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RF energy harvesting
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Problem 1 - imperfect channel state information?

()
D h = ph +\/1—p2nl‘

Hybrid AP —> DL Energy Transfer
<« = == UL Data Transfer

where h —True channel

* p=1 Perfect CSI h =G5l
p — Correlation coefficient

 0<p<1 Imperfect CSI n — Noise

UNIVERSITY OF

% ALBERTA '



Negative effects for non-EH links

imperfect CSI p = 0.3,0.7

Receiver

Transmitter

Transmitter: single antenna E

Receiver: 4 antennas

Maximal ratio combining (MRC)

Imperfect CSI effects: I e
* Diversity gain loss SNR (dB)

* Coding gain loss
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State of the art of imperfect CSI on WPCNs

 Most works - perfect CSI but not imperfect
CSlI [1-3].

 Some imperfect CSI for optimization, but
no performance analysis [4-6].
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Contributions

e Statistical distribution functions of received SNR
at AP

* Performance analysis

* Asymptotic analysis in high SNR region
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SNR at the AP
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T = energy transfer time fraction
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P = transmit power of AP
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| Delay-limited |

Received signal at the AP: y, = /1E—_"T gs + n.
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Average throughput

EDF of $NRi(h¢ #Pthe AP
e S [1() (2

n=1 m=1

a(n n)+1 %1 - Oé(m ’I’L) )
where K;);n(@ﬂ)ﬁ“i‘éfd Béltel functloCrTY\ ogfﬁ'@/ Lcozrrd» krerd: —a(m,n) — 1

20
expresses K,,(+) in terms of Meijer G-function G02[:] — calculate integral— (b)

Average throughput of delay-limited mode
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Numerical results

 Better CSI, larger
throughput

 Higher SNR, larger

throughput
0281 O Simulation N = 2| |
* Simltion ¥ = 5 * More antenna, larger
nalysis
02 s 2|0 2L5 3|0 3|5 45 45 t h rou g h p u t
7 (dB)
Delay-limited throughput mode versus SNRy fort =
0.4, = 0.6, and R = 0.5 bits/s/Hz.
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Numerical results

 Better CSI, larger
throughput

* Larger energy
conversion efficiency,
better throughput

Average Throughput (bits/s/Hz)

O Simulation n = 0.9 ¢ Optlmal throughpUt
1071 % Simulation n = 0.6 | .
Analysis ! depends on quality of
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 C S I

T

Delay-limit throughput versus EH time 7 for P = 10 dBm
and N = 3.
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Problem 2 — EH circuits are not linear!

Backscatter-based passive RFID WPT-enabled active RFID

Energy signal
Energy signal REID \
8 reader \\"“NM Rechargeable
RFID \ \ battery
reader \ \“‘ Energy harvesting
circuit
MW\ mm T s s ﬁﬂ' YIC— L |
v

Receive energy l . | — > |
Backscatter I Information - I
~ modulated o—P4 > signal ? | I
information signal l : : I
1 | —T O '
— = = I | ,/'/:, |
— e
T ! Information | Information,
RFID tag transmitting — — — — _ _ __ bits_ _ |
circuit RFID tag

Figure: S. Bi, et. al, “Wireless powered communication networks: An overview,” IEEE Wireless Commun., 2016. >



Problems of linear EH model
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New nonlinear EH model (NLEH)
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Three parameters
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Asymptotic version
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Nonlinear EH models

NLEH
erf(a(P, + b)) — erf(ab)

X = Phax
et 1 — erf(ab)

where a, b, and Py, are parameters.
Asymptotic Model (AM)
— kP,
PAM:PmaX<1—€ X )
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Comparison of nonlinear EH models

e Piece-wise model[1]

e Rational model (RM)[2]
e Sigmoid model[3]

* NLEH

- AM

iy o By,
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Comparison of Nonlinear EH Models
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UNIVERSITY OF

P ALBERTA



System model
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Wireless device

Power station

Power station (PS) : N = 1 antennas
Wireless device (WD): single antenna

Information receiving station (IRS): M = 1 antennas
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Information
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Performance:

Average throughput

BER
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Average throughput

SNR at the IRS
_ TnPhQQGWD GIRS l }gl |2
B (1 —17)o? *

where T = energy harvesting time, n = power amplify efficiency,
(), = path loss factor, Gy,p = antenna gain of WD,
Grs = antenna gain of IRS, and o2 = noise power.

Average throughput of delay-tolerant mode

(L —4) /Oo 1 gN-le=
Rpr = Ipng— — —dx,
PEETT ) Sy M\ eq (Br) ) (eq (Ba)) ™

where P, is the input power at WD with antenna gains and path loss. I,,(+) is given in
Appendix B.2.

Integration = Generalized Gauss-Laguerre quadrature
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Numerical

results
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Analysis
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Average throughput of the delay-tolerant mode versus P;, T =
0.6, N = 2,and M = 2. The markers represent simulation points.
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P; — oo, nonlinear
models have saturation.

P, — oo, linear model
increases without
bound.
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Numerical results

Average Throughput (bits/s/Hz)
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 More antenna, better
throughput.

* N> 7,throughput
flatten.

* LM, no saturation.
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Conclusion

> In WPCN

* Derived exact & asymptotic OP for delay-limited throughput
and EC for delay-tolerant throughput.
* Derived exact & asymptotic BER and SER.

> EH models

* Proposed NLEH & AM to model energy harvesters.

* Demonstrated the superiority of NLEH and AM by comparing
RMSE with sigmoid, piece-wise, and RIV.

* Derived delay-limited throughput, delay-tolerant throughput,
and BER for NLEH, AM, LM, and RM.
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Future research

» MIMO WPCN systems.

» Imperfect CSI with non-orthogonal multiple access (NOMA)
assisted WPCNs.

> NLEH model in simultaneous wireless information and
power transfer (SWIPT) systems.
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