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Abstract

Cognitive radio is one of the most promising technologies to address the spectrum

scarcity problem. Cognitive radio requires spectrum sensing, which is used by un-

licensed users to opportunistically access the licensed spectrum. Spectrum sensing

using energy detection offers low-cost and low-complexity. In this thesis, a com-

prehensive performance analysis of energy detection based spectrum sensing is de-

veloped. Detection performance over composite (fading and shadowing) channels

is first investigated using the K and KG channel models. To further facilitate anal-

ysis of energy detection over different wireless channels, a unified channel model

based on a mixture gamma distribution is developed. The unified model can accu-

rately represent most existing channel models. A single-value performance metric,

the area under the receiver operating characteristic curve, is proposed to measure

the overall detection capability, and is investigated over various wireless fading

channels. The energy detection based cooperative spectrum sensing is also stud-

ied, which can largely improve the detection performance. Since spectrum sensing

is required to identify activities of licensed users at a very low signal-to-noise ra-

tio (SNR), performance of energy detection with low SNR is also analyzed in this

thesis.
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Chapter 1

Introduction

1.1 Wireless Communications

“In the new era, thought itself will be transmitted by radio.”

∼ Guglielmo Marconi [1931]

Radio communications have grown tremendously since the early development

in the late 19th and early 20th century, and now have impacted people’s lives in

every corner of the globe. As a precious resource, the radio spectrum must be

carefully managed to mitigate spectrum pollution, maximize the utilization, and

minimize the interference. In different countries, wireless systems (commercial or

government operated) have been allocated (licensed) chunks of spectrum by the

regulatory agencies. For instance, the radio spectrum allocated for different radio

transmissions and applications is shown in Fig. 1.1.
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Figure 1.1: Radio spectrum allocated for wireless communications.

Dramatically rising demand for wireless communications has increased the de-
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mand for radio spectrum. To meet the rising demand, new broadband communica-

tion technologies have been introduced to utilize radio spectrum effectively. Some

key novel technologies are as follows.

• Multiple-input multiple-output (MIMO) communications: MIMO systems

allow higher data throughput without additional bandwidth or power increase.

IEEE 802.11n (Wi-Fi) uses MIMO to achieve the maximum data rate up to

600 Mbps at 2.4 GHz [1]. For a single-user MIMO network with nT (≥ 1)

transmit and nR(≥ 1) receive antennas, the capacity of a single link increases

linearly with min(nT , nR). This increase also motivates a multi-user MIMO

network which achieves the similar capacity scaling when an access point

with nT transmit antennas communicates with nR users [2]. And larger diver-

sity gain can be achieved when each user has multiple antennas. Multi-user

MIMO will be implemented in IEEE 802.11ac (in early 2014) which en-

ables multi-station wireless local area network (WLAN) with throughput of

at least 1 Gbps [3]. In addition, a very large MIMO system, known as massive

MIMO, which includes large-scale antenna arrays, is capable of shrinking the

cell size and reducing the transmit power and overhead for channel training

(when channel reciprocity is exploited) [4].

• Cooperative communications: This helps reliable transmission and improves

data rate by exploiting spatial diversity in a multi-user environment, by using

cooperative techniques such as relaying, cooperative MIMO, and multi-cell

MIMO. Relaying facilitates the signal transmission between the source and

the destination utilizing less power [5]. Cooperative MIMO, which forms

a distributed antenna system employing antennas of different users, is ef-

fective for poor line-of-sight propagation and for cell-edge users. Cooper-

ative MIMO utilizes the advantages of both MIMO and cooperative com-

munications techniques [6]. Further, the larger number of users/antennas in

MIMO networks and the universal frequency reuse (e.g., in long term evo-

lution (LTE)-advanced) cause high levels of co-channel interference. Such

interference can be mitigated by using multi-cell cooperation which is re-
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ferred to as multi-cell MIMO [7]. The cooperation among base stations can

be established via high-capacity wired backhaul links.

• Heterogeneous networks: As node density in cellular networks increases and

data traffic demand for the nodes also increases rapidly, the network capac-

ity must grow significantly. Since these demands cannot be achieved with

traditional cellular networks, heterogeneous networks have been envisaged.

These include a disparate mix of base stations and cells such as lower-power

base station in pico-cells (250 mW - 2 W) and femto cells (100 mW or less),

and high-speed WLANs. A user may be switched among the macro-cells,

pico-cells, femto cells, and WLANs [8].

Despite these advanced technologies, when new service providers request new

frequency bands, spectrum scarcity has created challenges for the Federal Commu-

nications Commission (FCC) in the United States and spectrum regulatory bodies

in other countries. A promising solution is cognitive radio technology [9, 10].

1.2 Cognitive Radio

What has motivated cognitive radio technology, an emerging novel concept in wire-

less access, is spectral usage experiments done by FCC. These experiments show

that at any given time and location, much of the licensed (pre-allocated) spectrum

(between 80% and 90%) is idle because licensed users (termed primary users) rarely

utilize all the assigned frequency bands at all time [10]. Such unutilized bands are

called spectrum holes, resulting in spectral inefficiency. These experiments suggest

that the spectrum scarcity is caused by poor spectrum management rather than a

true scarcity of usable frequency.

The key features of a cognitive radio transceiver are radio environment aware-

ness and spectrum intelligence. Intelligence can be achieved through learning the

spectrum environment and adapting transmission parameters [10].
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1.2.1 Standardization and Applications of Cognitive Radio

The radio spectrum allowed for television (TV) broadcasting (e.g., 54–806 MHz

in US) is allocated for different TV operators. In the TV band, the frequencies

not being used by operators are called white spaces. White spaces may include

guard bands, free frequencies due to analog TV to digital TV switchover (e.g.,

698–806 MHz in US), and free TV bands created when traffic in digital TV is

low and can be compressed into fewer TV bands. Since the use of white spaces

by unlicensed users is allowed by the FCC, the IEEE 802.22 standard has been

released with medium access control and physical layer specifications for a wire-

less regional area network (WRAN). This standard focuses on broadband access in

general mobile networks by using cognitive radio techniques on a non-interfering

basis [11–13]. Other standardization activities of cognitive radio include ECMA

392 [14], IEEE SCC41 [15], and IEEE 802.11af [16].

Some other applications of cognitive radio technology are as follows [17, 18].

• Smart grid networks: Currently, the traditional power grids are being trans-

formed to smart grids with smart meters for billing. Since smart meters trans-

fer information between premises and a network gateway (with a distance

from a few hundred meters to a few kilometers), a reliable communication

system is required. Conventional options such as power line communications

support only low data rate and shorter distance, and the cellular networks may

not have enough bandwidth. Therefore, IEEE 802.15.4g Smart Utility Net-

works (SUN) Task Group, which provides a global standard for smart grid

networks, seeks cognitive radio solutions which offer advantages in terms of

bandwidth, coverage range and overhead [19].

• Public safety networks: Public services such as police, fire, and medical ser-

vices largely use wireless devices. The allocated radio spectrum for the public

services can be highly congested in some emergency conditions, which may

cause a delayed response to victims. In addition to fixed allocated radio spec-

trum, public services can use unlicensed radio spectrum (for example, the

TV white spaces) to ensure sufficient capacity so as to achieve efficient com-
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munications on time [18]. For example, the US Department of Homeland

Security concerns the National Emergency Communications Plan to improve

the quality of service of public services [20].

• Cellular networks: The current cellular networks are overloaded with the traf-

fic growth. As the National Broadband Plan [21], the TV white spaces may be

available for the cellular operators in future to use cognitive radio techniques.

However, integration of cognitive radio technologies and current cellular net-

works, e.g., LTE and WiMAX, remains to be investigated.

1.2.2 Dynamic Spectrum Access

The dynamic spectrum access (DSA) allows the operating spectrum of a radio net-

work to be selected dynamically from the available spectrum [22]. DSA is applied

in cognitive radio networks, which has a hierarchical access structure with primary

and secondary users as shown in Fig. 1.2. The basic idea of DSA is to open li-
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Figure 1.2: A basic cognitive radio network architecture.

censed spectrum to secondary users (which are unlicensed users) while limiting

the interference received by primary users (which are licensed users). This allows

secondary users to operate in the best available channel opportunistically. There-

fore, DSA requires opportunistic spectrum sharing, which is implemented via two

strategies [23].
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1. Spectrum overlay does not necessarily impose strict constraints on the trans-

mit power of secondary users, but rather on their transmission time. Conse-

quently, a secondary user accesses a spectrum hole assigned via DSA.

2. Spectrum underlay imposes strict constraints on the transmit power of sec-

ondary users. This power at a certain portion of the spectrum is then low

enough to be regarded as noise by the primary users. Both primary and sec-

ondary users may thus transmit simultaneously in the same channel assigned

via DSA, and this assignment may minimize the mutual interference.

In spectrum overlay cognitive radio, the secondary (cognitive) users are allowed

to opportunistically access spectrum which has already been allocated to primary

users. As this opportunistic access may create interference, secondary users trans-

mit only if primary users are not active. Whenever primary users become active,

secondary users must detect the presence of the primary users reliably, immediately

vacate the channel, and find other free channels for continuing communication. One

of the most important tasks in the spectrum overlay system is thus to identify the

spectrum holes.

1.2.3 Spectrum Sensing

The purpose of spectrum sensing is to identify the spectrum holes for opportunistic

spectrum access. After available channels (spectrum holes) are detected success-

fully, they may be used for communications by a secondary transmitter and a sec-

ondary receiver [24]. Spectrum sensing is performed based on the received signal

from the primary users. Primary users have two states, idle or active. With the pres-

ence of the noise, primary signal detection at a secondary user can be viewed as a bi-

nary hypothesis testing problem in which Hypothesis 0 (H0) and Hypothesis 1 (H1)

are the primary signal absence and the primary signal presence, respectively [25].

Based on the hypothesis testing model, several spectrum sensing techniques have

been developed. They are reviewed next.
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1.2.4 Spectrum Sensing Techniques

Spectrum sensing techniques include energy detection, matched filter, cyclostation-

ary feature detection, and eigenvalue detection.

• Energy detection: This measures the energy of the received signal within the

pre-defined bandwidth and time period. The measured energy is then com-

pared with a threshold to determine the status (presence/ absence) of the trans-

mitted signal. Not requiring channel gains and other parameter estimates, the

energy detector is a low-cost option. However, it performs poorly under high

noise uncertainty and background interference [26].

• Matched filter: This detector requires perfect knowledge of the transmitted

signal and the channel responses for its coherent processing at the demod-

ulator. The matched filter is the optimal detector of maximizing the signal-

to-noise ratio (SNR) in the presence of additive noise. Since it requires the

perfect knowledge of the channel response, its performance degrades dramat-

ically when there is lack of channel knowledge due to rapid changes of the

channel conditions [27, 28].

• Cyclostationary feature detection: If periodicity properties are introduced in-

tentionally to the modulated signals, the statistical parameters of received sig-

nal such as mean and autocorrelation may vary periodically. Such periodicity

of statistical properties is used in the cyclostationary detection. Cyclosta-

tionary properties of the received signal may be extracted by its input-output

spectral correlation density. The signal absence status can be identified eas-

ily, because the noise signal does not have cyclostationary properties. While

this detector is able to distinguish among the primary user signals, secondary

user signals, or interference. it needs high sampling rate and a large number

of samples, and thus increases computational complexity as well [29–32].

• Eigenvalue detection: The ratio of the maximum (or the average) eigenvalue

to the minimum eigenvalue of the covariance matrix of the received signal

vector is compared with a threshold to detect the absence or the presence of
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the primary signal. However, if the correlation of the primary signal samples

is zero (e.g., primary signal appears as white noise), eigenvalue detection

may fail - a very rare event. This detector has the advantage of not requiring

the knowledge of the primary signal and the propagation channel conditions.

The main drawback is the computational effort to compute covariance matrix

and eigenvalue decomposition. The threshold selection is challenging as well

[33–35].

1.3 Motivation

The exponential growth of wireless communications has led to spectrum scarcity.

Although cognitive radio has been developed to solve the spectrum scarcity and

spectrum under-utilization issues, many research problems remain open.

Reliable primary user detection via spectrum sensing is one of the critical prob-

lems, and hence spectrum sensing is one of the most challenging and difficult

tasks [36]. Moreover, selecting the best available channel and reducing or elimi-

nating interference to primary users are also essential [37, 38]. All these require-

ments depend on the spectrum sensing technique. Among the spectrum sensing

techniques, energy detection is the most popular one due to its low complexity.

Although energy detection has been well investigated for traditional wireless net-

works, new challenges arise when it is applied in cognitive radio networks.

• A more reliable energy detector (than those in traditional networks) is needed

to minimize interference.

• A much wider spectrum bandwidth needs to be sensed to identify spectrum

holes. Since different spectrum holes experience different signal propagation

conditions, the design and analysis of energy detection is challenging.

• Many transmission environments must be considered. Activities from mul-

tiple licensed wireless applications must be detected. Different applications

may have different population of users, with different mobility patterns, which

have a great impact on the signal reception, and thus, affect energy detection.
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Thus, to address these research challenges, this thesis focuses on energy detec-

tion for spectrum sensing, and related research problems.

1.4 Problem Statements

Specifically, this thesis addresses five problems, P1-P5, which are related to the

spectrum sensing via energy detection in cognitive radio networks.

P1: Energy detection under channels with both multipath fading and shadowing:

Spectrum holes must be correctly detected by the energy detector, whose per-

formance can be quantified by the false-alarm and detection probabilities.

While the performance of energy detectors on multipath fading has been an-

alyzed extensively, wireless signals also undergo shadowing which severely

impacts the detection capability. Multipath fading superimposed on shad-

owing occurs in practical communication channels. Due to the analytical

intractability of composite fading models, the shadowing effect has been ne-

glected in the literature.

P2: A unified channel model for performance analysis of wireless communica-

tions: Analytical intractability of different propagation models, and the re-

sulting mathematically complicated expressions do not facilitate rapid eval-

uation of energy detection and other wireless network performance. There-

fore, a simple analytical framework is vital, and thus, a unified channel model

which represents typical channel models in various spectrum bands and vari-

ous scenarios is desirable.

P3: A generalized and simplified performance metric for energy detection: The

detection capability of an energy detector depends on many parameters, and is

traditionally characterized through the receiver operating characteristic (ROC)

curve, which is not flexible when more than one parameters change concur-

rently. Further, visual examination of ROC curves to compare different en-

ergy detectors is unreliable. Thus, a generalized and simplified single-valued
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performance metric, which facilitates energy detector design and analysis, is

desired.

P4: Reliability improvement of energy detector: Spectrum sensing in cognitive

radio may suffer from the notorious hidden terminal problem, which happens

when close by secondary and primary transmitters are blocked by a distur-

bance (e.g., a high building). Although the cooperative spectrum sensing

has been identified as a solution, an extensive performance analysis has been

lacking.

P5: Spectrum sensing in very low SNR: The US FCC and the IEEE 802.22 stan-

dard have determined that cognitive devices must detect with very low false

alarm and missed-detection probabilities within a very short sensing time at

low SNR and low receiver sensitivity. This inherent conflict between low

false alarm and missed-detection probabilities and short sensing time poses

critical challenges to the energy detector design in very low SNR. Little at-

tention was paid to this research problem in the past because of analytical

intractability of traditional frameworks.

1.5 Thesis Outline

Chapters 2–7 provide background knowledge, detailed treatment and new ideas in

order to address the problems P1–P5, which are briefly outlined as follows.

• Chapter 2 contains background knowledge for topics related to this thesis.

The wireless communication channel and its fading are considered through-

out the thesis. The conventional energy detection and its system model are

reviewed to gain further insights of the already existing literature.

• Chapter 3 addresses problem P1, in which the performance of an energy de-

tector for channels with both multipath fading and shadowing is analyzed

by the adoption of the K channel and generalized-K (denoted as KG) chan-

nel. Multipath fading and shadowing effects are shown by using the ROC

curves based on analytical expressions of the average detection probability.
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The ROC curves are presented for different degrees of multipath fading and

shadowing.

• Composite fading (i.e., multipath fading and shadowing together) has increas-

ingly been analyzed by means of the K channel and related models. Nev-

ertheless, these models do have computational and analytical difficulties as

pointed out in problem P2. Motivated by this context, Chapter 4 proposes a

mixture gamma (MG) distribution for the SNR of mobile radio channels. Not

only is it a more accurate model for composite fading, but is also a versatile

approximation for any fading SNR. With this model, performance metrics

such as the average channel capacity, the outage probability, the symbol error

rate (SER) of general wireless communication networks, and the detection

capability of an energy detector are readily derived. Note that the analysis is

not limited to cognitive radio networks.

• As pointed out in problem P3, a simple figure of merit to describe the per-

formance of an energy detector is desired. Such a measure is the Area Under

the receiver operating characteristic Curve (AUC). In Chapter 5, the AUC is

analyzed for an energy detector with no-diversity reception and with several

popular diversity schemes.

• As a solution to problem P4, a cooperative spectrum sensing cognitive ra-

dio network with much improved reliability is designed based on energy de-

tection, in which multiple cognitive relays in a secondary network can help

forward received primary signals to a fusion center such that detection per-

formance at the fusion center is significantly improved. The detection perfor-

mance of an energy detector used for cooperative spectrum sensing in a cog-

nitive radio network is investigated over channels with both multipath fading

and shadowing in Chapter 6. The analysis focuses on two fusion strategies:

data fusion and decision fusion. The results are extended to multi-hop net-

works as well.

• The IEEE 802.22 WRAN requires spectrum-sensing techniques to identify
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primary signals with an SNR as low as -20 dB and receiver sensitivity as

low as -116 dBm, which is identified as a challenging problem as in problem

P5. In Chapter 7, under such low-SNR levels, the detection performance of

an energy detector used for spectrum sensing in cognitive radio networks is

investigated, and analytical expressions for performance metrics are derived.

Further, the detection threshold is also optimized to minimize the total error

rate.

∼
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Chapter 2

Background

This chapter reviews relevant topics for this thesis. For analysis of energy detec-

tion, the wireless channel models which represent small-scale fading, large-scale

fading and composite fading are important. The test statistic of the energy detec-

tor and its distribution depend on the signal model (e.g., Gaussian signal) and the

network (e.g., cooperative networks). Parameters of the energy detector also need

to be carefully designed to achieve target performance metrics. The IEEE 802.22

standard and the cooperative spectrum sensing are also reviewed.

2.1 Mobile Radio Channel

The mobile radio channel refers to the transmission medium between the transmit-

ter and the receiver. Fundamental mobile radio channel propagation effects include

path loss, microscopic (small scale or fast) fading, and macroscopic (large scale or

slow) fading. These effects are modeled as a complex channel gain, h. Additive

thermal noise, with a flat power spectral density, is called the additive white Gaus-

sian noise (AWGN). Including these factors, the received signal may be generically

represented as

y = hs+w (2.1)

where s is the transmitted signal and w is the AWGN term.

The path loss can model the attenuation of signal strength with distance, wave-

length, and antenna heights. In the thesis, while the small-scale fading and the

large-scale fading are considered, the path loss effect is neglected due to analytical
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difficulties.

2.1.1 Small-Scale Fading and Large-Scale Fading

The small-scale fading, which occurs in indoor environments and also both macro-

cellular and microcellular outdoor environments, results from multipath propaga-

tion due to the reflections and scatters. The constructive and destructive effects of

the multiple signals distort both amplitude and phase of the received signal with

time, which is called the envelope fading, given by Rayleigh, Nakagami-m and Ri-

cian fading models [39]. For Rayleigh fading, the magnitude of the channel gain,

|h|, has Rayleigh distribution given by

f|h|(x) =
2x

Ω
e−

x2

Ω , 0 ≤ x ≤ ∞ (2.2)

where Ω is the average envelope power. The Nakagami-m fading is a generalized

model for the non-line of sight small-scale fading, which is given as

f|h|(x) =
2mmx2m−1

ΩmΓ(m)
e−

mx2

Ω , 0 ≤ x ≤ ∞ (2.3)

where 0.5 ≤ m < ∞ is the fading severity parameter, and Γ(·) is the Gamma

function. The Rician channel model fits well with a channel having a dominant

line-of-sight component. If real and imaginary components of h have the mean a

and the variance b, the distribution is given as

f|h|(x) =
x

b
e−

x2+s2

2b I0

(sx
b

)
, 0 ≤ x ≤ ∞ (2.4)

where s =
√
2a, which is the non-centrality parameter, and I0 (·) is the zeroth-order

modified Bessel function of the first kind.

The large-scale fading, which occurs due to the shadowing effect by buildings,

foliage and other objects, can significantly impact satellite channels, point-to-point

long distance microwave links and macrocellular outdoor communications [40].

The mean-squared amplitude, Ω, represents the shadowing effect which is typically

modeled with the log-normal distribution as [39]

fΩ(x) =
ξ

x
√

2πσ2
ΩdB

e
− (10log10(x)−µΩdB)2

2σ2
ΩdB , 0 ≤ x ≤ ∞ (2.5)

where ξ = 10
ln 10

, and µΩdB and σΩdB are mean and standard deviation of 10log10(Ω),

respectively.
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2.1.2 Composite Fading

Both microscopic fading and macroscopic fading are modeled by composite shad-

owing/fading distributions. The Rayleigh-lognormal (RL) and Nakagami-lognormal

(NL) are two most common models [39]. But the probability density function (PDF)

of these two composite models are not in closed form, making performance analy-

sis of some applications difficult or intractable. Therefore, the K distribution and

generalized-K orKG distribution have been introduced, by using a gamma distribu-

tion to approximate the lognormal distribution of the shadowing to model channels

with composite multipath fading and shadowing. In [41], the K distribution, a mix-

ture of Rayleigh distribution and gamma distribution, is used to approximate the

Rayleigh-lognormal distribution, referred to as the K channel model, in which the

fading amplitude undergoes multipath fading as a Rayleigh distribution and shad-

owing as a gamma distribution. Therefore, the average power of the fading ampli-

tude, which represents the shadowing effect, follows the gamma distribution. The

PDF of the fading amplitude, denoted as f|h|(x), follows a K distribution which is

given as [42]

f|h|(x) =
4

Γ(k)
√
Ω

(
x√
Ω

)k

Kk−1

(
2√
Ω
x

)
, 0 ≤ x ≤ ∞ (2.6)

where Kν(·) is the modified Bessel function of the second kind of order ν, k is the

shaping parameter and Ω represents the mean signal power.

In [43], the KG distribution, a mixture of the Nakagami distribution and gamma

distribution, is presented to approximate the NL distribution, referred to as the KG

channel model. The KG distribution is given as [44]

f|h|(x) =
4m

β+1
2 xβ

Γ(m)Γ(k)Ω
β+1
2

Kα

[
2
(m
Ω

) 1
2
x

]
, 0 ≤ x ≤ ∞ (2.7)

where m is the fading parameter, α = k − m, and β = k + m − 1. The KG

distribution reduces to a K distribution when m = 1. Moreover, as m → ∞ and

k → ∞, the KG model tends to a non-fading case, i.e., the AWGN channel. The

accuracy of the approximation is verified by comparison of their moment generating

function (MGF) [42, 44]. The KG model includes special cases, such as the K
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model, and can also approximate the Nakagami-m model, the RL distribution and

the Suzuki model [41].

Moreover, several other composite models have been developed including the

G- distribution, the Log-normal distribution, and the Gamma distribution [39, 45,

46]. Note that these models are approximations of the RL and NL models.

2.2 System Model of Spectrum Sensing

Primary users are in either idle state or active state. With the presence of the noise,

the signal detection at the receiver can be viewed as a binary hypothesis testing

problem in which Hypothesis 0 (H0) and Hypothesis 1 (H1) are the primary signal

absence and the primary signal presence, respectively [25]. The nth, n = 1, 2, · · · ,

sample of the received signal, y(n), can be given under the binary hypothesis as

[25, 47]:

y(n) =

{
w(n) : H0

x(n) +w(n) : H1
(2.8)

where x = hs.

The complex signal, s has real component sr and imaginary component si, i.e.,

s = sr+jsi.1 The AWGN samples are assumed to be circularly symmetric complex

Gaussian (CSCG) random variables with mean zero (E{w(n)} = 0) and variance

2σ2
w (Var{w(n)} = 2σ2

w) where E{·} and Var{·} stand for mean and variance,

respectively, i.e., w(n) ∼ CN (0, 2σ2
w). A noise sample is denoted as w(n) =

wr(n) + jwi(n) where wr(n) and wi(n) are real-valued Gaussian random variables

with mean zero and variance σ2
w, i.e., wr(n), wi(n) ∼ N (0, σ2

w). The channel gain

is denoted as h = hr + jhi. The channel gain can be assumed as a constant within

each spectrum sensing period. In general, (2.8) can be written as

y(n) = θx(n) +w(n) (2.9)

where θ = 0 for H0 and θ = 1 for H1.
1A complex number which has real and imaginary components zr and zi, respectively, is denoted as
z = zr + jzi.
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2.3 Spectrum Sensing via Energy Detection

An energy detector is a device that may decide whether the transmitted signal is

absent or present in the noisy environment. Energy detector does not require any

prior knowledge of the transmitted signal (e.g., phase, shape, frequency). The con-

ventional energy detector measures the energy of the received signal over specified

time duration and bandwidth. The energy is then compared with an appropriately

selected threshold to determine the presence or the absence of an unknown signal.

Two models of energy detector can be considered in time-domain implementa-

tions:

1. Analog energy detector which is illustrated in Fig. 2.1(a) is considered in

[48]. It consists of a pre-filter followed by a square-law device and a finite

time integrator. The pre-filter limits the noise bandwidth and normalizes the

noise variance. The output of the integrator is proportional to the energy of

the received signal of the square law device.

