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1 ABSTRACT 

Bit error probability evaluation of Tkellis-Coded 
Modulation (TCM) over fading channels is rather 
complicated, and the analytical results are limited 
to loose upper bounds leaving the system designer 
with the only option of simulation. Cavers and Ho 
[l] have derived an ezacl analytical expression for 
pairwise error-event probability. In this paper, using 
a different approach, we give an alternative method 
to compute the ecact pairwise error event proba- 
bility of TCM schemes in Rayleigh or Rician fad- 
ing channels with perfect side information. For ex- 
ample, for a particular TCM scheme, we find the 
asymptotic difference between the exact and the up- 
per bound of the pairwise error event probability to 
be 2.68 dB. As it turns out, for Rayleigh fading, the 
exact pairwise error probability can be calculated in 
closed-form. For the case of Rician fading, however, 
a closed-form expression is apparently impossible to 
obtain. It is observed that an accurate estimate of 
the bit error probability can be obtained by evaluat- 
ing a sufficient number of pairwise error-event prob- 
abilities. Hence, this approach is a computationally 
feasible alternative to the simulation. 

proach. References [2,3,4,5] give several examples of 
such evaluations. 

To compute the exact pairwise error event prob- 
ability for Rician fading channel model, our ap- 
proach is as follows. We note that the Euclidean 
distance, appropriately weighted by fading ampli- 
tudes, between two code words specifies the condi- 
tional pairwise error event probability. And the Eu- 
clidean distance can be viewed as a weighted sum 
of Chi-squared independent random variables, each 
of which having a simple characteristic function. 
Therefore, it  is possible to  compute the exact pair- 
wise error event probability by averaging the condi- 
tional pairwise error event probability with respect 
to  the pdf of the weighted Euclidean distance. As 
will be seen, this approach avoids the residue cal- 
culation altogether and instead uses partial factor 
expansion to  evaluate the pairwise error probability. 
Incidentally, the use of partial factor expansion has 
been proposed, for a somewhat different context, in 
[8], too. 

This paper is organized as follows. Section 2 de- 
rives the basic results. Then we look at several ap- 
plications of the theory in Section 3. Conclusions 
are provided in Section 4. 

2 INTRODUCTION 
3 ANALYSIS 

Bit error probability evaluation of TCM in fading 
channels is extremely complicated and, often, one 
has to resort to time consuming simulation. For the- 
oretical analysis, Divsalar and Simon [2,5] obtained 
upper bounds for the Rician and Rayleigh fading 
channel models with the assumptions of infinite in- 
terleaving, slow fading and perfect channel state in- 
formation. For Rayleigh fading, the upper bound 
1s 

1 

Being in a product form, these upper bounds allow 
the evaluation of the union bound on the bit er- 
ror probability via the transfer function bound ap- 

We shall make the same assumptions as in [1,2]. In- 
finite interleaving depth is assumed so as to break 
the correlation between fading variables leading to 
the memoryless channel model. Coherent detection 
is also assumed. 

As given in [2], the amplitude of the received sig- 
nal is modeled by the well known Rayleigh distribu- 
tion 

For the sake of brevity, we only consider the Rayleigh 
model while for Rician model most of our results can 
be extended, except the closed-form solution. The 
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demodulated symbol for the k-th symbol period can 
be denoted by 

where x k  denotes the transmitted MPSK symbol at 
time k, Y k  denotes the received symbol, P k  is the 
normalized random amplitude with the pdf given by 
Eq. (2), ej'#'k is the phase error term, and ?'&k is a 
complex-Gaussian noise sample with variance 2. 

