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Abstmct-This paper presents a saddle point approximation 
(SAP) method to compute the pairwise error probability (PEP) of 
trellis-coded modulation (TCM) schemes over Rician fading chan- 
nels. The approximation is applicable under several conditions, 
such as finite and ideal interleaving, ideal coherent and pilot- 
tone aided detection, and differential detection. The accuracy of 
this approximation is demonstrated by comparison to the results 
of numerical integration. When ideal interleaving is assumed, 
an asymptotic approximation for the PEP of ideal coherent, 
pilot-tone aided or differentially detected TCM is derived. This 
asymptotic approximation of the PEP is in a product form and 
much tighter than the ordianry Chernoff bound on the PEP. Also, 
based on the SAP, the effect of finite interleaving depth on the 
error performance of TCM schemes over Rician and shadowed 
Rician channels is studied. 

I. INTRODUCTION 

0 MITIGATE the effects of fading, trellis-coded mod- T ulation (TCM) schemes have been proposed for fading 
channels (e.g., mobile satellite and cellular mobile systems) 
[ 11. Typically, the analytical performance evaluation of such 
systems has been limited to upper bounds and ideal inter- 
leaving. Due to their looseness, upper bounds based on the 
Chernoff bound only yield qualitative descriptions of error 
performance. Accurate results must be obtained by computer 
simulation. In order to obtain improved analytical estimates, 
Cavers and Ho [2] have proposed a method to compute the ex- 
act painvise error probability (PEP) of trellis-coded multilevel 
phase shift keying (TC-MPSK) and multilevel differential 
phase shift keying (TC-MDPSK) over ideally interleaved 
Rayleigh fading channels. Ho and Fung [3]  have extended 
the results of [2] to nonideally interleaved Rayleigh fading 
channels. The residue method proposed in [2], [ 3 ]  does not 
apply in the case of Rician fading channels. To remedy this 
situation, Huang and Campbell [4] have derived a saddle-point 
approximation ( S A P )  for the exact PEP of TC-MDPSK over 
nonideally interleaved Rician and shadowed Rician fading 
channels. 

In this paper, we derive the approximate PEP of both 
TC-MPSK (ideal or pilot-tone based) and TC-MDPSK over 
Rician type fading channels, including both ideal and nonideal 
interleaving. Our approximation is based on the saddle point 
method [5] ,  [6], [7], and the accuracy of this approximation 
is confirmed by comparing it to the results of numerical 
integration. We then apply the approximate PEP to evaluate 

Manuscript received September 4, 1992; revised November 5, 1992. 
The authors are with the Department of Electrical and Computer Engineer- 

IEEE Log Number 9208470. 
ing, University of Victoria, B.C., Canada V8W 3P6. 

the performance of TC-MPSK and TC-MDPSK schemes. Both 
schemes are studied for Rician channels [l], and the effects 
of non-ideal interleaving are taken into account. TC-MDPSK 
over shadowed Rician channels [8] is also studied, taking into 
consideration the effects of nonideal and ideal interleaving. 
When ideal interleaving is employed to combat the fading (the 
interleaving depth sufficiently large for this requirement will be 
given later in this paper), an asymptotic approximation to the 
PEP of TC-MPSK (ideal or pilot-tone based) and TC-MDPSK 
over Rician fading channels is derived. It leads directly to 
a union upper bound on the bit error probability via the 
transfer function bounding technique. Also, it resembles the 
well-known Chernoff bound [l] for the PEP and differs only 
by a multiplying factor that improves the approximation. 

The paper is organized as follows. Section I1 describes the 
system model used here and the characterization of Rician 
and shadowed Rician fading channels. A saddle-point approx- 
imation to the PEP of TC-MPSK and TC-MDPSK is derived 
in Section 111. Several examples are presented in Section IV. 
Finally, conclusions are provided in Section V. 

11. SYSTEMMODEL 
We consider a typical system model [l], [9] as shown in 

Fig. 1. Binary input data are convolutionally encoded at rate 
n / (n  + 1). The encoded n + 1 bit words are block interleaved 
and mapped into a sequence 2 = (21 2.2, . . . , k ~ )  of M - 
ary PSK symbols, which constitute a normalized constellation, 
Le., 1xk12 = 1 for all symbols. For TC-MDPSK, additional 
differential encodingldecoding is performed as shown in Fig. 
1. The receiver deinterleaves and then applies soft-decision 
Viterbi decoding. Here, we consider a block interleaver of N ,  
columns (interleaving span) and Nd (interleaving depth) rows 
of memory. The encoder output is written into the memory 
row by row and then read out column by column. The received 
symbols are reordered in the reverse manner. 