2. Digital energy detector is shown in Fig. 2.1(b). It consists of a low pass noise

pre-filter which limits the noise and adjacent signal bandwidths, an analog-to-

digital converter (ADC) which converts continuous signals to discrete digital

signal samples, and a square law device followed by an integrator. The digital

implementation is usually used at the experimental testbed.
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Figure 2.1: The conventional energy detectors: (a) analog and (b) digital .
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The integrator output of any architecture is called decision statistic or test statis-

tic. The test statistic is finally compared at the threshold device followed by deci-

sion device to make the final decision of the presence/absence of transmitted signal.

The test statistic may not always be the integrator output, but it can be any function

which is monotonic with the integrator output [48].

2.4 Test Statistic of Energy Detector

The test statistic of the analog energy detector is given as Λ = 1
T

∫ t

t−T
[y(t)]2 dt

where T is the time duration [48]. A sample function with bandwidth W and time

duration T can be described approximately by a set of samples N ≈ 2TW . There-

fore, the analog test statistic can be implemented by samples, where the test statistic

is proportional to
∑N

n=1 |y(n)|2. In digital implementation, after proper filtering,

sampling, squaring and integration, the test statistic is given by using (2.9) as

Λ =
N∑

n=1

|y(n)|2 =
N∑

n=1

(
er(n)

2 + ei(n)
2
)

(2.10)

where er(n) = θhrsr(n) − θhisi(n) + wr(n) and ei(n) = θhrsi(n) + θhisr(n) +

wi(n). Since the test statistic only includes the received signal energy, energy detec-

tor is the optimal non-coherent detector for an unknown signal if the signal is Gaus-

sian, uncorrelated and independent with the uncorrelated background noise [49].

The performance of energy detector (or of other detectors) is measured by using

following metrics:

• False alarm probability (Pf ): the probability of deciding the signal is present

while H0 is true, i.e., Pf = P [Λ > λ|H0] where P [·] stands for an event

probability. Pf indicates the probability of undetected spectrum holes. A

large Pf leads to poor spectral efficiency in cognitive radio.

• Missed-detection probability (Pmd): the probability of deciding the signal is

absent while H1 is true, i.e., Pmd = P [Λ < λ|H1], which means a wrong

decision on the unavailable spectrum. A large Pmd means poor reliability,

which introduces unexpected interference to primary users.
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• Detection probability (Pd): the probability of deciding the signal is present

when H1 is true , i.e., Pd = P [Λ > λ|H1], and thus, Pd = 1− Pmd.

Both reliability and efficiency are expected from the spectrum sensing technique

built into the cognitive radio, i.e., a higher Pd (or lower Pmd) and lower Pf are

preferred.

The statistical properties of Λ are necessary to characterize the performance of

energy detector. Based on the known properties of the received signal and noise, an

accurate and analytically tractable model for Λ is thus vital for further discussion.

While the noise components, wr(n) and wi(n), are zero-mean Gaussian, different

models for the signal to be detected are possible. Therefore, several alternative

models are discussed in the following. The PDFs of Λ under hypotheses H0 and

H1 are denoted as fΛ|H0(x) and fΛ|H1(x), respectively.

2.4.1 Signal Models

Based on the available knowledge of s(n) at receiver, signal can be modeled dif-

ferently, which helps to analyze the distribution of the test statistic under H1. For

example, three different models, S1, S2 and S3, are popularly used in the literature,

and are given as follows.

S1: For given channel gain h, the signal to be detected, y(n), can be assumed

as Gaussian with mean E{y(n)} = E{hs(n) +w(n)} = hs(n) and vari-

ance Var{y(n)} = 2σ2
w. For the signal transmitted over a flat band-limited

Gaussian noise channel, a basic mathematical model of the test statistic of an

energy detector is given in [48]. The receive SNR can thus be given as

γS1 =
|h|2 1

N

∑N
n=1 |s(n)|2

2σ2
w

. (2.11)

S2: If the signal sample is considered as random variable which has a Gaussian

distribution, i.e., s(n) ∼ CN (0, 2σ2
s), then y(n) ∼ CN (0, 2(σ2

w + σ2
s)). The

receive SNR can thus be given as

γS2 =
|h|22σ2

s

2σ2
w

. (2.12)
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S3: If the signal sample is considered as random variable with mean zero and

variance 2σ2
s , but with an unknown distribution, then y(n) has mean zero and

2(σ2
w + σ2

s) variance. The receive SNR can also be given as

γS3 =
|h|22σ2

s

2σ2
w

. (2.13)

For sufficiently large number of samples, the signal variance can be written by using

its sample variance as 2σ2
s ≈ 1

N

∑N
n=1 |s(n)|2 −

(
1
N

∑N
n=1 s(n)

)2
. If the sample

mean goes to zero, i.e., 1
N

∑N
n=1 s(n) → 0, 2σ2

s ≈ 1
N

∑N
n=1 |s(n)|2, and thus all

the receive SNRs under different signal models which are given in (2.11)-(2.13) are

equal. In general, the instantaneous SNR is denoted as γ.

2.4.2 Distribution of Test Statistics

The exact distributions of the test statistic (2.10) for different signal models are

analyzed in the following under both hypotheses, H0 and H1.

Under H0

In this case, er(n) = wr(n) and ei(n) = wi(n), and er(n) and ei(n) follow

N (0, σ2
w). Thus, Λ is a sum of 2N squares of independent N (0, σ2

w) random vari-

ables, and it follows central chi-square distribution which is given as [50]

fΛ|H0(x) =
xN−1e

− x

2σ2
w

(2σ2
w)

N Γ(N)
, 0 ≤ x <∞. (2.14)

Thus, the false-alarm probability can be derived by using (2.14) as

Pf = P [Λ > λ|H0] =
Γ(N, λ

2σ2
w
)

Γ(N)
(2.15)

where Γ(·, ·) is the upper incomplete Gamma function.

Under H1

In this case, the distribution of Λ, fΛ|H1(x), has two different distributions under

two signal models, S1 and S2, for a given channel. However, the distribution of Λ

under S3 cannot be derived.
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For S1, er(n) and ei(n) follow N (hrsr(n) − hisi(n), σ
2
w) and N (hrsi(n) +

hisr(n), σ
2
w), respectively. Since Λ is a sum of 2N squares of independent and non-

identically distributed Gaussian random variables with non-zero mean, Λ follows

non-central chi-square distribution which is given as [50]

fΛ|H1(x) =

(
x
σ2
w

)N−1
2
e
− 1

2

(
x

σ2
w
+µ

)

2σ2
wµ

N−1
2

IN−1

(√
µx

σ2
w

)
, 0 ≤ x <∞, (2.16)

where Iν(·) is the modified Bessel function of the first kind of order ν,

µ =
N∑

n=1

(hrsr(n)− hisi(n))
2

σ2
w

+
(hrsi(n) + hisr(n))

2

σ2
w

= 2NγS1

which is the non-centrality parameter, and γS1 is given in (2.11). Thus, the detection

probability can be derived for S1 by using (2.16) as

Pd,S1 = P [Λ > λ|H1] = QN

(√
2NγS1,

√
λ

σw

)
(2.17)

where QN(·, ·) is the generalized Marcum-Q function. This signal model is widely

used in the performance analysis of an energy detector in terms of the average

detection probability [51–54].

For S2, er(n) and ei(n) follow N (0, (1 + γS2)σ
2
w) where γS2 is given in (2.12).

Since Λ is a sum of 2N squares of independent and identically distributed (i.i.d.)

Gaussian random variables with zero mean, Λ follows central chi-square distribu-

tion which is given as

fΛ|H1(x) =
xN−1e

− x

2(1+γS2)σ
2
w

(2(1 + γS2)σ2
w)

N Γ(N)
, , 0 ≤ x <∞. (2.18)

The exact detection probability can be derived for S2 by using (2.18) as

Pd,S2 =
Γ(N, λ

2σ2
w(1+γS2)

)

Γ(N)
. (2.19)

This model is used in [55, 56].

For S3, er(n) and ei(n) have unknown distributions, and the exact fΛ|H1(x)

cannot be derived, and it may not be a central or non-central chi-square distribution

as well. However, fΛ|H1(x) can be derived approximately by using the central limit

theorem (CLT).
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2.4.3 CLT Approach

According to the CLT, the sum of N i.i.d. random variables with finite mean and

variance approaches to a normal distribution when N is large enough. Using the

CLT, the distribution of the test statistic (2.10) can be accurately approximated with

a normal distribution for sufficiently large number of samples as

Λ ∼ N

(
N∑

n=1

E
{
|y(n)|2

}
,

N∑
n=1

Var
{
|y(n)|2

})
.

When the distributions of test statistics under H0 and H1 are Λ ∼ N (m0, σ
2
0) and

Λ ∼ N (m1, σ
2
1), respectively, the performance matrices can be derived as

Pf ≈ Q

(
λ−m0

σ0

)
and Pd ≈ Q

(
λ−m1

σ1

)
. (2.20)

where Q(·) is the Gaussian-Q function.

If it is possible to evaluate E{|y(n)|2} and Var{|y(n)|2}, the CLT approach can

be applied to H0 and H1 (with any signal model), and the performance matrices can

also be derived as (2.20). The mean and variance for different cases are given as

follows:

E
{
|y(n)|2

}
=


2σ2

w : H0

2σ2
w + |h|2|s(n)|2 : S1

2σ2
w + |h|2(2σ2

s) : S2, S3.
(2.21)

Var
{
|y(n)|2

}
=


(2σ2

w)
2 : H0

4σ2
w(σ

2
w + |h|2|s(n)|2) : S1

4(σ2
w + |h|2|σ2

s)
2 : S2

(2σ2
w)

2 + 2|h|2(2σ2
w)(2σ

2
s) + |h|4(E{|s(n)|4]} − 4σ4

s) : S3.
(2.22)

If s(n) of S3 is complex phase shift keying (PSK) signal, E{|s(n)|4} = 4σ4
s , and

thus the variance can be evaluated as Var{|y(n)|2} = (2σ2
w)

2 + 2|h|2(2σ2
w)(2σ

2
s).

Therefore, the distribution of Λ can be given as

Λ ∼ N


N (N(2σ2

w), N(2σ2
w)

2) : H0

N (N(2σ2
w)(1 + γ), N(2σ2

w)
2(1 + 2γ)) : S1, S3

N (N(2σ2
w)(1 + γ), N(2σ2

w)
2(1 + γ)2) : S2.

(2.23)

Approximated false-alarm probability and approximated detection probabilities

can be derived by using (2.20) as

Pf ≈ Q

(
λ−N(2σ2

w)√
N(2σ2

w)

)
, (2.24)
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Pd,S1 ≈ Q

(
λ−N(2σ2

w)(1 + γ)√
N(1 + 2γ)(2σ2

w)

)
, (2.25)

Pd,S2 ≈ Q

(
λ−N(2σ2

w)(1 + γ)√
N(1 + γ)(2σ2

w)

)
. (2.26)

Note that Pd,S3 has the same expression as Pd,S1.
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Figure 2.2: The exact and approximated (CLT) CDFs of the test statistic for S1 and
S2 with 2σ2

w = 1 and γ = 5dB.

Fig. 2.2 shows the exact Pf and Pd of the test statistic for S1 and S2.2 Both Pf

and Pd increase significantly when the number of samples increases from N = 20

to N = 60. Fig. 2.2 also shows the CLT approximations of Pf and Pd. The exact

curves (solid-line) match well with the CLT approximations (dashed-line) when

N = 60, while they have a close match when N = 20. This confirms that the test

statistic is approximately Gaussian for a sufficiently large number of samples.

Note that this thesis uses exact Pf and Pd expressions (2.15) (2.17) in Chapters

3–6, and uses approximated Pf and Pd expressions (2.24)-(2.26) (based on CLT) in

Chapter 7.

2Pf and Pd are also the complementary cumulative distribution function (CDF)s of the test statistic.
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2.5 Design Parameters

The main design parameters of the energy detector are the number of samples and

threshold. However, the performance of the energy detector depends on SNR and

noise variance as well, but the designer has very limited control over them because

these parameters depend on the behavior of the mobile radio channel.

2.5.1 Threshold

A pre-defined threshold λ is required to decide whether the target signal is absent

or present. The threshold determines all performance metrics, Pd, Pf and Pmd,

can vary from 0 to ∞, and selection of its operating threshold is important. The

operating value can be chosen based on the target value of the performance metric

of interest. Although having high Pd while keeping Pf low is preferable (e.g., as

IEEE 802.22 WRAN), these two objectives are conflicting, and may not always be

simultaneously achieved in practice.

When the threshold increases (or decreases), both Pf and Pd are decreased (or

increased). For known N and σw, the common practice of setting the threshold

is based on the constant false alarm probability Pf , e.g., Pf ≤ 0.1. The selected

threshold based on Pf can be given by using (2.24) as

λ∗f =
(
Q−1(Pf ) +

√
N
)√

N2σ2
w. (2.27)

However this threshold may not guarantee that the energy detector achieves the

target detection probability, e.g., the detection probability should be no less than

0.9 as specified in the IEEE 802.22 WRAN.

2.5.2 Number of Samples

The number of samples is also an important design parameter to achieve the require-

ments on detection and false alarm probabilities. For given false alarm probability

Pf and average detection probability Pd, the minimum required number of samples

can be given as a function of SNR. By eliminating λ from both Pf in (2.24) and Pd

in (2.25) (here signal model S1 is used as an example), N can be given as

N = [Q−1(Pf )−Q−1(Pd)
√

2γ + 1]2γ−2 (2.28)

24



which is not a function of the threshold. Due to the monotonically decreasing prop-

erty of Q−1(x), it can be seen that the signal can be detected even in very low SNR

region by increasing N when the noise power is perfectly known. Further, the ap-

proximately required number of samples to achieve a performance target on false

alarm and detection probabilities is in the order of O(γ−2), i.e., energy detector re-

quires more samples at very low SNR [57]. Since N ≈ τfs where τ be the sensing

time and fs be the sampling frequency, the sensing time increases as N increases.

This is a main drawback in spectrum sensing at low SNR because of the limitation

on the maximal allowable sensing time (e.g., the IEEE 802.22 specifies that the

sensing time should be less than 2 seconds).

2.6 IEEE 802.22 Standard

As mentioned in Section 1.2.1, FCC has permitted the TV white space spectrum to

be used by broadband access systems. Several telecommunications standards have

thus been developed to operate in the vacant TV bands based on cognitive radio

technology. Among these standardization efforts [14–16], the IEEE 802.22 WRAN

brings broadband access not only to the WiFi devices but also to general mobile

networks (e.g., micro-, pico- or femto-cells), allowing the use of the cognitive radio

technique on a non-interfering basis [11–13].

The IEEE 802.22 WRAN limits both false alarm (which indicates the level of

undetected spectrum holes) and missed-detection (which indicates the level of unex-

pected interference to primary users) probabilities to 10%. While these two perfor-

mance metrics reflect the overall efficiency and reliability of the cognitive network,

the 10% requirement should be met even under very low SNR conditions, such as

-20 dB SNR with a signal power of -116 dBm and a noise floor of -96 dBm [13].

The IEEE 802.22 WRAN does not prescribe a specific spectrum sensing tech-

nique, and designers are free to select any detection technique such as energy de-

tection, matched filter detection, cyclostationary feature detection, covariance based

detection, etc. [48, 53, 54, 58–65]. While the spectrum sensing techniques perform

well at moderate and high SNRs, in which fine-sensing time can be in order of mil-
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liseconds (e.g., 25 ms), they perform poorly at a low SNR. Although increasing the

sensing time improves the performance, IEEE 802.22 limits the maximal detection

latency to 2 seconds which may include sensing time and subsequent processing

time. This maximal time limit is critical at low-SNR spectrum sensing.

2.7 Cooperative Spectrum Sensing

Achieving the IEEE 802.22 WRAN spectrum sensing specifications is a tough task

because of shadowing, fading, and time variations of mobile radio channels. More-

over, the hidden terminal problem, which occurs when the link from a primary

transmitter to a secondary user is shadowed (e.g., there is a tall building between

them as shown in Fig. 2.3) while a primary receiver is operating in the vicinity

of the secondary user, presents a tough challenge. Due to this, a secondary user

may fail to notice the presence of the primary transmitter, and then accesses the

licensed channel and causes interference to the primary receiver. To mitigate this

problem, cooperative spectrum sensing has been introduced, in which single coop-

erative node or multiple cooperative nodes are introduced to the secondary network

(Fig. 2.3). Cooperative nodes individually sense the spectrum, and send their col-

lected data to a fusion center. The random spatial distribution of the cooperative

nodes helps to reduce the impact of the hidden terminal problem.

Primary user

Secondary user

(Fusion center)

Building

Cooperative node

Primary network

Secondary 

network

Figure 2.3: Cooperative spectrum sensing in a cognitive radio network.

In cooperative spectrum sensing, information from multiple cooperative nodes

is combined at the fusion center to make a decision on the presence or absence

of the primary user. When energy detection is utilized for cooperative spectrum
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sensing, cooperative nodes report to a fusion center their sensing data, in either

the data fusion or the decision fusion. In data fusion, each cooperative node simply

amplifies the received signal from the primary user and forwards to the fusion center

[66–68]. In decision fusion, each cooperative node makes its own hard decision on

the primary user activity, and the individual decisions are reported to the fusion

center. The performance of such system is analyzed in Chapter 6.

∼
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Chapter 3

Energy Detection over Composite
Fading and Shadowing Channels

This chapter analyzes the performance of an energy detector over mobile radio

channels with composite multipath fading and shadowing effects. These effects

are modeled by using the K and KG channel models. For these channels, the av-

erage detection probabilities of the energy detector are derived for the no-diversity

reception case. A simple approximation of the average detection probability is also

derived for large threshold values. The analysis is then extended to cases with diver-

sity receptions including maximal ratio combining (MRC) and selection combining

(SC).1

3.1 Introduction

The performance of energy detectors has been extensively analyzed by using dif-

ferent channel models assuming a flat, band-limited, Gaussian noise channel [48].

Subsequently, the average detection probability is analyzed over Rayleigh, Rice

and Nakagami fading channels in [69]. Different analytical approaches are given

in [53,70] for the performance of an energy detector with no diversity for Rayleigh,

Rice and Nakagami fading channels and with different diversity receptions such

as MRC, SC and switch-and-stay combining. The performance with equal gain

combining (EGC) under a Nakagami fading channel is analyzed in [54]. All these

1A version of this chapter has been published in IEEE Trans. Wireless Commun., 9: 3662–3670
(2010).
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research papers have focused on multipath fading only.

Shadowing and multipath fading are the two main wireless propagation effects.

While multipath fading can be modeled as a Rayleigh, Rice or Nakagami distri-

bution, shadowing process is typically modeled as a lognormal distribution [39].

Practical communication channels can be modeled as multipath fading superim-

posed on lognormal shadowing, leading to composite channel models. Due to the

analytical intractability of composite fading models, the shadowing effect is some-

times neglected in the literature.

The K and KG channel models described in Section 2.1.2 have been well

adopted for analysis of composite multipath fading and shadowing. Performance of

different wireless communications networks has been analyzed overK orKG chan-

nel model in [42,44,71–73]. The bit error rate (BER) is analyzed for the K channel

model in [71] and for the KG channel model in [73]. The outage probability with

and without co-channel interference is presented based on the KG channel model

in [72]. The average BER with different diversity receptions is derived for the KG

channel model in [44]. Recently, performance of generalized selection combining

receivers over the K channel model is presented in [42]. All these works show the

impact of composite effect (multipath fading and shadowing) in the performance

and design of wireless communications. However, the performance of an energy

detector under composite fading is not available in the literature, and thus it is in-

vestigated in this chapter by using K and KG channel models.

The chapter is organized as follows. The average detection probability of an

energy detector is analyzed without and with diversity techniques in Section 3.2.

Numerical and simulation results are presented in Section 3.3. The concluding

remarks are made in Section 3.4.

3.2 Average Detection Probability

The performance of an energy detector for channels with both multipath fading and

shadowing, by the adoption of the K and KG channel models is analyzed based on

S1 signal model. When the threshold varies from 0 to ∞, the false alarm probability
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can be easily calculated by using (2.15) for a given number of samples. On the other

hand, the detection probability is determined by threshold, number of samples and

also SNR. Since SNR depends on the channel fading/shadowing, it is essential to

evaluate the average detection probability over the SNR distribution fγ(x) as

Pd =

∞∫
0

Pd(x)fγ(x) dx. (3.1)

The critical part of the analysis is the derivation of the average detection proba-

bility. This derivation requires the generalized Marcum-Q function be averaged

over the KG distribution. Since the K and KG channel models contain modified

Bessel functions, the direct integration appears intractable or does not seem to lead

to simple solutions. In order to circumvent these difficulties, the following method

is applied. Since K or KG channel model actually is a result of averaging a con-

ditional Rayleigh or Nakagami PDF by a gamma PDF, the existing results on the

energy detector for Nakagami-m fading case can be averaged over the gamma PDF

(which models the shadowing part) to get the avergae detection probability over

K or KG channel model. This simple trick allows us to avoid the averaging over

the modified Bessel function of the second kind. Similar approach can be applied

for the diversity combining techniques with each diversity branch having identical

instantaneous shadowing effect.

3.2.1 With No-Diversity Reception

The average detection probability of the energy detector can be evaluated by aver-

aging Pd = QN

(√
2Nγ,

√
λ
)

, where σw = 1, in (2.17) over the SNR range, which

can be expressed mathematically as

Pd =

∞∫
0

QN(
√
2Nγ,

√
λ)fγ(γ) dγ

=

∞∫
0

∞∫
0

QN(
√

2Nγ,
√
λ)fγ|Y=y(γ)dγfY (y) dy

=

∞∫
0

P Fad
d (y)fY (y) dy,

(3.2)
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where Y is the SNR with only shadowing effect (i.e., multipath fading is excluded),

which follows a gamma distribution [39]

fY (y) =
1

Γ(k)Ωk
yk−1e−

y
Ω , y ≥ 0 (3.3)

and P Fad
d (y) =

∫∞
0
QN(

√
2Nγ,

√
λ)fγ|Y=y(γ) dγ is the average2 detection prob-

ability with a specific Y value. P Fad
d (y) for different applications under different

multipath fading can be expressed using previous results in the literature [53] [69]

[70], by replacing the γ̄’s in previous results with y. The average detection prob-

ability can be derived after averaging P Fad
d (y) by fY (y). This approach appears

mathematically more tractable than the direct integration.

K Channel Model

The average detection probability over the K channel model, PK
d , can be evaluated

by replacing each γ̄ of the average detection probability over Rayleigh distribution

in [53, eq. (9)] by y, and averaging over fY (y) as given in Appendix A.1. Thus,

PK
d can be expressed as

PK
d = e−

λ
2

N−2∑
n=0

1

n!

(
λ

2

)n

+
∞∑
n=0

(−1)n
(
λ
2

)n
Γ(k −N + 1)

n!Γ(k)(NΩ)k
U

(
k −N + 1; k − n+ 1;

1

NΩ

)

−
N−2∑
n=0

e−
λ
2

(
λ
2

)n
Γ(n+ k −N + 1)

n!Γ(k)(NΩ)k
U

(
n+ k −N + 1; k + 1;

1

NΩ

)
.

(3.4)

where U(·; ·; ·) is the confluent hypergeometric function of the second kind defined

as [74, eq. (3.383.5)]

∞∫
0

e−pxxq−1(1 + ax)−v dx =
Γ(q)

aq
U
(
q; q + 1− v;

p

a

)
(3.5)

with q > 0, p > 0, a > 0 and v a complex value.

2Here the “average” means the average with respect to multipath fading.
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KG Channel Model

The average detection probability over KG channel model, PKG
d , can be evaluated

by replacing each γ̄ of the average detection probability over Nakagami-m distri-

bution in [53, eq. (7)] by y, and averaging over fY (y) as given in Appendix A.2.

Thus, PKG
d can be expressed as

PKG
d =

1

Γ(k)

( m

NΩ

)k
×

[
∞∑
s=0

N−1∑
n=1

e−
λ
2

(
λ
2

)n+s
(m)sΓ(s+ k)U

(
s+ k; k −m+ 1; m

NΩ

)
n!s!(n+ 1)s

+
∞∑
t=0

m−1∑
v=0

(−1)t(λ
2
)t+vΓ(v + k)

(
m−1

m−v−1

)
U
(
v + k; k − t−m+ 2; m

NΩ

)
t!v!

+
∞∑
s=0

m−2∑
n=0

n∑
a=0

(−1)s(λ
2
)a+s

(
n

n−a

)
Γ(a+ k + 1)U

(
a+ k + 1; k − s− n+ 1; m

NΩ

)
a!s!

]
(3.6)

where
(
n
k

)
is the binomial coefficient defined as

(
n
k

)
= n!

k!(n−k)!
, (x)s is the Pochham-

mer symbol defined as (x)s =
Γ(x+s)
Γ(x)

. This is valid for integer m.

One challenge in calculating the expressions (3.4) and (3.6) is the infinite sums.

As an example, the expression (3.4) is calculated as in the following. The expres-

sion (3.6) can be treated similarly. The expression (3.4) can be rewritten as

PK
d = e−

λ
2

N−2∑
n=0

1

n!

