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A general result is derived for the bit error rate (BER) of 
differential quadrature phase shift keying (DQPSK) for reception 
in slow fading and additive white Gaussian noise (AWGN). 
Fading models include Rayleigb, Rician, Nakagami and 
shadowed Rician, which describe a wide range of fading 
conditions encountered in mobile communications. Easily 
computable, the result is potentially useful in evaluating the BER 
of such systems. 

Introduction; Because the US and Japanese digital cellular system 
standards recommend using DQPSK modulation, recently there 
has been a flurry of research activity regarding the performance of 
such systems in fading channels. This Letter focuses on the slow 
fading case, where the data rate is significantly higher than the 
rate at which the channel gain varies. Numerous models have been 
used in the literature to describe the fading of the amplitude of the 
received signal. Typically, the Rician fading model is used for 
microcellular and mobile satellite channels, Rayleigh for macrocel- 
Mar channels, Nakagami [I]  for urban multipath channels, and 
the shadowed Rician (SR) for the Canadian mobile satellite chan- 
nel [2]. The BER of DQPSK for Rician fading is derived in [3] and 
for Nakagami fading in [4], where both results are given as an infi- 
nite series of integrals which must be evaluated numerically. This 
Letter, however, derives a general expression for the BER given by 
a single finite integral. 

Analysis: The probability density function (PDF) of the signal 
amplitude p for each fading model is expressed as 

- rk, (g ) p2"-' exp (- $) Nakagami 

where, for Rician fading, A is the direct signal component, 202 is 
the power of the multipath component and I, (x) is the zero-order 
Bessel function of the first kind for Nakagami fading, T(m) is the 
gamma function, R is the mean square value of p and m 2 0.5 is 
the fading severity parameter; for SR fading, 26, is the power of 
the multipath signal, and the logarithm of the direct signal is 
Gaussian with mean p, and variance do. For the Rician model, the 
ratio of direct and multipath signal powers is usually referred to as 
the K factor, given by K = AY (207. The Rayleigh PDF can be 
obtained as a special case of either Rician or Nakagami fading, i.e. 
when there is no direct signal component, i.e. A = 0 or m = 1. 

The instantaneous signaynoise ratio IS defined as y = (p2T)/ 
(2NJ where T is the symbol duration and No is the one sided 
power spectral density of the AWGN in WlHz units. According to 
this definition, the mean value of y depends on the mean value of 
pz, which can be evaluated from eqn. 1. Therefore the average 
SNR 7, which determines the average BER, is 

(1  + K)UT/NO Rician 
Nakagami 
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( 2 )  
Because the BER of DQPSK with Gray coding in AWGN can be 
expressed in terms of the generalised Q-function and a Bessel func- 
tion ([SI, eqn. 4.2.118). previous derivations [3, 41 of the effect of 
fading on the BER have used this formula. However, here we use 
an alternative formula, and the reason for this choice will be 
apparent shortly. By using a result from eqn. 7 in [6], the BER for 
this case can be alternatively expressed as 

The average BER can be expressed as follows: 

pb = Ipbb)P(P)dP (4) 
0 

By substituting eqns. 1 and 3 in eqn. 4, we have a double integral 
of (p, (I), which is integrated first over p from 0 to - obtain Pb as 
an integral of (I. To evaluate this we first define the function 

161 < 1 ( 5 )  
As will been seen shortly, the results for all the fading models can 
be expressed in terms of this function. We should also add that 
because this integral can he evaluated with a simple numerical 
method, there is really no need to obtain a series expansion for it, 
which is possible for certain specific cases. 

For Rician fading, with P (p) given in eqn. 1, by integrating 
eqn. 4 over p. with the help of the identity that the integral of 
xe P'Jl,(ax) from x = 0 to - is equal to exp{a2/(4$)}/(2$), we 
obtain the average BER as 

) ( l+K)exp( -K)  K(I+K) JZ.5. 
A = @ ( (  l+K+27 ) ' 1 + h'+2.5.' 1 + K +27 ' 

(6) 

For Nakagami fading, with P @) given in eqn. 1, by integrating 
eqn. 4 over p, with the help of the indentity that for n > 0, p > 0 
the integral of e-pxx"-' from x = 0 to - is equal to r (n)/pv, we 
obtain the average BER as 

E3 = 11 ( (*) m ,  0, (s) , m )  (7) 

This also implies that, for large SNRs (7 + -, 6 + 1/42 and a + 
(m/(27))"), Pb varies asymptotically as the inverse mth power of 7. 
This suggests that a Nakagami-rn channel resembles a Rayleigh 
fading channel with m orders of diversity. 