The transmitted signal is represented in the baseband as [2] 
00 

e ( t )  = ? j k ’ s ( t  - IC’T,) (1) 
--3o 

where s( t )  is a unit-energy pulse that satisfies Nyquist’s 
conditions for zero intersymbol interference, T, is the symbol 
duration, and 

(2) 
.’E k > TC-MPSK i uk‘ -1%k> TC-MDPSK 

V k f  = 

where z k  denotes the kth convolutional encoder output. Be- 
cause of interleaving, the transmitted signal corresponding to 
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Fig. 1. Baseband system model where T is the symbol period. 

x k  is transmitted as the k’th term of the transmitted sequence, 
as indicated in (1). In the case of ideal interleaving, this prime 
superscript will be omitted. 

The signal is demodulated using a filter matched to s ( t ) .  
Hence, the received sample corresponding to the kth coded 
symbol can be denoted by 

Yk’ = Qk”Uk’ f n k ‘  

where n k t  is a complex-Gaussian random variable with zero 
mean and variance u2 = ( 2 y S ) - l ,  where ys = E,/No.  The 
channel gain Qk’ is modeled as a complex-Gaussian random 
variable having statistical parameters. 

(3) 

- 

( a b ! )  = A ,  i ( ( a k i  - A ) ( a k ,  - A ) * )  = bo (4) 

where the constant mean A denotes the line of sight (LOS) 
and specular components of the received signal, and bo is 
the variance of the diffuse component (Rayleigh fading) of 
the received signal. The normalizations A’ + 2bo = 1 and 
K = A2/2bo enable the Rician channel to be characterized 
by a single parameter K.  For shadowed Rician fading, A is a 
lognormally distributed random variable having the probability 
density function 

0, elsewhere. 

The shadowing model parameters are from [SI. In the follow- 
ing section, the S A P  for the PEP of a TCM scheme will be 
introduced. 

111. PAIRWISEERROR PROBABILITY 

As in [2], we take the Viterbi decoder metric to be Eu- 
clidean, i.e., 

where b k ’  is the estimate of the true channel gain a k 1 . P  = 
, L L ~ ,  where bl and ,LL are the variance of &kt and 
the normalized correlation coefficient between &k,  and a k ! ,  

respectively. Depending on the detection technique used, the 
estimate t i k l  is obtained as follows: 

TC-MPSK 
TC-MDPSK (7) 

A i Qk‘ ak” + & I ,  TC-MPSK with a pilot 
Q k ’  = Y k I - 1 ,  

where is the additive noise term, appearing because of the 
nonzero bandwidth of the pilot-tone extraction filter. This will 
be considered later. We remark that decoding with the first 
estimate is optimal (i.e. in a maximum-likelihood sense) but 
unachieveable while the last two are nonoptimal but easily 
implementable. 

The PEP P ( x  + 2 )  is defined to be the probability of 
choosing the coded sequence 2 = (21,22,. . . , i ~ )  when 
in reality x = ( X I , X ~ ,  . . .  , X N )  was transmitted [l]. Since, 
of the two coded symbol sequences, only the components 
that differ contribute to the PEP, assign the set of subscripts 
k,, (i = 1 , 2 ,  . . e , L ) ,  arranged in ascending order, for which 
x k ,  # 2 k t .  Note that L is the Hamming distance between x 
and 2 .  The smallest possible L,L,; , ,  is known as the code 
diversity. The PEP, by using the fact that the total metric for 
a codeword is the sum of component metrics, is 

P ( x  + 2 )  = Pr{c < 0} (8) 

where 
L 

5 = x g k ; p * b i : ( x k t  - 2 k t ) *  -k Y $ ; p b k : ( x k t  - ? k , ) .  (9) 
a=1 

Let V ,  denote the 2 x 1 column matrix 

V ,  = (&k:  Y k : ) T .  (10) 

E = v , ~ F , v ,  = F ~ F V  (11) 

Thus the decision variable [ can be compactly represented as 
L 

a= 1 

where the dagger denotes conjugate transpose, and V ,  F are 
given by 

V =  ( ” ) ,  F = ( Y  ... 0) (12) 

. . .  

