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Abst rac t  -The Canadian mobile satellite (MSAT) chan- 
nel has been modelled as the sum of lognormal and Rayleigh 
components to represent foliage attenuation and multipath 
fading, respectively. Several authors have applied trellis 
coded modulation (TCM) schemes to  this channel, estimat- 
ing the bit error performance via computer simulation. In 
this paper, a general expression is presented for the pair- 
wise error probability (PEP) of TCM schemes transmitted 
over this channel under ideal interleaving. The expression 
can be specialized to several cases including ideal coherent 
detection, pilot-tone aided detection, and differential detec- 
tion. The results are substantiated by means of computer 
simulation. 

I. INTRODUCTION 

To improve the performance of mobile communication sys- 
tems (e.g., mobile satellite and cellular mobile systems), 
several authors have considered the application of TCM 
schemes to such channels. Typically, mobile satellite chan- 
nels are modelled as Rician; that is, the received signal 
consists of a constant line of sight (LOS) signal compo- 
nent and a Rayleigh distributed diffuse signal component. 
In contrast, to account for the effect of foliage attenuation 
or blocking in a shadowed channel, the LOS component is 
assumed to be distributed as a lognormal variate. In ap- 
plication to the Canadian MSAT program, this model has 
been found to agree with measured data. A lower angle of 
elevation (15' - 20') between a mobile user and a geosyn- 
chronous satellite implies that the effect of shadowing is 
more pronounced in Canada than in the United States [I]. 
We shall describe this model in more detail later. 

Many studies have been carried out to determine the ap- 
plicability of TCM to this channel model; some of them 
include [I, 2, 31. In general they use computer simulation 
to predict error performance. Thus, unlike the case of Ri- 
cian fading channels, an analytical basis for evaluating the 
performance of TCM over the shadowed Rician channel is 
missing. This paper attempts to fill the gap by providing 
new, analytical error bounds for TCM schemes over shad- 
owed Rician channels. The error bounds can be applied for 
referencebased coding systems such as coherently differen- 
tial detection, pilot-tone based detection, and pilot-symbol 
aided detection. The resulting bounds resemble those of the 
Rican channel, and as such can be used for both evaluating 
the bit error performance and for finding optimal codes for 
such channels. 
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Figure 1: System Model. 

In [4], the authors derive the approximate PEP of both 
TC-MPSK (trellis coded M-ary phase shift keying) and TC- 
MDPSK (trellis-coded M-ary differential phase shift keying) 
over Rician, ideally interleaved channels. In this paper, 
we extend this earlier result to the shadowed Rician fading 
channel. The accuracy of the resulting bounds is confirmed 
by Monte-Carlo simulation results. 

11. SYSTEM AND CHANNEL MODEL 

We consider a typical system model as shown in Fig. 1. 
Binary input data is convolutionaly encoded at rate n / (n  + 
1). The encoded n + 1 bit words are block interleaved and 
mapped into a sequence x = (XI, x2,. . . , Z W )  of M-ary PSK 
symbols, which constitute a normalized constellation, that 
is, l z k l Z  = 1 for all symbols. The receiver deinterleaves and 
then applies soft-decision Viterbi decoding. 

In this work, we assume ideally interleavedchannels. The 
ensuing independent fading approximation allows us to ob- 
tain a simple upper bound on the average bit error probabil- 
ity, which gives the performance limits of practical systems. 
In accordance with this assumption, we ignore the scram- 
bling of the encoder output sequence by the interleaver. 
Thus, the transmitted signal is represented in the baseband 
as [51 

00 

e(t)  = uks(t - K T ~ )  (1) 
k = - w  
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PO I 0.115 
Jdo I 0.115 

parameter I Light I Average I Heavy 
bo I 0.158 I 0.126 I 0.0631 

-0.115 I -3.91 
0.161 1 0.806 

Table 1. Shadowed Rician Parameters. 

where s ( t )  is a unit-energy pulse such that it satisfies 
Nyquist's conditions for zero inter-symbol interference af- 
ter the receiving filter, and t Jk  denotes the k-th transmit- 
ted symbol. The receiver employs a filter matched to s ( t ) .  
Therefore, the received sample corresponding to the k-th 
coded symbol can be denoted by 

Y k  = f f k v k  + n k  (2)  
where n k  is a complex-Gaussian random variable with zero 
- mean and variance a2 = (2y,)-' where ys = E , / N o .  Here 
E ,  denotes the average signal energy, and NO is the single- 
sided noise spectral density of the additive noise. 