Let x be the transmitted sequence and the se- 
quence ? # x be the one chosen by the Viterbi de- 
coder. Also let p(x) be the a priori probability of 
transmitting x and a(x ,  2 )  be the number bit errors 
associated with this error event. The union upper 
bound on the average bit error probability is given 
by 

Hence, to determine the average bit error rate, the 
pairwise error event probability should be evaluated 
first. The pairwise error event probability, P ( x  -.+ 2 )  
in Eq. (4), is defined to  be the probability of choos- 
ing the coded sequence 2 = (21, 2 2 , . .  . , i ~ )  when in 
reality x = ( 1 1 ~ x 2 , .  . .,IN) was transmitted. Thus, 
by definition, the pairwise error event probability, 
P(x -+ ?) in Eq. (4) is 

P (x -+? )=Pr{m(y , f ; z )  2 m(y,x;z)lx} (5) 

where m(y, x; z) is the decoding metric used by the 
Viterbi decoder, which, due to the facts that addi- 
tive noise is Gaussian and the availability of per- 
fect channel state information [2,3], takes the form 
IYk - ZkZk12 where z k  is the channel state informa- 
tion. When perfect channel information is available, 
which we assume, the channel state variable z k  be- 
comes p k  ej4k.  

For the k-th step, the maximum-likelihood decod- 
ing metric becomes 

Combining Eqs. (4), (5), it can be shown that the 
conditional pairwise error probability is 

/ r  \ 

where r]  = {i : xi # xi}. So r ]  is the set of in- 
dexes of components, of the two sequences, that dif- 
fer. And the number of elements of 7 denoted by 
L,, or the Hamming distance between the two se- 
quences, is known as the length of the error event. 

To remove the conditionality of P ( x  -* f ( p )  on. p ,  
the above equation has to be averaged over the joint 
distribution of fading variables p 1 ,  p 2 ,  . . . , P k .  In or- 
der to do that, we derive the characteristic function 
of the variable, say y, defined as 

Since 7 is a weighted sum of squares of independent 
random variables, it  can be shown that the charac- 
teristic function of it is 

For the case of Rician fading, the characteristic func- 
tion of y can be obtained by means of an identity of 
the modified zero order Bessel function [p.126-91. 

Hence, in principle, what has to be done to find 
the exact pairwise error event is clear. Invert &(s) 
to obtain P,(y) and then carry out the following 
expectation. 

However, we hasten to add that the inversion is not 
always necessary and show how to evaluate the ex- 
pectation directly in Section 3.2. 

3.1 Upper Bounds 

Before evaluating the exact pairwise error bound for 
some TCM schemes, let us look at the upperbounds 
of Eq. (10). Using the well known identity, &(z) 5 

Right hand side of the above is clearly equal to 
&(s) evaluated at s = &. Hence for Raleigh fad- 

- 
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ing, the upper bound is 

which is identical to the upperbounds obtained by 
Divsa1a.r and Simon except a factor of half. ' 

3.2 Direct Evaluation 

It is possible to  avoid integration twice in order to 
find pairwise error probability. The Laplace inver- 
sion of &(s) given by 

Hence we need to factor ~ ( s ) / s  into partial fractions 
and use the above two identities. Also, for error 
events with repeated Euclidean distances, l/(s+ a)" 
(where n 2 2) terms appear in the above integrand 
which can simply be handled by differentiating both 
sides of the above w.r.t a. Thus, the total integral 
can be evaluated by inspection. 

3.3 Incomplete Channel State Infor- 
mation 

If perfect channel information is not available, the 
channel side information Zk = ej+* .  Note also, if 
both P k  and 4 k  are unknown, the advantage of cod- 
ing, of any sort, is lost. In this case the suboptimum 
decoding metric becomes [5] 

Substituting this in E ~ .  (io), changing the order 
of integration, and using the standard erfc(x) aver- 
aging over exponential density integral (see [3,8]), it 

Arguing as we did in section 2, it can be shown that 

E k e  I z k  - 2 k l 2 p k  follows that 
P(x + f l ~ )  = Q (w) -(W 

o + j w  

P ( x  + a) = - J Q(s)ds.  (14) 
Notice in this expression we have p instead of p 2 ,  
which makes a drastic difference as far as the char- 
acteristic functions are concerned. So one has to 
resort to numerical evaluations in this case. 