VL . . .  FL 

with 

From (3), (4), and (lo), it follows that each V,  is Gaussian 
with the 2 x 2 covariance matrix 

Ri = ( ,LL*dl&x;i bl ’z?’). (14) 

For the two cross-correlation terms in this, % k ,  ! appears instead 
of as necessitated by (3), because for TC-MDPSK the term 
Q k ;  v k :  - 1 is considered the true channel gain. We also need the 
covariance matrix R of the random vector V .  R is defined as 
the 2L x 2L matrix 

R = i ( [ V  - (V)]*[V - (V)IT).  (15) 

Next we obtain an SAP to the PEP given by (8). 
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A. The SAP 
From (S), the PEP is 

P ( x  + i) = Pr(E < 0) 

= J_O_PdO dE. (16) 

In terms of the characteristic function Gc(v) of E ,  the above 
can be expressed as [4] 

where E > 0, to avoid the singularity at the origin. The 
characteristic function of E is given by [lo, App. B] 

This is termed as a zeroth-order S A P  [6], and co is known as a 
saddle point of 4(s). Also, fortunately, it suffices to compute 
an approximate value of C O .  

Although it is possible to obtain the Mc(s) needed in (20) 
using the characteristic function given in (18), we instead 
utilize an equivalent form (57) (see Appendix I). As will soon 
be evident, the use of this equivalent form of the characteristic 
function immediately confers a range for C O .  Equation (20) 
then becomes 

1 2 L  

+ C l o g -  - log( -s). 
. _  
2=1 

exp (jv(V)t(F-’ - 2jvR*)-’(V)) 
Ge(u) = det(1- 2jvR*F) (18) Differentiating with respect to s yields 

where V,R,  F are defined above. Except for the case of 
Rayleigh fading, the above integral appears to defy an analyt- 
ical solution. It is, however, not difficult to compute the above 
integral numerically, as the absolute value of the integrand 
can be made to decrease to zero quickly as IvI -+ co by 
choosing a suitable E .  Nevertheless, it is desirable to avoid the 
numerical integration of (17) and find an efficient and accurate 
alternative. Therefore, we turn to the S A P  method for this type 
of contour integral [5], [7], [6]. 

As substituting s = jv, (17) can be converted to an 
equivalent contour integral 

D 
P ( x  + = L _ P c ( E )  4 

exp (4(s)) ds, c < 0 (19) - - 

where 

4 ( ~ )  = log(Mc(s)) - log(-s) - sD. (20) 

Here M , ( s )  is the moment generating function of the random 
variable E ,  and the decision threshold D is equal to zero in this 
case because PSK signals have constant envelopes. The basis 
of the SAP is as follows. The above contour of integration can 
be moved to the left (Le., the choice of c ) ,  provided that it does 
not cross any singularities of 4(s), by virtue of the Cauchy 
theorem [ l l ] .  Thus the choice of c is limited to the range 
Real(p-) < c < 0, where p -  is the rightmost singularity 
of 4(s) in the left complex plane. If a c = co can be found 
such that ~‘(co) = 0 and ~ ( c o )  > 0, then consider the vertical 
contour s = co +jy, -co < y < co. Expanding the exponent 
$(s) about the point s = co in a Taylor series and neglecting 
higher order terms, we have 

d(s) = d C O )  - i 4 ( C 0 ) Y 2 .  (21) 

Substituting (21) into (20) and integrating along the above 
contour results in the expression 

Differentiating with respect to s once again yields 

We mention that the 4 i ’ s  are the eigenvalues of R*F, and 
the vi’s are related to the means of the random variables. 
(Definitions of them can be found in Appendix I.) From 
(24), it is seen that ~ ‘ ( c o )  = 0 has 4L solutions. If 4-1 

denotes the smallest negative eigenvalue of R* F @e., the one 
farthest away from the origin), then the solution satisfying 
1/(24-1) < co < 0 is the only one useful to us. Examining 
(24) and (25) shows that when s increases from 1/(24-1) to 
0, #(s) increases from -w to m, and 4 ( s )  > 0. Thus cg 
is unique and is expeditiously obtained via Newton’s method. 
It is also apparent that this root automatically satisfies the 
conditions mentioned above. For the case of Rayleigh fading, 
the above is somewhat simplified as (7%) = 0. 

It should be pointed out that our formulation differs from 
that of [4]. In [4], to find the PEP of a given error event, the 
error event is replaced by an equivalent error event that has the 
same Euclidean distance but equally weighted branches. This 
replacement introduces some imprecision into the estimate. 
Also, the method given in [4] is not suitable for the cases 
of nonideal interleaving and Rayleigh fading, and is only 
applicable to differential detection. 

