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Abstract-The Canadian mobile satellite (MSAT) channel has 
been modeled as the sum of lognormal and Rayleigh compo- 
nents to represent foliage attenuation and multipath fading, 
respectively. Several authors have applied trellis coded modu- 
lation (TCM) schemes to this channel, estimating the bit error 
performance via computer simulation. In this paper, analytical 
expressions are derived for the pairwise error probability (PEP) 
of TCM schemes over this channel under ideal interleaving. The 
analysis is applied to three detection strategies: ideal coherent 
detection, pilot-tone aided detection, and differential detection. 
The results are substantiated by means of computer simulation. In 
addition, first-order statistics of absolute and differential phases 
of a shadowed Rician process are examined. 

I. LIST OF PRINCIPAL SYMBOLS 

Complex channel gain for the kth symbol interval. 
Channel gain estimate for the kth symbol interval. 
Variance of channel gain. 
Variance of channel gain estimate. 
Average signal energy-to-noise spectral density 
ratio. 
Transmitted codeword. 
Erroneous codeword. 
Maximum Doppler frequency. 
Correlation coefficient between f fk  and hk. 
Average bit error probability. 
Channel symbol interval. 

11. INTRODUCTION 
0 improve the performance of mobile communication T systems (e.g., mobile satellite and cellular mobile sys- 

tems), several authors have considered the application of TCM 
schemes to such channels. In particular, Divsalar and Simon 
[ 11, [2] have presented a rather complete analysis of TCM for 
the ideally interleaved Rician fading channel when coherent 
or differentially coherent detection methods are used. Their 
analysis includes derivation of a Chemoff upper bound on the 
pairwise error probability. In this case, the Chemoff bound 
not only yields a union upper bound on the average bit error 
probability of TCM operating on the Rician fading channel, 
but also provides the primary criteria for designing the optimal 
TCM for the fading channel [3]. 
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Typically, mobile satellite channels are modeled as Rician; 
that is, the received signal consists of a constant line of sight 
(LOS) signal component and a Rayleigh distributed diffuse 
signal component. In contrast, to account for the effect of 
foliage attenuation or blocking in a shadowed channel, the 
LOS component is assumed to be distributed as a lognormal 
variate. In application to the Canadian MSAT program, this 
model has been presented by Loo [4]-[7] and has been found 
to agree with measured data. A lower angle of elevation (15"- 
20°) between a mobile user and a geosynchronous satellite 
implies that the effect of shadowing is more pronounced in 
Canada than in the United States [8]. We describe this model 
in more detail later. 

Many studies have been carried out to determine the ap- 
plicability of TCM to this channel model; some of them 
include [8]-[12]. McLane et al. in [8], [9] have evaluated the 
performance 8-PSK and 8-DPSK trellis codes over the fast 
fading shadowed Rician channel via computer simulation. In 
his thesis work, Lee [ 101 has presented a comprehensive study 
of light' and average shadowed Rician models, including a 
chapter on the performance of TCM over such channels. The 
use of a convolutional interleaver in conjunction with several 
TCM schemes over the same channel has been presented 
by Lee and McLane [ I l l .  Again, these two papers rely on 
computer simulation. The performance of TCM with coherent 
detection over the shadowed Rician fading channel has been 
presented by McKay et al., where the Chemoff bound on the 
PEP is computed with the aid of numerical integration [12]. 
Another related paper [ 131 has described computer models of 
the common fading channels based on underlying Gaussian 
processes. 

To date, the only analytical expressions available for this 
case have been presented by Huang and Campbell [14], and 
their results are limited to differentially coherent detection 
and the slow fading, shadowed Rician channel. Thus, unlike 
the case of Rician fading channels, an analytical basis for 
evaluating the performance of TCM over the shadowed Rician 
channel is missing. This paper attempts to fill the gap by 
providing new, analytical error bounds for TCM schemes over 
both slow and fast fading, shadowed Rician channels. The 
error bounds are derived for three detection schemes: ideal 
coherent detection, coherently differential detection, and pilot- 
tone based detection. Our pairwise error probability bounds 

'The terms light and average denote the degree of fading, and the heavy 
fading channel is not considered here. 
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Fig. 1. Baseband system model where T, is the symbol period. 

resemble those of the Rician channel, and as such can be used 
for both evaluating the bit error performance and for finding 
optimal codes for such channels. 