(
λ

2

)n

+
∞∑
n=0

(−1)nan −
N−2∑
l=0

bl (3.7)

where

an =
(λ
2
)nΓ(k −N + 1)U

(
k −N + 1; k − n+ 1; 1

NΩ

)
n!Γ(k)(NΩ)k

is the nth term of the auxiliary series
∑∞

n=0(−1)nan, and

bl =
e−

λ
2

(
λ
2

)l
Γ(l + k −N + 1)U

(
l + k −N + 1; k + 1; 1

NΩ

)
l!Γ(k)(NΩ)k

is the lth term of the finite series
∑N−2

l=0 bl. Theoretically, the auxiliary series con-

verges as n → ∞. When λ is small, it is observed that the series converges for

relatively small values of n, and thus, (3.4) can be accurately computed by using

any mathematical software (e.g., MATHEMATICA [75]). When λ is large, the
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sum requires the evaluation of an for large n, and therefore, accurate computation

of (3.4) is difficult (e.g., numerical underflow and overflow errors degrade the ac-

curacy). For higher λ values, the corresponding values of the average detection

probability as well as the false alarm probability are very small (for instance, it can

be less than 10−3). Thus, an approximation is needed for large λ. Note that the first

and the third terms in (3.7) are finite sums and therefore, can be calculated exactly.

For accuracy of (3.7), it is essential to calculate the second term in (3.7), denoted as

IK =
∑∞

n=0(−1)nan, accurately. In the following, convergence acceleration of IK

and an approximation method are given for IK .

Convergence Acceleration

As λ→ ∞, a large number of terms in IK need to be evaluated. This drawback can

be avoided by using a convergence acceleration technique. The idea is to generate

a new sequence by using ak|Nk=0. Consider the partial sums sn =
∑n

k=0(−1)kak

for n = 0, 1, . . . , N − 1. The objective is to estimate the limit s∞ by using as few

as possible partial sums. The ϵ-algorithm [76] is a powerful convergence acceler-

ation technique suitable for this purpose. The algorithm generates an array ϵ with

ϵ−1(sn) = 0, ϵ0(sn) = sn, and

ϵr+1(sn) = ϵr−1(sn+1) +
1

ϵr(sn+1)− ϵr(sn)
(3.8)

where r(≥ 0) is an integer. The acceleration method starts with a partial sum of

IK . It then estimates the converging point of n through (3.8) while keeping adding

adequate terms in IK to reach the required accuracy.

Approximation

After applying binomial expansion with some algebraic manipulations, IK can be

approximated for large λ as

IK ≈ 1

Γ(k)Ωk

N−1∑
s=0

(
N − 1

s

)
N s+1−N

∞∫
0

yk−N+se−(
λ

2Ny
+ y

Ω) dy

=
2

Γ(k)(NΩ)k

N−1∑
s=0

(
N − 1

s

)(
λΩ

2N

) p
2

Kp

(√
2λ

NΩ

) (3.9)
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where the second equality comes from [74, eq. (3.478.4)] and p = k −N + s+ 1.

The expression (3.9) consists of a finite summation with Kp(·), which is available

in most mathematical software. The accuracy of the average detection probability

depends on the accuracy of this approximation. For instance, a four-decimal-point

accuracy is achieved in the average detection probability when a four-decimal-point

accuracy is achieved in IK .

3.2.2 With Diversity Reception

In this section, the performance of an energy detector is considered with diversity

combining methods. The L diversity branches are independent and modeled with

the K distribution. The same analytical technique can be applied as in (3.2). Two

diversity techniques such as MRC and SC are mainly focused here. Diversity com-

bining techniques are used at the receiver to enhance the receive SNR. However,

they may increase the implementation complexity because receiver may need ad-

ditional knowledge of the network, e.g., knowledge of channel-state information

(CSI).

Maximal Ratio Combining

The MRC is a coherent combining technique which needs CSI in non-coherent

energy detection. Thus, it may increase the design complexity. The MRC receiver

combines all the diversity branches weighted with their corresponding complex fad-

ing gains as shown in Fig. 3.1.

(   )
2

Transmit 

antenna

Receive antennas

Combiner

Square law

device

Energy 

detection

1

i

L

Figure 3.1: Energy detection with MRC.
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The energy detector processes the samples of the combined signal of L diversity

branches, Y(n), which can be given as

Y(n) = Hs(n) +W(n) (3.10)

where H =
∑L

l=1 |hl|2 and W(n) =
∑L

l=1 h
∗
lwl(n) are effective channel gain and

noise sample, respectively, and wl(n) and hl are noise and channel coefficient of

the lth branch, respectively. The output signal of the MRC can be written as (3.10).

Thus the test statistic is given as

Λ =
N∑

n=1

|Y(n)|2 . (3.11)

The effective number of samples for the test statistic is N . The instantaneous SNR

of the combiner output is thus γMRC = γ1 + γ2 + ... + γL. Since energy detector

compares the received energy after the L i.i.d. branches are combined, the expres-

sion of the false-alarm probability is same as (2.15) and the instantaneous detection

probability for AWGN channels can be given as Pd = QN

(√
2NγMRC,

√
λ
)

. To

derive the average detection probability, Pd should then be averaged over the Ray-

leigh fading first, and then averaged over the shadowing. The PDF of γMRC for i.i.d.

Rayleigh fading channels is given by [39]

fγMRC(x) =
xL−1 e−

x
γ̄

Γ(L)γ̄L
(3.12)

where γ̄ is the average SNR in any branch (note that the “averaging” is on fading

only, excluding shadowing). The fγMRC(x) in (3.12) is similar to the PDF of γ under

Nakagami fading in no-diversity. Therefore, after averaging on Rayleigh fading,

the Pd under MRC (PMRC
d ) can be obtained from the average detection probability

for a Nakagami channel with no diversity (i.e. by replacing m by L and y by Ly

in (A.1) in the Appendix). Therefore, the overall average detection probability for

the K channel model with MRC, PMRC
d , can be obtained by averaging the “average

detection probability for a Nakagami channel with no diversity” over a gamma dis-

tribution, which is exactly the expression PKG
d in (3.6), but with m replaced by L

and Ω replaced by LΩ.
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Selection Combining

The combiner selects the branch having the strongest SNR among all diversity

branches. The SNR at the output of the combiner is γSC = max{γ1, γ2, ..., γL}.

The PDF of γSC, without shadowing, is given in [70, eq. (29)]. Replacing each γ̄

in [70, eq. (30)] by y and averaging it over fY (y), the average detection probability

for SC diversity scheme under the K channel model, P SC
d , can be evaluated as

P SC
d = L

L−1∑
p=0

(−1)p

p+ 1

(
L− 1

p

)
PK
d

(
Ω

p+ 1

)
where PK

d

(
Ω

p+1

)
is the PK

d in (3.4) with the replacement of each Ω by
(

Ω
p+1

)
.

3.3 Numerical and Simulation Results
Validation of the Analysis

Analytical results in (3.4) and (3.6) are verified by numerical methods3 through the

Gaussian-Legendre method and Monte Carlo simulations, as shown in Fig. 3.2a.

The expressions (3.4) and (3.6) are calculated by MATHEMATICA software

package [75], as shown in Fig. 3.2a by legend “Equation (3.4)” and “Equation

(3.6)”. Since the number of terms to sum up to achieve the required accuracy (e.g.,

up to four decimal points) increases with the increase of λ, an acceleration method

is used, in which an ϵ-algorithm [76] is applied to calculate the alternative series

in (3.4) and (3.6). As an example, the converging points of n (which reaches the

required accuracy) for different λ values are given in Table 3.1, for the equation

(3.4), the ϵ-algorithm, and the Gaussian-Legendre method used in the numerical

approximations.

Numerical integration is performed with the Gaussian-Legendre method, which

is explained here briefly. If an integral is in the form
∫ 1

−1
f(x) dx, the Gaussian-

Legendre rule can be applied as
1∫

−1

f(x) dx ≈
n∑

i=1

wif(xi)

3Note that the numerical methods are only for numerical calculation of the expression (3.4) and
(3.6). On the other hand, the expression (3.9) is an approximation for (3.4).
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Figure 3.2: (a) Comparison of analytical expressions (3.4) and (3.6) with numerical
approximations by the Gaussian-Legendre method, and Monte Carlo simulations
(N = 2, k = 5.5 and γ̄ = 10 dB); (b) Comparison of exact IK with approximation
in (3.9).

Converging point of (n)
λ = 25 λ = 50 λ = 75 λ = 100

Equation (3.4) 20 50 84 114
ϵ−Algorithm 11 15 19 23

Gaussian-Legendre 38 38 38 38

Table 3.1: Number of terms required to get the accuracy up to four decimal points.

by a suitable choice of the nodes (Legendre points) xi’s and weights wi’s (i =

1, ..., n), where n is the number of nodes. The integral of IK in the form of∫∞
0
h(y) dy can be transformed to the form

∫ π
2

0
ϕ(θ) dθ by using the substitution

y = tan θ. Further, it can be transformed to the form
∫ 1

−1
f(x) dx using the sub-

stitution θ = π
4
x + π

4
. With the help of the three-term recurrence relation, nodes

xi and weights wi can be computed from the associated eigenvalues and eigenvec-

tors [77, Table 25.4]. Therefore, the Gaussian-Legendre method is suitable for IK

to evaluate (3.4) numerically. A similar method can be applied to evaluate (3.6).

Fig. 3.2a shows that the analytical results in (3.4) and (3.6) match well with the

simulations, and the Gaussian-Legendre method provides an accurate approxima-

tion.
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Accuracy of the Approximation for IK

In Fig. 3.2b, IK (exact and approximation) vs λ is plotted. The approximation acts

as a lower bound for all λ’s and the bound gets tighter when λ increases from 0

to ∞ (i.e., for large λ’s). As an example, accuracy of four decimal points can be

achieved when λ > 140 with N = 3, k = 5.5 and Ω = 1. However, it should

be noted that for small λ’s (practical threshold range), (3.4) and (3.6) can be used

directly to evaluate the accurate detection probabilities without approximation. The

approximation helps for asymptotic analysis.
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Figure 3.3: (a) ROC curves for the K channel model with different k (N = 1,
γ̄ = 0, 5, 15 dB); (b) ROC curves for KG channel model with different fading
parameters, m (k = 5.5, N = 1, γ̄ = 5, 10 dB).

Impact of the Shadowing and Fading

Fig. 3.3a shows the ROC curves (which are illustrated by Pd vs Pf [78]) for the

K channel model with different k and average SNR γ̄. With the increase of k, an

improvement in the detection probability is observed. This is because increasing k

diminishes the shadowing effect. When k → ∞, the channel is a Rayleigh fading

model. ForKG channel, Fig. 3.3b shows effect of multipath fading with fixed shad-

owing (k = 5.5). Differentm values are taken, with γ̄ = 5, 10 dB. For largerm, the

receiver has a higher detection probability with a lower false alarm probability, i.e.,
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the channel fading conditions improve with the reduced fluctuations of the signal

strength.
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Figure 3.4: ROC curves for L-branch MRC and SC diversity receptions with K
channel model (N = 3, k = 6, γ̄ = 5 dB).

Performance of Diversity Receptions

The performance of MRC and SC diversity schemes with different number L of

diversity branches, which have the same instantaneous shadowing, is illustrated

in Fig. 3.4. There is an obvious diversity gain in the case of diversity systems

compared to no-diversity system (the case with L = 1). Further, MRC always

outperforms SC.

Shadowing Effect

Further, it is important to notice the differences between Rayleigh-lognormal dis-

tribution and K distribution. In general, the performance of shadowing effect is

compared with respect to shadow standard deviation σΩ and mean µΩ in lognor-

mal distribution [39, eq. (2.200)]. The relationships between the parameters in

Rayleigh-lognormal distribution (σΩ and µΩ) and parameters in K distribution (k
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Figure 3.5: Comparison of K channel model with Rayleigh-lognormal channel.

and Ω) can be obtained as [41]

ξµΩ = lnΩ + Ψ(k) and (ξσΩ)
2 = Ψ

′
(k)

where ξ = ln 10
10

, Ψ(·) is the psi function [77], and Ψ
′
(·) is the first derivative of

Ψ(·). Fig. 3.5 shows the ROC curves of the energy detector for σΩ ≈ 4.5 dB, 8 dB

and 13 dB to represent urban area, typical microcell and worst case of macrocell,

respectively. The respective k and µΩ values for σΩ ≈ 4.5, 8.0, 13 dB are k ≈

1.35, 0.63, 0.35 and µΩ ≈ 2.5155, -3.2254, -9.893 dBm with Ω =2, respectively.

Fig. 3.5 shows that the K distribution is a well-approximated model for the the

Rayleigh-lognormal distribution.

3.4 Conclusion

The performance of an energy detector under both multipath fading and shadowing

effects is studied by using K and KG channel models. The average detection prob-

abilities are derived along with the approximations for large λ values. Convergence

acceleration based on the ϵ-algorithm is suggested to efficiently compute the infi-

nite series representation. Moreover, the numerically efficient Gaussian-Legendre
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quadrature is useful for numerical approximations. These results show that the de-

tection probability increases with the fading parameterm and shadowing parameter

k. The reason is that as m → ∞ and k → ∞, the channel approaches the AWGN

channel. Furthermore, when diversity receptions such as MRC and SC are used to

boost the performance of the energy detector, their performance is also analyzed

under multipath faded and shadowed diversity branches. The ROC reveals the ef-

fect of diversity advantage, and, as expected, MRC improves the performance of

the energy detector more than SC.

∼
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Chapter 4

A Mixture Gamma Distribution to
Model the SNR of Wireless Channels

As discussed in Section 2.1.2, composite fading which includes multipath fading

and shadowing has increasingly been analyzed by means of the K channel and

related models. Nevertheless, these models do have computational and analytical

difficulties when energy detection and other wireless network performance are an-

alyzed. Motivated by this problem, this chapter develops a mixture gamma (MG)

distribution which can represent several common wireless channels. The accuracy

of the MG representation of composite fading channels and small-scale fading chan-

nels is also examined. Performance analysis and numerical results are given from

the unified analytical framework.1

4.1 Introduction

Performance Analysis Based on K and KG Models

The use of K and KG models for performance analysis has greatly increased re-

cently (see [44,73,79–86], among many others). For instance, the statistics of SNR,

the average channel capacity and the BER are analyzed in [73,79]. The outage per-

formance, the average BER, and the channel capacity of several adaptive schemes

are derived in [80]. The average output SNR, amount of fading and outage prob-

ability of different diversity receivers are derived in [44]. The closed-form BER

1A version of this chapter has been published in IEEE Trans. Wireless Commun., 10: 4193–4203
(2011).

42



is derived for (post-detection) EGC in [81]. The performance of dual-hop non-

regenerative relays and multihop regenerative relays is analyzed in [82–84]. The

average BER of orthogonal frequency division multiplexing (OFDM) systems is

evaluated in [85]. The ergodic capacity of multiple-input multiple-output (MIMO)

systems is investigated in [86]. The performance of an energy detector is analyzed

in Chapter 3 of this thesis. These studies and others show the importance of K and

KG models.

Limitations of K and KG Models

While Rayleigh-lognormal (RL) and Nakagami-lognormal (NL) do not have closed-

form PDFs, the K, KG and G- models do. Nevertheless, their PDFs include special

functions (e.g., modified Bessel functions). Consequently, mathematical complica-

tions arise in the evaluation of wireless performance metrics. For instance, the CDF

of the KG model is derived in [73] by using generalized hypergeometric functions.

The computation of such functions can be difficult as their series expressions may

give rise to numerical issues. Asymptotic expansions may hence be required for

certain ranges of the parameters and the variables. Moreover, the PDF of a sum of

SNRs (required in MRC) is intractable. As well, even numerical methods for MRC

by using the characteristic function approach is quite difficult due to the Whittaker

function [46]. To avoid these difficulties, a KG random variable (RV) is approxi-

mated by a Gamma RV in [46], and the PDF of the sum of independent KG RVs

is further approximated by PDF of another KG RV [87]. These approximations use

moment matching.

While performance evaluation over composite channels is highly important, the

use ofK,KG and G models has analytical and/or computational difficulties. Hence,

an alternative approach is developed by using the MG distribution in this chapter.

The rest of the chapter is organized as follows. The MG distribution is described

in Section 4.2. Several common mobile radio channels are represented by using the

MG model in Section 4.3. In Section 4.4, the accuracy of the MG representation

of composite fading channels and small-scale fading channels is examined. Perfor-

mance analysis and the numerical results from the unified framework are shown in

43



Section 4.5 and Section 4.6. The concluding remarks are in Section 4.7.

4.2 Mixture Gamma Distribution

The MG distribution provides several advantages due to several reasons. First, since

it is a linearly weighted sum of gamma distributions, it inherits several advantages

of the gamma distribution. For example, the MGF and CDF, which are required

in wireless system analysis, have mathematically tractable expressions. Second,

this distribution can approximate not only composite fading channels, but also any

small-scale fading channels. Third, high accuracy is possible by adjusting the pa-

rameters. Overall, by using the MG model, performance of any wireless systems

over a variety of fading channels can be analyzed in a unified framework.

In [88], it is shown that any function f(x), where lim
x→+∞

f(x) → 0 and x ∈

(0,∞), can be given as f(x) = lim
u→+∞

Fu(x) where Fu(x) := e−ux
∑∞

k=0
(ux)k

k!
f
(
k
u

)
,

u > 0. Thus, an arbitrarily close approximation to f(x) can be obtained by increas-

ing the number of terms in the mixture [89]. Note that Fu(x) is a weighted sum

of gamma PDFs. This result provides the motivation for using the MG distribution

to represent any wireless SNR models. We start with the SNR distribution, which

is required for analysis of wireless communication systems. The instantaneous re-

ceived SNR and the average SNR are denoted by γ and γ̄, respectively.

Probability Density Function (PDF)

The following MG distribution is proposed to approximate the PDF of γ as

fγ(x) =
S∑

i=1

wifi(x) =
S∑

i=1

αix
βi−1e−ζix, x ≥ 0 (4.1)

where fi(x) =
ζ
βi
i xβi−1e−ζix

Γ(βi)
is a standard Gamma distribution, wi =

αiΓ(βi)

ζ
βi
i

, S is

the number of terms, and αi, βi and ζi are the parameters of the ith, i = 1, · · · , S,

Gamma component. Further,
∑S

i=1wi = 1 as
∫∞
0
fγ(x) dx = 1. The special

case S = 1 reverts to SNR distributions of Rayleigh and Nakagami-m fadings.

Discussion of how to choose S is provided in Section 4.4. Note that formula (4.1)

can approximate the PDF of any positive random variable.
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Cumulative Distribution Function (CDF)

The CDF of the MG distribution can be evaluated as Fγ(x) =
∫ x

0
fγ(t) dt to yield

Fγ(x) =
S∑

i=1

αiζ
−βi

i γ (βi, ζix) (4.2)

where γ(·, ·) is the lower incomplete gamma function [74, eq. (8.350.1)].

Moment Generating Function (MGF)

The MGF of MG distribution, Mγ(s), can be evaluated as Mγ(s) = E{e−sx}.

Thus, Mγ(s) =
∫∞
0
e−sxfγ(x) dx can be derived as

Mγ(s) =
S∑

i=1

αiΓ(βi)

(s+ ζi)βi
. (4.3)

Moments

The r-th (r = 0, 1, · · · ,∞) moment associated with the MG distribution, mγ(r),

can be calculated as mγ(r) = E{γr}, to yield

mγ(r) =
S∑

i=1

αiΓ(βi + r)ζ
−(βi+r)
i . (4.4)

The mathematically tractable expressions (4.1)-(4.4) demonstrate the major ben-

efit of the MG distribution. These performance metrics have convenient expressions

without complicated special functions. This fact can facilitate the performance stud-

ies enormously. If a given mobile radio channel can be represented as an MG dis-

tribution, the common performance metrics such as error rates, outage and others

are immediately derived, with details given in Section 4.5.

4.3 MG Distribution for Typical mobile radio chan-
nels

This section shows how to represent the SNR PDF of the NL, K, KG, κ-µ, Hoyt,

η-µ and Rician channel models in the form of an MG model, as in (4.1).
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4.3.1 Nakagami-lognormal Channel

The SNR distribution of the NL channel is a gamma-lognormal (GL) distribution,

given as [90]

fγ(x) =

∞∫
0

xm−1e−
mx
ρy

Γ(m)

(
m

ρy

)m
e−

(ln y−µ)2

2λ2

√
2πλy

dy (4.5)

where m is the fading parameter in Nakagami-m fading, ρ is the unfaded SNR,

and µ and λ are the mean and the standard deviation of the lognormal distribution,

respectively. When m = 1, expression (4.5) is the SNR distribution of the RL

distribution. The fading and shadowing effects diminish for larger m and smaller

λ, respectively. A closed-form expression of the composite GL SNR distribution is

not available in the literature.

By using substitution t = ln y−µ√
2λ

, expression (4.5) can be written as

fγ(x) =
xm−1

√
π Γ(m)

(
m

ρ

)m
∞∫

−∞

e−t2g(t) dt (4.6)

where g(t) = e−m(
√
2λt+µ)e−

m
ρ
e−(

√
2λt+µ)x. The integration, I =

∫∞
−∞ e−t2g(t) dt,

in (4.6) is a Gaussian-Hermite integration which can be approximated as I ≈∑S
i=1wig(ti) where ti and wi are the abscissas and weight factors for the Gaussian-

Hermite integration [77]. Therefore, fγ(x) in (4.6) can be expressed as the MG dis-

tribution given in (4.1). After normalization of
∫∞
0
fγ(x) dx = 1, parameters can

be given as

αi = ψ(θi, βi, ζi), βi = m, ζi =
m

ρ
e−(

√
2λti+µ), θi =

(
m

ρ

)m
wie

−m(
√
2λti+µ)

√
πΓ(m)

(4.7)

where ψ(θi, βi, ζi) = θi∑S
i=1 θiΓ(βi)ζ

−βi
i

. Function ψ(θi, βi, ζi) is also used for subse-

quent cases.

4.3.2 K and KG Channels

The SNR distribution of theKG channel has a closed-form expression with the nth-

order modified Bessel function of the second kind [73]. With some mathematical
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simplifications, the SNR distribution of the KG channel, which is a gamma-gamma

distribution, can be rewritten in an integral form as

fγ(x) =
λmxm−1

Γ(m)Γ(k)

∞∫
0

e−tg(t) dt (4.8)

where g(t) = tα−1e−
λx
t , λ = km

γ̄
and α = k−m. Here k and m are the distribution

shaping parameters, which represent the multipath fading and shadowing effects of

the mobile radio channel, respectively. The integral in (4.8), I =
∫∞
0
e−tg(t) dt,

can be approximated as a Gaussian-Laguerre quadrature sum as I ≈
∑S

i=1wig(ti)

where ti and wi are the abscissas and weight factors for the Gaussian- Laguerre

integration [77]. Thus, (4.8) can be written as the MG distribution with parameters

αi = ψ(θi, βi, ζi), βi = m, ζi =
λ

ti
, θi =

λmwit
α−1
i

Γ(m)Γ(k)
(4.9)

for i = 1, · · · , S.

4.3.3 η-µ Channel

The η-µ channel model is a generalized form to model the non-line of sight small-

scale fading of a mobile radio channel [91]. The Rayleigh, Nakagami-m and Hoyt

distributions are special cases of the η-µ channel model. The η-µ SNR distribution

is given as [92]

fγ(x) =
2
√
πµµ+ 1

2hµxµ−
1
2 e

−2µhx
γ̄

Γ(µ)Hµ− 1
2 γ̄µ+

1
2

Iµ− 1
2

(
2µHx

γ̄

)
(4.10)

where the parameter µ =
(1+H2/h2)E{γ}2

2Var{γ} (µ > 0) represents the number of multi-

path clusters, and Iv(·) is the vth-order modified Bessel function of the first kind.

Parameters h and H are to be explained in the following. The η-µ channel includes

two fading formats, Format 1 and Format 2, for two different physical represen-

tations. In Format 1, the independent in-phase and quadrature components of the

fading signal have different powers, and η (0 < η < ∞) is the power ratio of the

in-phase component to the quadrature component. Two parameters h and H are

defined as h = 2+η−1+η
4

and H = η−1−η
4

, respectively. In Format 2, the in-phase
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and quadrature components of the fading signal are correlated and have identical

powers. η (−1 < η < 1) is the correlation coefficient between the in-phase and

quadrature components. Two parameters h and H are defined as h = 1
1−η2

and

H = η
1−η2

, respectively [91].

Only a few performance studies for the η-µ channel have been published in

the literature, probably because the modified Bessel function of the first kind in

(4.10) leads to mathematical complexity [92–95]. In the following, the η-µ SNR

distribution is approximated by using the MG distribution.

For a real number v, the function Iv(z) can be computed using [74]

Iv(z) =
∞∑
k=0

1

k!Γ(v + k + 1)

(z
2

)2k+v

. (4.11)

Therefore, the η-µ SNR distribution (4.10) can be given in an alternative form as

fγ(x) =
2
√
πµµ+ 1

2hµe
−2µhx

γ̄

Γ(µ)Hµ− 1
2 γ̄µ+

1
2

∞∑
i=1

(
µH
γ̄

)2i+µ− 5
2
x2µ−3+2i

(i− 1)!Γ(µ+ i− 1
2
)
. (4.12)

The required accuracy2 to approximate the exact fγ(x) can be achieved by summing

a finite number, S, of terms in (4.12). By matching the two PDFs given in (4.10)

and (4.12), the parameters of the MG distribution can be evaluated as

αi =ψ(θi, βi, ζi), βi = 2(µ− 1 + i), ζi =
2µh

γ̄
,

θi =
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γ̄µ+

1
2

(
µH
γ̄

)2i+µ− 5
2

(i− 1)!Γ(µ+ i− 1
2
)
.