For the shadowed Rician channel model, Q k  is the sum of 
three components: 

f f k  = A k  + [ k  + 3 V k  ( 3 )  
where both [ k  and q k  are two real independent Gaussian 
random variables with zero mean and variance bo. The 
remaining term A k  is equal to exp ( C k )  where ( k  is Gaussian 
with mean po and variance do (note that A k  is a constant 
for non-shadowed Rician fading channels.). The measured 
parameters of this model are given in Table 1 [I]. 

As defined in (3), A k  is a lognormally distributed random 
variable having the probability density function 

111. ANALYSIS 
For a sequence of true channel gains ( a l ,  a z , .  . . , a ~ ) ,  

there corresponds a sequence of channel estimator [ 5 ]  out- 
puts denoted as ( & I ,  &, . . . , & N ) .  Obviously, the perfor- 
mance of the coded system will be heavily dependent upon 
the accuracy of these estimates. As in [5], we take the 
Viterbi decoder metric t o  be Euclidean; namely, 

m ( y k ,  x k )  = -1Yk  - P G k X k l '  (5 )  
where /3 is equal to p a .  Also, the variance of &k is 

bi = i ( & k  - & k ) ( & k  - z k ) *  where * denotes the complex 
conjugate. The normalized correlation coefficient between 

The PEP P ( x  + %) is the probability of choosing the 
codeword 2 = ( 2 1 ~ 2 2  , . . . ,  i ~ )  when x = ( ~ 1 ~ x 2  , . . . ,  ZN) 
was transmitted, given x and are the only choices. As- 
sign the set of subscripts k,, (z = 1 , 2 , . "  , L ) ,  arranged in 
ascending order, for which X k ,  # z k , .  Note that L is the 
Hamming distance between x and 2. The smallest possible 
L, L,,,, is known as the code diversity. The PEP, by using 
the fact that the total metric for a codeword is the sum of 
component metrics, is 

- 

C%k and f f k  is p = i ( f f k  - c k ) ( & k  -.k)*/&&. 

L 

P ( X  -+ n) = P r { c  Re [ Y k , P * & ' ; , ( Z k ,  - i k , ) * ]  < 0}.(6) 
,=1 

For the PEP in ( 6 ) ,  under the conditions y, + 00, and 
p M 1, an approximation has been derived in [4, Eq. (30)]. 
As shown there, for the Rician fading channel we have 

(7) 

and 

In the following, we assume that the lognormal component 
varies slowly in comparison t o  the multipath component. 
Consequently, the lognormal variate A k  in (3) w d  remah 
constant during short error events. In other words, the in- 
terleaving depth is sufficient to break up correlations due to 
multipath components but not those due to the shadowing 
component. 

The PEP here is obtained by averaging the above with 
respect to the pdf of A: 

where p(A)  is given by (4).  For light and average shad- 
owed Rician cases (where do is small), each of these int- 
gerals can be obtained by an approximation given in [ 6 ,  
Eq. (53)].Consequently, we maintain that for the light and 
average shadowing models the PEP is given by 

where e = exp (PO), 

CO = E:=l c,, and C = (1 + ~ ~ O C O Q ~ [ C O Q ~  - 11). Unfor- 
tunately, this expression cannot be used with the transfer 
function method because CO consists of additive terms, a 
manifestation of our slow fading assumption. As in [6], we 
compute CO only for the shortest error event, and incorpo- 
rate this value of CO into B ( L ) .  Thus, for this case 

A. IDEAL TC-MPSK 
In this case, we have an ideal estimate of the channel 

gain; that is, & k  = f f k .  Thus bl = b o ,  ,U = 1, p = 1, and 
6' = -0.5. Substituting these values in (11) leads to the 
expression 
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Furthermore, the constant CO is given by 

which is independent of the distance structure of the short- 
est error event. Thus, B ( L )  depends only on the length of 
the shortest error event. 