In 1151, the authors derive the approximate PEP of both 
TC-MPSK (trellis coded M-ary phase shift keying) and TC- 
MDPSK (trellis-coded M-ary differential phase shift keying) 
over Rician ideally interleaved channels. Our approximation 
was based on the saddle point method 1161, [17], and the 
accuracy of this approximation was confirmed by extensive 
numerical comparisons. In this paper, we extend this earlier 
result to the shadowed Rician fading channel. The accuracy 
of these new bounds is confirmed by Monte-Carlo simulation 
results. We also derive the approximate probability density 
functions (pdf's) of both the absolute and differential phases, 
and show that the absolute phase is Gaussian for small values. 

The paper is organized as follows. Section I1 describes 
the system model used here and the characterization of the 
shadowed Rician model. The approximate PEP of TC-MPSK 
and TC-MDPSK is derived in Sections I11 and IV. First order 
statistics of the phase of a shadowed channel are examined 
in Section V. Simulation results are presented in Section VI. 
Finally, conclusions are provided in Section VII. 

111. SYSTEM AND CHANNEL MODEL 

We consider a typical system model [ l ]  as shown in Fig. 1. 
Binary input data is convolutionally encoded at rate n/ (n  + 1). 
The encoded n. + 1 bit words are block interleaved and 
mapped into a sequence z = (21.22. . . . , 2 , ~ )  of M-ary 
PSK symbols, which constitute a normalized constellation, 
that is, lzk 1' = 1 for all symbols. For TC-MDPSK, additional 
differential encoding/decoding is done as shown in Fig. 1. The 
receiver deinterleaves and then applies soft-decision Viterbi 
decoding. 

In this work, we only consider ideally interleaved channels. 
The ensuing independent fading approximation allows us to 
obtain a simple upper bound on the average bit error probabil- 
ity, which gives the performance limits of practical systems. In 
fact, the ideal interleaving condition can be achieved without 

much difficulty for some mobile communication systems. For 
instance, typical Doppler spread and the symbol duration 
product varies in the range 0.01 5 fdTs 5 0.1 for L-band 
frequencies, at 2400 baud rate and at normal vehicle speeds. 
The use of interleaving for this application has been studied 
by several authors, and it is found that total interleaving delay 
requirements can be met by several methods [8]. 

Since we assume that the interleaving depth is sufficient 
to make channel fading appear independent from one symbol 
interval to another, we ignore the scrambling of the encoder 
output sequence by the interleaver. Thus, the transmitted signal 
is represented in the baseband as [ 181 

k = - m  

where s ( t )  is a unit-energy pulse such that it satisfies Nyquist's 
conditions for zero inter-symbol interference after the receiv- 
ing filter, and 

(2) 
TC-MPSK 

'uk = { 
~lk-11ck TC-MDPSK, 

where xk denotes the kth convolutional encoder output. The 
receiver employs a filter matched to s( t ) .  Therefore, the 
received sample corresponding to the kth coded symbol can 
be denoted by 

Y k  = Qk'uk rkk ( 3 )  

where n k  is a complex-Gaussian random variable with zero 
mean and variance cr' = (2y,)-l where ys = E,/No.  Here 
E ,  denotes the average signal energy, and No is the single- 
sided noise spectral density of the additive noise. 

For the shadowed Rician channel model, as introduced by 
Loo [4]-[7], the complex channel gain a k ,  including log 
normal LOS term and multipath components, is generated 
as shown in Fig. 2. Accordingly, a k  is the sum of three 
components: 

- 
- 

(YL = Ak + ( k  f j T / k  (4) 
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TABLE I 
SHAEOWED RICIAN MODEL PARAMETERS 

where both <k and are two real independent Gaussian 
random variables with zero mean and variance bo. The re- 
maining term A k  is equal to exp ( & )  where & is Gaussian 
with mean po and variance do (note that A k  is a constant for 
nonshadowed Rician fading channels.). The random variables 
<k q k ,  and <k are generated by filtering three independent 
Gaussian random number sequences. Three identical third- 
order Butterworth filters of 3-dB cutoff frequency fdTs are 
used for shaping the fading spectrum (see Fig. 2). The mea- 
sured parameters of this model are given in Table I [SI. Note 
that the fading is represented by a single sample throughout a 
symbol interval. This piecewise-constant approximation to the 
fading process is justified since the fading is slow ( f d T s  << 1). 