(4.13)

Alternatively, the vth-order modified Bessel function of the first kind, Iv(z), can be

approximated by using the integral representation [74, eq. (8.431.5)]

Iv(z) =

π∫
0

ez cosϑ cos(vϑ) dϑ

π
−

∞∫
0

sin(vπ)e−z cosh t−vt dt

π
. (4.14)

With ϑ = uπ
2
+ π

2
and vt = p, Iv(z) can be further written as Iv(z) = I1− I2, where

I1 =
∫ 1

−1
g1(u) du is a Gaussian-Legendre integration, and I2 =

∫∞
0
e−pg2(p) dp

2The required accuracy can be defined in terms of the mean square error (MSE) between the exact
and approximated expressions or by matching the first r moments.
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is a Gaussian-Laguerre integration where g1(u) = 1
2
e−z sin(πu

2
) cos

(
(u+ 1)πv

2

)
and

g2(p) = sin(πv)e−z cosh( p
v
)/(πv). Similar to Section 4.3.1 with Gaussian-Hermite

integration, the SNR distribution of the η-µ channel can be approximated by the

MG model.

4.3.4 Nakagami-q (Hoyt) Channel

Satellite links with strong ionospheric scintillation can be modeled with this distri-

bution, and its SNR distribution is given as [90]

fγ(x) =
1 + q2

2qγ̄
e
− (1+q2)2

4q2γ̄
x
I0

(
1− q4

4q2γ̄
x

)
(4.15)

where I0(·) is the zeroth-order modified Bessel function of the first kind. The fading

parameter q varies from 0 to 1, where q = 0 and q = 1 represent the one-sided

Gaussian and Rayleigh distributions, respectively. Further, this distribution is a

special case of the η-µ distribution when µ = 1
2

and η = q2. Using Format 1 of the

η-µ distribution, the parameters of the MG distribution for the Nakagami-q channel

can be derived from (4.13) to yield

αi = ψ(θi, βi, ζi), βi = 2i− 1, ζi =
(1 + q2)2

4q2γ̄
, θi =

(1 + q2)
(

1−q4

8q2γ̄

)2i−2

2qγ̄Γ(i)(i− 1)!
.

(4.16)

4.3.5 κ-µ Channel

The κ-µ distribution fits well with line-of-sight channels. Nakagami-n (Rician)

and Nakagami-m channels are special cases of the κ-µ channel. The κ-µ SNR

distribution is [92]

fγ(x) =
µ(1 + κ)

µ+1
2

κ
µ−1
2 eµκγ̄

µ+1
2

x
µ−1
2 e−

µ(1+κ)
γ̄

xIµ−1

(
2µ

√
κ(1 + κ)

γ̄
x

)
(4.17)

where κ (κ > 0) is the power ratio of the dominant components to the scattered

components of the signal, and µ (µ > 0) is defined as µ = (1+2κ)E{γ}2
(1+κ)2Var{γ} . Since fγ(x)

includes the modified Bessel function of the first kind with the square root of the

random parameter x, it is difficult to obtain the MG form with one of the Gaussian
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integration methods, as discussed in previous subsections. To address this difficulty,

the κ-µ SNR distribution given in (4.17) can be written using (4.11) as

fγ(x) =
µ(1 + κ)

µ+1
2

κ
µ−1
2 eµκγ̄

µ+1
2

∞∑
i=1

[µ2i+µ−3
(

κ(1+κ)
γ̄

) 2i+µ−3
2

Γ(µ− 1 + i)(i− 1)!
xµ+i−2e−

µ(1+κ)
γ̄

x

]
. (4.18)

The required accuracy for approximating the exact fγ(x) can be achieved by sum-

ming a finite number, S, of terms in (4.18). By matching the two PDFs given in

(4.17) and (4.18), the parameters of the MG distribution can be evaluated as

αi =ψ(θi, βi, ζi), βi = µ+ i− 1, ζi =
µ(1 + κ)

γ̄
,

θi =
µ(1 + κ)

µ+1
2

κ
µ−1
2 eµκγ̄

µ+1
2

µ2i+µ−3
(

κ(1+κ)
γ̄

) 2i+µ−3
2

Γ(µ− 1 + i)(i− 1)!
.

(4.19)

Alternatively, one can use a different approach in which the MGF of SNR under

κ−µ distribution can be matched with the MGF of SNR under the MG distribution

given in (4.3). Using the power series expansion of the exponential function ex =∑∞
n=0

xn

n!
, the MGF of the κ-µ SNR distribution given in [93] can be re-written as an

infinite form. By matching the two MGFs, the parameters of (4.1) can be evaluated.

4.3.6 Nakagami-n (Rician) Channel

The Nakagami-n or Rician channel model fits well with channels having a strong

line-of-sight component. The corresponding SNR distribution is given as [90]

fγ(x) =
(1 + n2)e−n2

γ̄
e−

(1+n2)
γ̄

xI0

(
2n

√
(1 + n2)

γ̄
x

)
(4.20)

where n is the fading parameter (0 ≤ n < ∞), and the Rician factor K is given

as K = n2. The Nakagami-n distribution is a special case of the κ-µ distribution

when µ = 1 and κ = n2. Therefore, the parameters of the MG distribution given in

(4.1) can be evaluated as

αi = ψ(θi, βi, ζi), βi = i, ζi =
(1 + n2)

γ̄
, θi =

(1 + n2)

en2 [(i− 1)!]2γ̄

(
n2(1 + n2)

γ̄

)i−1

.

(4.21)
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4.3.7 Rayleigh and Nakagami-m Channels

The SNR distributions of the Rayleigh and Nakagami-m channels are exponential

and gamma distributions, respectively [90, eq. (2.7) and (2.21)]. The two distribu-

tions are special cases of the MG distribution. When the Rayleigh distribution is

written in the MG form given in (4.1), the corresponding parameters are S = 1,

α1 = 1
γ̄

, β1 = 1 and ζ1 = 1
γ̄

. For the Nakagami-m distribution, the corresponding

parameters are S = 1, α1 =
mm

Γ(m)γ̄m , β1 = m and ζ1 = m
γ̄

.

4.4 Determination of the Number S

For the MG distribution, the number of components S needs to be determined. This

can be selected as the minimum value such that (i) the MSE or Kullback-Leibler

(KL) divergence between the target distribution and the MG distribution is below a

threshold; or (ii) the first r moments of the two distributions match.

2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

S

M
S

E

 

 

K
G

G
Gamma
Log−normal
MG

(a)

2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

S

K
L 

di
ve

rg
en

ce

 

 

K
G

G
Gamma
Log−normal
MG

(b)

Figure 4.1: (a) The MSE versus S when the GL distribution is approximated by
KG, G, Gamma, Log-normal and MG for m = 2.7, λ = 1, µ = 0, and the average
SNR = 0 dB; (b) The KL divergence (DKL) versus S when the GL distribution is
approximated by KG, G, Gamma, Log-normal and MG for m = 2.7, λ = 1, µ = 0,
and the average SNR = 0 dB.
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4.4.1 Accuracy of MG Distribution to Approximate mobile ra-
dio channel SNR

In the literature, the composite GL model has been approximated by KG [43],

G [45], Log-normal [39], and Gamma models [46]. Here, the accuracy of the MG

approximation is compared with that of those approximations. One of the pos-

sible measures of accuracy is the MSE between two PDFs: the approximate PDF,

fApp(x), and the exact PDF, fExt(x), where MSE = E
{
(fExt(x)− fApp(x))

2}. An-

other possible measure of accuracy is the KL divergence (DKL) between fApp(x)

and fExt(x), where DKL =
∫∞
−∞ fExt(x)log fExt(x)

fApp(x)
dx.3

The KG, G, Log-normal and Gamma distributions are selected for the compar-

ison. The Log-normal approximation and the Gamma approximation are obtained

by approximating GL PDF by a Log-normal PDF [39], and KG PDF by a Gamma

PDF [46], respectively. The MSEs and DKLs between the GL and its MG approx-

imation (eq. (4.7)), GL and KG, GL and G, GL and Log-normal, and GL and

Gamma can be calculated numerically, as shown in Fig. 4.1a and Fig. 4.1b, respec-

tively, for m = 2.7, λ = 1, µ = 0, and the average SNR = 0 dB. The parameters

of KG, G, Log-normal and Gamma distributions to match the target GL distribu-

tion are obtained from [39, 41, 45, 46]. The MSE and DKL between GL and MG

distributions are less than 10−3 when the number of components S ≥ 6 and S ≥ 8,

respectively. Based on MSE, MG model is better than Gamma, Log-normal, KG

and G models when S ≥ 2, 2, 4 and 5, respectively. Based on KL divergence, MG

model is better than Gamma, Log-normal, KG and G models when S ≥ 3, 3, 4 and

6, respectively. It can be seen that MSE and KL divergence give similar results for

the minimum value of S that makes the MG model more accurate than Gamma,

Log-normal, KG or G model. Further, these MSE and DKL with MG model de-

crease significantly as S slightly increases.

This fact is also evidenced by Fig. 4.2a, which shows the CDFs of the GL

and its approximations by KG, G, Log-normal, Gamma and MG models. These

curves are plotted on a GL paper. The ordinate of the GL paper is obtained using
3Although both the MSE and the KL divergence are measures of the difference between two PDFs,
they give different measurements. Nevertheless, they give similar results for the minimum value of
S that makes the MG model more accurate than Gamma, KG or G model, as shown subsequently.
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Figure 4.2: (a) The exact CDF of GL distribution and the CDFs of the KG, G,
Log-normal, Gamma and MG approximations. The parameter values are m = 2.7,
λ = 1, µ = 0, and the average SNR = 0 dB. The number of components in the
MG model is S = 5; (b) Exact SNR distributions of KG, Nakagami-q (Hoyt), η-µ
(Format 1), Rician and κ-µ channel models and their MG approximations.

the transformation F−1
GL (t) where FGL(x) is the CDF of GL distribution. Thus the

GL distribution is a straight line on the GL paper, and others are not. The inverse

function is numerically calculated using MATLAB. The following observations are

made:

1. The exact GL CDF (solid line) matches perfectly with the MG approximation

(small squares) for all x. Just S = 5 terms have been used in this case. Even

better accuracy is possible by slightly increasing S.

2. TheKG approximation [43] deviates significantly in the lower tail (x < 0.09)

and also in the upper tail (x > 5).

3. The G approximation [45] deviates in the lower tail (x < 0.1).

4. The Gamma or Log-normal approximation [39, 46] deviates significantly in

both lower tail (x < 1) and the upper tail (x > 5).

Clearly, the MG distribution is a more accurate representation of composite fading

channels.
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(κ, µ)
(3, 0.5) (3, 1) (3, 2) (7, 0.5) (7, 1) (7, 2)

1st moment 3 3 3 3 3 3
2nd moment 19 14 12 15 12 11
3rd moment 154 83 55 87 57 43

S 8 11 16 12 20 26

Table 4.1: The selected value of S and the nearest integer values of the first three
moments of both exact and approximated SNR distributions of κ-µ channel.

Similarly, Fig. 4.2b shows the SNR distributions of theKG, Nakagami-q (Hoyt),

η-µ (Format 1), Rician and κ-µ channel models and their corresponding approxi-

mations in the MG form, when the value of S in the MG distribution is selected as

the minimum value that satisfies MSE ≤ 10−6. Excellent match is also observed in

all curves. Note that in Fig. 4.2b and subsequent figures in this chapter, the con-

tinuous lines and discrete markers show the curves corresponding to the exact and

MG distributions, respectively.

4.4.2 Moment Matching

The parameters of αi, βi and ζi in the MG distribution can be determined based on

matching the MGFs of the exact distribution and the MG distribution. For brevity,

the value of S is determined as the minimum value such that the first r moments

of the two distributions have the same nearest integer values. Table 4.1 shows the

selected S value when r = 3 for κ-µ distribution. The exact distribution and the

approximated MG distribution have the same nearest integer values for the first 3

moments, which are also shown in Table 4.1. In Table 4.1, the (3, 1) and (7, 1)

columns are corresponding to Nakagami-n distribution (Rician) with Rician factors

K = 3 and K = 7, respectively.

To determine the parameters of the MG distribution to approximate other chan-

nel models, the exact SNR moment expressions (mγ(r) = E{γr}) for the NL, KG,

Nakagami-q and Nakagami-n are available in the literature [73, 90, 96], and the ex-

act SNR moment expressions of η-µ and κ-µ distributions can be derived from their

moments of the envelope distribution given in [91, eqs. (5), (43), and (46)].
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4.4.3 Complexity of Determining S

The number of terms S in the MG model may be determined iteratively. S can be

increased until the MSE or KL divergence requirements are met. In our numer-

ical result shown in Figs. 1 and 2, approximately S = 8 can meet the accuracy

requirement of 10−3. To achieve 10−6 accuracy, approximately S = 15 is needed.

Each iteration (corresponding to a particular S) requires 3N parameters αi,

βi and ζi (i = 1, · · · , S). If Gaussian integration methods (Gaussian-Legendre,

Gaussian- Laguerre, or Gaussian-Hermite) are used, their abscissas and weight fac-

tors are already tabulated (e.g., in [77]), or can be generated efficiently by using

simple MATLAB codes. Note that special functions are not involved in the calcu-

lations of the parameters.

4.5 MG Channel Performance Analysis

Performance analysis of wireless technologies such as MIMO, cooperative com-

munications, cognitive radio and ultra-wideband (UWB) radio has become impor-

tant recently. The MG distribution helps to provide a unified performance analysis

framework, because of the mathematical tractability of its CDF, MGF and moments

(Section 4.2) and because of its versatility (Section 4.3). To this end, this section

shows how the MG distribution allows the derivation of typical performance metrics

such as error rate, outage, and others.

Diversity Order

The diversity order is the magnitude of the slope of the error probability versus SNR

curve (log-log scale) in the high SNR region. The array gain measures the shift of

the error probability curve to the left. The diversity order and the array gain relate

to the asymptotic value of the MGF near the infinity, i.e., if the MGF, Mγ(t), can

be written in the form

|Mγ(t)| = b|t|−d +O(|t|−(d+1)) as t→ ∞
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then b and d define the array gain and diversity order, respectively [97]. Clearly,

using the binomial series expansion, (4.3) can be rewritten as

|Mγ(s)| =
S∑

i=1

αiΓ(βi)

(
s−βi +

∞∑
k=1

(
−βi
k

)
ζki s

−(βi+k)

)
. (4.22)

Therefore, the array gain is b ≈ αnΓ(βn) and the diversity order is d = βn, where

n is the index of the first nonzero αi, i.e., αi = 0 ∀i < n, and αn ̸= 0. Accordingly,

the diversity orders of NL,K,KG, η-µ, Hoyt, κ-µ, Rician, Rayleigh and Nakagami-

m fading channels are m, 1, m, 2µ, 1, µ, 1, 1, and m , respectively.

Average Channel Capacity

By using Shannon’s theorem, the average channel capacity of a single-input single-

output (SISO) channel, C, can be calculated by averaging the instantaneous channel

capacity over the SNR distribution as C =
∫∞
0
B log2(1 + x)fγ(x) dx, where B is

the signal transmission bandwidth. If βi is an integer, the average channel capacity

over the MG distribution, C, can be calculated by using results in [98], as

C =
B

ln 2

S∑
i=1

αi(βi − 1)!eζi
βi∑
k=1

Γ(k − βi, ζi)

ζki
(4.23)

where Γ(·, ·) is the upper incomplete gamma function [74, eq. (8.350.2)]. Next a

method is provided to calculate C for any value of βi. By replacing log2(1+x) with

the Meijer’s G-function [75, eq. (01.04.26.0003.01)], C can be evaluated, which is

valid for any βi, as

C =
B

ln 2

S∑
i=1

αiζ
−βi

i G1,3
3,2

[
ζ−1
i

∣∣∣∣ 1− βi, 1, 1
1, 0

]
(4.24)

where Gp,q
m,n [·] is the Meijer-G function. For integer βi, both expressions in (4.23)

and (4.24) are equal numerically.

Average SER

Since there is a MGF without special functions in the MG channel model, it can be

used to evaluate the average SER of M -PSK, M -QAM and M -amplitude modula-

tion (AM), as follows.
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M-PSK

The average SER for M -PSK, P psk
e , is given in [90, eq. (9.15)] for some channel

models. With the MGF given in (4.3), the average SER for M -PSK over the MG

distribution P psk
e can be evaluated as

P psk
e =

S∑
i=1

αiΓ(βi)

πζi
βi

(M−1)π
M∫
0

(
sin2 θ

sin2 θ +
gpsk
ζi

)βi

dθ (4.25)

where gpsk = sin2( π
M
). Therefore, the average SER of the M -PSK modulation can

be evaluated in closed-form for any value of βi with the aid of [99, eq. (10)].

M-QAM

Square M -QAM signals with a constellation size M = 2k with even k values are

considered. The average SER for M -QAM, P qam
e , is given in [90, eq. (9.21)] for

some channel models. When the MG distribution is used, P qam
e can be evaluated as

P qam
e =

S∑
i=1

KαiΓ(βi)

ζi
βi

[ π
2∫

0

(
sin2 θ

sin2 θ + gqam
ζi

)βi

dθ

−
√
M − 1√
M

π
4∫

0

(
sin2 θ

sin2 θ + gqam
ζi

)βi

dθ

] (4.26)

where gqam = 3
2(M−1)

and K = 4
π
(1 − 1√

M
) . P qam

e in (4.26) can be evaluated in

closed-form for any value of βi with the aid of [99, eq. (12)].

M-AM

Similarly, the average SER for M -AM, P am
e , is given in [90, eq. (9.19)] for some

channels. For the MG distribution, it can be evaluated as

P am
e =

2(M − 1)

πM

S∑
i=1

αiΓ(βi)

πζi
βi

π
2∫

0

(
sin2 θ

sin2 θ + gam
ζi

)βi

dθ (4.27)

where gam = 3
(M2−1)

. With the aid of [90, eq. (5A.1)] or [99, eq. (5)], P am
e can be

evaluated in closed-form for any value of βi.
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Similarly, the SER analysis for other modulation schemes over different digital

communication systems, for example, as given in [100, 101], can be performed

using the MG distribution.

Outage Probability

The outage probability, which is the probability that the received SNR is below a

given threshold γth, can easily be calculated as Pout = Fγ(γth), where Fγ(x) is

given in (4.2).

Energy Detection Related Performance

The MG model can also be used when energy detection related performance met-

rics, such as AUC and average detection probability, are analyzed, as detailed in

Chapters 6 and 7.

4.6 Numerical Results
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Figure 4.3: The average capacity of an SISO channel versus average SNR over
different fading channels.
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Two main focuses of this sub-section are (1) to show how the performance

analysis based on the MG approximation matches with the exact results, and (2)

to compare the performance of different fading channels. Typical distribution pa-

rameters are choosen. The value of S is selected as the minimum value to satisfy

MSE ≤ 10−6. As an example, the parameters and S for the NL, KG, η-µ (For-

mat 1), Hoyt, κ-µ and Rician channels are chosen as (m,λ, µ, S)=(2, 1, 0.25, 10),

(m, k, S)=(2, 5, 6), (η, µ, S)=(0.5, 1.5, 5), (q2, S)=(0.5, 3), (κ, µ, S)= (7, 2, 36) and

(n2, S)=(3, 16), respectively.

The performance curves for the average channel capacity, the outage probabil-

ity, and average SER for binary phase shift keying (BPSK) and QAM are plotted

in Figs. 4.3-4.4b, respectively, based on both exact (continuous lines) and approxi-

mated (discrete points) MG distributions. All figures show an excellent match.
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Figure 4.4: (a) The outage probability of an SISO channel versus average SNR over
different fading channels for γth = 0 dB; (b) The SER of an SISO channel versus
average SNR over different fading channels for BPSK and QAM.

As discussed in Section 4.5, the achievable diversity orders of NL, K, KG, η-µ,

Hoyt, κ-µ, Rician, Rayleigh and Nakagami-m fading channels are m, 1, m, 2µ, 1,

µ, 1, 1, and m, respectively. The diversity order can be illustrated by using outage

probability (Fig. 4.4a) or SER (Fig. 4.4b) versus average SNR plots in the high SNR

region. From the figures, NL and KG models show diversity order 2 because their
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fading parameters are m = 2. Hoyt and Rician models always have diversity order

1. Since η-µ and κ-µ models have µ = 1.5 and µ = 2, they have diversity order

3 and 2, respectively. All these confirm accuracy of our analysis in Section 4.5.

Further, the performance of η-µ and Hoyt channels are compared. Although both

channels have same power ratios in our numerical examples (i.e., η=q2=0.5), the η-

µ channel has higher effective multipath clusters, which help to achieve a diversity

order of 3 (=2µ) while the Hoyt channel has diversity order of one. Therefore,

performance of η-µ channel with (η, µ)=(0.5,1.5) is better than the performance

of Hoyt channel with q2=0.5 in terms of channel capacity, outage, and SER (Figs.

4.3-4.4b). Similarly, performance of κ-µ and Rician channels can be compared.

For the two channels in our numerical examples, the power ratios of the dominant

components to the scattered components of the signal are κ = 7 and n2 = 3,

respectively, and the diversity orders are 2 and 1, respectively. So performance of

κ-µ channel with (κ, µ)=(7,2) is better than the performance of Rician channel with

n2=3 in terms of channel capacity, outage, and SER (Figs. 4.3-4.4b). Since NL,

KG, η-µ, and κ-µ channel models do not have straightforward relationships among

each other, no clear-cut performance comparison can be done.

4.7 Conclusions

The MG distribution to model the SNR of the mobile radio channels has been pro-

posed. Theoretical results [88] [102] show it converges to any PDF over (0,∞),

a justification of this model. It is not only ideal for composite channels, but also

effective for small-scale fading channels. The MG parameters to match a target dis-

tribution can be obtained by approximating with Gaussian quadrature formulas, by

matching moments or by matching PDFs. The MG model offers a more accurate

representation of composite fading channels than those provided by the K models

and other alternatives, which have recently been used in wireless research.

∼
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Chapter 5

Area under the ROC Curve of
Energy Detection

The Area Under the ROC Curve (AUC) has been identified as a metric which can

represent different concepts of a hypothesis test. For instance, it is a compact and

single-value quantity which is a measure for the overall detection capability of a

detector. Thus, a comprehensive analysis of the AUC is given for an energy detector.

The average AUCs are derived for the case of no-diversity reception and diversity

reception cases. The detection diversity orders are also derived by using high SNR

approximation of the complementary AUC (CAUC).1

5.1 Introduction

The performance of an energy detector is traditionally characterized through its

ROC curves, (for example, as we discussed in Section 3.3). ROC curves are gen-

erated by plotting either detection probability versus false alarm probability or

missed detection probability versus false alarm probability (called complementary

ROC) [48]. Extensive ROC analysis of the energy detector is available in the wire-

less literature [53,54,69,70]. Looking further afield, it is found that ROC analysis is

regularly used, for example, in the health care field for diagnostic tests, drug testing

and others [103], and in machine learning algorithms [104].

Detection probability and false alarm probability depend on the threshold, num-

1Versions of this chapter have been published in IEEE Trans. Wireless Commun., 9: 1216–1225
(2010) and IEEE Commun. Lett., 15: 1301–1303 (2011).
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ber of samples, fading parameters, number of diversity branches or number of re-

lays, and average SNR. When threshold changes from 0 → ∞, the ROC curve starts

at the upper-right point (1, 1) and eventually moves to the lower-left point (0, 0), or

when the number of samples increases, ROC curves shift to the upper left-hand side

of the ROC graph. Generally, ROC curves are plotted by varying only one parame-

ter while keeping other parameters fixed, and a variety of curves can be generated

for different combinations of parameters of interest.

Although the ROC curves fully characterize the performance of an energy de-

tector, it is desirable to have a single figure of merit. Such a measure is the AUC,

which varies between 1
2

and 1. If the ROC curve can be given as Pd = f (Pf ) where

Pd is a function of Pf , and as Pf varies from 0 to 1, the AUC can be evaluated as

A =

1∫
0

Pd dPf . (5.1)

If the detector performs no better than flipping a coin, then the AUC becomes 1
2
, and

it increases to one as the detector performance improves. As well, the Area Theo-

rem [105] has shown that the AUC is a measure of the detection capability. Actually,

in [106], it has been pointed out that the area under the curve represents the proba-

bility that choosing the correct decision at the detector is more likely than choosing

the incorrect decision. However, as indicated in [107, 108], the exact computation

of AUC is difficult for realistic detection tasks. Therefore, the previous research

efforts mainly focus on bounds of the AUC [107, 108] or the asymptotic expansion

and limiting value of AUC [109]. Unlike [107–109], this chapter targets at deriving

rigorous expressions for the AUC of an energy detector in several scenarios that are

of interest to wireless researchers.

This chapter is organized as follows. The AUC of the energy detector is ana-

lyzed in Section 5.2. The average AUCs of the energy detector are analyzed for

different scenarios in Section 5.3. The numerical and simulation results are pre-

sented in Section 5.4. The concluding remarks are made in Section 5.5.
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5.2 AUC for Instantaneous SNR

For two energy detectors, it is difficult to compare their performance based on visual

perception of their ROC curves, since the curves may cross. On the other hand,

following the Area Theorem [105], the AUC is introduced, which is equal to the

area covered by the ROC curve. As aforementioned, the AUC is a measure of the

detection capability of the energy detector. Generally, as the threshold λ in the

energy detection varies from ∞ to 0, the false alarm and the detection probabilities

vary from value 0 to value 1, and accordingly, the AUC varies from 1
2

to 1.