In sum, the following steps are needed to calculate the 
approximate painvise error probability of any error event: (i) 
obtain R and F, (ii) diagonalize both simultaneously, (iii) 
compute the saddle point using (24) and (25), and finally (iv) 
compute the approximation using (22). 
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B. Ideal Interleaving 

For ideal interleaving/deinterleaving, the covariance matrix 
R (15) of V will be formed by placing Ra's diagonally, the 
other entries of R being zero. Thus 

R1 . . .  0 

. . .  RL 
R = (  ! ) .  (26) 

Now, using this R, the approximate PEP can be found How- 
ever, in order to obtain more insight into the error performance 
of TCM schemes, we next derive the asymptotic behavior of 
this approximation. As mentioned before, it is expressed in a 
product form that is usable in the classical generating function 
method. Because of perfect interleaving/deinterleaving, the 
eigenvalues of R* F can be determined by considering each 2 
x 2 matrix product R5Fa. Let 4i- and 4i+ denote those two. 
From (13) and (14) follows (27) (shown at the bottom of the 
page). Clearly, when /L M 1 and 0' + 0, we have 

In other words, at large E,/No and with reasonably accurate 
estimates (i.e., p M 1) and the 2L eigenvalues of R*F collect 
into two clusters, with L of them belonging to each. By 
substituting these in (24), it can be shown that the saddle 
point is given by 

Substituting this co in (22) and manipulating further, we get 

P ( x  + 2 )  
L T. 

where 

To obtain B ( L ) ,  the first term in (25), which can be shown to 
be negligible providing ,LL M 1, has been neglected. In deriving 
8, we have assumed, without much loss of generality, that P 
is real. This assumption is true for signals with symmetric 
spectra [12]. Also, when the quality of the channel estimates 
is sufficient (i.e., p M 1,p M l), the value of 0 is negative 
(M -0.5). 

1) Ideal TC-MPSK: Here we have &k = Q k .  Thus bl = 
bo, ,LL = 1, and @ = 1. Substituting these values in (30) leads 
to the expression 

P(. -+ 2 )  

which is identical to the Chernoff upper bound (e.g. [9, 
(9,17)]), except the multiplier B ( L ) .  For Rayleigh fading with 
L = 2, the above requires 3.7 dB less than the Chernoff bound. 
As shown in [2], the difference between the exact and the 
Chernoff bound is 3.6 dB. This fact suggests that the above 
approximation is quite accurate. For Rician fading channels, 
the accuracy of (33) decreases with increasing K.  

2) TC-MDPSK: In this case, for any signaling period, the 
preceeding signal provides the channel estimate (7). Hence, 
bl = bo + 02,  and assuming a land mobile channel [2], it 
follows that 

where f d T s  is the maximum normalized Doppler spread. The 
closer 1-1 to unity, the more pronounced the benefits of using a 
code, and the better the approximation (30). Hence, we see 
that two factors degrade the quality of the estimates, one 
being the Doppler spread, and the other being the additive 
noise (appearing as ( E s / N o ) - ' ) .  Unlike pilot-aided detection, 
the channel estimate, being the time-delayed data signal, has 
the same bandwidth as the data signal. Thus even for slow 
fading, the additive noise degrades the quality of the estimates. 
In contrast, for pilot-tone-aided detection systems, as will be 
seen next, the pilot bandwidth approaches zero for slow fading 
( f d T ,  M 0), thus providing an essentially noise-free estimate. 

Substituting [p i2  in (30) results in the expression (35) 
given at the bottom of the next page. Once again, for 
Rayleigh fading (bo  = 0.5,A = 0) this reduces to the 
Chernoff bound (e.g. [9, 9.1191) except the multiplier B ( L ) .  
For ideal differential detection (i.e., very slow fading) fdTs + 

o , J o ( Z ~ f d T , )  M 1 - ( ~ f d T , ) ~ ,  hence the approximate PEP 
varies as ( ~ f d T , ) ' ~ .  This implies that the usual diversity effect 
of coding is applicable to the suppression of error floors as 
well [2]. However, this is not the case for fast fading, as (35) 
indicates. Note also that, unless f d T y  = 0, the approximate 
PEP does not approach 0 as E,/No + 30. This fact suggests 
the existence of error floors. 