B. TC-MDPSK 
Here, for any signalling period, the preceding signal pro- 

vides the channel estimate; that is, h k  = y k - 1 .  Hence, the 
channel estimate has a variance of bl  = bo + u2 and it can 
be shown that 

where p ( , )  is the normalized autocorrelation function for 

a 3-Id order Butterworth spectrum, and 6 = p2((Ts).  The 
above can be substituted in Eq. (11) to get the PEP. An 
examination of (16) reveals two facts. First, for very slow 
fading (i.e., p(Ts) l ) ,  at large signal-to-noise ratios p a g  
proaches unity. Hence, the quality of the channel estimates 
is ideal. Second, for fast fading ( p ( T s )  < l ) ,  no matter how 
large the signal-to-noise ratio, p remains less than unity. 
This implies, for ys -+ m, a fixed bit error probability, 
which is usually termed as an “error floor.” 

P 

c .  TC-MPSK WITH A PILOT TONE 
As an alternative to differential detection, the a k ’ s  may 

be measured using some technique such as a pilot tone [5] or 
embedded pilot symbols [7]. If a reference tone is transmit- 
ted along with the data signal (both within the coherence 
bandwidth of the fading process), and if this tone can be 
filtered ideally, the resulting system performance will be al- 
most equal to that of ideal coherent detection. Here, we 
assume these conditions. 

For our purpose, we simply need to determine how the 
pilot-tone estimate correlates with the true channel gain. 
As in [5], the estimate & k  is obtained by a pilot tone ex- 
traction filter with bandwidth of at least 2 f d .  Now the 
fraction of the total power spent on the data signal and the 
pilot tone is 1/(1 + T )  and ~ / ( 1  + T ) ,  respectively, where 
T = P’T,. As in [SI, we assume Bp = 2 f d .  It then follows 
that [4] 

bo 
bo + 0.5 (BpTa) (*) Y;’ 

Id2 = 

where ys now accounts for the total symbol energy spent on 
both the data and pilot-tone. We note here that as F , / N o  
increases, the value of lp12 approaches unity. Thus, at large 
signal-to-noise ratios, the pilot tone technique is essentially 
equivalent to ideal coherent detection. The above can be 
substituted in Eq. (11) to get the PEP. 

IV. RESULTS 
A. THE UNION BOUND ON THE AVERAGE BIT ERROR RATE 
Typically, the average bit error probability, a most impor- 

tant performance measure, can be bounded via the union 

bound, which consists of infinitely many terms. Based on 
the PEP expressions developed here, all the terms may 
be enumerated using a transfer function. Then, the bit 
error probability of a TCM scheme with ideal interleav- 
ing/deinterleaving is upper bounded as 

where n is the number of input bits per encoding interval, 
and the D,’s are the product terms in the approximations 
derived before, excluding B(L) ,  with each Di being asso- 
ciated with d ? .  The transfer function T(D1, Dz, . . . , I) is 
determined by a signal flow graph, using weight profile and 
uniformity property [8]. 

In this study, we use a rate 2/3, eight-state binary con- 
volutional encoder (see [9, Fig. i’]) to confirm the accuracy 
of the approximations developed thus far. The reader is 
referred to [9] for more details regarding the derivation of 
modified state transition diagram, augmented branch la- 
bels, and the modified encoder transfer function for this 
code. 

B. COMPUTER SIMULATIONS 
The rate 2/3 8-state convolutional encoder with 8-PSK 

signal set was used ‘to encode a random data stream (the 
code is taken from [9]). The receiver was implemented using 
the Viterbi algorithm, with the decoding metric given in (5). 
In the Viterbi decoder, a decision depth of 18 symbols was 
used, that is, 6 times the code memory [2]. 

For the three detection methods, simulation results and 
the upper bounds are depicted in Figs. 2-4. There is sat- 
isfactory agreement between error bounds and simulation 
results. 

V. CONCLUSIONS 
New error bounds for TCM schemes operating on the shad- 
owed Rician fading channel have been derived, which can 
be readily used with the transfer function method to obtain 
an upper bound on the bit error probability. The appli- 
cation of the resulting bounds has been exemplified for a 
moderately complex eight-state TCM scheme transmitted 
through this channel. For bit error rates less than 1 x 
the derived error bounds are within about 0.5 dB of the 
simulation results. The results may be useful in evaluating 
the performance of TCM schemes over shadowed channels. 
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Figure 2: P b  versus z b / N O  for coherent detection in light 
shadowed Rician. 
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Figure 3: P b  versus E b / N o  for differential detection in 
light shadowed Rician, fdTs = 0.05. 
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Figure 4: P b  versus x b / N o  pilot-tone detection in light 
shadowed Rician detection, fdTs = 0.05. 
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