Since el q l  and < have the same fading spectrum, when in- 
troducing the autocorrelation function of these, it is convenient 
to define a wild card ## denoting <, q, or <. The filter transfer 
function of a third-order Butterworth filter is [19] 

where fo  is the 3-dB cutoff frequency. Also this spectrum 
has unit energy gain; that is, the total area under IH( f ) I2  is 
unity. Given the above fading spectrum, the output normalized 
autocorrelation function is given by [19] 

where 6 = 1.rrfo.rl. We will later need the normalized correla- 
tion coefficient between two adjacent samples: 

# k # k - 1  = ~ ( T s ) .  (7) 

As defined in (4), A k  is a lognormally distributed random 
variable having the probability density function 

1 
1 x > o  

2dO 
elsewhere. 

(8) 
It can be readily shown that 

IQIc12 = exp(2po + 2do)  + 2b0, (9) 

which, for example, is 2.06 dB for the light fading model 
(Table I). This factor will be included in all signal-to-noise 
ratio calculations. 

For later PEP calculations, we shall first "fix" the additive 
log normal component of the channel gain ( Y k ,  obtain the PEP 
conditional on the sequence of the A k ,  and then integrate the 
conditional PEP over the joint pdf of the A k .  This approach 
is justified since the log normal process is assumed to be 
completely independent of the multipath process. 

IV. THE PEP IN FAST LOG NORMAL FADING 
We assume here the availability of some kind of channel 

measurements; that is, for a sequence of true channel gains 
( a 1  0 2  , . . . , a ~ ) ,  there corresponds a sequence of channel 
estimator [ 181 outputs denoted as (&I, &2, . . . , & N ) .  Obvi- 
ously, the performance of the coded system will be heavily 
dependent upon the accuracy of these estimates. Depending 
on the detection technique used, the estimate &k is obtained 
as follows: 

ak TC-MPSK 
&k = { y k - 1  TC-MDPSK, (10) 

a k  + <k TC-MPSK with a pilot 

where <k is an additive noise term, appearing because of the 
nonzero bandwidth of the pilot tone extraction filter. This will 
be considered later. 
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As in 1181, we take the Viterbi decoder metric to be 

(11) 

where /? is equal to p a .  Also, the variance of &k 

is 61 = (1 /2 ) (& - r k ) ( & k  - &)* where * denotes the 
complex conjugate. The normalized correlation coefficient be- 
tween &k and ak is p = (1/2)(ak - ~ k ) ( & k  - Ik)* /&&.  

Note also that if perfect channel estimates are available, this 
decoding metric becomes optimal (in the maximum likelihood 
sense). Pilot-tone based detection and differential detection 
approach this ideal performance limit under slow fading and 
high signal-to-noise ratio conditions. 

As we shall see later, the accuracy of the approximations 
derived herein depends on the value of p .  The closer p is to 1, 
the more accurate are the approximations. This phenomenon 
is analogous to the behavior of the bit error probability in 
relation to the accuracy of channel state information. For 
this reason, we do not consider the absence of channel state 
information [l], where the channel estimate just consists of 
phase information and is devoid of amplitude information. In 
this case, it can be readily shown that the value of p is less 
than 0.9, making our approximation inapplicable. 

The PEP P ( z  + 2) is defined to be the probability of 
choosing the codeword z = ( 2 l 7 2 2 , - . . . k , ~ )  when z = 
( T I .  2 2 ,  . . . , x ~ )  was transmitted 111, given z and 3 are the 
only choices. Since only the components of the two codewords 
that differ contribute to the PEP, assign the set of subscripts 
I C , ,  ( 1  = 1 , 2 ,  . . , L) .  arranged in ascending order, for which 
X k "  # kk t .  Note that L is the Hamming distance between z 
and 2.  The smallest possible L. L,,,, is known as the code 
diversity. The PEP, by using the fact that the total metric for 
a codeword is the sum of component metrics, is 