The accuracy of (35) will decrease with two increasing 
factors: the Doppler spread and K .  From (34), it is seen that 
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for a given signal-to-noise ratio (SNR), increased K lowers 
the value of bo, thereby decreasing 1p1' as well. 

3) TC-MPSK With a Pilot Tone: In practice, contrary to the 
convenient assumption of ideal coherent detection, the f f k  's 
need to be measured using some technique, such as a pilot tone 
[2] or embedded pilot symbols [13]. Cavers and Ho [2] have 
analyzed the performance of TC-MPSK with a reference pilot 
tone over Rayleigh fading channels. Here, we obtain the error 
performance of this technique over Rician fading channels. To 
evaluate the pairwise error as given by (30), we simply need to 
compute the variance of & k ,  and the covariance between &kt 
and @kt for all ki's. This can be accomplished by specifying 
the pilot-tone filter bandwidth and the fraction of power spent 
on the pilot tone. As in [2], the estimate hk is obtained by a 
pilot-tone extraction filter whose frequency response is 

( 0 ,  otherwise 

where P is the amplitude of the pilot tone, and Bp is the 
bandwidth of the pilot-tone filter. Now the fraction of the total 
power spent on the data signal and the pilot tone is 1/(1 + r )  
and r/(1 + r ) ,  respectively, where r = P'T,. As mentioend 
in 121, the bandwidth of the pilot-tone extraction filter should 
be sufficiently wide to allow for undistorted measurement of 
the fading process. Thus Bp = 2fd. Then, the output of this 
filter is 

(37) 
<k 

&k = f f k  + - 
P 

where <k is a complex Gaussian random variable with zero 
mean and a variance of B,No. It then follows that 

var(bk) = bl 
= bo + 0.5(BJs) ( T) l + r  7,' 

(38) 
bo 

bo + 0.5(B,Ts) (1)~;~ l + r  IPI' = 

where ys now accounts for the total symbol energy spent 
on both the data and pilot tone. The point to note here is 
that when z S / N o  -+ 03, )p)* approaches unity. Thus at large 
SNR's, the pilot-tone technique is essentially equivalent to 
ideal coherent detection. By substituting this in (30), we have 
(39) at the bottom of the next page. Note that, unlike the case 
of differential detection, there doesn't exist an irreducible error 
floor in this case. Moreover, by neglecting the terms containing 

7,' in this and minimizing the term [B,T,(l + r ) / r  + 1 + r] 
with respect to r ,  the optimum power split ratio becomes 

ropt = &E. (40) 

This agrees well with the numerical values observed in [ 2 ] .  AS 
might be expected, the optimum choice of r is solely a function 
of the normalized, maximum Doppler. Also, by substituting 
rapt in (39) and comparing it with (33), TCM schemes detected 
with a pilot tone require 10 log(1 + m)' dB more than 
TCM schemes with ideal coherent detection. 

C. Non-Ideal Interleaving 
For a finite interleaving depth, covariance terms among 

different Vz's must be included in the covariance matrix R 
in (15). For this reason, we need to specify the covariance 
between f f k , ,  and Qk, :  

~ Z J  = ( ( a k :  - ( f f k : ) ) * ( a k j  - ( @ k j ) ) )  

where we have used two correlation models: Bessel and 
exponenlial 1141. TzJ denotes the time delay between ck!k; and 
f f k : .  To find TzJ, we follow the method given in [3]. As 
mentioned previously, the interleaver scrambles the encoder 
output sequence as follows: 

( 2 1 ,  $2, z3,. . . . Zk, 1 . . .} 
{ $1, Z N ,  +1,22N,+1- ' ' ' 7 xki , ' * .} (42) 

i.e., the effect of interleaving is to place the kZth encoder 
output symbol in the k:th position of the transmitted sequence. 
We would like to show the mapping between IC,  and k: ,a = 
1,. . . , L; recall that the xk,'s are the components of the 
transmitted codeword z that differ with those of 2 .  Assuming 
the X k , ' s  are confined to a single row of the interleaver, say 
the first row, we have 

k :=(k , - l )Nd+l ,  ' l = 1 , ' . ' . L .  (43) 

For this assumption to be true, it is essential that the span 
131 of the error event be less than the interleaving span, Le., 
I C L  - IC1 + 1 5 N,. As in [3 ] ,  we assume that (43) holds for 
most of the error events. Hence, the time delay between ak; 
and f f k ;  is given by 

TtJ = (IC: - k:)Ts = (kJ  - k,)NdT,. (44) 

