Note that, according to our notaion (f), we halve A? = 1. For 
reasonably large CIRs, we have A i  <( II for 1 5 i I L. Thus 
e2 (( 1, and we get 

p = Po ( 1 + lEl - E2/2) . (17) 

Carrying out the averaging of this as needed in (12) and (13) over 
the bit-timing delays vector z and the data sequences a 1, . . ., aL 
gives the following: 

where K can be obtained by expanding the CCI terms in (14). 

Since the data sequence a. cain only take 22N+ distinct values, 
the average error probability can then be approximated as 

where the summation extends over the all1 possible values of the 
data sequence a. . This expression, as compared to (13), needs a 
remarkably less computational effort and its accuracy can be 
observed by the numerical results presented later in this paper. 

B. The effect of perfect bit alignment 

Although no details are repeated here for brevity, the derivation 
of the joint pdf rests on the fact that if x ( t )  is a Gaussian pro- 
cess, so is its derivative 1 ( t )  . Moreover, the variance of the 
derivative is simply equal to -d2R, ( t )  /dt2 I t  = where Rx ( t )  is 
the autocorrelation function of the process x ( t )  . 

Substituting p given in (14) into (9), one obtains the conditional 
error probability: 

This can be used with equations (12) and (13) to calculate the 
exact average probability for this case. In the next section, an 
accurate approximation is introduced. 

A. A Tight Approximation 

Let us write the coirrelation coefficient p in (14) as 

To see the effect of perfect bit alignment of all interfering signals 
with the wanted signal, we set the z = 10 in (15). This can be 
used with (19) to find the average error probability. 

C. The effect of CCl 

To delineate the effect of CCI only, assume that both the additive 
thermal noise and the Doppler are negligible (r + 00 and 
fDT -+ 0), we have the probability of error given by (15) with 
p = p1 where p1 can be obtained from (14). 

D. Noielike CCl 

In this paper the CCI signal is modelled as a complex Gaussian 
process modulated by a data signal (11). In orcler to simplify the 
ensuing calculations, the assumption that CCI is Gaussian is 
commonly invoked in the literature. From (4), the CCI signal is 
given by 

Under the Gaussian assumption, 5 ( t )  is simply treated as zero- 
mean, complex Gaussian noise: with variance C F ~  . Then the aver- 
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age error probability is given by (18) and with po = p2 where 
we have defined This can be used with (19) to calculate the aver- 
age error probability for this case. 

Iv. NUMERICAL RESULTS 

Here the error performance of GMSK is computed for a variety 
of cases, parameterized by the following variables: the ratio of 
the delay between the main and delayed components of the 
desired signal denoted by ~,/T;the number of CCI sources 
denoted by L . In all the following calculations, unless otherwise 
stated, the normalized IF filter bandwidth B,T = 1.0 is assumed. 

A. Exact vs. Approximate 

(13) and (19) are plotted in Figs. 1-2, whch show the average 
error probability of GMSK with LDD for the cases L = 1, 2, 3 .  
Similar results for GMSK with DD are depicted in Fig. 3. For 
brevity, the results for even larger values of L are not given here. 
Note that numerical integration needed in (12) consumes a pro- 
hibitive amount of computing time as the number of inteiferers 
increases. For CIR values greater than 20 dB, the exact result 
obtained via integration and the approximations are virtually 
identical. This means that the when the total CCI is very weak in 
comparison to the desired signal (i.e., A >> 1 >, the error perfor- 
mance is not determined by the number of interferers, rather the 
total power of all interferers. 

B. Irreducible Error Rates 

The irreducible error rate of GMSK with LDD and DD as a func- 
tion of the normalized Doppler ( f D T )  is plotted in Fig. 4, where 
r + 00 and A + 00. For a given Gaussian prefilter normalized 
bandwidth, LDD results in a smaller error floor than that of DD. 
The irreducible error rate increases as the normalized Gaussian 
prefilter bandwidth B T decreases, a consequence of increasing 
IS1 due to decreasing B T .  These error floors occur due to the ran- 
dom phase modulation caused by the Doppler, and they can be 
substantially reduced by the use of diversity combining. 

multiple, Rayleigh-faded, independent, cochannel interferers. 
The fading of the desired signal is modelled by the two-ray Ray- 
leigh model, which accounts for the frequency selective fading 
encountered in mobile channels. An exact solution to the bit error 
probability that accounts for the effects of Gaussian noise, Ray- 
leigh fading, cochannel interference, and timing delays of the 
cochannel interferers needs lengthy calculations. Therefore, a 
near-exact but less computationally intensive solution has been 
derived. As might be expected, when there are several weak 
interferers present, their combined effect can be represented by 
an equivalent interferer whose CIR is the reciprocal of the sum of 
the reciprocals of the CIRs of the individual interferers. 
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FIGURE 1. The exact and approrimate bit error rates of 
GMSK in a Rayleigh fading environment in the presence 
of L cochannel interferers, The detection method is LDD. 
Infinite CDR is assumed. 
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FIGURE 2. The exact and approximate bit error rates of 
GMSK in a Rayleigh fading environment in the presence 
of L cochannel interferers, The detection method is LDD. 
Infinite CDR is assumed. 
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FIGURE 3. The exact and approximaite bit error rates of 
GMSK in a Rayleigh fading environment in the presence 
of L cochannel interferers, The detection method is DD. 
Infinite CDR is assumed. The interferers have random 
bit-timing offsets with respect to the desired signal. 
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FIGURE 4. The irreducible error rate versus the 
normalized Doppler for GIMSK in a ffast Rayleigh fading 
channel. SNR, CDR, and CIRs are assumed to infinite. 
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