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Spectrum and Energy Consideration of Wireless
Communications

With the increase of data volume, service types and devices, wireless
communication face

Spectrum scarcity

Limited spectrum for wireless applications
(33% for all commercial applications in 225 to 3700 MHz);
Spectrum reallocation is expensive and slow
(70 MHz band costs 19.8 billion dollars).

Energy issue

Huge energy consumption without careful design
(communication industry may use 51% of global electricity in 2030);
Difficult for powering massive amount of IoT devices.
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Cognitive Radio and Energy Harvesting

Cognitive radio
Energy harvesting
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ML for wireless spectrum & energy intelligence

Machine learning, a data-driven methodology, is promising for handling
relevant spectrum and energy management problems.

With ML as a primary tool, three research contributions are made

Joint sensing-probing-transmitting control for EH CR

Optimal transmission for an EH sensor with data priority consideration

Cooperative spectrum sensing under spectrum heterogeneity
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Sensing-probing-transmitting

Harvest: energy package arrives each time slot (uncontrollable)

Sense: measure channel output to detect and track PU activity

Probe: estimate CSI via pilot sequence

Transmit: based on CSI, adapt transmission power and send data
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Sensing-probing-transmitting

Harvest: energy package arrives each time slot (uncontrollable)

Sense: measure channel output to detect and track PU activity

Probe: estimate CSI via pilot sequence

Transmit: based on CSI, adapt transmission power and send data

Problem

Based on energy status, PU activity and CSI, the node needs to decide
whether or not to sense and probe, and how much power for transmission,
in order to maximize long-term throughput.
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Two-stage MDP for long-term optimization

Goal: solving a policy π∗ that maximizes expected throughput

π∗ = arg max
π

{
E

[ ∞∑
t=0

γtr(st , π(st))

]}
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After-state simplification
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π∗(s) = arg max
a∈A(s)

{
r(s, a) + γE[V ∗(s ′)|s, a]

}
= arg max {immed. reward + expected furture value}
= arg max

a∈A(s)
{r(s, a) + J∗( %(s, a)︸ ︷︷ ︸

after-state β

)}

6 / 20



Solve J∗ with RL

Exactly solving J∗ requires the pdfs of EH and fading processes, which can
be hard to obtain.
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Solve J∗ with RL

Exactly solving J∗ requires the pdfs of EH and fading processes, which can
be hard to obtain.

We consider to (approximately) learn J∗ with RL algorithm without
distribution information.

EH/fading
sample RL

7 / 20



Learned policies

(a) Sensing-probing sub-policy (b) Transmitting sub-policy

aSP : ‘00’, no sense; ‘10’, sense but no probe; ‘11’, sense and probe
Energy for: sense, 1; probe, 2; transmit, {no tx, 3, 4, 5, 6}.
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Selective transmission for EH sensor

Incorporating data-centric consideration

packets associated different priorities

drop low priority packet to save energy
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Selective transmission for EH sensor

Problem

Based on EH, energy status, CSI and packet priority, the node needs to
decide whether or not to send each packet, in order to maximize the total
priority values of sent packets.
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MDP formulation with after-state
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Structural results of J∗ and π∗

Theorem

After-state value function J∗(p) is differentiable and non-decreasing.

Theorem

The optimal policy π∗ has the following structure

π∗([b, h, d ]) =

{
1 if b ≥ h and d ≥ J∗(b)− J∗(b − h),

0 otherwise.
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Learn J∗ with monotone neural network

Fitted
Value

Iteration

z-1
Data set

FMNN

new MNN

current MNN

if
Cnvg.
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Learning efficiency
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CSS under spectrum heterogeneity

Spectrum heterogeneity

SUs at different spatial locations may
experience different spectrum
statuses.
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CSS under spectrum heterogeneity

Spectrum heterogeneity

SUs at different spatial locations may
experience different spectrum
statuses.

Problem

Under spectrum heterogeneity, how to exploit neighbor information to fuse
SU observations for improving sensing performance.
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Fuse data via MAP-MRF

MAP-MRF CSS framework

Compute maximum a posterior estimation

xMAP = arg max
x

{
ΦX (x)

N∏
i=1

γxi fY |X (yi | xi )

}
,

weight γ > 0 introduces tradeoff

Existing works in references [99–102] fuse data via solving marginal
distributions.
Compared with [99–102], the proposed MAP-MRF can be solved more
flexibly and efficiently.
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Three CSS algorithms based on MAP-MRF

Via graph cut theory, GC-CSS algorithm solves xMAP exactly; complexity
order: O(N · |E|2).

17 / 20



Three CSS algorithms based on MAP-MRF

Via dual decomposition theory, DD-CSS estimates xMAP distributedly (at
cluster-level); complexity: O(T · Nl · |El |2).
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Three CSS algorithms based on MAP-MRF

Distributed network: clusters with size 1, DD1-CSS becomes fully
distributedly message passing algorithm; guaranteed for solving xMAP ;
complexity order O(T · |N (i)|3).

17 / 20



Three CSS algorithms based on MAP-MRF

Existing algorithms (based on belief propagation) only work in distributed
setting; complexity: O(T · |N (i)| · 2|N (i)|).
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Performance comparison
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Conclusion

In EH CR, the joint optimization of sensing, probing and transmitting
is modeled as a two-stage MDP, whose structure is exploited for
after-state simplification.

In EH WSNs, the optimal selective transmission policy is investigated,
which is proved to be threshold-based and derived by training a
monotone neural network.

CSS under spectrum heterogeneity is formulated via MAP-MRF,
which can be effectively solved by graph cut theory and dual
decomposition theory with polynomial complexity.
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Future research

Optimal sensing-probing policy without primary user model

Multi-link selective transmission for energy-harvesting sensors

Learn MRF model from data
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Thank you!
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