In other words, interleaving/deinterleaving has the same effect 
as transmitting at a longer symbol duration NdT, [12] or, 
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equivalently, as increasing the Doppler frequency by a factor 
of Nd [3]. Now we are in a position to evaluate the covariance 
between V, and V, (1, m = I, . . . , L ) ,  defined as 

T l , m  = $((K - (K))*(V, - (45) 

For TC-MPSK, by using the definition of K's (10) and 
utilizing (41), we have 

where p = 2r fdTS .  Similarly for TC-MDPSK. (See (47) at 
the bottom of the next page.) For the exponential correlation 
channel model, we can simply replace the Bessel function 
with the exponential (41). In the case of TC-MDPSK, we 
have assumed, with little loss of generality, the transmitted 
sequence x to be the all-zero sequence. 

D. Bit Error Probability 

Typically, the average bit error probability of a communi- 
cation system is one of the its most important performance 
measures. A tight upper bound on it is obtained via the union 
bound, which consists of infinitely many terms. Here, we use 
two approaches to compute the union bound. First, based on 
(30), it may be enumerated using a transfer function. In this 
case, the bit error probability of a TCM scheme with ideal 
interleavinddeinterleaving is upper bounded as 

where ko is the number of input bits per encoding interval, 
and the Di's are the product terms in (30), excluding B ( L ) ,  
with each Di being associated with Izk, - 2 k ,  I*. Note that 
the number of distinct Dz7s  is finite and that B(Lmin) is 
included because B ( L )  is a decreasing function of L. The 
transfer function T(  D1, D2, . . . , I )  is determined by a signal 
flow graph having modified branch labels [15]. This bound 
may be strengthened by incorporating more exact (22) instead 
of (30) for some error events, an improvement suggested by 

Second, when (30) breaks down or when finite interleaving 
is considered, (22) must be used to compute the approximate 
PEP, which is not in a product form. As a result, the union 
bound must be truncated to include only the dominant error 
events. This is the approach taken in [2]  to compute the 

WI. 

bit error probability for uniform [15] TCM. The resulting 
approximation to the bit error probability is [2] 

where a(x t 5) is the number of bit errors associated with 
the error event. The choice of N should not be too large, 
which would require an excessive amount of computation, nor 
too small, which would not include a sufficient number of 
dominant error events. N = 4 or 5 appears to be satisfactory 
for trellis codes with Lmin 2 or 3. Also, it should be pointed out 
that this technique will not yield a true upper bound because 
of the truncation. 

IV. EXAMPLES 

In this section, we apply the SAP to analyze the error 
performance of the four state trellis-code shown in Fig. 2, 
which has been obtained from [15]. Cases considered are i) 
4DPSK over Rician channels with either Bessel or exponential 
type correlation, ii) 4 PSK over Rician channels with ideal 
channel measurements, iii) 4DPSK over shadowed Rician 
channels with Bessel correlation, and iv) 4PSK over Rician 
channels with pilot-tone measurements. We remark that the 
exact PEP shown for comparison purposes in some of the 
results is computed by numerical integration of (17) (see 
Appendix 11). 

A. TC-4DPSK Over a Rician Channel 

First of all, Fig. 3 demonstrates the accuracy of the SAP.  
It is clear that the SAP is extremely close to the exact 
value obtained by numerical integration. In Figs. 3 and 4 the 
interleaving depth Nd = 16 appears to be sufficient, while 
Nd = 32 provides better performance than ideal interleaving. 
This anomaly has also been observed in [3] and is attributed 
to the oscillatory nature of the Bessel correlation function. In 
contrast, for an exponential type correlation function, Figs. 
5 and 6 indicate that increasing Nd always improves the bit 
error performance. Secondly, it is observed that an increased 
Rician factor K tends to reduce the interleaving loss due to 
insufficient Nd.  This is due to the fact that for large K, the 
Rician channel approaches the Gaussian channel. The union 
upper bound on the bit error probability obtained via (35) and 
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Fig. 2. Trellis diagram for 4-state, 4PSK TCM scheme [13] 

(48) is off by 1, 2 dB for K = 5, 10 dB, respectively, at 
large E,/No.  For comparison purposes, the SAP given in [4] 
is also plotted in these figures. For K = 10 dB, [4, Eq. (26)] 
is virtually identical to the exact PEP and the SAP given in 
(22), as Figs. 4 and 6 show. For K = 5 dB, however, [4, 
Eq. (26)] overestimates the PEP somewhat, which may be due 
to the fact that the accuracy of [4, Eq. (26)] decreases with 
decreasing K [4]. 