Consider the ROC curve of detection probability versus false-alarm probability

(Pd versus Pf ). Let A(γ) denotes the AUC which is a function of instantaneous

SNR value γ. Therefore, A(γ) can be evaluated as

A(γ) =

1∫
0

Pd(γ, λ) dPf (λ). (5.2)

Since Pf (λ) and Pd(γ, λ) are functions of the threshold λ, the threshold averaging

method can be applied for the AUC calculation [110]. When the value of Pf (λ)

varies from 0 → 1, it is equivalent to λ ranging from ∞ → 0. Therefore, (5.2) can

be rewritten as

A(γ) = −
∞∫
0

Pd(γ, λ)
∂Pf (λ)

∂λ
dλ (5.3)

where ∂Pf (λ)/∂λ is the partial derivative of Pf with respect to λ, which is given

from (2.15) as
∂Pf (λ)

∂λ
= −λ

N−1e−
λ
2

2NΓ(N)
. (5.4)

After the substitution of (2.17) and (5.4) into (5.3), and the transformation
√
λ = t,

(5.3) can be written as

A(γ) =
1

2N−1Γ(N)

∞∫
0

t2N−1e−
t2

2 QN(
√
2Nγ, t) dt. (5.5)

Using the following identity of the Marcum-Q function

QN(β, α) =1−QN(α, β) + e−
α2+β2

2

N−1∑
r=1−N

(
α

β

)r

Ir(αβ)
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where Ir(·) is the rth-order modified Bessel function of the first kind, (5.5) can be

rewritten as

A(γ) =
1

2N−1Γ(N)

∞∫
0

t2N−1e−
t2

2

[
1−QN(t,

√
2Nγ)

+ e−
2Nγ+t2

2

N−1∑
k=1−N

(
t√
2Nγ

)k

Ik(
√
2Nγt)

]
dt.

(5.6)

After some mathematical manipulations as provided in Appendix B.1, A(γ) can be

evaluated as (see the Appendix B.2 for the detailed derivation)

A(γ) = 1−
N−1∑
k=0

Nkγke−
Nγ
2

2k k!
+

N−1∑
k=1−N

Γ(N + k)e−Nγ
1F̃1

(
N + k; 1 + k; Nγ

2

)
2N+kΓ(N)

(5.7)

where 1F̃1(·; ·; ·) is the regularized confluent hypergeometric function of the con-

fluent hypergeometric function 1F1(·; ·; ·) [75]. Note that (5.7) gives the AUC of

an energy detector for a specific value of instantaneous SNR γ. Therefore, A(γ) is

the unfaded AUC. The average AUC under the AWGN channel can be found from

(5.7) after replacing γ by γ̄, where γ̄ is the average SNR.

5.2.1 Complementary AUC

The multipath fading environment, diversity combining schemes, and relay net-

works introduce detection diversity gain on energy detection. However, neither the

ROC curve nor the AUC curve is able to show the order of improvement in de-

tection capability clearly (in graphically) when the average SNR increases. There-

fore, CAUC is introduced as a proxy for the overall detection capability, which can

demonstrate the order of improvement based on a log-log scale of a CAUC versus

average SNR plot when average SNR increases. The CAUC, A′, which is the area

under the complementary ROC curve (the curve of Pmd versus Pf ) is given as

A′ =

1∫
0

(1− Pd) dPf = 1−A. (5.8)

When the average SNR increases, while A goes from 0.5 to 1, A′ goes from 0.5 to 0.

Since A′ → 0 as γ̄ → ∞, CAUC is a better performance metric to discuss detection
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diversity order, which shows how fast the CAUC decreases with the increase in the

SNR in the high SNR range. Thus, detection diversity order can be defined as

d , − lim
γ̄→∞

log (A′)

log (γ̄)
. (5.9)

In general, the average CAUC can be given as A′ = cγ̄−d +O(γ̄−(d+1)) where c is

a constant which is independent of γ̄, and d is the detection diversity order.

5.2.2 Partial AUC

Although AUC measures overall detection capability, it may not always unambigu-

ously indicate when one detector is better than another. For example, when two

ROC curves cross, it is possible that their AUC’s are the same. This situation arises

when the two associated detectors have different performance in different regions of

detection threshold λ. The area of the ROC curve (for λ from 0 to ∞) only gives the

overall detection performance, but cannot differentiate the two detectors in a small

region of λ, say λ1 ≤ λ ≤ λ2. To remedy this drawback, the partial area under the

ROC curve [111] in region (λ1, λ2) can be used to demonstrate the difference, as

given by

APar(γ) = −
λ2∫

λ1

Pd(γ, λ)
∂Pf (λ)

∂λ
dλ. (5.10)

Nevertheless, the partial AUC measure appears intractable for closed-form analy-

sis. It can however be readily evaluated via numerical integration methods that are

available in the mathematical software packages.

5.3 Average AUC over Fading Channels

In this section, average AUC expressions are derived for no-diversity and diversity

receptions, respectively, over Nakagami-m distribution2 which is widely employed

for characterizing mobile radio channel fading. If the signal amplitude follows a

2Actually the MG channel model in Chapter 4 can be used here to model most existing fading
channels. Please refer to Chapter 7 for details of applying the MG channel model in deriving the
average AUC over various fading cases.
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Nakagami-m distribution, then the SNR has a PDF given by [90]

fγNak(x) =
1

Γ(m)

(
m

γ̄

)m

xm−1e−
m
γ̄
x, x ≥ 0 (5.11)

where γ̄ is the average SNR and m is Nakagami fading parameter. Subsequently,

the detection diversity order is also derived by using the average CAUC at the high

SNR.

5.3.1 No-Diversity Reception
Direct Integration

The average AUC, Ā, over fading channel channels can be evaluated by averaging

(5.7) with the SNR distribution which can be written as

Ā =

∞∫
0

A(x)fγ(x) dx. (5.12)

The average AUC for Nakagami-m fading channel with no diversity, ĀNak, can be

evaluated through averaging A(γ) in (5.7) by the SNR distribution fγNak(x) given

in (5.11). It can be derived for integer m as (see the Appendix B.3 for the detailed

derivation)

ĀNak =1− 1

Γ(m)

(
2m

2m+Nγ̄

)m N−1∑
k=0

Γ(k +m)

k!

(
Nγ̄

2m+Nγ̄

)k

+

(
m

m+Nγ̄

)m N−1∑
k=1−N

Γ(N + k)2F̃1

(
m;N + k; 1 + k; Nγ̄

2(m+Nγ̄)

)
2N+kΓ(N)

(5.13)

where 2F̃1(·; ·; ·; ·) is the regularized confluent hypergeometric function of the con-

fluent hypergeometric function 2F1(·; ·; ·) [75]. When m = 1, the result in (5.13)

means the average AUC over a Rayleigh fading channel. For higher γ̄, the average

CAUC, A′
Nak, can be approximated by using (5.13) as

Ā′
Nak ≈

[
(2m)m

NmΓ(m)

N−1∑
k=0

Γ(k +m)

k!

−
N−1∑

k=1−N

mmΓ(N + k)2F̃1

(
m;N + k; 1 + k; 1

2

)
2N+kNmΓ(N)

]
γ̄−m

=gNak(m,N)γ̄−m

(5.14)
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where gNak(m,N) is the term in the square brackets which depends on parameters

m andN . Whenm increases, the average AUC converges to 1, and the convergence

speed is with the order of m, which is the detection diversity order.

Moment Generating Function (MGF) Approach

By using the derivative of Pf (λ) with respect to λ and an alternative representation

of Pd(γ, λ), A(γ) can be written as

A(γ) =

∞∫
0

e−
λ
2

j2π

∮
Ω

e(
1
z
−1)Nγ+λ

2
z

zN(1− z)
dz
λN−1e−

λ
2

2NΓ(N)
dλ

=
1

j2π

∮
Ω

e(
1
z
−1)Nγ

zN(1− z)(2− z)N
dz

(5.15)

where Ω is a circular contour of radius r ∈ [0, 1), and the second equality of (5.15)

results after changing integration orders. The average AUC, Ā =
∫∞
0

A(x)fγ(x) dx,

can be written as

Ā =
1

j2π

∮
Ω

g(z)dz, where g(z) =
Mγ

(
1− 1

z

)
zN(1− z)(2− z)N

, (5.16)

and Mγ(s) = E{e−sγ} is MGF of the received SNR γ. The Residue Theorem in

complex analysis is one of the effective techniques to evaluate the contour integral

in (5.16). If g(z) =
∑∞

i=−∞ ai(z − z0)
i, the integration of g(z) in a closed contour

Ω encircling z0 is given by
∮
Ω
g(z)dz = j2πa−1 where a−1 is the complex residue.

If the contour encloses multiple poles, then the general result is∮
Ω

g(z)dz = j2π
∑
ai∈⊖

Res (g(z, ai)) (5.17)

where ⊖ is the set of poles contained inside the contour, and Res(g; t) denotes

residues of function g(z) at z = t [112]. The MGF of Nakagami-m fading model is
1

(1+ γ̄
m
s)

m . Thus The average AUC over Nakagami-m fading, ĀNak, is derived based

on (5.16) and (5.17), as

ĀNak =
1(

1 + γ̄
m

)m

(

Res
(
g; γ̄

m+γ̄

)
+ Res (g; 0)

)
: N > m

Res
(
g; γ̄

m+γ̄

)
: N ≤ m

(5.18)
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where

Res
(
g;

γ̄

m+ γ̄

)
=

1

(m− 1)!
Dm−1

(
1

zN−m(1− z)(2− z)N

) ∣∣∣∣
z= γ̄

m+γ̄

,

Res(g; 0) =
1

(N −m− 1)!
DN−m−1

 1(
z − γ̄

m+γ̄

)m
(1− z)(2− z)N

∣∣∣∣
z=0

,

(5.19)

and Dn(f(z)) denotes the nth derivative of f(z) with respect to z.

5.3.2 Diversity Reception

The average AUCs under MRC and square-law combining (SLC) diversity recep-

tions are derived. The L diversity paths are i.i.d. over Nakagami-m fading channels,

and γk is the SNR in the kth branch.

Maximal Ratio Combining

In MRC, all the diversity branches are coherently combined, and the instantaneous

SNR at the output of the combiner is γMRC =
∑L

k=1 γk. The PDF of γMRC for

i.i.d. Nakagami-m fading channels is given by [90]

fγMRC (x) =
1

Γ(Lm)

(
m

γ̄

)Lm

xLm−1 e−(
m
γ̄ )x, x ≥ 0. (5.20)

Similar to the derivation of (5.13), the average AUC under MRC, AMRC

Nak , can be

evaluated through averaging A(γ) in (5.7) by the SNR distribution in (5.20), as

AMRC

Nak =1− 1

Γ(Lm)

(
2m

2m+Nγ̄

)Lm N−1∑
k=0

Γ(k +m)

k!

(
Nγ̄

2m+Nγ̄

)k

+

(
m

m+Nγ̄

)Lm N−1∑
k=1−N

Γ(N + k)2F̃1

(
Lm,N + k; 1 + k; Nγ̄

2(m+Nγ̄)

)
2N+kΓ(N)

.

(5.21)

For higher γ̄, the average CAUC A′MRC

Nak can be approximated by using (5.21) as

AMRC

Nak ≈
[

(2m)Lm

NLmΓ(Lm)

N−1∑
k=0

Γ(k +m)

k!

−
N−1∑

k=1−N

mLmΓ(N + k)2F̃1

(
Lm;N + k; 1 + k; 1

2

)
2N+kNLmΓ(N)

]
γ̄−Lm

=gMRC(m,L,N)γ̄−Lm

(5.22)

68



where gMRC(m,L,N) is the term in the square brackets which depends on param-

eters m, L and N . The detection diversity gain is equal to Lm.

Square-Law Combining

In the non-coherent energy detection, having CSI of all the diversity branches at the

receiver is infeasible. Hence, the non-coherent combining schemes which exploit

the diversity gain in the absence of CSI are more preferable. In contrast to the MRC,

each diversity branch in SLC has a square-law device which performs the square-

and-integrate operation, and the combiner is implemented following the square-law

operation as shown in Fig. 5.1. The energy detector receives the sum of L decision

Receive antennas

Combiner

1

i

L

(   )
2

(   )
2

(   )
2

Energy 

detection
Transmit 

antenna

Figure 5.1: Energy Detection with SLC.

statistics. The outputs of the square-law devices of L branches are combined to

yield a new decision statistic as

ΛSLC =
L∑
i=1

Λi =
L∑
i=1

N∑
n=1

|yi(n)|2 (5.23)

where Λi is the test statistic of the ith branch and yi is the receive signal of the ith

branch.

The resultant decision statistic under SLC follows a central chi-square distribu-

tion with 2LN degrees of freedom and a non-central chi-square distribution with

2LN degrees of freedom under hypothesis H0 and H1, respectively. Moreover, the

false alarm and the detection probabilities under AWGN channel can be derived by

69



(2.15) and (2.17) withN and γ being replaced byLN and γSLC , respectively, where

γSLC =
∑L

k=1 γk [53]. Thus, it can be seen that the AUC under SLC for AWGN

channel is equivalent to A(γ) in (5.7), after replacing N by LN . Since γSLC and

γMRC have similar expression, the average AUC under SLC with Nakagami-m fad-

ing channels, ASLC

Nak , can be evaluated as AMRC

Nak in (5.21) after replacing N by LN .

Further, high average SNR approximation for CAUC can also be derived as

A′SLC
Nak ≈ gSLC(m,L,N)γ̄−Lm (5.24)

where gSLC(m,L,N) is equivalent to gMRC(m,L,N) after replacing N by LN .

The detection diversity gain is equal to Lm.

5.4 Numerical and Simulation Results

In this section, numerical and Monte-Carlo simulation results are presented. Since

the average AUC depends on parameters such as N , γ̄, m and L (if diversity recep-

tion is used), several different cases are discussed here.
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Figure 5.2: The average AUC versus the average SNR for differentN = 1, 3, 5 with
no diversity reception under Nakagami-2 fading channel.
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Fig. 5.2 shows the average AUC versus the average SNR for different N with

no diversity reception under Nakagami-2 fading channel. Analytical expressions

for average AUCs are verified by numerical calculations and by Monte-Carlo sim-

ulations using MATHEMATICA and MATLAB software packages, respectively.

Continuous and dashed lines in the figure represents numerical values, while dis-

crete signs represent simulation values. Moreover, higher average SNR leads to

larger average AUC and thus, higher overall detection capability. The influence

of the number of samples N on the AUC performance is also illustrated in Fig.

5.2 which shows the average AUC versus the average SNR for different number of

samples, N . A higher number of samples tends towards a higher detection capa-

bility. Although the detection and false alarm probabilities both increase when the

value of N increases, the detection probability increases faster than the false-alarm

probability, thus leading to a higher overall detection capability.
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Figure 5.3: (a) The average AUC versus the average SNR for different m = 1, 3, 5
with no diversity reception under Nakagami-m fading channel; (b) The average
CAUC versus the average SNR for different m = 1, 3, 5 with no diversity reception
under Nakagami-m fading channel.

Fig. 5.3a shows the average AUC versus the average SNR for different m

values, which demonstrates the effect of fading parameter m on overall detec-

tion capability. When m increases, the average AUC increases, which means the
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overall detection capability increases. However, Fig. 5.3a does not illustrate the

order of increment clearly. Actually, for high SNRs, Ā′
Nak is approximated as

Ā′
Nak ≈ gNak(m,N)γ̄−m in (5.14). Thus the CAUC decreases according to order

m which can be demonstrated clearly in Fig. 5.3b by plotting the average CAUC

versus the average SNR for different m values. The detection diversity order is 1, 3

or 5.
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Figure 5.4: (a) The average CAUC versus the average SNR for different fading
channels based on the MG model; (b) The average CAUC versus the average SNR
for different L = 1, 2, 3 with diversity reception under Rayleigh fading channel.

As discussed in Section 4.5, the achievable diversity orders of NL, K, KG, η-µ,

Hoyt, κ-µ, Rician, Rayleigh and Nakagami-m fading channels are m, 1, m, 2µ, 1,

µ, 1, 1, and m, respectively. These diversity orders can also be illustrated by using

the average CAUC versus average SNR plots in Fig. 5.4a in the high SNR region

by using the mixture gamma (MG) channel model.

Fig. 5.4b shows the effect on the overall detection capability due to different

combining techniques with different values of diversity branches L. It can be seen

that, by increasing L, the average CAUC in all combining methods approaches to

zero in the same order Lm in high SNR. For a particular L, although two curves cor-

responding to MRC and SLC are parallel to each other, MRC always outperforms

SLC due to higher end-to-end SNR associated with MRC.
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5.5 Conclusions

A simple figure of merit characterizing the performance of an energy detector is the

AUC which is simply the area under the ROC curve. The average AUC of an energy

detector is derived for Nakagami-m channels with no-diversity and with diversity

reception (MRC and SLC). The detection diversity order is derived by using high

SNR approximations of CAUC. It is anticipated that the AUC measure will also be

useful for characterizing the performance of other numerous detection algorithms.

∼

73



Chapter 6

Energy Detection based Cooperative
Spectrum Sensing

Performance of an energy detector used for cooperative spectrum sensing is inves-

tigated. Single cooperative node, multiple cooperative nodes and multi-hop coop-

erative sensing networks are considered. Two fusion strategies, data fusion and

decision fusion, are analyzed. For data fusion, upper bounds for average detection

probabilities are derived. For decision fusion, the detection and false alarm prob-

abilities are derived under the generalized “k-out-of-n” fusion rule at the fusion

center by considering errors in the reporting channel.1

6.1 Introduction

The cooperative spectrum sensing by using data fusion and decision fusion is dis-

cussed in Section 2.7.

Data fusion

Data fusion has the similar function as the amplify-and-forward (AF) relaying in

relaying networks, and thus a cooperative node does not need complex detection

process. However, the bandwidth of the reporting channel (the channel between the

cooperative node and the fusion center) may be no less than the bandwidth of the

sensed channel. The complex-valued fading coefficients from the primary user to

1A version of this chapter has been published in IEEE Trans. Wireless Commun., 10: 1232–1241
(2011).
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the cooperative node and from the cooperative node to the fusion center are denoted

as f and g, respectively. The AWGN at the cooperative node and the fusion center

are u(n) and v(n), respectively, where u(n),v(n) ∼ CN (0, 2σ2
w).

In AF relaying, it can be assumed that the cooperative node has its own power

budget Pr, and the amplification factor, α, is designed accordingly. First the re-

ceived signal power is normalized, and then it is amplified to Pr. The CSI re-

quirement depends on the AF relaying strategy, in which there are two types of

relays [113, 114]:

• Non-coherent power coefficient: the cooperative node knows only the aver-

age fading power of the channel between the primary user and itself, i.e.,

E{|f |2}, and uses it to constrain its average transmit power. Therefore, α is

given as

α =
1

2σ2
w + PsE{|f |2}

(6.1)

where Ps is the power budget at the source.

• Coherent power coefficient: the cooperative node knows instantaneous CSI of

the channel between the primary user and itself, i.e., f , and uses it to constrain

its average transmit power. Therefore, α is given as

α =
1

2σ2
w + Ps|f |2

. (6.2)

An advantage of the non-coherent power coefficient over the coherent one is in its

less overhead, because the node does not need to estimate instantaneous CSI.

Decision Fusion

In decision fusion, each cooperative node makes one-bit hard decision on the pri-

mary user activity: ‘0’ and ‘1’ mean the absence and presence of primary activities,

respectively. Then, each reporting channel is with a narrow bandwidth. Capability

of complex signal processing is needed at each cooperative node. The fusion rule

at the fusion center can be OR, AND, or Majority rule, which can be generalized

as the “k-out-of-n” rule. The decision device of the fusion center with n coopera-

tive nodes can be implemented with the k-out-of-n rule in which the fusion center
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decides the presence of primary activity if there are k or more cooperative nodes

that individually decide on the presence of primary activity. When k = 1, k = n

and k = ⌈n/2⌉, where ⌈·⌉ is the ceiling function, the k-out-of-n rule represents OR

rule, AND rule and Majority rule, respectively.

A framework for two-user and multiple-user cooperative spectrum sensing with

data fusion was introduced in [66, 115]. However, an analytical study for the de-

tection capability of cooperative spectrum sensing has not been addressed. De-

cision fusion literature assumes for simplicity that the reporting channel is error-

free [116,117]. However, this assumption may not valid in practice. To fill these re-

search gaps in this area, in this chapter, a rigorous analytical framework is provided

for cooperative spectrum sensing with data fusion, and the detection performance

with decision fusion in scenarios with reporting errors is also investigated.

The rest of the chapter is organized as follows. Section 6.2 gives the preliminar-

ies for the analysis. Sections 6.3 and 6.4 are devoted to the analysis of cooperative

spectrum sensing with data fusion and decision fusion, respectively. Section 6.5

presents our numerical and simulation results, followed by concluding remarks in

Section 6.6.

6.2 Non-Cooperative
Cases

For non-cooperative cases (i.e., there is only one secondary user that would make a

decision on presence or absence of primary activities), the average detection prob-

ability can be calculated by direct averaging of the instantaneous detection prob-

ability over the respective SNR distribution as explained in Chapter 3. However,

the direct integration is not possible with some cases. This is due to the detection

probability being expressed by the generalized Marcum-Q function which has lim-

ited analytical results. Alternatively, the generalized Marcum-Q function can be

written as a circular contour integral [118], which replaces the Marcum-Q function
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in (2.17). Thus the average detection probability, P̄d, can be given as

P̄d =

∞∫
0

e−
λ
2

j2π

∮
Γ

e(
1
z
−1)Nx+λ

2
z

zN(1− z)
dzfγ(x) dx

=
e−

λ
2

j2π

∮
Γ

Mγ

(
N − N

z

)
e

λ
2
z

zN(1− z)
dz

(6.3)

where fγ(x) is the PDF of channel SNR γ, Mγ(·) is the MGF of channel SNR γ,

and Γ is a circular contour with radius r ∈ [0, 1). Since the Residue Theorem [112]

in complex analysis is a powerful tool to evaluate line integrals and/or real integrals

of functions over closed curves, (6.3) may be solved in the closed form for mathe-

matically tractable MGFs. If Mγ(s) is in a simple rational form (e.g., Nakagami-m

and η-µ fading), MGF approach based on residue evaluation is effective. Unfor-

tunately, MGFs of some fading models (e.g., K or KG model) or some network

scenarios do not give rise to a rational-form MGF. To circumvent the analytical dif-

ficulties, the mixture gamma (MG) model in Chapter 4 can be used as a generalized

fading scenario. After substituting the MGF given in (4.3), P̄d can be rewritten as

Pd = e−
λ
2

S∑
i=1

αiΓ(βi)

(ζi +N)βi

1

j2π

∮
Γ

g(z)dz (6.4)

where

g(z) =
e

λ
2
z

zN−βi(1− z)
(
z − N

N+ζi

)βi
.

The contour integral can be solved by applying the Residue Theorem assuming

integer values for βi. Details are given in Section 5.3.1 and Appendix C.

There are two possible scenarios, N > βi and N ≤ βi. When N > βi: There

are (N − βi) poles at z = 0 and βi poles at z = N
N+ζi

. Therefore, Pd can be

calculated as

Pd = e−
λ
2

S∑
i=1

αiΓ(βi)

(ζi +N)βi

[
Res (g; 0) + Res

(
g;

N

N + ζi

)]
(6.5)

where Res (g; 0) and Res
(
g; N

N+ζi

)
are the residues of g(z) at z = 0 and z = N

N+ζi
,

respectively. When N ≤ βi: There are βi poles at z = N
N+ζi

. Therefore, Pd can be
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calculated as

Pd = e−
λ
2

S∑
i=1

αiΓ(βi)

(ζi +N)βi
Res

(
g;

N

N + ζi

)
. (6.6)

In the following, we will derive average detection probability for cooperative

spectrum sensing with one or multiple cooperative nodes, one or multiple hops.

6.3 Data Fusion

6.3.1 Cooperative Scheme

A cognitive radio network in Fig. 6.1 is considered with a numberK of cooperative

nodes (named r1, r2, ..., rK). In the first phase, all cooperative nodes listen to the

rK

hprK hr  dK

r1

ri

r2

hpr
1 1

hr  d

2
hr  d

2
hpr

hpri hr  d
i

p d

relay link

direct link

hpd

p: primary user

ri: i-th cooperative node
d: fusion center
 

Figure 6.1: Illustration of a multiple-cooperative node network
.

primary user signal. Instead of making individual hard decision about the presence

or absence of the primary user, each cooperative node amplifies and forwards the

noisy version of its received signal to the fusion center in the second phase. These

nodes will use orthogonal communication channels. The fusion center receives

independent signals from cooperative nodes. The fusion center is equipped with
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an energy detector which compares the received signal energy with a pre-defined

threshold λ.

Single-Cooperative Node Networks

In a single-cooperative network, the node types are: primary user, cooperative node,

and fusion center. The cooperative node continuously monitors the signal received

from the primary user. The received signal at the cooperative node, denoted ypr(n),

is given by ypr(n) = θhprs(n) + u(n) where θ denotes the primary activity indica-

tor, which is equal to 1 at the presence of primary activity, or equal to 0 otherwise,

hpr is the channel gain between the primary user and cooperative node, and u(n) is

the AWGN at the cooperative node. The fusion center implements with an energy

detector, which decides whether a signal is present or not by using the received sig-

nal. The decision is made from a binary hypothesis. In general, for hypothesis Hθ,

θ ∈ {0, 1}, the received signal at the decision maker (i.e., the fusion center) can be

given as

y(n) = θ
√
Prαhprhrds(n) +

√
Prαhrdu(n) + v(n) (6.7)

where hrd is the flat fading channel gain between the cooperative node and fusion

center.

