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Outline

❑ Radio Frequency (RF) Energy Harvesting 

❑ Major Contributions 

❑ Conclusion and Future Research

▪ Analysis of Imperfect Channel State Information (CSI)

▪ Two New Nonlinear EH Models
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RF energy harvesting
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[1] X. Lu et al , “Wireless network with RF energy harvesting: A contemporary survey,” IEEE 
Commun. Surveys. Tuts.



Problem 1 - imperfect channel state information? 

෠h = 𝜌h + 1 − 𝜌2n

True channelh −
෠h −CSI
𝜌 − Correlation coefficient

n − Noise

where

• 𝜌 = 1 Perfect CSI 

• 0 ≤ 𝜌 < 1 Imperfect CSI 
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Negative effects for non-EH links

Imperfect CSI effects:

• Diversity gain loss

• Coding gain loss

Maximal ratio combining (MRC) 

Transmitter: single antenna

Receiver: 4 antennas

Transmitter

Receiver

…
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[2] N. Deepan et al, “On the performance of wireless powered communication networks over generalized κ-μ fading channels,” Physical 
Communication. 2019.
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[4] G. Yang et al , “Throughput optimization for massive MIMO systems powered by wireless energy transfer,” IJSAC 2015.
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[6] Y. Liu, K.-W. Chin, and C. Yang, “Uplinks schedulers for RF-energy harvesting networks with imperfect CSI,” TVT, 2020.
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• Some imperfect CSI  for optimization, but 
no performance analysis [4-6].

State of the art of imperfect CSI on WPCNs

• Most works - perfect CSI but not imperfect 
CSI [1-3].
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Contributions

• Statistical distribution functions of received SNR 
at AP

• Performance analysis

• Asymptotic analysis in high SNR region
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SNR at the AP

𝛾𝐴 = 𝑐 ҧ𝛾
∥መ𝐡𝑯𝐡∥𝟐

መ𝐡𝐻መ𝐡

∥ො𝐠𝐻𝐠∥𝟐

ො𝐠𝐻ො𝐠

where c =
𝜏𝜂

1−𝜏
, ҧ𝛾 =

𝑃

𝜎2
.

Hybrid AP

User

DL Energy Transfer

h

UL Data Transfer

g

Maximal ratio transmission (MRT)  with 𝐟 =
መ𝐡

መ𝐡
. 

MRC with combining weight vector ො𝐠𝐻. 

Energy harvested at the user: 𝐸ℎ = 𝜂𝜏 𝑃𝐟𝐻𝐡
2

= 𝜂𝜏𝑃
∥መ𝐡𝑯𝐡∥𝟐

መ𝐡𝐻መ𝐡
.

Received signal at the AP: 𝑦𝐴 =
𝐸ℎ

1−𝜏
𝐠𝑠 + 𝐧.

𝜏 = energy transfer time fraction
𝜂 = energy conversion efficiency
𝑃 = transmit power of AP
𝜎2 = noise power

Average 
Throughput

Delay-limited

Delay-tolerant

Reliability
BER

SER

codeword

codeword codeword

Transmission block

buffer



9

Average throughput

PDF of SNR (𝛾𝐴) at the APCDF of 𝛾𝐴 at the AP

Average throughput of delay-limited mode

where R is transmission rate.

where 𝛾𝑡ℎ = 2𝑅 − 1.

expresses 𝐾𝑣 ∙ in terms of Meijer G-function 𝐺
20
02 ∙ → calculate integral→ (b)

where 𝐾𝑣 ∙ is modified Bessel function of the second kind.



Numerical results

• More antenna, larger 
throughput

• Better CSI, larger 
throughput

Delay-limited throughput mode versus SNR ഥ𝛾 for 𝜏 =
0.4, 𝜂 = 0.6, and 𝑅 = 0.5 bits/s/Hz.