2nj o - j w  

where 

In this section, we set out to apply the results of 
section two for several examples. As has been men- 
tioned before, to compute the bit error probability 
for TCM, a sufficient number of pairwise error event 
probabilities have to  be computed first. A good ap- 
proximation to the bit error probability is [l] 

Clearly, 

(x + = Inv Laplace{Q(s)) at 7 = ( 1 6 )  

Furthermore, it is seen that Q ( s )  can always, 
Rayleigh fading only, be partial factored to terms of 

(21) 
1 

which have the following Pb x c a ( x  * %)P(x --* 2) form and rh 
two properties: 

ds = 1 

where a(x + ;i) is the number of bit errors associ- 
ated with the error event and 12 is the number of 
input bits per encoding interval. (17) 

4.1 Trellis Coded 4-PSK 

For the TCM shown in Fig l . ,  consider the pairwise 
27rj l-jm ( S  + a ) d m d s  = m ' ( 1 8 )  error event between two sequences x = {O,O,O} and 

and 

1 1 '  1 o + j w  
- 
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f ={2,1,2}. Applying Eqs. (9), (16), (17) and (18), 
the error event probability given by (10) is 

To compare this exact expression with the bound 
given in Ineq. 1, i t  can be shown that for large 
r the Taylor expansion of the above equation is 
roughly 5/16r3 while Ineq.1 gives 2/r3. Therefore, 
the asymptotic difference between the exact and the 
upper bound is 2.68 dB. For the second error event, 
between sequences x={O,O,O,O} and ?={2,3,3,2}, the 
error event probability can be obtained similar to the 
above. Again, it can be shown that the asymptotic 
difference between the exact and the upper bound is 
2.2dB. 

The above two exact error event probabilities are 
compared with Divsalar and Simon upper bounds 
in Fig. 2. The difference between the exact and 
upper bound is just about what has been predicted 
above. Moreover, it is noticeable that the difference 
between the first error event (length 3) and the sec- 
ond error event (length 4) is more than 4dB, which 
suggests that  only short error events be considered 
when evaluating the bit error probability. It is also 
seen that the discrepancy between the exact pair- 
wise error probability and the bound given in [2] 
decreases as the length of the error event increases. 

The overall error upper bound based on trans- 
fer function method for this example is given in [3]. 
Fig. 3. shows the bit error probability obtained by 
simulation, approximation based on two exact error 
event probabilities derived in this section and trans- 
fer function upper bound given in [3]. One can see 
that approximate one is indeed close to simulation 
results, while the upper bound is off by 2-3 dB. 

4.2 Rician Fading 

Here we derive the pairwise error probability for the 
TCM in Fig. 1 for Rician fading channel. Con- 
sider the pairwise error event between two sequences 
x ={O,O,O} and f ={2,1,2}. As in Eq. (9), the car- 
acteristic function &(s) can be obtained. Inserting 
this in Eq. (14) results in an integral which can be 
computed numerically. Fig. 4 shows the approxi- 
mate bit error probability, simulation results, and 
upper bound given in [2]. The approximate bit er- 
ror probability was obtained using numerical inte- 
gration of the above equation. It is seen that for 
A’ = 5dB and K = lOdB cases, the approximate bit 
error probability agrees very closely with the simu- 
lation results. 

5 CONCLUSIONS 

In this paper, we have derived an exact expression 
for the pairwise error event probability, which can 
be computed rather easily. While our result is valid 
for both Rayleigh and Rician fading models, for the 
Rayleigh case the evaluation is particularly simple. 
For the Rician fading model one has to  resort to  
numerical integration methods. In comparison with 
Cavers and Ho [l], our method circumvents residue 
calculation altogether. On the other hand, their 
method is applicable in more cases, albeit not with- 
out considerable computation, while our method is 
limited to PSK signal sets and ideal channel state 
information. By computing the exact pairwise error 
probability for the shortest error event, it is possible 
to obtain a lower bound for the bit error probability 
[5]. The close agreement between the approximate 
bit error probability evaluated using a few short er- 
ror events and the simulation results suggests that 
this approximation may alleviate the need for com- 
puter simulation. 
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Figure 3: (1 pper 1>ound, approximate and simulated 
DER. for 4 - 1 5 l i  'TChl schemo for Rayleigh fading. 
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