In this chapter, the non-coherent power coefficient is used which is given in

(6.1). The same receiver structure as in reference [52] is used.2 The effective noise

in (6.7) can be modeled as w|hrd
∼ CN

(
0, (Prα|hrd|2+1)2σ2

w

)
. The received sig-

nal is first filtered by an ideal band-pass filter. The filter limits the average noise

power and normalizes the noise variance. The output of the filter is then squared

and integrated over time T to form decision statistic Λ. Therefore, the false alarm

probability and detection probability can be written as (2.15) and (2.17), respec-

tively, with the effective SNR γ = γprγrd
C+γrd

where γpr and γrd are SNRs of the links

from the primary user to the cooperative node and from the cooperative node to the

fusion center, respectively, and C =
PsE{|hpr|2}

2σ2
w

+ 1.

2Note that cooperative spectrum sensing is not considered in reference [52].
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Multiple cooperative nodes Networks

A multiple-cooperative node network is shown in Fig. 6.1. There areK cooperative

nodes between the primary user and the fusion center, and hpri , hpd and hrid denote

the channel gains from the primary user to the ith cooperative node ri, from the

primary user to the fusion center, and from the ith cooperative node ri to the fusion

center, respectively. All cooperative nodes receive primary user’s signal through in-

dependent fading channels simultaneously. Each cooperative node (say cooperative

node ri) amplifies the received primary signal by an amplification factor αri , and

forwards to the fusion center over mutually orthogonal channels.

If the fusion center is implemented with MRC, the CSI of channels in the first

hop (or primary network) should be forwarded to the fusion center. On the other

hand, CSI may not be available for energy detection (which is non-coherent). In

contrast to MRC, receiver with SLC (which is a non-coherent combiner) does not

need instantaneous CSI of the channels in the first hop, and consequently results in

a low complexity system. The number K of outputs from all the branches in the

SLC, denoted {Λi}Ki=1, are combined to form the decision statistic

ΛSLC =
K∑
i=1

Λi =
K∑
i=1

N∑
n=1

|yi(n)|2

where yi is received signal via the ith cooperative node. Under AWGN channels,

ΛSLC follows a central chi-square distribution with KN degrees of freedom (DoF)

under H0, and a non-central chi-square distribution with KN DoF under H1. Fur-

ther, effective SNR after the combiner is γSLC =
∑K

i=1 γi where γi is the equivalent

SNR of the ith relay path. The non-centrality parameter under H1 is 2γSLC . The

false alarm and detection probabilities can be calculated using (2.15) and (2.17) by

replacing N by KN and γ by γSLC .

6.3.2 Analysis of Average Detection Probability
Multiple cooperative node network

The derivation of the average detection probability in (6.3) seems analytically dif-

ficult with the MGF of γ which is given in [114, eq. (12)]. Efficient numerical
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algorithms are available to evaluate a circular contour integral. We can use MATH-

EMATICA or MATLAB software packages that provide adaptive algorithms to re-

cursively partition the integration region. With a high precision level, the numerical

method can provide an efficient and accurate solution for (6.4). In the following,

we derive an upper bound of average detection probability.

The total SNR γ of a multiple-cooperative node network can be upper bounded

by γup as γ ≤ γup =
∑K

i=1 γ
min
i , where γmin

i = min(γpri , γrid), and γpri and γrid

are the SNRs of the links from the primary user to cooperative node ri and from

cooperative node ri to the fusion center, respectively. Therefore, for independent

channels, MGF of γup can be written as Mγup(s) =
∏K

i=1 Mγmin
i
(s) to yield

Mγup(s) =
K∏
i=1

γpri + γrid
γpriγrid

1(
s+

γpri
+γrid

γpri
γrid

) , (6.8)

where γpri and γrid are the average SNRs for links from the primary user to co-

operative node ri and from cooperative node ri to the fusion center, respectively.

Substituting (6.8) into (6.3), an upper bound of Pd, denoted P up
d , can be re-written

as (6.3) with

g(z) =
e

λ
2
z

zN−K(1− z)

K∏
i=1

1−∆i

z −∆i

,

and

∆i =
γpriγrid

γpri + γrid + γpriγrid
.

Two scenarios need to be considered: 1) When N > K, there are N −K poles at

origin and K poles for ∆i’s (i = 1, .., K) in radius r ∈ [0, 1), and 2) when N ≤ K,

there are K poles at ∆i’s (i = 1, .., K) in radius r ∈ [0, 1). Therefore, P up
d can be

derived as

P up
d =

{
e−

λ
2

(
Res (g; 0) +

∑K
i=1 Res

(
g; ∆i

))
: N > K

e−
λ
2

∑K
i=1 Res

(
g; ∆i

)
: N ≤ K,

(6.9)

where Res (g; 0) and Res
(
g; ∆i

)
denote the residue of the function g(z) at origin

and ∆i, respectively. Appendix C provides the details of the derivation of residue

calculations Res(g; ·).
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Incorporation with the Direct Link

In preceding subsections, the fusion center receives only signals coming from co-

operative nodes. If the primary user is close to the fusion center, the fusion center

can however have a strong direct link from the primary user. The direct signal can

also be combined at the SLC together with the relayed signals. Then the total SNR

at the fusion center can be written as γ† = γd +
∑K

i=1 γri , where γd is the SNR

of the direct path. Assuming independent fading channels, the MGF of γ† can be

written as

Mγ†(s) = Mγd(s)
K∏
i=1

Mγri
(s),

where Mγd(s) is given by 1/(1 + γds) with γd = E{γd}, and Mγri
(s) is given

in [114, eq. (12)]. As in preceding subsections, an accurate average detection

probability can be found by using numerical integration. An upper bound is derived

in the following. In this case, g(z) in (6.3) can be written as

g(z) =
(1−∆)e

λ
2
z

zN−K−1(1− z)(z −∆)

K∏
i=1

1−∆i

z −∆i

(6.10)

where ∆ = γd/(1 + γd). When N > K + 1, there are N −K − 1 poles at origin,

one pole at ∆ and K poles for ∆i’s (i = 1, · · · , K) in radius r ∈ [0, 1). When

N ≤ K + 1, there are one pole at ∆ and K poles for ∆i’s (i = 1, · · · , K) in radius

r ∈ [0, 1). Therefore, a tight upper bound of the detection probability, denoted

P †,up
d , can be derived in closed-form as

P †,up
d =

 e−
λ
2

(
Res (g; 0) + Res (g; ∆) +

∑K
i=1 Res

(
g; ∆i

))
: N > K + 1

e−
λ
2

(
Res (g; ∆) +

∑K
i=1 Res

(
g; ∆i

))
: N ≤ K + 1.

(6.11)

All residues, Res (g; 0), Res (g; ∆) and Res
(
g; ∆i

)
, are calculated in Appendix C.

6.3.3 Multi-hop cooperative Sensing

Multi-hop communication is introduced as a smart way of providing a broader cov-

erage in wireless networks. The same idea is exploited in a cognitive radio network

because the coverage area can be broadened with less power consumption. Channel

coefficients of different hops can be non-identically distributed random variables.
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Consider a cognitive radio network with M hops between the primary user

and the fusion center. There are M − 1 cooperative nodes (r1, · · · , rM−1) be-

tween the primary user and the fusion center. The end-to-end SNR is given as

γ =
(∑M

i=1

∏i
j=1

Cj−1

γj

)−1

where γi is the instantaneous SNR of the ith hop and Cj

is the constant in cooperative node rj and C0 = 1. Since γ can be upper bounded

as γup = ZM

∏M
i=1 γ

M+1−i
M

i where ZM =
(∏M

i=1C
−(M−i)/M
i

)
/M [119], the MGF

of γup is expressed using the Padé approximation method as [120]

Mγup(s)
∼=

Q∑
i=1

µis
i

i!
+O(sQ+1) where µi = Z i

M

M∏
j=1

γ̄j
i(M−j+1)

M Γ

(
i(M − j + 1)

M

)
,

Q is a finite number of terms of the truncated series, µi is ith moment of γup (here γ̄j

is the average SNR over the jth hop), and O(sQ+1) is the remainder of the truncated

series. After applying the Padé approximation, Mγup(s) is given as

Mγup(s)
∼=

∑A
i=0 ais

i

1 +
∑B

i=1 bis
i
=

B∑
i=1

qi
s+ pi

(6.12)

where A and B are specified orders of the numerator and the denominator of the

Padé approximation, ai and bi are approximated coefficients, and pi and qi can

be obtained based on the second equality in (6.12), as detailed in [120, Sec. II-

C], [121, Sec. IV]. Since Mγup(s) in (6.12) is a sum of rational functions, an upper

bound of the average detection probability can be written using (6.3) to yield

P up
d =

e−
λ
2

j2π

B∑
i=1

qi
1 + pi

∮
Ω

gi(z)dz, (6.13)

where

gi(z) =
e

λ
2
z(

z − 1
1+pi

)
zN−1(1− z)

.

When N > 1, there is a pole at z = 1/(1 + pi) and (N − 1) poles at the origin,

and when N = 1, there is only a pole at z = 1/(1 + pi) of gi(z). Thus, P up
d can be

written as

P up
d =

 e−
λ
2

∑B
i=1

qi
1+pi

(
Res (gi; 0) + Res

(
gi;

1
1+pi

))
: N > 1,

e−
λ
2

∑B
i=1

qi
1+pi

Res
(
gi;

1
1+pi

)
: N = 1,

(6.14)

where Res (gi; 0) and Res (gi; 1/(1 + pi)) are given in Appendix C.
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6.4 Decision Fusion

Each cooperative node makes its own one-bit hard decision: ‘0’ and ‘1’ mean the

absence and presence of primary activities, respectively. The one-bit hard deci-

sion is forwarded independently to the fusion center, which makes the cooperative

decision on the primary activity.

6.4.1 k-out-of-n Rule

It is assumed that the decision device of the fusion center is implemented with the k-

out-of-n rule (i.e., the fusion center decides the presence of primary activity if there

are k or more cooperative nodes that individually decide the presence of primary

activity). When k = 1, k = n and k = ⌈n/2⌉, the k-out-of-n rule represents OR

rule, AND rule and Majority rule, respectively. In the following, for simplicity of

presentation, pf and pd are used to represent false alarm and detection probabilities,

respectively, for a cooperative node, and use Pf and Pd to represent false alarm and

detection probabilities, respectively, in the fusion center.

Reporting Channels without Errors

If the sensing channels (the channels between the primary user and cooperative

nodes) are identical and independent, then every cooperative node achieves identi-

cal false alarm probability pf and detection probability pd. If there are error free

reporting channels (the channels between the cooperative nodes and the fusion cen-

ter), Pf and Pd at the fusion center can be written as

Pχ =
K∑
i=k

(
K

i

)
(pχ)

i(1− pχ)
K−i (6.15)

where the notation ‘χ’ means ‘f ’ or ‘d’ for false alarm or detection, respectively.

Reporting Channels with Errors

Because of the imperfect reporting channels, errors occur on the decision bits which

are transmitted by the cooperative nodes. Assume bit-by-bit transmission from co-

operative nodes. Thus, each identical reporting channel can be modeled as a binary
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symmetric channel (BSC) with cross-over probability pe which is equal to the BER

of the channel.

Consider the ith cooperative node. When the primary activity is present (i.e.,

under H1), the fusion center receives bit ‘1’ from the ith cooperative node when (1)

the one-bit decision at the ith cooperative node is ‘1’ and the fusion center receives

bit ‘1’ from the reporting channel of the ith cooperative node, with probability

pd(1−pe); or (2) the one-bit decision at the ith cooperative node is ‘0’ and the fusion

center receives bit ‘1’ from the reporting channel of the ith cooperative node, with

probability (1− pd)pe. On the other hand, when the primary activity is absent (i.e.,

under H0), the fusion center receives bit ‘1’ from the ith cooperative node when (1)

the one-bit decision at the ith cooperative node is ‘1’ and the fusion center receives

bit ‘1’ from the reporting channel of the ith cooperative node, with probability

pf (1−pe); or (2) the one-bit decision at the ith cooperative node is ‘0’ and the fusion

center receives bit ‘1’ from the reporting channel of the ith cooperative node, with

probability (1−pf )pe. Therefore, the overall false alarm and detection probabilities

with the reporting error can be evaluated as

Pχ =
K∑
i=k

(
K

i

)
(pχ,e)

i(1− pχ,e)
K−i (6.16)

where pχ,e = pχ(1 − pe) + (1 − pχ)pe is the equivalent false alarm (‘χ’ is ‘f ’) or

detection (‘χ’ is ‘d’) probabilities of the ith cooperative node.

Note that pe is the cross-over probability of BSC. It is typically taken as a con-

stant value (e.g., pe = 10−1, 10−2, 10−3) in a network with AWGN channels. In

the system model, pe can be calculated analytically as BER calculation of differ-

ent modulation schemes under multipath fading and shadowing effects. For BPSK,

BER can be calculated as pe = 1
π

∫ π/2

0
Mγ

(
1/ sin2 θ

)
dθ to yield

pe =
1

2

(
1−

√
γ

1 + γ

)
and

pe =
1

2

S∑
i=1

αi

ζi

(
1−

√
1

1 + ζi

)
for Rayleigh fading and composite Rayleigh-lognormal fading, respectively. Here

αi and ζi are defined in (4.1).
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6.4.2 Multi-hop Cooperative Sensing

Consider a multi-hop wireless network for both identical and non-identical chan-

nels. Each cooperative node makes a decision on the presence or absence of the

primary activity and forwards the one-bit decision to the next hop. Each hop is

modeled as BSC. It is assumed that there are M hops (i.e., M − 1 cooperative

nodes) between the primary user and the fusion center. A channel with (M − 1)

non-identically cascaded BSCs, which is equivalent to a single BSC with 1) effec-

tive cross-over probability Pe given as (see Appendix C for the derivation)

Pe =
1

2

(
1−

M−1∏
i=1

(1− 2pe,i)

)

where pe,i is the cross-over probability of the ith BSC and 2) the approximately

equivalent average SNR being the average SNR of the M − 1 BSCs. A channel

with (M − 1) identically cascaded BSCs, which is equivalent to a single BSC with

effective cross-over probability Pe = 1
2
[1 − (1 − 2pe)

M−1] and the average SNR

being the average SNR of any BSC. Based on the channel gain of the equivalent

single BSC, the detection and false alarm probabilities, pd and pf , of the BSC can be

derived. The detection and false alarm probabilities under a multi-hop cooperative

network can be given as Pd = pd(1−Pe)+ (1− pd)Pe and Pf = pf (1−Pe)+ (1−

pf )Pe, respectively.

6.5 Numerical and Simulation Results

This section provides analytical and simulation results to verify the analytical frame-

work, and to compare the ROC curves [48] of different scenarios that are presented

in the previous sections. Note that each of the following figures contains both an-

alytical result and simulation result, which are represented by lines and discrete

marks, respectively.

The performance of the energy detector in non-cooperative cases (as discussed

in Section 6.2) is first shown, which is an important starting point of the inves-

tigation in the cooperative cases. Fig. 6.2 thus illustrates ROC curves for small

scale fading with Rayleigh channel and composite fading (multipath and shadow-

86



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
f

P
d

 

 

Rayleigh
Rayleigh−lognormal η=0.5
Rayleigh−lognormal η=1
Rayleigh
Rayleigh−lognormal η=0.5
Rayleigh−lognormal η=1

γ̄=5 dB

γ̄=10 dB

γ̄=0 dB

γ̄=-5 dB

Figure 6.2: ROC curves of an energy detector over Rayleigh and Rayleigh-
lognormal fading channels

.

ing) with Rayleigh-lognormal channel where S = 10 in (4.1), which makes the

MSE between the exact gamma-lognormal channel model and the approximated

MG channel model in (4.1) less than 10−4. The numerical results match well with

their simulation counterparts, confirming the accuracy of the analysis. The en-

ergy detector capabilities degrade rapidly when the average SNR of the channel

decreases from 10 dB to -5 dB. Further, there is a significant performance degrada-

tion of the energy detector due to the shadowing effect η (η is the standard deviation

of the lognormal distribution).

Second, cooperative cases (discussed in Sections 6.3 and 6.4) are evaluated,

with focus on the impact of the number of cooperative nodes on detection capabil-

ity. The upper bound of average detection probability, based on (6.9), and simula-

tion results are shown in Fig. 6.3a. Note that the bound is tight for all the cases.

Increasing the number of cooperative nodes improves the detection capability. Fig.

6.3b shows the impact of the direct path on the detection capability. The direct path

has an average SNR value as -5 dB, -3 dB, 0 dB, 3dB or 5 dB, in network with

K = 1 or K = 3 cooperative nodes. The average SNR for other channels (from
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Figure 6.3: (a) ROC curves for different number of cooperative nodes over Rayleigh
fading channels γ = 5 dB; (b) ROC curves with the direct link over Rayleigh fading
channels.

the primary user to each cooperative node and from each cooperative node to the

fusion center) is 5 dB. When the average SNR of the direct link is improved from

-5 dB to 5 dB, ROC curves move rapidly to the left-upper corner of the ROC plot,

which means better detection capability. The presence of the direct path can sig-

nificantly improve the detection performance. It is better to utilize the direct link

for spectrum identification in the mobile wireless communication networks with

data fusion strategy because there may be a possibility for the fusion center and the

primary user to be close to each other.

Fig. 6.4a and Fig. 6.4b show the ROC curves for k-out-of-n rule in decision

fusion strategy for error-free and erroneous reporting channels, respectively. Three

fusion rules: OR, AND, and Majority rules, are considered. The average SNR in

each link (from the primary user to each cooperative node, and from each coop-

erative node to the fusion center) is 5 dB. With error-free reporting channels, OR

rule outperforms AND and Majority rules, and Majority rule has better detection

capability than AND rule. With erroneous reporting channels, the comparative per-

formances of the three fusion rules are not as clear-cut. However, OR rule outper-

forms AND and Majority rules in lower detection threshold (λ) values (i.e., higher
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Figure 6.4: (a) ROC curves for OR, AND and Majority fusion rules with error-free
reporting channels; (b) ROC curves for OR, AND and the Majority fusion rules
with Rayleigh faded reporting channels.

Pd and Pf ). As shown in Fig. 6.4b, when K = 5, OR rule has better performance

than Majority rule and AND rule when λ < 12.3 dB and λ < 14.3 dB, respectively.

With the erroneous reporting channels, it cannot be expected (Pf , Pd) = (1, 1) at

λ = 0 and (Pf , Pd) → (0, 0) when λ → ∞ on the ROC plot. When λ = 0,

Pf = Pd =
∑K

i=k

(
K
i

)
(1− pe)

ipK−i
e ; and when λ → ∞, Pf and Pd approaches∑K

i=k

(
K
i

)
pe

i(1 − pe)
K−i. In both scenarios, the values of Pd and Pf depend only

on the error probabilities of the reporting channels.

In Fig. 6.5, a multi-hop coopeative network and its detection capability over

Rayleigh fading are considered. The average SNR in each hop is 5 dB. Note that

for data fusion strategy, each ROC curve starts from (1, 1) when λ = 0 to (0, 0)

when λ goes to infinity. On the other hand, for decision fusion strategy with erro-

neous reporting channels, when λ = 0, we have Pd = Pf = 1 − Pe, and when

λ goes to infinity, Pd and Pf approaches Pe. Fig. 6.5 shows that the detection

performance of both data fusion strategy (represented by continuous lines) and de-

cision fusion strategy (represented by dashed lines) degrades rapidly as the number

of hops increases.

89



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
f

P
d

 

 

M = 1
M = 2
M = 3
M = 4
M = 5

Figure 6.5: ROC curves for a multi-hop cooperative network
.

6.6 Conclusion

Detection performance of cooperative spectrum sensing is analyzed for data fusion

and decision fusion strategies. A new set of results is derived for the average de-

tection probability. For the data fusion strategy, the MGFs of received SNR of the

primary user’s signal at the fusion center are utilized to derive tight bounds of the

average detection probability. For the decision fusion strategy in the cooperative

spectrum sensing, the generalized k-out-of-n fusion rule is considered, with partic-

ular focus on the OR, AND, and Majority rules. OR rule always outperforms AND

and Majority rules, and Majority rule has better detection capability than AND rule

with error-free reporting channels. However, given a probability of reporting error,

the performance is limited by the reporting error. The detection performance of

both strategies degrades rapidly when the number of hops increases.

∼
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Chapter 7

Energy Detection in Low SNR

The IEEE 802.22 standard requires spectrum-sensing techniques to identify pri-

mary signals with a very low SNR. In this chapter, under such low-SNR levels, the

detection performance of a conventional energy detector used for spectrum sensing

in cognitive radio networks is investigated. The analysis focuses on deriving ap-

proximations for two performance metrics: (1) the average missed-detection proba-

bility, and (2) the average AUC, which measures the overall detection capability of

an energy detector. The analysis develops a unified framework covering many ex-

isting fading channels, square-law diversity-combining technique and cooperative

spectrum-sensing scenarios. The detection threshold is also optimized to minimize

the total error rate subject to bounded false alarm and missed-detection probabili-

ties.

7.1 Introduction

In Section 2.6, some of the specifications of the IEEE 802.22 standard are given,

in which the requirements of false alarm and missed-detection probabilities (both

are less than 0.1) should be met with a very low SNR, e.g., -20 dB SNR [13].

Thus, spectrum sensing at low SNR is vital. Research on various spectrum sens-

ing techniques at moderate and high SNRs is frequently available in the litera-

ture [48, 53, 54]. However, research on spectrum sensing at low SNR is still very

limited. The low SNR spectrum sensing is considered for a differential energy de-

tection scheme of multi-carrier systems (e.g., OFDM) in [58], for multi-antenna
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detectors (which improve the robustness to noise uncertainty) in [59, 60], and for

a covariance matrix based detection algorithm in [61]. Moreover, low-SNR coop-

erative spectrum sensing techniques are considered for belief propagation in [62],

for cyclostationary detection in [63], for optimal relaying scheme in [64], and for

multi-antenna with a noise-uncertainty-free detector in [65]. These works consider

generalized likelihood ratio detector, alternative energy detector, cyclostationary

feature detector or covariance based detector, in which the operating SNR ranges

generally from 0 to -30 dB.

Due to the mathematical complexity, none of the research in the literature pro-

vides a rigorous unified analytical framework (here ‘unified’ means the framework

is valid with most existing fading channels) for the performance analysis (e.g.,

on average detection performance) and parameter optimization (e.g., on detection

threshold or sensing time) for any spectrum sensing technique at low SNR. The

reason is that although the average performance metrics (e.g., average detection

probability) can be derived rigorously for some particular fading models, the same

analytical framework may not work well for the parameter optimization [53, 54].

Therefore, a unified analytical framework is critically important to the cognitive

radio industry and deserves full investigation, at least for the conventional energy

detection as a benchmark because it is the simplest detection technique and its per-

formance metrics can be an upper bound (e.g., on sensing time) or a lower bound

(e.g., on detection probability) for other complex detection techniques. To achieve

this, this chapter provides a basic rigorous unified analytical framework for con-

ventional energy detection over various fading channels, analyzes the detection

performance, derives the optimal detection threshold that minimizes the total er-

ror rate when both false alarm and missed-detection probabilities are bounded, and

investigates detection performance in diversity combining and cooperative sensing

scenarios.

The rest of this chapter is organized as follows. Section 7.2 discusses energy

detection and its low-SNR model. Section 7.3 analyzes the low-SNR performance

of an energy detector, in terms of the average missed-detection probability and the

average AUC. Sections 7.4 is devoted to the analysis of the optimal detection thresh-
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old. Section 7.5 presents numerical and simulation results, followed by concluding

remarks in Section 7.6.

7.2 Low-SNR Model

Three signal models, S1, S2 and S3 which are given in Section 2.4.1, can be con-

sidered in the energy detection. For S1 and S2 signal models, the distribution of Λ

is modeled exactly in Section 2.4.2. Under H0, the false-alarm probability is with

the upper incomplete Gamma function. Under H1, the detection probabilities are

with the Marcum-Q function and with the upper incomplete Gamma function for

S1 and S2, respectively. However, none of these functions have closed-form inverse

functions, and thus there is no closed-form expression for the detection threshold

λ when a false-alarm or detection probability is given even with AWGN channel.

This problem becomes more complicated when the fading effect is considered. Al-

though there are rigorous expressions for the average detection performance over

some particular fading channels in the literature, such expressions may not help

for the parameter optimization (e.g., optimizing detection threshold). Since S1 and

S2 signal models have different set of expressions, results of one model cannot be

derived from those of the other model. Moreover, the distribution of Λ cannot be

modeled exactly for S3.

To solve all these problems, the CLT approach can be used as a unified approach

of accurately approximating the distribution of Λ in the three signal models. Re-

calling (2.23), the distribution of Λ can be approximated as a normal distribution

for sufficiently large N as

Λ ∼


N (N(2σ2

w), N(2σ2
w)

2) : H0

N (N(2σ2
w)(1 + γ), N(2σ2

w)
2(1 + 2γ)) : H1 with S1 or S3

N (N(2σ2
w)(1 + γ), N(2σ2

w)
2(1 + γ)2) : H1 with S2.

(7.1)

Under the low-SNR assumption (i.e., γ ≪ 1), the signal has little impact on

the variance of the test statistic under H1, as used in the Edell model, Berkeley

model and Torrieri model which are well-known Gaussian approximations for the

test statistic under H1 [122, 123]. Thus, (7.1) can be accurately approximated for
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any of the three signal models as

Λlow ∼
{

N (Nσ2, Nσ4) : H0

N (Nσ2(1 + γ), Nσ4) : H1
(7.2)

where σ =
√
2σw. The false alarm probability Pf and the missed-detection proba-

bility Pmd(γ) can be evaluated as

Pf =
1

2
Erfc

(
λ−Nσ2

√
2Nσ2

)
(7.3)

and

Pmd(γ) ≈ 1− 1

2
Erfc

(
λ−Nσ2(1 + γ)√

2Nσ2

)
, (7.4)

respectively, where where Q(z) = 1
2
Erfc

(
z√
2

)
and Erfc(·) is the complementary

error function defined as Erfc(z) = 2√
π

∫∞
z
e−t2 dt [74]. Since the detection prob-

ability, Pd(γ) = 1− Pmd(γ), relates to the cumulative distribution function (CDF)

of the test statistic, Fig. 7.1 shows the exact CDF of the test statistic Λ, denoted

FΛ|H1,|h|(x), with S1 signal model and its low-SNR approximation for γ=-10 dB,

-15 dB, or -20 dB when σ = 1 and N = 2 × 103. The exact CDF (solid line)

matches tightly with the approximation (discrete marks) for the simulated x range

at γ =-20 dB, while the other two cases also show close matches, confirming the

validity of the low-SNR approximation. The accuracy of the approximation is also

shown by the ROC curves in Fig. 7.2 (see discussion in Section 7.5).