B. TC-4PSK Over a Rician Channel 

Figs. 7 through 9 show the error performance of TC-4PSK 
with ideal channel measurements. They again illustrate the 
accuracy of the SAP,  which is virtually identical to the exact 
result obtained by numerical integration for the Rician channel. 
In Fig. 7, for the Rayleigh fading channel, the exact PEP'S 
have been computed using the techniques given in [2], [3]. For 
ideally interleaved Rayleigh channels, the exact PEP and the 
SAP agree extremely well. From these figures, it is observed 
that the interleaving depth and the normalized Doppler spread 
product NdfdT, should be roughly about 0.3 so that the 
interleaver is as good as an ideal interleaver. As a point of 
comparison, for convolutional coded binary PSK, this product 
should be about 0.1 [12], [17]. Also shown is the upper bound 
on the bit error probability based on the Chernoff bound given 
in [15]. From Figs. 7, 8, and 9, the Chernoff bound is about 
2 dB weaker than (33) for these cases. 

C. TC-4DPSK Over a Shadowed Rician Channel 

In this case, the PEP is obtained by 
00 

P ( x  -+ k )  = 1 P ( x  -+ i l A )  P ( A )  dA. (50) 

E 

0.01 r 

0.001 7 

O O O O l  7 

le-05 7 

le-06 7 

Fig. 3. Approximate bit error rate for 4-state 4DPSK TCM scheme for Rician 
fading with I< = 5 dB. The normalized Doppler fdTs is 0.02 with Bessel 
correlation. 
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Fig. 4. Approximate bit error rate for 4-state 4DPSK TCM scheme for Rician 
fading with I< = 10 dB. The normalized Doppler fdTs is 0.02 with Bessel 
correlation. 

To compute the conditional error probability, the SAP can 
be used and the total integral evaluated using a numerical 
technique. The required interleaving depth appears to be on a 
par with that of Rician channels. From Figs. 10 and 11, the 
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Fig. 5 .  Approximate bit error rate for 4-state 4DPSK TCM scheme for Rician 
fading with li = 5 dB. The normalized Doppler f d T s  is 0.02 with exponential 
correlation. 
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Fig. 6. Approximate bit error rate for 4-state 4DPSK TCM scheme for 
Rician fading with h' = 10 dB. The normalized Doppler fdT, is 0.02 with 
exponential correlation. 

error performance of this code over both light and average 
shadowing channels is close to that of a 5-dB Rician channel. 
This observation is consistent with [4]. 

D. TC-4PSK With a Pilot Tone Over a Rician Channel 

Fig. 12 shows the approximate bit error rate for the TC- 
4PSK scheme with pilot-tone-aided detection. We have con- 
sidered three Doppler rates f d T s  of 0.01, 0.03, and 0.06 and 
found that the corresponding optimum choice of the energy 
ratio T (see (40)) is 0.14. 0.25. and 0.34. resDectivelv. This 

0.1 1 , , , , , , I I 

0 01 

0.001 

0.0001 

le05 

. ,,* 

PId = 8 exact - 
A'd = 6 sap + 

AJd = ffi exact - 

Chernoff - 
approx (33) - 

-" "" 
4 6 8 10 12 14 16 18 20 

&/lvo (dB) 

Fig. 7. Approximate bit error rate for 4-state, 4PSK TCM scheme for 
Rayleigh fading with li = 0. Land mobile with the normalized Doppler f d T s  
being 0.01. 

0 0 0 1  : 

0 0001 7 

1-05 7 

le-06 7 

Fig. 8. Approximate bit error rate for 4-state, 4PSK TCM scheme for Rician 
fading, with li = 5 dB. Land mobile with the normalized Doppler f d T s  being 
0.01. 

agrees well with [2]. For comparison, also shown are the 
performance curves of TC-4PSK with ideal channel gain mea- 
surements and TC-4DPSK for corresponding Doppler rates. It 
is observed that, for f d T s  = 0.01, the performance of the pilot- 
tone technique is within 1 dB of unattainable ideal coherent 
detection and that it outperforms differential detection. 