Euclidean; namely, 

m ( Y k , x k )  = -1Yk - P & k Z k I 2  

P ( z  --+ 2) = Pr  {Z < 0) (12) 

where 
L 

= Yk,P"8;,(xk* - kkZ ) *  + Y;,P&> (a, - &, ). (13) 
1= 1 

For the PEP in (12), under conditons ys --+ cx), and p z 1, an 
approximation has been derived in 115, eq. (30)]. As shown 
there, for the Rician fading channel we have 

L 

where 

r = q i  - ~ ~ l ~ ) h ~  + 2) 1 
B ( L )  s - 

JZa(2L + 1) ' 

and 

Although this approximation has been obtained for constant 
Ak, it is also true when AI, varies over the duration of an 
error event. This assertion holds because the saddle point in 
this case (see [ 15, eq. (28)]) is completely independent of the 
value of A. Thus, denoting A = ( A I ,  A2, . . . , A L )  the above 
becomes the conditional pairwise error probability; that is, 

L 

Because of ideal interleaving, each A; is independent. Thus, 
the pairwise error probability is 

where each p ( A ; )  is given by (8). For light and average 
shadowed Rician cases (where do is small), each of these 
integrals can be obtained by a method given in 1141, where 
it has been shown that 

+ 0 ( ~ - 5 / 2 ) , ~  + m. (19) 

Substituting (8) in (18), transforming t; = logAi - po, 
taking y = 1/2do, and using (19), the approximate PEP can 
be expressed as 

where Q = exp(po) and 

Next we specialize this expression for the three detection 
methods. 

A .  Ideal TC-MPSK 

Here, by definition, we have an ideal estimate of the channel 
gain; that is, & = a ! k .  Thus, bl = bo,p  = 1 , P  = 1, and 
0 = -0.5. Substituting these values in (20) leads to the 
expression 
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where where 

This expression can be readily used to compute the average bit 
error probability via the standard transfer function bounding 
technique. 

To assess the accuracy of (22), we compare it with the 
Chemoff bound for this case. Using [ l ,  eq. (20)] and [14, 
eq. (911, it can be readily shown that 

where 

$i = 1; exp 
-W 

This integration can be solved using the quadrature algorithms. 
As discussed in [ 121, a factor of one-half is included in (24). 

-0.2501zk" - 2kx I2ys(1 f O . ~ ( ~ O T ~ ) - ~ )  
ci = 

bo 
q61xk, - zkc I2Ys + bo(1 - ~)Ys + 1 + (4boTs)-' 

(28) 
As noted in [15], the accuracy of (27) will decrease with the 
increasing Doppler spread. This is due to the fact that the 
increased Doppler decreases the value of p, as shown in (26). 
For the three shadowing cases, the value of bo decreases from 
light to heavy; as a result, the performance of differentially 
detected TCM degrades, and so does the accuracy of (27). 
Note also that comparing the PEP for TC-MPSK (22) and that 
of TC-MDPSK (27) reveals that the latter is inferior by 3 dB. 

C .  TC-MPSK with a Pilot Tone 

As an alternative to differential detection, the a k  may 
be measured using some technique such as a pilot tone 
[18] or embedded pilot symbols [20]. If a reference tone 
is transmitted along with the data signal (both within the 
coherence bandwidth of the fading process), and if this tone 
can be filtered ideally, the resulting system performance will 
be almost equal to that of ideal coherent detection. Here, we 
assume these conditions. A further discussion regarding the 
validity of these assumptions can be found in [21]. 

For our purpose, we simply need to determine how the pilot- 
tone estimate correlates with the true channel gain. As in [ IS], 
the estimate & is obtained by a pilot tone extraction filter 
whose frequency response is 

B .  TC-MDPSK 

H ( f )  = pl 5 f 5 Bp/2 (29) r 0, otherwise 
Here, for any signaling period, the preceding signal provides 

the channel estimate; that is, &k = a k - 1  + 71k-1  (see (21, (3), 
and (10)). The term vk-1 is now absorbed in the channel 
gain term. Hence, the channel estimate has a variance of 
bl = bo + cr2 and it follows that 

where P is the amplitude of the pilot tone, and Bp is the 
bandwidth of the pilot tone filter. Now the fraction of the total 
power spent on the data signal and the pilot tone is I / (  1 + r )  

b o P 2 ( T s )  = bo (26) and r / ( l  + r ) ,  respectively, where r = P2Ts. As in [lS], we 
assume Bp = 2 f d .  Then, the output of this filter is bo + 0.57;' bo + 0.57;' 