7.3 Performance Analysis at a Low SNR

The MG channel model introduced in Chapter 4 is considered as a generalized SNR

distribution for the derivation of analytical results. The ROC curve, AUC, and the

total error rate are used as the performance measures. The ROC curve is a mea-

surement for the sensitivity of a detector used in a binary classifier system [124].

In signal-detection theory, the ROC (or the complementary ROC) curve is a graph-

ical plot of Pd(γ) (or Pmd(γ)) versus Pf as the discrimination threshold λ varies.

The ROC curves of spectrum-sensing detectors have highly non-linear behavior,

and they are, in general, convex. In wireless communications, Pd(γ) depends on

the received instantaneous SNR, which is a function of the mobile radio channel
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Figure 7.1: The exact and approximated (low-SNR) CDFs of the test statistic which
is modeled using the CLT, with σ = 1 and N = 2 × 103. S1 is considered as an
example. The exact CDF is based on (7.1) and approximated CDF is based on (7.2).

gain. Therefore, the average detection probability (or average missed-detection

probability) over fading channels is important for plotting the ROC curve, which is

discussed in Section 7.3.1. The AUC is the area under the ROC curve, which varies

between 1
2

and 1. It represents the probability that the detector is more likely to

choose the correct decision than the incorrect decision. It is a single-valued mea-

sure for the overall detection capability of a detector. The average AUC can be

derived by averaging instantaneous AUC over the SNR distribution which is dis-

cussed in Section 7.3.2. The total error rate, denoted Pe, is the sum of the false

alarm and missed-detection probabilities, Pmd(γ) + Pf , which both depend on the

threshold λ. The total error rate is used in [125] (which is based on the S1 signal

model) as a possible metric for selecting λ. In this chapter, the total error rate is

also adopted to select λ, as will be discussed in Section 7.4.

In this section, a unified approach will be developed to evaluate average detec-

tion probability and average AUC at the low-SNR region. Diversity combining and

cooperative spectrum sensing are also investigated subsequently.

95



7.3.1 Average Missed-Detection Probability
Over Fading Channels

For fading channels, the average missed-detection probability, Pmd, can be cal-

culated by directly averaging Pmd(γ) over the SNR distribution to yield Pmd =∫∞
0
Pmd(x)fγ(x) dx. Next the MG channel model (4.1) will be used for SNR dis-

tributions of many existing fading channels, diversity-combining techniques, and

cooperative sensing.

With the aid of (7.4), (4.1), Erfc(−x) = 2− Erfc(x), and some straightforward

algebraic manipulations, the average missed-detection probability over the general-

ized channel model (4.1), PGen
md , can be given as

PGen
md ≈ 1

2

S∑
i=1

αi

∞∫
0

xβi−1e−ζixErfc

(√
N

2
x+

Nσ2 − λ√
2Nσ2

)
dx.

An integral expression, I(n, p, a, b), which will be used in the later analysis, is

defined as [126, eq. (2.8.9.1)]

I(n, p, a, b) ,
∞∫
0

xne−pxErfc(ax+ b) dx

=(−1)n
∂n

∂pn

Erfc(b)− e
p2+4pab

4a2 Erfc
(
b+ p

2a

)
p

 ,
(7.5)

where n is a positive integer, Re[p]> 0, a > 0, b > 0 , and ∂n

∂pn
[·] is the nth-order

partial derivative with respect to p. Therefore, PGen
md can be derived for integer βi as

PGen
md ≈ 1

2

S∑
i=1

αiI

(
βi − 1, ζi,

√
N

2
,
Nσ2 − λ√

2Nσ2

)
. (7.6)

For example, for a Rayleigh fading channel, the corresponding parameters are S =

1, α1 =
1
γ̄

, β1 = 1 and ζ1 = 1
γ̄

. Thus, the average missed-detection probability over

the Rayleigh fading channel, P Ray
md , is

P Ray
md ≈ 1

2

[
Erfc

(
Nσ2 − λ√

2Nσ2

)
− e

1
γ̄2

+ 4
γ̄

(
Nσ2−λ√

2Nσ2

)√
N
2

2N Erfc
(
Nσ2 − λ√

2Nσ2
+

1

γ̄
√
2N

)]
.

(7.7)
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For a Nakagami-m fading channel, the corresponding parameters are S = 1, α1 =

mm

Γ(m)γ̄m , β1 = m and ζ1 = m
γ̄

. Thus, for integer m, the average missed-detection

probability over the Nakagami-m fading channel, PNak
md , is

PNak
md ≈ 1

2Γ(m)

(
m

γ̄

)m

I

(
m− 1,

m

γ̄
,

√
N

2
,
Nσ2 − λ√

2Nσ2

)
. (7.8)

Similarly, the average missed-detection probabilities over many other existing fad-

ing channels such as Nakagami-lognormal, K, KG, η-µ, Nakagami-q (Hoyt), κ-µ,

or Nakagami-n (Rician) can be derived easily after properly selecting the parame-

ters S, αi, βi, ζi (i = 1, 2, ..., S) in (4.1).

Diversity Reception

Since the traditional diversity techniques (e.g., MRC) may not work with energy

detection because coherent MRC needs channel state information, which increases

the system complexity, the SLC technique is considered. The outputs of the square-

law devices ofL branches are combined to yield a new decision statistic as in (5.23).

Note that, if Λi is a normal distribution as Λi ∼ N (µi, σ
2
i ), ΛSLC is also a normal

distribution as ΛSLC ∼ N
(∑L

i=1 µi,
∑L

i=1 σ
2
i

)
. Under H0 and H1, Λi is a normal

distribution as in (7.1) with γ replaced by γi (the SNR of the ith branch). For SLC

with a low SNR, the false alarm probability and the missed-detection probability

under AWGN channels can be evaluated as (7.3) and (7.4), respectively, with N

replaced by LN . For fading channels, if the PDF of γ = 1
L

∑L
i=1 γi is modeled

by using the generalized channel (4.1),1 with the aid of (7.6), the average missed-

detection probability can be derived as

PGen,SLC
md ≈ 1

2

S∑
i=1

αiI

(
βi − 1, ζi,

√
LN

2
,
LNσ2 − λ√

2LNσ2

)
. (7.9)

Thus, the average missed-detection probability over a Rayleigh fading channel can

be derived by using (7.9) with S = 1, α1 = 1
Γ(L)

(
L
γ̄

)L
, β1 = L and ζ1 = L

γ̄
. Sim-

ilarly, the average missed-detection probability over a Nakagami-m fading channel

1As special cases, the PDF of γ = 1
L

∑L
i=1 γi when signals of the branches follow

i.i.d. Rayleigh and Nakagami-m fading is fγ(x) = 1
Γ(L)

(
L
γ̄

)L
xL−1e−

L
γ̄ x and fγ(x) =

1
Γ(mL)

(
mL
γ̄

)mL

xmL−1e−
mL
γ̄ x, respectively.
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can be derived by using (7.9) with S = 1, α1 = 1
Γ(mL)

(
mL
γ̄

)mL

, β1 = mL and

ζ1 =
mL
γ̄

.

If the square-law selection combining technique is applied, the average missed-

detection probability can be derived by using the results in [53] and the general

expression given in eq. (7.6).

Cooperative Spectrum Sensing

Cooperative spectrum sensing can improve signal detection capability by sharing

and combining the information from intermediate cognitive nodes (called coopera-

tive nodes). Because the existing research in the literature focuses on the medium-

or high-SNR region [116], the impact of cooperative spectrum sensing at a low

SNR has not been clarified. To investigate this case, the decision fusion strategy,

in which each cooperative node makes a decision on the primary user activity, is

considered and individual 1-bit decisions are reported to a fusion center. If there

are K cooperative nodes, and the fusion center uses the k-out-of-K fusion rule

(i.e., the fusion center decides on the presence of primary activity if there are k or

more cooperative nodes that individually decide on the presence of primary activ-

ity), the false alarm probability P Coop
f and detection probability P Coop

d at the fusion

center can be written as P Coop
χ =

∑K
i=k

(
K
i

)
(pχ)

i(1 − pχ)
K−i, where the notation

‘χ’ means ‘f ’ or ‘d’ for false alarm or detection, respectively. It is assumed that

all cooperative nodes have i.i.d. channels from the primary user, and thus, achieve

identical false alarm probability pf and detection probability pd. Thus, the average

missed-detection probability of cooperative spectrum sensing over the generalized

channel model is

PGen,Coop
md ≈ 1−

K∑
i=k

(
K

i

)(
PGen
md

)i (
1− PGen

md

)K−i

, (7.10)

with PGen
md given in (7.6). For example, for a Nakagami-m channel, the average

missed-detection probability is equal to (7.10) with PGen
md replaced by PNak

md given in

(7.8).
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7.3.2 Average AUC

A general expression for the area under the curve is derived in the following Theo-

rem 7.1 for the AWGN case.

Theorem 7.1 Two functions which depend on λ (−∞ < λ < ∞)2 are defined as

Pf (λ) = 1
2
Erfc

(
λ−m0√

2σ0

)
and Pd(λ) = 1

2
Erfc

(
λ−m1√

2σ1

)
, where m0, m1, σ0, and σ1

are real positive values such that m0 ≤ m1 and σ0 ≤ σ1. By eliminating term λ, the

two functions can be combined as Pd = 1
2
Erfc

(
σ0

σ1
Erfc−1(2Pf )− m1−m0√

2σ1

)
, which

represents the Pd versus Pf curve. Thus, the area under the Pd versus Pf curve, A,

is given as

A = 1− 1

2
Erfc

(
m1 −m0√
2(σ2

0 + σ2
1)

)
. (7.11)

Proof: See Appendix D.1. �

The instantaneous AUC of an energy detector at a low SNR can be derived from

(7.11) by replacing m0 = Nσ2, m1 = Nσ2(1 + γ), σ2
0 = Nσ4, and σ2

1 = Nσ4,

as A(γ) ≈ 1 − 1
2
Erfc

(√
N
2
γ
)

. Then the average AUC over the generalized SNR

distribution (4.1) is derived as AGen =
∫∞
0

A(x)fγ(x) dx, to yield

AGen ≈ 1− 1

2

S∑
i=1

αi

∫
xβi−1e−ζixErfc

(√
N

2
x

)
dx

= 1 +
1

2

S∑
i=1

(−1)βi−1αi
∂βi−1

∂pβi−1

(
1

p
e

p2

N Erfc
(

p√
N

)
− 1

p

) ∣∣∣∣∣
p=ζi

,

(7.12)

where βi is a positive integer, and the second equality comes after applying [126, eq.

(2.8.5.4)]. This approximation can be used for many mobile radio channel models.

For example, the average AUC over a Rayleigh fading channel, ARay, is

ARay ≈ 1

2
+
e

1
Nγ̄2

2
Erfc

(
1

γ̄

√
1

N

)
, (7.13)

and the average AUC over a Nakagami-m fading channel, ANak, is

ANak ≈ 1 +
(−1)m−1mm

2Γ(m)γ̄m
∂m−1

∂pm−1

(
1

p
e

p2

N Erfc
(

p√
N

)
− 1

p

) ∣∣∣∣∣
p=m

γ̄

, (7.14)

2This is the theoretical limit of λ, but negative values of threshold are not considered in practice.
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where m is an integer.

For the SLC technique, , the average AUC over the generalized channel model is

given in (7.12) with N replaced by LN if the PDF of γ = 1
L

∑L
i=1 γi is modeled by

using the generalized channel. For example, the average AUC over Rayleigh fading

channels can be derived by using (7.12) with S = 1, α1 = 1
Γ(L)

(
L
γ̄

)L
, β1 = L,

ζ1 = L
γ̄

and with N replaced by LN . Similarly, the average AUC over Nakagami-

m fading channels can be derived by using (7.12) with S = 1, α1 =
1

Γ(mL)

(
mL
γ̄

)mL

,

β1 = mL, ζ1 = mL
γ̄

and with N replaced by LN .

For cooperative spectrum sensing, because P Coop
d is difficult to be expressed in

terms of P Coop
f , the AUC may not be able to be evaluated even with some numer-

ical methods. Alternatively, a threshold averaging approach which gives the AUC

as A = −
∫∞
−∞ Pd(λ)

∂Pf (λ)

∂λ
dλ may be used, because the threshold, λ, affects the

false alarm, the detection and the missed-detection probabilities, which are hence

denoted as Pf (λ), Pd(λ) and Pmd(λ), respectively. By using the binomial expan-

sion and the fact that ∂
∂x

[
Erfc

(
x−a
b

)]
= − 2

b
√
π
e−

(x−a)2

b2 , the AUC of cooperative

spectrum sensing can be expressed in an integral, which can be evaluated by nu-

merical methods. However, a closed-form expression appears difficult. Note that

our analytical approach for the average missed-detection probability and the aver-

age AUC can also be applied to other alternative energy detection methods in which

the energy detector test statistic is modeled as Gaussian via the CLT.

7.4 Threshold Selection

The traditional way of threshold selection is based on the false alarm probability

only. For a given number of samples (N ), estimated noise variance (σ2), and the

allowable false alarm probability (Pf ), the threshold can thus be obtained by us-

ing (7.3) as λ =
(√

2Erfc−1(2Pf ) +
√
N
)√

Nσ2. Unfortunately, this threshold

selection method is not suitable for cognitive radio networks where it is essential

to keep a low missed-detection probability such that primary users are protected

from interference. While threshold selection with different objective functions (by

relaxing some constraints) has been performed in [67,127] and among others, these
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papers focus on non-fading scenarios because the optimal threshold is analytically

intractable over fading channels. Moreover, the average missed-detection proba-

bility over fading channels has not been available for the low SNR model in (7.2).

Therefore, threshold selection that takes missed-detection probability into account

for the low SNR model over fading channels has not been studied previously, and

is the focus of this section.

For a cognitive radio network, Pmd(λ) is required to be no more than a threshold

denoted P th
md (e.g., Pmd(λ) ≤ 0.1 is required in the IEEE 802.22). This requirement

is equivalent to λ ≤ λ∗md where Pmd(λ
∗
md) = P th

md, since Pmd(λ) increases with

threshold λ. In addition, it may be required that Pf (λ) is no more than a threshold

P th
f (e.g., Pf (λ) ≤ 0.1 is required in the IEEE 802.22) such that the spectrum

opportunities are efficiently utilized. This requirement is equivalent to λ ≥ λ∗f

where Pf (λ
∗
f ) = P th

f , since Pf (λ) decreases with threshold λ.3

If λ∗f > λ∗md, then there is no feasible λ that satisfies both requirements on

false alarm and missed-detection probabilities, which means other actions need to

be taken, such as increasing the sampling rate of the received signal. If λ∗f ≤ λ∗md,

this means any λ value within range [λ∗f , λ
∗
md] can satisfy both requirements on false

alarm and missed-detection probabilities. To select a value in the range [λ∗f , λ
∗
md], a

combination metric of both Pf (λ) and Pmd(λ) can be considered. For this purpose,

the Bayesian cost [128], which is a popular metric to select the detection threshold

in the literature [125, 129–131], can be used. If no cost is associated with correct

decisions on H0 and H1, the Bayesian cost function can be given as

R(λ) = C01P0Pf (λ) + C10P1Pmd(λ),

where C01 and C10 are cost associated with false alarm and missed-detection, re-

spectively, and P0 and P1 are probabilities of H0 and H1, respectively. Since it may

not be reasonable for secondary users to know P0 and P1 in advance, it can be set

P0 = P1, and also set C01 = C10. Then minimizing the Bayesian cost is equiva-

lent to minimizing the total error rate Pe(λ)
△
= Pf (λ) + Pmd(λ).4 Therefore, the

3Note that if P th
f = 1, it is equivalent to the case with no requirement on false alarm probability,

which means λ∗
f = 0.

4Please note that, if the secondary users know P0 and P1, and/or C01 ̸= C10, our method for the
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threshold selection problem is formulated as

minimize
λ

Pe(λ) = Pf (λ) + Pmd(λ)

subject to Pf (λ) ≤ P th
f

Pmd(λ) ≤ P th
md.

(7.15)

In the optimization problem in (7.15), if the two constraints are relaxed, denote

the optimal solution as λ∗e. Then the optimal solution for problem (7.15), denoted

λ∗, is given as

• λ∗ = λ∗e if λ∗f ≤ λ∗md and λ∗e ∈ [λ∗f , λ
∗
md];

• λ∗ = λ∗f or λ∗md, whichever is closer to λ∗e, if λ∗f ≤ λ∗md and λ∗e /∈ [λ∗f , λ
∗
md];

• λ∗ has no solution if λ∗f > λ∗md.

Since Pf (λ) does not depend on fading effect, λ∗f can be derived for any fading

scenario by using (7.3) as

λ∗f =

(√
2

N
Erfc−1

(
2P th

f

)
+ 1

)
Nσ2. (7.16)

In the following, exact λ∗md and λ∗e for AWGN channels and approximated λ∗md and

λ∗e are derived for Rayleigh fading channels.

AWGN Channel

For an AWGN channel, the general case for test statistic Λ in (2.23) is considered.

For S1 or S3 signal model with any SNR value γ, λ∗md can be derived by using

(2.23) as

λ∗md =

(√
2(1 + 2γ)

N
Erfc−1

(
2(1− P th

md)
)
+ (1 + γ)

)
Nσ2, (7.17)

and λ∗e is given by using (2.23) as

λ∗e = arg min
λ

(
1 +

1

2
Erfc

(
λ−Nσ2

√
2Nσ2

)
− 1

2
Erfc

(
λ−Nσ2(1 + γ)√
2N(1 + 2γ)σ2

))

=
Nσ2

2

(
1 +

√
1 + 2γ

(
1 +

(1 + 2γ) ln(1 + 2γ)

Nγ2

) ) (7.18)

optimal threshold selection also works, which minimizes the corresponding Bayesian cost subject
to bounded false alarm and missed-detection probabilities.
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where the second equality comes as explained in Appendix D.2. Similarly, λ∗md and

λ∗e for S2 signal model can be derived as

λ∗md =

(√
2

N
(1 + γ)Erfc−1

(
2(1− P th

md)
)
+ (1 + γ)

)
Nσ2,

λ∗e =
Nσ2

2

(
1 +

√
1 +

2(2 + γ) ln(1 + γ)

Nγ

)(
1 + γ

1 + γ
2

)
.

(7.19)

Rayleigh Fading Channel

For a Rayleigh fading channel with low-SNR value, the exact λ∗md and λ∗e are dif-

ficult to be derived due to the non-linearity of Pmd(λ) = P Ray
md (λ) and Pe(λ) =

Pf (λ) + P Ray
md (λ), respectively, where P Ray

md (λ) is given in (7.7). They can be cal-

culated numerically by using mathematical software packages (e.g., MATHEMAT-

ICA and MATLAB). Here approximations for λ∗md and λ∗e are derived.

Defining α △
= Nσ2−λ

Nσ2γ
and a △

= 1√
2Nγ

, (7.7) can be written as

P Ray
md (λ) ≈

1

2

[
Erfc (α)− ea

2

e2aαErfc (a+ α)

]
. (7.20)

Over an AWGN channel at low SNR, it can be observed from (7.18) that, at a low

SNR (i.e., γ ≪ 1, 1+2γ ≈ 1) and a large N (note that reliable detection is possible

at a large N ), λ∗e can roughly be approximated as λ∗e ≈ Nσ2

2

(
1 +

√
1 + 2γ

)
.5 This

rough information is used to find approximated λ∗md and λ∗e for Rayleigh fading. By

using the Taylor series expansions of the Erfc(x) and e2axErfc(a+x) at zero where

Erfc(x) = 1− 2x√
π
+

2x3

3
√
π
+O(x4)

and

e2axErfc(a+ x) =Erfc(a) +

(
2aErfc(a)− 2e−a2

√
π

)
x

+

(
2a2Erfc(a)− 2ae−a2

√
π

)
x2 +O(x3),

5Here we consider S1 or S3 signal model, as S2 signal model can be treated similarly.
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P Ray
md (λ) can be expanded when α → 0 as

P Ray
md (λ) ≈

1

2

(
1− ea

2

Erfc(a)
)
− aea

2

Erfc(a)α

+

(
a√
π
− a2ea

2

Erfc(a)
)
α2 +O(α3).

(7.21)

Setting P Ray
md (λ

∗
md) = P th

md, λ∗md can be calculated as

λ∗md ≈

(
1−

√
2

N
α∗

)
Nσ2 (7.22)

where α∗ =

(
A−π1/4

√(
4P th

mda−2a− A√
π (2a(2P

th
md−1)

√
π+A−2)

))
2a(1−A)

andA =
√
πaea

2Erfc(a).

The total error rate is Pe(λ) = Pf (λ) +P Ray
md (λ). For ∂Pe(λ)

∂λ
= 0, with the aid of

(7.3) and (7.7), it can be written

∂Pe(λ)

∂λ
=
e

1
2Nγ̄2

−λ−Nσ2

Nσ2γ̄ Erfc
(

1√
2Nγ̄

− λ−Nσ2
√
2Nσ2

)
2Nσ2γ̄

− e−
(λ−Nσ2)2

2Nσ4

√
2πNσ2

= 0

⇐⇒ e

(
1√
2Nγ̄

−λ−Nσ2
√

2Nσ2

)2

Erfc
(

1√
2Nγ̄

− λ−Nσ2

√
2Nσ2

)
=

√
2N

π
γ̄.

(7.23)

The argument of the exponential function and the complementary error function

Erfc(·) in the second line of (7.23), denoted as x =
(

1√
2Nγ̄

− λ−Nσ2
√
2Nσ2

)
, becomes

very small when N is large.6 Therefore, the Taylor series expansions of these two

functions are considered at zero, which are ex2
= 1+x2+ x4

2
+O(x6) and Erfc(x) =

1− 2x√
π
+ 2x3

3
√
π
+O(x5) when x→ 0. Define function

g(x) , ex
2

Erfc(x) = 1− 2x√
π
+ x2 − 4x3

3
√
π
+
x4

2
− 8x5

15
√
π
+O(x6). (7.24)

Now g(x) = c is to be solved where c =
√

2N
π
γ̄ as in (7.23). If the first two terms

of (7.24) are considered, we have x ≈
√
π
2
(1− c), which leads to

λ∗e ≈
2√
π

(
1 + γ̄ +

1

Nγ̄
−
√

π

2N

)
Nσ2.

6On the other hand, if N is small, the argument of the exponential function and the comple-
mentary error function Erfc(·) in the second line of (7.23) may approach to a large value.
Therefore, the Taylor series expansion of Erfc(x) around infinity can be considered, given as
Erfc(x) = e−x2

(
1√
πx

− 1
2
√
πx3 + 3

4
√
πx5 +O

(
1
x6

))
when x → ∞. Thus it can be written

g(x) = ex
2

Erfc(x) = 1√
πx

− 1
2
√
πx3 + 3

4
√
πx5 + O

(
1
x6

)
. Similar to the case with large N , a

more accurate approximation for λ∗
e can be found by keeping increasing the number of terms of

g(x).
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If the first three terms of (7.24) are considered, we have x ≈ 1±
√

1+(c−1)π
√
π

. Since

λ∗e ≥ 0 and ∂2Pe(λ)
∂λ2 |λ∗

e
> 0, Pe has a minimum at λ∗e, and thus λ∗e can be selected as

λ∗e ≈

1 +
1

Nγ̄
−
√

2

Nπ
+

√√√√ 2

N

(
1

π
+

√
2N

π
γ̄ − 1

)Nσ2. (7.25)

Similarly, if the first four terms of (7.24) are considered, an analytical approxima-

tion for λ∗e can be found by solving a quadratic equation. By keeping increasing the

number of terms of (7.24), a more accurate approximation for λ∗e can be found. λ∗e
in (7.25) is used in the subsequent discussion.

Nakagami-m Fading Channel

Derivation of λ∗md and λ∗e for a Nakagami-m fading channel is also analytically

complicated as PNak
md (λ) and Pe(λ) = Pf (λ) + PNak

md (λ) have highly non-linear be-

havior. However, λ∗md and λ∗e can be calculated numerically. Some examples are

given in Table 7.2 in Section 7.5. Since the Nakagami-m fading channel (when

1 < m < ∞) varies between the Rayleigh fading channel (m = 1) and the Gaus-

sian channel (no fading), it can also be claimed that, for Nakagami-m fading, λ∗md

is in between values given in (7.17) and (7.22), and λ∗e is in between values given

in (7.18) and (7.25).

Diversity or Cooperative Spectrum Sensing

If SLC is used, the results in (7.16)-(7.19) can be applied with N replaced by LN

for SLC over AWGN in which γ = 1
L

∑L
i=1 γi, and numerical methods can be used

for other fading channels by using (7.9). Similarly, if cooperative sensing is used,

the optimal threshold can be determined by numerical methods by using (7.10).