V. CONCLUSIONS 

This paper derives an SAP for the PEP of TC-MPSK and 
TC-MDPSK over Rician channels. Comparison with the exact 
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Fig. 9. Approximate bit error rate for 4-state, 4PSK TCM scheme for Rician 
fading, with IC = 10 dB. Land mobile with the normalized Doppler f,,Ts 

Fig. 11. Approximate bit error rate for 4-state, 4DPSK TCM scheme for 
average shadowed Rician fading with the normalized Doppler fc,T5 being 

being 0.01. 0.02. 

Fig. 10. Approximate bit error rate for 4-state, 4DPSK TCM scheme for 
light shadowed Rician fading with the normalized Doppler f d T h  being 0.02. 

PEP computed by numerical quadrature integration indicates 
that the S A P  is sufficiently precise (an error between 3 and 
10). Incidentally, by incorporating higher order terms [6] in the 
saddle point method, this error can be further reduced below 
1. It is felt, however, that the zeroth-order approximation 
will suffice for our applications. This technique may also be 
useful for other cases, such as trellis-coded QAM schemes 
[2], where one needs the probability that the decision variable 
is less than a certain threshold (not necessarily zero). For 
ideal interleaving, an asymptotic approximation of the PEP is 
derived which is in a product form. For nonideally interleaved 

Fig. 12. Approximate bit error rate for 4-state, 4PSK TCM scheme for Rician 
fading with a pilot tone, I< = 5 dB. 

Rician type channels, the performance degradation due to the 
finite interleaving capacity can be estimated with the help of 
the SAP approximation. This appears to be an extension of 
the work reported in [3] for the Rician model. The sufficient 
interleaving depth is found to be given by N d f d T ?  E 0.3. 
The SAP approximation alleviates the need for computer 
simulation for evaluating TCM bit error performance over 
mobile fading channels under a variety of channel models and 
limitations. 
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APPENDIX I 
As mentioned before, in order to use the S A P  to compute 

the PEP, the moment generating function of the quadratic < 
is required. For the sake of completeness, we briefly outline 
the steps required to obtain the characteristic functions of <. 
As shown in [lo, App. B], it is possible to diagonalize R and 
F simultaneously. Write 

R = UAUt (51) 

where U is a unitary matrix consisting of the 2L eignevectors 
of R and A is a diagonal matrix whose entries are the 
corresponding eigenvalues of R. Since R is positive definite 
and hence has positive real eigenvalues, it is possible to 
factorize A as 

possible. Such a contour is called the path of steepest descent 

From (17) and (18), write the integrand as exp ( @ ( s ) )  with 
[111. 

Q(s) = S(V)~(F-’ - ZsR*)-l(V) 
- log det(1- 2sR*F) - log ( - s ) .  (58) 

where co is chosen once again such tht ~ ’ ( c o )  = 0. Here 
the above contour passes through co on the real axis and is 
parallel to the imaginary axis. As mentioned above, we can 
deform the above contour to construct the path of steepest 
descent consisting of short, straight segments of equal length 
/As( = 6. As shown by Rice [18] 

A = P ! P T  (52) SO = co and the first segment is vertical. Thus 

s1 = s o  + jS. (61) 
where !P is a diagonal matrix whose entries are the square root 
of the eigenvalues of R. Then the components of the random 
vector V can be made to be independent by the transformation The initial choice of S is given as [5] 

w = !z-*vTV. (53) 

With this new random vector, the Hermitian form ( in (11) 
becomes [ = wTTw where Now (59) becomes 

1 

& =  q”i’ 

since T is also Hermitian and @ is the diagonal matrix of its 
eigenvalues 4i a = (1, . . . ,2L).  The transformation 

r )  = StW (55) 

converts the quadratic form [ as ( = r ) t@~.  The mean of the 
random vector 7 is given by 

(?/) = S+!PUT(V). hboz( 56) 

Now the characteristic function of is given by [lo] 

This form of the characteristic function is most suitable for 
our application at hand, and the associated moment generating 
function Mc(s) is obtained by making the substitution s = 
jv. From a computational point of view, this form requires 
to compute the eigenvalues and eigenvectors of the two 
Hermitian matrices (R and T), which can be accomplished 
easily by the use of a software package such as MATLAB. 

APPENDIX I1 

P ( x  ---f 2)  = r-’ Re exp ( 9 ( s ) )  d s / j  . (63) 
k=O 1 

Starting with the value of the S above, each term of this 
sum can be evaluated using a five-point formula given in [SI. 
One can truncate this series at the k-th line segment when 
the contribution from the k-th term falls below the desired 
accuracy. Then this summation is repeated for 6/2 and 6/4. 
We have found this to yield sufficient accuracy. 
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