1PI2 = 

(30) 
Ck where p( .) is the normalized autocorrelation function for 

a third-order Butterworth spectrum given by (7), and 
S = p2(Ts) .  An examination of (26) reveals two facts. First, 
for very slow fading (i.e., p ( T s )  E l), at large signal-to-noise 
ratios p approaches unity. Hence, the quality of the channel 
estimates is ideal. Second, for fast fading ( p ( T s )  < l), no 
matter how large the signal-to-noise ratio, p remains less than 
unity. This implies, for ys + 00, a fixed error probability, 

&k = ak + - 
P A 

where <k is a complex Gaussian random variable with zero 
n ~ a n  and a variance of BPNO. It then follows that 

var(&k) = bl = bo + 0.5(BpTs)  7 ys 

(31) 

( I t r )  -l 
which is usually termed as an "error floor." 4 

l + r  Substituting Ip12 in (20) results in the expression Id2 = 
bo + 0.5(BpTs)  (-+1 

L 

where ys now accounts for the total symbol energy spent on 
both the data and pilot-tone. We note here that as E, /No  

. (bo(l-S)ys+ + ( 4 b o Y s ) - 1 ) ( 1  + 2doCze2[C?e2 -11)  increases, the value of lp12 approaches unity. Thus, at large 

P ( z + k )  % B ( L )  IT 
a = 1  

qslxk, bo - *kt 1ZYs + bo(l  - s ) ~ ,  + 1 + (4bors)-1 signal-to-noise ratios, the pilot tone technique is essentially 
equivalent to ideal coherent detection 

are shown at the bottom of the next page. 
. cxp (-C,@2) By substituting these in (20), we have (32) and (331, which 

(27) 
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v. THE PEP FOR SLOW LOG NORMAL FADING 
In the preceding discussion, we assumed that all three 

components of the channel gain (4) have an equal fading 
bandwidth. In the following, we assume that the log normal 
component varies slowly in comparison to the multipath As discussed earlier, we have an ideal estimate of the 
component. Consequently, the log normal variate Ak in (4) channel gain, that is, bk = a k .  nus bl = bo? = 1, p = 1, 
will remain constant during short error events. In other words, and 6 = Substituting these values in (35) leads to the 
the interleaving depth is sufficient to break up correlations due expression 
to multipath components but not those due to the shadowing 
component. L 

As derived for the case of fast fading, the PEP here too is 

As before, we next specialize this expression for the three 
detection methods. 

A.  Ideal TC-MPSK 

r 
b01P121~kt - 2 k t  12 + 

L 

Furthermore, the constant co is given by a = 1  

(39) 
O.5Lm;, 

A261~h,  - i k z  1' 

co M ~ Ys + 

. ( bo)p(21Zkt - f k ,  1' + r 
(34) bo ' 

where is given by @)' This can be evaluated in the 
same manner as in the case of fast fading. Consequently, we 
maintain that for the light and average shadowing models the 
PEP is given by 

which is independent of the distance structure of the shortest 
error event. Thus, B1(L) depends only on the length of the 
shortest error event. 

where e and c; are as defined earlier, and 

Unfortunately, this expression cannot be used with the transfer 
function method because co consists of additive terms, a 
manifestation of our slow fading assumption. As in [14], we 
compute co only for the shortest error event, and incorporate 
this value of co into B(L).  Thus, for this case 

B .  TC-MDPSK 
By following the discussion in Section I11 B, we have the 

PEP for a slow log normal fading case: 

C .  TC-MPSK with a Pilot Tone 

Substituting the correlation coefficient and variance (3 1) of 
the pilot-tone based estimate in ( 3 3 ,  we have (41), which is 
hown at the bottom of the next page. 

where 

(32) 

(33) 
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Band width 
0.025 
0.05 

VI. PHASE JITTER ANALYSIS 

In [SI, [9], the authors computed the standard deviation 
of the absolute and differential phases of the true channel 
gain. This section derives their pdf‘s for fast fading, shadowed 
Rician channel. Specifically, denoting the kth channel gain as 
Vkej4‘, we determine the pdf of & and (4k - 4 k - l ) .  

