Performance Analysis of Wireless Powered Communication Networks (WPCNs) with Imperfect CSI and Nonlinear Energy Harvesters

Danyang Wang MSc Final Examination

Department of Electrical and Computer Engineering University of Alberta

24th August 2020

- □ Radio Frequency (RF) Energy Harvesting
- □ Major Contributions
 - Analysis of Imperfect Channel State Information (CSI)

- Two New Nonlinear EH Models
- Conclusion and Future Research

RF energy harvesting

[1] X. Lu et al , "Wireless network with RF energy harvesting: A contemporary survey," *IEEE Commun. Surveys. Tuts.*

Problem 1 - imperfect channel state information?

where h - True channel

- $\hat{h} CSI$
- ho Correlation coefficient
- $0 \le \rho < 1$ Imperfect CSI

• $\rho = 1$ Perfect CSI

n – Noise

Negative effects for non-EH links

State of the art of imperfect CSI on WPCNs

- Most works perfect CSI but not imperfect CSI [1-3].
- Some imperfect CSI for optimization, but no performance analysis [4-6].

[1] W. Huang et al , "On the performance of multi-antenna wireless-powered communications with energy beamforming," TVT 2016.
 [2] N. Deepan et al, "On the performance of wireless powered communication networks over generalized κ-μ fading channels," Physical Communication. 2019.

[3] A. Almradi, "Information and energy beamforming in MIMO wireless powered systems," in Proc. GLOBE-COM, 2016.

[4] G. Yang et al, "Throughput optimization for massive MIMO systems powered by wireless energy transfer," IJSAC 2015.

[5] Y. Wu et al, "Robust resource allocation for secrecy wireless powered communication networks," COML,, 2016.

[6] Y. Liu, K.-W. Chin, and C. Yang, "Uplinks schedulers for RF-energy harvesting networks with imperfect CSI," TVT, 2020.

- Statistical distribution functions of received SNR at AP
- Performance analysis

• Asymptotic analysis in high SNR region

EDF of \$1 Bt(the atthe AP

$$F_{\gamma_A}(x) \stackrel{(a)}{=} \sum_{n=1}^{N} \sum_{m=1}^{N} \frac{2B(m,n)}{c\overline{\gamma}} \int_{0}^{x} \left(\frac{z}{c\overline{\gamma}}\right)^{\alpha(m,n)} K_{n-m}\left(2\sqrt{\frac{z}{c\overline{\gamma}}}\right) dz$$

$$\stackrel{(b)}{=} \sum_{\substack{n=1\\ \nu = 1}}^{N} \sum_{\substack{n=1\\ \nu = 1}}^{N} \frac{B(m,n)}{(\alpha \beta)} x^{\alpha(m,n)+1} G_{1,3}^{2,1} \left(\frac{x}{n-m} \left| \frac{-\alpha(m,n)}{n-m} - \alpha(m,n) - 1 \right. \right)$$
where $K_{\nu}(\cdot)$ in terms of Meijer G-function of the second kind. $-\alpha(m,n) - 1$ by expresses $K_{\nu}(\cdot)$ in terms of Meijer G-function $G_{02}^{20}[\cdot] \rightarrow$ calculate integral \rightarrow (b) Average throughput of delay-limited mode

$$R_{DL} \approx \begin{cases} R(1-\tau) \left[1 - \left(1-\rho^2\right)^{2(N-1)} \left(\ln\left(\frac{c\overline{\gamma}}{\gamma_{th}}\right) - 2\gamma_{EM}\right) \frac{\gamma_{th}}{c\overline{\gamma}} \right], & 0 \le \rho < 1, \\ R(1-\tau) \left[1 - \frac{1}{\Gamma^2(N)} \left(\ln\left(\frac{c\overline{\gamma}}{\gamma_{th}}\right) - 2\gamma_{EM}\right) \left(\frac{\gamma_{th}}{c\overline{\gamma}}\right)^N \right], & \rho = 1. \end{cases}$$

Numerical results

Delay-limited throughput mode versus SNR $\overline{\gamma}$ for $\tau = 0.4$, $\eta = 0.6$, and R = 0.5 bits/s/Hz.

- Better CSI, larger throughput
- Higher SNR, larger throughput
- More antenna, larger throughput

Numerical results

Delay-limit throughput versus EH time τ for P = 10 dBm and N = 3.

- Better CSI, larger throughput
- Larger energy conversion efficiency, better throughput
- Optimal throughput depends on quality of CSI

Problem 2 – EH circuits are not linear!

Figure: S. Bi, et. al, "Wireless powered communication networks: An overview," IEEE Wireless Commun., 2016.