• Higher SNR, larger 
throughput
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Numerical results

Delay-limit throughput versus EH time 𝜏 for 𝑃 = 10 dBm 
and 𝑁 = 3.

• Larger energy 
conversion efficiency, 
better throughput

• Optimal throughput 
depends on quality of 
CSI 
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• Better CSI, larger 
throughput



Problem 2 – EH circuits are not linear!

Figure: S. Bi, et. al, “Wireless powered communication networks: An overview,” IEEE Wireless Commun., 2016.
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Problems of linear EH model

• Widely used

• Overly simplistic

• Inaccurate

• Design issues

[1] T. Le, K. Mayaram et.al, “Efficient far-field radio frequency energy harvesting for 
passively powered sensor networks,” IEEE J.Solid-State Circuits, 2008.
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New nonlinear EH model (NLEH)

• Newly proposed

• Three parameters

• Accurate

• Asymptotic version
0
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Nonlinear EH models

NLEH

Asymptotic Model (AM)

where  𝑎, 𝑏, and 𝑃max are parameters.
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Comparison of nonlinear EH models

• Piece-wise model[1]

• Rational model (RM)[2]

• Sigmoid model[3]

• NLEH

• AM

RMSE= ∑ 𝑥𝑘 − 𝑦𝑘
2

𝑥𝑘 = model 
𝑦𝑘 = measured

[1] Y. Dong et al, “Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear 
energy harvester,” IEEE Commun. Lett., 2016.
[2] Y. Chen et al, “New formula for conversion efficiency of RF EH and its wireless applications,” IEEE Trans. Veh. Technol., 2016.
[3] E. Boshkovska, et al, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Commun. 
Lett., 2015.
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Comparison of Nonlinear EH Models
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System model

Power station

Information 

receiving station

Wireless device

Power station (PS) : N ≥ 1 antennas 

Wireless device (WD): single antenna 

Information receiving station (IRS): M ≥ 1 antennas 

Average throughput

BER

Performance:
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Average throughput

SNR at the IRS

where 𝜏 = energy harvesting time, 𝜂 = power amplify efficiency,
Ω2 = path loss factor, 𝐺𝑊𝐷 = antenna gain of WD,
𝐺𝐼𝑅𝑆 = antenna gain of IRS, and 𝜎2 = noise power.

Average throughput of delay-tolerant mode

where ത𝑃𝑡 is the input power at WD with antenna gains and path loss. 𝐼𝑛 ∙ is given in 
Appendix B.2.   

Integration → Generalized Gauss-Laguerre quadrature



Numerical results

Average throughput of the  delay-tolerant mode versus 𝑃𝑡, 𝜏 =
0.6, 𝑁 = 2, and 𝑀 = 2. The markers represent simulation points.

• 𝑃𝑡 → ∞,nonlinear 
models have saturation.

• 𝑃𝑡 → ∞, linear model 
increases without 
bound. 
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Numerical results

Average throughput of the  delay-tolerant mode versus N for 
𝑃𝑡 = −15 dBm, , 𝜏 = 0.7, 𝜂 = 0.6, and 𝑀 = 2. The markers 
represent simulation points.

• More antenna, better 
throughput.

• LM, no saturation.

• N > 7, throughput 
flatten.



Conclusion
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➢ In WPCN

➢ EH models

• Proposed NLEH & AM to model energy harvesters.
• Demonstrated the superiority of NLEH and AM by comparing 

RMSE with sigmoid, piece-wise, and RM.
• Derived delay-limited throughput, delay-tolerant throughput, 

and BER for NLEH, AM, LM, and RM.

• Derived exact & asymptotic OP for delay-limited throughput
and EC for delay-tolerant throughput.

• Derived exact & asymptotic BER and SER.



Future research

➢ Imperfect CSI with non-orthogonal multiple access (NOMA) 
assisted WPCNs.

➢NLEH model in simultaneous wireless information and 
power transfer (SWIPT) systems.

➢MIMO WPCN systems.
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Thank You!
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