Light Average 
2.3 2.7 
4.4 5.1 

A. Absolute Phase 

Taking the channel gain a k  in (4), we drop the subscript 
k for notational convenience, and convert a into form V e j 4 .  
Thus, after some elementary manipulations, the conditional 
joint pdf of the envelope V and the phase 4 can be obtained 
as 

V ( A 2  - 2.41.;;: + V 2  
p ( V .  4 ) A )  = - exp 2 ~ b o  

where 0 5 V < oc and 0 5 4 5 27r. To find the joint pdf of 
( V ,  4); (42) must be averaged over the pdf of A. Thus, from 
(42) and (8) we have 

. exp - (&) d t  (43) 

where e = cxp /LO; as defined earlier. Since for light and 
average shadowing cases do is quite small, an approximate 
expression for this integral can be obtained as before. Using 
only the first term of the expansion given in (19), we have 

) (e2 - 2ev2;s 4 + V2 v 
2xbo 

p (  v, 4) = - exp - 

+ O( dg”). 

Integrating this over the variable V results in 

(45) 

Clearly, for small values (cos 4 z 1, sin 4 z d), 4 is Gaussian 
with zero mean and variance b o / e 2 .  For a light fading channel, 
this tums out to be a standard deviation of 20.3 degrees, 
which agrees quite well with the computed value 22.7 degrees 
[9]. As observed in [19], the phase process of a Rician 
fading process is approximately Gaussian with zero mean and 
variance 1 / ( 2 K ) .  It thus follows that the equivalent K factor 
of a shadowed channel is e2/2bo.  

TABLE I1 
DIFFERENTIAL PHASE STANDARD DEVIATION IN DEGREES 

Similarly, conceming the envelope process, note that inte- 
grating (44) over the phase 4 yields 

where lo(.) is the zero-order modified Bessel function. Since 
this expression is the pdf of a Rician fading amplitude (see [I]), 
it is possible to define a K factor, as in a Rician channel. Here 
K = e 2 / 2 b o ,  as also obtained above. For light and average 
fading models this tums out to be 6 and 5 dB, respectively. A 
similar observation is made in [lo], [14]. 

In light of the foregoing, we conclude that, on a first- 
order basis, the light and average shadowing channels are 
Rician. However, if the second order terms are included, this 
equivalence breaks down. 

B. Differential Phase 

Since differential phase statistics depend on the correlation 
between two temporally adjacent channel gains, and since 
two correlated log normal variates are also involved, this 
case is a lot more complicated than that of absolute phase. 
Note, however, that interleaving does not affect this correlation 
(differential detection exploits the intrinsic channel memory) 
and that interleaving is sufficient to make (& - q5k-l) terms 
independent of each other, as we have assumed at the begin- 
ning. 

In view of this difficulty, we can only provide an ap- 
proximate pdf that must be computed numerically. In the 
appendix, it is shown that the differential phase cp is distributed 
approximately as 

Computed values of the standard deviation of differential phase 
in degrees are shown in Table 11, and they agree quite well 
with the values given in [8]. 

L 
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VII. ERROR PERFORMANCE OF TCM SCHEMES 

This section presents a comparison between Monte-Carlo 
simulation results and the approximations we developed in 
the previous sections. 

A. The Union Bound on the Average Bit Error Probability 

Typically, the average bit error probability of a commu- 
nication system is one of the most important performance 
measures. A tight upper bound on this measure can be obtained 
via the union bound, which consists of infinitely many terms. 
Based on the PEP expressions developed here, all the terms 
may be enumerated using a transfer function. Then, the bit 
error probability of a TCM scheme with ideal interleav- 
inddeinterleaving is bounded as 

where n is the number of input bits per encoding interval, and 
the Di are the product terms in the approximations derived 
before, excluding B(L) ,  with each Di being associated with 
Izk, - i k i  1'. Note that the number of distinct D; is finite and 
that B(L,i, is included because B(L)  is a decreasing function 
of L.  The transfer function T(D1, D2, . . . , I )  is determined 
by a signal flow graph, using weight profile and uniformity 

In this study, we use a rate 213, eight-state binary convo- 
lutional encoder (see Fig. 3) to confirm the accuracy of the 
approximations developed thus far. The reader is referred to 
[ 121 for more details regarding the derivation of modified state 
transition diagram, augmented branch labels, and the modified 
encoder transfer function for this code. 

property r 221. 