Problems of linear EH model

[1] T. Le, K. Mayaram et.al, "Efficient far-field radio frequency energy harvesting for passively powered sensor networks," *IEEE J.Solid-State Circuits*, 2008.

- Widely used
- Inaccurate
- Overly simplistic
- Design issues

New nonlinear EH model (NLEH)

- Newly proposed
- Three parameters
- Accurate
- Asymptotic version

NLEH

$$P_{\text{NLEH}} = P_{\text{max}} \left[\frac{\operatorname{erf}(a(P_r + b)) - \operatorname{erf}(ab)}{1 - \operatorname{erf}(ab)} \right]$$

where a, b, and P_{max} are parameters.

Asymptotic Model (AM)

$$P_{\rm AM} = P_{\rm max} (1 - e^{-\kappa P_r})$$

Comparison of nonlinear EH models

- Piece-wise model[1]
- Rational model (RM)[2]
- Sigmoid model[3]
- NLEH

$$P_{PW} = \begin{cases} \eta P_i, & P_i < P_{th}, \\ \eta P_0, & P_i \ge P_{th}, \end{cases}$$

$$P_{RM} = \frac{aP_i + b}{P_i + c} - \frac{b}{c} (\mathbf{x}_k - \mathbf{y}_k)^2$$

$$P_{S} = P_{max} \frac{1 - e^{-uP_i}}{1 + e^{-u(P_i - v)}} \mathbf{y}_k$$

• AM

[1] Y. Dong et al, "Performance of wireless powered amplify and forward relaying over Nakagami-*m* fading channels with nonlinear energy harvester," *IEEE Commun. Lett.*, 2016.

[2] Y. Chen et al, "New formula for conversion efficiency of RF EH and its wireless applications," *IEEE Trans. Veh. Technol.*, 2016.

[3] E. Boshkovska, et al, "Practical non-linear energy harvesting model and resource allocation for SWIPT systems," *IEEE Commun. Lett.*, 2015.

Comparison of Nonlinear EH Models

NLEH achieves the minimum RMSE

System model

Power station (PS) : $N \ge 1$ antennas

Wireless device (WD): single antenna

Information receiving station (IRS): $M \ge 1$ antennas

Performance:

Average throughput

BER

Average throughput

SNR at the IRS

$$\gamma = \frac{\tau \eta P_h \Omega_2 G_{\rm WD} G_{\rm IRS} ||\mathbf{g}||^2}{(1-\tau)\sigma^2},$$

where $\tau =$ energy harvesting time, $\eta =$ power amplify efficiency, $\Omega_2 =$ path loss factor, $G_{WD} =$ antenna gain of WD, $G_{IRS} =$ antenna gain of IRS, and $\sigma^2 =$ noise power.

Average throughput of delay-tolerant mode

$$R_{DT} = \frac{(1-\tau)}{\Gamma(N)\Gamma(M)} \int_0^\infty I_{M-1}\left(\frac{1}{cq\left(\bar{P}_t x\right)}\right) \frac{x^{N-1}e^{-x}}{\left(cq\left(\bar{P}_t x\right)\right)^M} dx,$$

where \overline{P}_t is the input power at WD with antenna gains and path loss. $I_n(\cdot)$ is given in Appendix B.2.

Integration → Generalized Gauss-Laguerre quadrature

Numerical results

- $P_t \rightarrow \infty$, nonlinear models have saturation.
 - $P_t \rightarrow \infty$, linear model increases without bound.

Average throughput of the delay-tolerant mode versus P_t , $\tau = 0.6$, N = 2, and M = 2. The markers represent simulation points.

Numerical results

Average throughput of the delay-tolerant mode versus N for $P_t = -15$ dBm, , $\tau = 0.7$, $\eta = 0.6$, and M = 2. The markers represent simulation points.

- More antenna, better throughput.
- *N* > 7, throughput flatten.
- LM, no saturation.

Conclusion

In WPCN

- Derived exact & asymptotic OP for delay-limited throughput and EC for delay-tolerant throughput.
- Derived exact & asymptotic **BER** and **SER**.
- EH models
 - Proposed NLEH & AM to model energy harvesters.
 - Demonstrated the superiority of NLEH and AM by comparing RMSE with sigmoid, piece-wise, and RM.
 - Derived delay-limited throughput, delay-tolerant throughput, and BER for NLEH, AM, LM, and RM.

> MIMO WPCN systems.

Imperfect CSI with non-orthogonal multiple access (NOMA) assisted WPCNs.

NLEH model in simultaneous wireless information and power transfer (SWIPT) systems.

Thank You!