For the nonfading case, i.e. K --f - or rn + ==, we can readily 
show that eqns. 6 and 7 reduce to eqn. 3. Note that for Rayleigh 
fading, by substituting either K = 0 in eqn. 6 or rn = 1 in eqn. 7 
and evaluating the resulting integral in eqn. 5 ,  we have 

This expression is identical to eqn. 18 in [3]. 
For the SR model, BER evaluation is more complicated, since 

the PDF itself is represented as an integral. This implies that direct 
evaluation of eqn. 4 now needs a triple integral. We can show that 
the SR PDF in eqn. 1 can be expressed as a Rician PDF with A = 
exp(t) where f is Gaussian with mean and variance 4. Thus, K 
= AY(2o') in eqn. 6 is now a random variable, so we define K, = 
exp(2r)/(2bn). The BER is then 
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Fig. 1 BER performance of DQPSK in Rician, Nakagami and SR 
fading and A WGN 
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Results and conclusions: Fig. 1 shows the BER of DQPSK in the 
aforementioned fading channels. The parameters for the SR model 
are obtained from [2].  For Nakagami fading, we find that the 
asymptotic slope is m .  

We have presented a new, general result for the BER of 
DQPSK for reception in slow fading and AWGN. The result is 
computationally simple and is potentially useful in evaluating the 
performance of DQPSK systems that operate on a wide variety of 
fading channels. 
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Correction of the PO current density close to 
perfectly conducting wedges by the UTD 

U. Jakobus and F.M. Landstorfer 
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A correction to the conventional physical optics (PO) current 
density based on the uniform geometrical theory of diffraction 
(UTD) is proposed in the Letter to account for the effects of the 
edges of perfectly conducting wedges. This improved high 
frequency current approximation is well suited for combination 
with the method of moments, resulting in a current-based hybrid 
formulation. 

Introduction: Current-based hybrid formulations represent a suita- 
ble method for the analysis of electromagnetic scattering problems 
over a wide frequency range. An overview is given in [l]. Usually 
PO currents, currents based on the physical theory of diffraction 
(PTD) or Fock-currents [2],  are employed in the asymptotic 
region. Here we propose PO currents with superimposed correc- 
tion terms to account for the influence of edges of perfectly con- 
ducting wedges of the scattering body. In contrastto an 
application of the PTD, only surface current densities and no 
additional electric and magnetic line currents along the edges are 
involved. A similar modification for the edges of flat polygonal 
plates based on Sommerfeld’s exact solution for the half-plane 
scattering problem has already been presented by the authors in 
~31. 

Correcticn of PO current: The conventional PO current density 
Jpo = 2 n  x H, in the lit, and Jpo = 0 in the shadowed, part of the 
scattering body, respectively, is heuristically corrected by terms 
J,”” corresponding with the m = 1 ... N ,  wedges of finite length, 
representing the boundary of the surface under consideration: 

N... 
J C P O  = JPO + 2 J Z T D  

m=l  

Here an upper index CPO has been introduced to indicate the cor- 
rected PO current density. Application of the UTD yields the cor- 
rection terms 

where the index m has been omitted. The notation of (41 has been 
used in eqn. 2. A(s) describes how the amplitude varies, H,{QE) 
denotes the incident magnetic field at the diffraction point QE on 
the edge, which may be caused by the excitation or, in context 
with a hybrid method, by the currents radiating in the MM-region 
[3]. D , ,  represent the scalar diffraction coefficients for soft and 
hard polarisation, respectively. The positive sign in eqn. 2 refers to 
the n-face at 0 = nn, and the negative sign to the o-face of the 
wedge at @ = 0. See [4] for the definition of 0 and n. 

Note that approximate expressions for Ju” have already been 
published by Schretter and Bolle [ S I .  These are in good agreement 
with our results even very close to the edge of the wedge. 

Example: Fig. 1 shows a perfectly conducting cube with side- 
length 2 h .  A z-polarised plane electromagnetic wave propagating 
in the positive y-direction acts as the excitation. However, to dis- 
tinguish uniquely between lit and shadowed surfaces, we assume 
the direction of incidence as specified by 6, = d 2  and cp, = 3 d 2 ,  
where the upper index ‘-’ indicates that, for example, 8, 
approaches d 2  but is slightly smaller than d 2  in the limiting case. 
Consequently, the three surfaces of the cube at x = -h, y = -h, 
and z = h are illuminated by the plane wave, whereas the remain- 
ing three surfaces are shadowed. The PO approximation yields a 
surface current density J p o  = 2H,;  on the surface at y = -h, a 
value of Jpo= 2He j r y y  on the surface at z = h, and Jpo = 0 on the 
remaining four sides. The magnitude of this PO current density is 
represented by the grey scale shading in Fig. 1. A reference solu- 
tion based on the method of moments is depicted in Fig. 2. A 
comparison clearly demonstrates the deficiencies of the conven- 
tional PO approximation. 
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