B. Computer Simulations 

The rate 2/3 8-state convolutional encoder with 8-PSK 
signal set was used to encode a random data stream (the code 
is taken from (12)]. The receiver was implemented using a 
Viterbi alogrithm, with the decoding metric given in (1 1). In 
the Viterbi decoder, a decision depth of 18 symbols was used, 
that is, 6 times the code memory [9]. Although our theoretical 
results were derived under the assumption of ideal interleaving, 
the simulation was carried out using a finite interleaving depth. 
For a fading bandwidth of 0.05, the interleaving depth was 
set to 10 symbols. This choice gives an effective bandwidth 
of 0.5, at which the correlation between any two adjacent, 
deinterleaved symbols becomes negligible. This effect can be 
verified from (7), where a zero of p(T,) is found near 1 when 

In the case of pilot-tone based detection, about 30% of 
the transmitted power was allocated to the pilot-tone, which 
is optimum [15], [18] for the fading bandwidth considered 
herein. 

When simulating the slow fading log normal component, 
the bandwidth of the low-pass filter of that component (see 
Fig. 2)  was set to 0.001. After interleaving, the effective log 
normal fade rate would still be 0.01, which is slow enough 
that the log normal component remains roughly constant for 
several adjacent symbol intervals (as assumed in Section IV). 

fo = 0.5. 

0 4 2 6  

1 5 3 7  

4 0 6 2  

5 1 7 3  

2 6 0 4  

3 7 7 5  

6 2 4 0  

7 3 5 1  

2 

Fig. 3. 

6 

Trellis diagram for 8-state, 8 PSK TCM scheme [ 121. 

To reduce the uncertainty of each simulation point, as in 
[23], each point was simulated at least twice: first with a given 
number of error events, second with twice that number. This 
was repeated until the two results were within 10% of each 
other. For Pb 2 lop4 the starting number of error events was 
200, while for Pb < the number was 100. For these two 
ranges of Pb, the accuracy of the estimates varies from 20% 
to 30% with a confidence level of 95%. 

For light and average cases, and for coherent, differential 
and pilot-tone based detection methods, we present Pb versus 
Eb/No performance in Figs. 4-9. For both coherent and pilot- 
tone methods, the bounds are quite tight when Pb 5 lop3. As 
noticeable from these figures, the error bounds fare better in the 
average shadowed channel than in the light shadowed channel. 
The reason is that the variance of multipath component bo is 
smaller for the former. As can be seen from [15, eq. (27)], 
smaller bo improves the saddlepoint approximation presented 
therein. 

For differential detection, however, the error bounds are 
looser, as can be seen in Figs. 5, 8. Here the error bounds 
will improve with decreasing Doppler. The results presented 
are for a 5% Doppler rate, which can be considered as a worst 
case for the 800 MHz frequency band. Another reason for 
not considering Doppler rates above that figure is that pulse 
distortion and intersymbol interference effects introduced by 
fading can no longer be neglected. 

The slow log normal fading case is treated in Figs. 10-12. 
Once again, there is satisfactory agreement between error 
bounds and simulation results. 

- 
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Fig. 4. 
fading, coherent detection. 

Pb versus Eb/,Vo. Trellis code in Fig. 3, light shadowed Rician Fig. 6. 
fading, pilot-tone detection, fdTS = 0.05. 

Pb versus Eb/ iVo.  Trellis code in Fig. 3, light shadowed Rician 
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0.001 

0.0001 
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0.0001 

le-05 : 
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I I I I I . 6 8 10 - 12 14 16 18 

6 8 10 - 12 14 16 ELINO (dB) 
-%/No (dB) 

VIII. CONCLUSIONS 

New approximations for the PEP of TCM schemes operating 
on the shadowed Rician fading channel have been derived, 
which can be readily used with the transfer function method 
to obtain an upper bound on the bit error probability. The 
application of the resulting bounds has been exemplified for 
a moderately complex eight-state TCM scheme transmitted 
through this channel. For bit error rates less than 1 x lop3, 
the derived error bounds for coherent and pilot-tone detections 

are within a fraction of a dB of the simulation results. For 
differential detection the difference is larger, though, assuming 
a worst-case Doppler fading bandwidth of 0.05. It is felt that 
the results will be useful in evaluating the performance of 
TCM schemes over shadowed channels, and that the analysis 
enhances the understanding of this channel model. 

IX. APPENDIX 

Without any loss of generality, let us write Cyk = al and 
a k - 1  = ~ 2 .  From the channel gain in (4), if follows that 
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Fig. 8. 
fading, differential detection, fc/TJ = 0.05. 

P(, versus F(,/-v(). Trellis code in Fig. 3, average shadowed Rician Fig. 10. 
slow fading, coherent detection. 

Pb versus Fb/.V7n. Trellis code in Fig. 3,  light shadowed Rician 

Fig. 9. 
fading pilot-tone detection, fciTs = 0.05. 

the pairs 

Pr, versus Et,/:\rn. Trellis code in Fig. 3. average shadowed Rician Fig. 11. 
slow fading, differential detection, faT3 = 0.05. 

show that 

Pl, versus F(,/‘vc~. Trellis code in Fig. 3, light shadowed Rician 

€2 and 731, 712 are identically and independently 
distributed. Thus, their joint pdf is 1 

P(7-1 f 41 > 7-27 421c17 C2) = 67-17-2 exp (- %AO) (50) 
P ( E 1 , r 2 , r l l r 7 3 2 )  = KexP 

A, = 
) (-+ + r,” - 2 P E l t 2  + 71; + 73,” - 2P1731732) (49) where 

1 

where P1 = P P S ) ,  4 = h o ( 1  - PT)! 6 = 1/(47%(1 - PT)). 
Let us also introduce the following transformations: 

7-1 cos 41 = &+Po + <l,rl sin $1 = rl1,rz cos 4 2  = 
cc2+flLo + €2: 7-2 sin ($2 = 732. Now it is a simple matter to 

Q2(e2CI + e2c2 - 2pleC1+Cz) - 2rlQcos ($&<I - pleCz) 

. - 2 7 - 2 ~ c o s  42(eC2 - pleC1) - 2pl cos 97-17-2 + T;+T;  

(51) 
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We can convert this into the sum of a bivariate quadratic of 
r-1 and r 2  and an expression of $1 and $2, thereby enabling 
the integration of (55) over r1 and r-2. We then have 

simulation Eq. (41) 4 8. 

O” i\ 
P(41, $2) = K1 

A3 
exp 2bo(l+ p1) (57) 

where 61 = 1/(27lbo), 

and 

1 - P1 
1 - p ;  cos2 c p )  

& = 2 -  

Fig. 12. 
slow fading, pilot-tone detection, fdT3  = 0.05. 

p b  versus E b / j % ’ ~ .  Trellis code in Fig. 3, light shadowed Rician, Our aim is to find the pdf of cp = $1 - $2. defined, cp 
can vary from -271. to 27r; however, it is desirable to confine 

where cp = d1 - d2 is the differential phase in which we are cp from -71 to To do this we use a method given in [259 

interested. To derive (50), we have made use of the fact that 1.5.41. we have 

shadowed Rician model, (1 and (2 are jointly distributed as 
Ak in (4) is a log normal variable. Moreover, according to the 25T 

P ( V )  = 1 ~ ( $ 1 ,  cp + $i)d$i, -r 5 (0 5 r. (60) 

Once again, we note that the term 1/2(2do(l - p : ) )  will be 
quite large for both light and average shadowed fading cases. 
Therefore, an approximate expansion for the average of (50) 
with respect to (52) can be obtained via Laplace’s method in 
two dimensions. In [24, 8.21 it is shown that an integral of 
the form 

where 50 is an interior critical point of $(z). 

conclude from (54) that 
The critical point of our function (52) is (0, 0). Thus, we 

4) 1 
2 4  (55) 

where 
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