As shown in [66], the high-diversity advantage of cooperative systems results in

improved detection capability and communication reliability. Cooperative sensing

systems need mutually orthogonal reporting channels to avoid the inter-channel in-

terference and data collision at the fusion center. Orthogonal channels are realized

either by using frequency division or time division multiple access techniques. As

frequency division requires a larger frequency bandwidth, it is not an effective so-

lution for the spectrum scarcity problem. In time division, each reporting channel
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requires a time slot with duration τr. By neglecting other processing delays at the

cooperative nodes and the fusion center, the number of cooperative nodes that can

participate in the cooperation is K ≤
(
τ − N

fs

)
1
τr

, where τ is the allowable sensing

time and fs is the sampling rate. Therefore, K is limited by the sensing time.

7.5 Numerical/Simulation Results and Discussion
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Figure 7.2: Approximated (low-SNR analysis) ROC curves (represented by solid
lines) and simulated ROC curves (represented by discrete marks) of AWGN, Ray-
leigh and Nakagami-4 fading channels for N = 2× 103 and N = 2× 105 at -20 dB
average SNR.

This section provides numerical results based on our analysis in Sections 7.3 and

7.4, and semi-analytical Monte-Carlo simulation results based on the system model

in Section 7.2. Recalling that the receive SNR under the three signal models S1,

S2, and S3are approximately equal, only the S1 signal model is used for numerical

and simulation results in this section.

The normalized threshold is defined as λ̂ , λ
N

.7 The noise variance is set to

σ2 = 1. For SLC diversity technique and cooperative spectrum-sensing, only Ray-

7This is the threshold if the decision statistic is selected as Λ = 1
N

∑N
n=1 |y(n)|

2.
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Figure 7.3: Approximated (low-SNR analysis) ROC curves (represented by solid
lines) and simulated ROC curves (represented by discrete marks) of SLC when
L = 2, 3 and cooperative spectrum sensing when K = 2, 3 for N = 2 × 103 and
N = 2× 106 over Rayleigh fading at -20 dB average SNR.

leigh fading channels are considered. The Rayleigh fading case provides a worst-

case benchmark because performance loss in Rayleigh fading channel is much

higher than those of AWGN and Nakagami-m (m > 1) fading channels.

One of the main contributions of this research is to derive analytical approx-

imations for the average missed-detection probability in a low-SNR region. The

analytical results can be used to plot ROC curves. Fig. 7.2 and Fig. 7.3 show the

ROC curves calculated based on the analytically derived approximations given in

(7.4), (7.7)-(7.10), and the simulated ROC curves. Specifically, Fig. 7.2 shows the

ROC curves for three fading scenarios: the AWGN, Rayleigh and Nakagami-4 fad-

ing channels with -20 dB average SNR. The ROC curves are plotted in the range

λ̂ ∈ [0.95, 1.05] and λ̂ ∈ [0.995, 1.02] for N = 2 × 103 and N = 2 × 105, re-

spectively. Fig. 7.3 shows the ROC curves of the SLC diversity technique with

L = 2, 3 and cooperative spectrum-sensing network (with OR decision fusion

rule) with K = 2, 3 over Rayleigh fading at γ̄= -20 dB when N takes two val-

ues: when N = 2 × 103, the ROC curves are plotted in the range λ̂ ∈ [1.92, 2.10]
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and λ̂ ∈ [2.94, 3.10] for SLC with L = 2 and 3, respectively, and in the range

λ̂ ∈ [0.95, 1.1] for cooperative spectrum sensing; when N = 2 × 106, the ROC

curves are plotted in the range λ̂ ∈ [2.00, 2.02] and λ̂ ∈ [3.00, 3.03] for SLC with

L = 2 and 3, respectively, and in the range λ̂ ∈ [0.99, 1.03] for cooperative spec-

trum sensing. The analytical results perfectly match the simulation results for a high

and low number of samples, and also for high and low Pd and Pf , confirming the

accuracy of our low-SNR approximations in (7.4), (7.7)-(7.10). From the two fig-

ures, it can be seen that, when N = 2× 103, the IEEE 802.22 requirements on false

alarm and missed-detection probabilities cannot be satisfied simultaneously in any

case in the two figures; when N = 2×105, the requirements can be satisfied simul-

taneously for all cases in Fig. 7.2 except Rayleigh fading case; when N = 2× 106,

the requirements can be satisfied simultaneously for all cases in Fig. 7.3. The two

figures clearly show that a larger N improves detection performance. Moreover,

the detection capability is significantly increased with L and K due to the effect of

diversity advantage.

Another contribution of this research is to derive approximations for the average

low-SNR AUC. For example, in Fig. 7.2, the three ROC curves withN = 2×103 in-

tersect each other, making it difficult to compare the overall detection performance

among the three fading scenarios. In such a case, the AUC, a single-valued mea-

surement, is a better comparative performance metric. By using the approximations

given in Section 7.3.2, the average AUCs with different fading channels and with

SLC diversity combining are calculated and included in Table 7.1. In this table, the

numbers in brackets are area under the simulated curves in Fig. 7.2 and Fig. 7.3. It

can be seen that our approximations for AUC are accurate. As expected, AUC of

energy detection over AWGN channel and that over Rayleigh fading channel vary

from the largest to the smallest. With SLC, a larger number of branches leads to

a higher AUC and provides better overall detection capability. Obviously, a larger

number of samples also leads to a higher AUC confirming a better overall detection

capability.

The next contribution of this research is that the optimal threshold, λ∗, is de-

termined by minimizing the total error rate, Pe(λ) = Pf (λ) + Pmd(λ) under con-
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Fig. 7.2 N = 2× 103 N = 2× 105 Fig. 7.3 N = 2× 103 N = 2× 106

AWGN 0.624085 (0.623489) 0.999217 (0.999174) SLC L = 2 0.663636 (0.662751) 0.995683 (0.995679)
Nakagami-4 0.622408 (0.62172) 0.974777 (0.97462) SLC L = 3 0.698242 (0.697292) 0.999455 (0.999455)

Rayleigh 0.616163 (0.615361) 0.895188 (0.895034)

Table 7.1: AUC approximations (the numbers in front of the brackets) versus the
area under the simulated curves (the numbers in the brackets) for AWGN, Rayleigh,
Nakagami-4 channels in Fig. 7.2 and SLC (L = 2, 3) in Fig. 7.3.
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Figure 7.4: Approximated total error rate (represented by solid lines) and simu-
lated total error rate (represented by discrete marks) versus normalized threshold
of (a) AWGN, Rayleigh and Nakagami-4 channels and cooperative spectrum sens-
ing (K = 2) over Rayleigh fading; (b) SLC (L = 3) over Rayleigh fading, for
N = 2× 106 at -20 dB average SNR.

straints Pf (λ) ≤ P th
f , Pmd(λ) ≤ P th

md. We denote P ∗
e = Pe(λ

∗), P ∗
f = Pf (λ

∗), and

P ∗
md = Pmd(λ

∗). When γ̄= -20 dB and N = 2 × 106, Fig. 7.4a and Fig. 7.4b

show low-SNR approximated total error rates (analytical results represented by

solid lines, where the average missed-detection probability is calculated based on

our analysis in Section 7.3.1) and simulated total error rates (represented by discrete

marks) versus the normalized threshold for the AWGN, Rayleigh, Nakagami-4 fad-

ing channels, cooperative spectrum sensing (K = 2), and SLC diversity combin-

ing (L = 3). Since the analytical results perfectly match the simulation results

in Fig. 7.4, Table 7.2 shows only the numerically calculated normalized thresh-

old values (λ̂∗f , λ̂∗md, λ̂∗e, λ̂
∗), and numerically calculated false alarm probability,

missed-detection probability, and total error rate at λ̂∗e. In Table 7.2, the numbers
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SLC L = 3 Cooperative K = 2
AWGN Rayleigh Nakagami-4 over Rayleigh over Rayleigh

λ̂∗f 1.00091 1.00091 1.00091 3.00157 1.00116
λ̂∗md 1.00908 1.00106 (1.0010) 1.00429 3.01096 1.00383
λ̂∗e 1.00498 1.00138 (1.0027) 1.00190 3.00357 1.00192

Pf (λ̂
∗
e) 9.90× 10−13 0.02 0.004 0.002 0.007

Pmd(λ̂
∗
e) 9.90× 10−13 0.13 0.011 0.007 0.030

Pe(λ̂
∗
e) 1.98× 10−12 0.15 0.015 0.009 0.037

λ̂∗ λ̂∗e λ̂∗md λ̂∗e λ̂∗e λ̂∗e

Table 7.2: Numerically calculated normalized threshold values (λ̂∗f , λ̂∗md, λ̂∗e, λ̂
∗)

and numerically calculated error probabilities (Pf , Pmd, Pe) at λ̂∗e for AWGN,
Rayleigh and Nakagami-4 channels, SLC, and cooperative spectrum sensing when
N = 2× 106 and γ̄ = −20 dB. The numbers in brackets are approximated λ̂∗md and
λ̂∗e for Rayleigh fading channels based on (7.22) and (7.25).

in brackets are approximated λ̂∗md and λ̂∗e for Rayleigh fading channels based on

(7.22) and (7.25).8 From Table 7.2, we have λ̂∗f < λ̂∗e < λ̂∗md for AWGN channel,

Nakagami-4 channel, SLC diversity combining, and cooperative sensing, and thus,

λ̂∗ = λ̂∗e. However, for Rayleigh channel, λ̂∗f < λ̂∗md < λ̂∗e, and thus, λ̂∗ = λ̂∗md.

In the rest of this section, the IEEE 802.22 requirements for spectrum sensing

are focused on by using standard parameter values. The IEEE 802.22 requirements

specify that Pf ≤ 0.1 and Pmd ≤ 0.1, and that the channel sensing time τ ≤ 2

seconds for any detection technique. Since N ≈ τfs where fs is the sampling

rate, which may depend on the sampling frequency of the ADC and the fast Fourier

transform bin resolution, N cannot be increased beyond τfs. In an experimental

energy detection implementation [57], fs is selected as fs = 62.5 kHz which may

be a typical test-bed bin resolution for moderate or high SNR. However, fs can take

several mega-hertz in other typical system implementations, e.g., some advanced

ADCs can operate at fs = 20MHz [132], 500 MHz [133], which may benefit low-

SNR sensing. In this chapter, we limit fs = 1MHz, and thus the maximal value of

N is 2× 106 for 2 seconds of sensing time.9

Fig. 7.5 and Fig. 7.6 show analytical error rates (represented by lines) and sim-

8For AWGN channels, there is exact analytical solution for λ̂∗
md and λ̂∗

e as given in (7.17) and (7.18).
For Nakagami-m channels and for SLC or cooperative sensing over fading channels, there are no
analytical results for λ̂∗

md and λ̂∗
e .

9As only sensing but not the subsequent processing is considered, 2 seconds is used as a reference
sensing time. For a fixed N , sensing time can be proportionally reduced by using a higher sampling
rate, e.g., there are 2× 106 samples within 10 milliseconds at fs = 200MHz as in [134].
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Figure 7.5: Analytical error rates (represented by lines) and simulated error rates
(represented by discrete marks) at the optimal threshold value (total error: P ∗

e ; false
alarm: P ∗

f ; and missed-detection: P ∗
md) versus the number, N , of samples at -20 dB

average SNR for (a) AWGN; (b) Rayleigh; (c) Nakagami-4 fading channels.

ulated error rates (represented by discrete marks) at the optimal threshold (P ∗
f =

Pf (λ
∗), P ∗

md = Pmd(λ
∗), and P ∗

e = Pe(λ
∗)) versus N for fading channels (AWGN,

Rayleigh and Nakagami-4), diversity technique (SLC) and cooperative spectrum

sensing with -20 dB average SNR. The optimal threshold, λ∗, is calculated based

on low-SNR analysis in Section 7.4. Recall that an optimal threshold can be found

only when λ∗f ≤ λ∗md, which is equivalent to N ≥ Ns where Ns is the minimum

number of samples to have a feasible detection threshold that satisfies both require-

ments on false alarm and missed-detection probabilities. Under this condition, there

may be three possible cases such as (i) λ∗f ≤ λ∗md ≤ λ∗e; (ii) λ∗f ≤ λ∗e ≤ λ∗md; or (iii)

λ∗e ≤ λ∗f ≤ λ∗md. As examples given in Fig. 7.5 and Fig. 7.6, we do not have the

third case.
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Figure 7.6: Analytical error rates (represented by lines) and simulated error rates
(represented by discrete marks) at the optimal threshold value (total error: P ∗

e ; false
alarm: P ∗

f ; and missed-detection: P ∗
md) versus the number, N , of samples at -20 dB

average SNR for (a) SLC when L = 2, 3; (b) cooperative spectrum sensing when
K = 2, 3, over Rayleigh fading.

Based on our analytical results in Fig. 7.5 and Fig. 7.6,10 the regions of N for

different possible cases are shown in Table 7.3. Table 7.3 also includes the minimal

sensing time to have a feasible detection threshold when fs = 1 MHz, given as

τmin = Ns

1 MHz , and the minimal sampling rate to have a feasible detection threshold

when the sensing time is 2 seconds, given as fs,min = Ns

2 sec . Two cases are used in

Fig. 7.5: AWGN and Rayleigh fading cases, as examples. For the AWGN channel,

there is no feasible detection threshold when N < Ns = 66345. When N ∈

[66345, 66747], we have λ∗f ≤ λ∗md ≤ λ∗e, the optimal threshold is determined by the

missed-detection probability requirement, and thus, in this region of N , P ∗
md keeps

at 0.1. When N ≥ 66748, we have λ∗f ≤ λ∗e ≤ λ∗md, and the optimal threshold is

determined by minimizing the total error rate. For Rayleigh fading channel, there

is no feasible detection threshold when N < Ns = 1511174. When N varies from

Ns to 2× 106 (the maximal number of samples when fs = 1 MHz and sensing time

τ = 2 seconds), we have λ∗f ≤ λ∗md ≤ λ∗e, and the optimal threshold is determined

10Since analytical and simulation results in Fig. 7.5 and Fig. 7.6 perfectly match, only the analytical
results are used to generate Table 7.3.
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by the missed-detection probability requirement, and thus, P ∗
md keeps at 0.1 in this

region of N .

N τmin (sec) fs,min (kHz)
λ∗f > λ∗md λ∗f ≤ λ∗md ≤ λ∗e λ∗f ≤ λ∗e ≤ λ∗md λ∗e ≤ λ∗f ≤ λ∗md at fs = 1MHz at τ = 2 sec

AWGN ≤ 66344 [66345, 66747] ≥ 66748 – 0.07 33.2
Rayleigh ≤ 1511173 [1511174, 3871892] ≥ 3871893 – 1.51 755.6

Nakagami-4 ≤ 144841 [144842, 205432] ≥ 205433 – 0.14 72.4
SLC L = 2 ≤ 156004 [156005, 279605] ≥ 279606 – 0.16 78.0
SLC L = 3 ≤ 62358 [62359, 96276] ≥ 96277 – 0.06 31.2

Cooperative K = 2 ≤ 164896 [164897, 295947] ≥ 295948 – 0.16 82.4
Cooperative K = 3 ≤ 70742 [70743, 109650] ≥ 109651 – 0.07 35.4

Table 7.3: The regions of N for different cases of λ∗f , λ
∗
md, λ

∗
e, the minimal sensing

time τmin at fs = 1 MHz, and the minimal sampling rate fs,min at τ = 2 seconds.

In the following, diversity-combining technique (SLC with L = 2, 3) and coop-

erative spectrum sensing (K = 2, 3) are evaluated, which can be used to increase

the effective number of samples in the decision statistic while maintaining a small

value of the sampling rate. The Rayleigh fading channel is considered to establish

worse case scenario (than AWGN and Nakagami-m channels). From Table 7.3, for

two or three diversity branches in SLC,Ns is reduced fromNs =1511174 (no diver-

sity) to Ns =156005 or 62359, respectively, which results in the minimum sensing

time at fs = 1 MHz as τmin ≈ 0.16 or 0.06 seconds, and the minimal sampling

rate at τ = 2 seconds as fs,min ≈ 78.0 kHz or 31.2 kHz, respectively. Similarly, for

two or three cooperative nodes in a cooperative spectrum sensing network with OR

fusion rule, the minimum sensing time is τmin ≈ 0.16 or 0.07 seconds, and the min-

imal sampling rate is fs,min ≈ 82.4 kHz or 35.4 kHz, respectively. Thus, to satisfy

both IEEE 802.22 requirements on false alarm and missed-detection probabilities,

diversity combining and cooperative spectrum sensing can significantly reduce the

required sensing time and/or the required sampling rate. Note that, for diversity

combining and cooperative spectrum sensing, different processing delays may be

needed in different networks, which is not accounted in this research.

7.6 Conclusion

In this chapter, low-SNR energy detection in cognitive radio networks is studied.

New approximated expressions for the average missed-detection probability and the
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average AUC over a generalized channel model are derived. The optimal detection

threshold problem is formulated to minimize the total error rate subject to bounded

false alarm and miss-detection probabilities. The exact optimal detection threshold

for the AWGN channel is derived in closed form. Based on the low-SNR model,

the approximated optimal detection threshold over Rayleigh fading channel is also

given. Diversity combining techniques and cooperative spectrum sensing are shown

to reduce the needed sensing time or sampling rate, enabling low-SNR detection in

cognitive radio networks. The low-SNR detection is highly relevant to the emerging

cognitive radio networks.

∼
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Chapter 8

Conclusion and Future Work

This thesis provides a rigorous analytical framework for the analysis of energy de-

tection based spectrum sensing in cognitive radio networks.

• Chapter 3 provides the performance analysis of an energy detector under both

multipath fading and shadowing effects. This analysis reveals that severe

multipath fading or/and shadowing degrades the detection performance, and

diversity receptions can help to boost the detection performance.

• Chapter 4 proposes the MG distribution to model the SNR of mobile radio

channels. Although primarily intended to model composite shadowing/fading

channels, this MG distribution is nevertheless effective for many other exist-

ing small-scale fading channels as well. For the scenarios where performance

analysis is complicated or intractable with traditional mathematical tools, the

MG model, a linear combination of gamma distributions, offers a solution.

The MG distribution is not limited to energy detection analysis, but also use-

ful for other wireless network performance as well.

• Although the ROC curves characterize the performance of an energy detector

by using detection and false alarm probabilities, a single figure of merit is

desirable. Chapter 5 thus introduces the measure AUC. The AUC value pro-

vides the insight of overall detection capability (combination of false alarm

and detection probabilities), and also it can reveal some other properties that

cannot be shown clearly by ROC curves, e.g., diversity order.
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• Cooperative spectrum sensing which can mitigate the impact of multipath

fading or/and shadowing effects is an effective way to improve the detection

performance. Several cooperative spectrum sensing networks are introduced

in Chapter 6, and a new set of results for the average detection probability is

derived for multiple-node and multi-hop cooperative spectrum sensing net-

works based on either data or decision fusion strategy.

• The IEEE 802.22 standard requires spectrum-sensing techniques to identify

primary signals in the very low SNR regime. An accurate low-SNR model

for the energy detection and novel results on the average detection perfor-

mance are provided in Chapter 7. The detection threshold, which is a key de-

sign parameter, is selected by considering false-alarm and missed-detection

probabilities, and sensing time. The results reveal that the IEEE 802.22 re-

quirements can be achieved with a simple (conventional) energy detector by

using a higher sampling frequency, or with diversity combining/cooperative

spectrum sensing by using a lower sampling frequency.

The system models and performance metrics introduced by this thesis, because

of their simplicity and wide suitability for different fading/shadowing and environ-

mental conditions, are already followed by other researchers. The proposed energy

detection models, methodologies and results can be useful for other wireless re-

search topics (e.g., UWB and radar communications). Overall, the research find-

ings will eventually pave the way to design an energy detector in an implementable

manner for cognitive radio networks.

However, there are still some open problems related to the topics of this thesis,

which should be considered in future work.

• In this thesis, the MG model is determined by matching with SNR distribu-

tion of known channel models. Further research directions include the per-

formance analysis of other wireless systems (such as cooperative relaying

networks) and model fitting based on measured channel data (e.g., to find the

parameters in the MG model when aggregate interference is considered).
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• The conventional energy detector is typically optimal if the signal is impaired

by the Gaussian noise, which comes from many natural sources, e.g., thermal

effect. Moreover, in practice, the received signal may be impaired by a non-

Gaussian noise (e.g., man-made impulsive noise) and interference (e.g., co-

channel, out-of-band spectral leakage). Temperature, training sequence and

known data pattern can help to estimate the noise variance. However, it has

been shown that the noise variance estimation error referred to as noise un-

certainty can make severe performance degradation of energy detector [135].

Similar to the noise power estimation, signal power is calculated based on the

quantized signal levels which may also have an quantization error, δ. Since

threshold and the number of samples of a conventional energy detector are

selected by using estimated noise variance and signal power, the test statistic

may be then defined as

Λ =
N∑

n=1

|y(n)± δ|2 ,

which differs from the traditional modeling. The effects of noise estima-

tion and signal quantization errors on detection performance are still unno-

ticed/unexplored in the literature. The analysis and design of an energy de-

tector considering both signal quantization and noise estimation errors will

be an interesting and challenging problem.

∼
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mance analysis of composite multipath/shadowing channels using the G-

distribution,” IEEE Trans. Commun., vol. 57, no. 4, pp. 1162–1170, Apr.

2009.

[46] S. Al-Ahmadi and H. Yanikomeroglu, “On the approximation of the

generalized–K distribution by a gamma distribution for modeling composite

fading channels,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 706–713,

Feb. 2010.

[47] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Optimal multiband joint

detection for spectrum sensing in cognitive radio networks,” IEEE Trans.

Signal Process., vol. 57, no. 3, pp. 1128–1140, Mar. 2009.

[48] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc.

IEEE, vol. 55, no. 4, pp. 523–531, Apr. 1967.

[49] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J. Select.

Topics Signal Process., vol. 2, no. 1, pp. 4–17, Feb. 2008.

[50] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic

Processes. McGraw-Hill Companies, Inc., 2002.

[51] V. Kostylev, “Energy detection of a signal with random amplitude,” in Proc.

IEEE Int. Conf. Commun. (ICC), vol. 3, May 2002, pp. 1606–1610.

[52] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy detection of

unknown signals over fading channels,” in Proc. IEEE Int. Conf. Commun.

(ICC), May 2003, pp. 3575–3579.

[53] ——, “On the energy detection of unknown signals over fading channels,”

IEEE Trans. Commun., vol. 55, no. 1, pp. 21–24, Jan. 2007.

[54] S. Herath, N. Rajatheva, and C. Tellambura, “Energy detection of unknown

signals in fading and diversity reception,” IEEE Trans. Commun., vol. 59,

no. 9, pp. 2443–2453, Sep. 2011.

123



[55] J. Salt and H. Nguyen, “Performance prediction for energy detection of un-

known signals,” IEEE Trans. Veh. Technol., vol. 57, no. 6, pp. 3900–3904,

Nov. 2008.

[56] Y. Chen, “Improved energy detector for random signals in Gaussian noise,”

IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 558–563, Feb. 2010.

[57] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Experimental study of spec-

trum sensing based on energy detection and network cooperation,” in Proc.

1st int. Workshop on Technology and Policy for Accessing Spectrum (TAPAS),

Aug. 2006, p. 12.

[58] P. Cheraghi, Y. Ma, R. Tafazolli, and Z. Lu, “Cluster-based differential en-

ergy detection for spectrum sensing in multi-carrier systems,” IEEE Trans.

Signal Process., vol. 60, no. 12, pp. 6450–6464, Dec. 2012.

[59] D. Ramirez, J. Via, and I. Santamaria, “The locally most powerful test for

multiantenna spectrum sensing with uncalibrated receivers,” in Proc. IEEE

Int. Conf. Acoustics, Speech, and Signal Process. (ICASSP), Mar. 2012, pp.

3437–3440.

[60] J. Sala-Alvarez, G. Vazquez-Vilar, and R. Lopez-Valcarce, “Multiantenna

GLR detection of rank-one signals with known power spectrum in white

noise with unknown spatial correlation,” IEEE Trans. Signal Process.,

vol. 60, no. 6, pp. 3065–3078, June 2012.

[61] F. Lin, R. Qiu, Z. Hu, S. Hou, J. Browning, and M. Wicks, “Generalized

FMD detection for spectrum sensing under low signal-to-noise ratio,” IEEE

Commun. Lett., vol. 16, no. 5, pp. 604–607, May 2012.

[62] Z. Zhang, Z. Han, H. Li, D. Yang, and C. Pei, “Belief propagation based

cooperative compressed spectrum sensing in wideband cognitive radio net-

works,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 3020–3031, Sep.

2011.

124



[63] M. Derakhshani, T. Le-Ngoc, and M. Nasiri-Kenari, “Efficient cooperative

cyclostationary spectrum sensing in cognitive radios at low SNR regimes,”

IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3754–3764, Nov. 2011.

[64] T. Cui, F. Gao, and A. Nallanathan, “Optimization of cooperative spectrum

sensing in cognitive radio,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp.

1578–1589, May 2011.

[65] L. Wei, P. Dharmawansa, and O. Tirkkonen, “Multiple primary user spectrum

sensing in the low SNR regime,” IEEE Trans. Commun., vol. 61, no. 5, pp.

1720–1731, May 2013.

[66] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio,

part I: Two user networks,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp.

2204–2213, June 2007.

[67] R. Fan and H. Jiang, “Optimal multi-channel cooperative sensing in cognitive

radio networks,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1128–

1138, Mar. 2010.

[68] W. Zhang and K. B. Letaief, “Cooperative communications for cognitive ra-

dio networks,” Proc. IEEE, vol. 97, no. 5, pp. 878–893, May 2009.

[69] V. I. Kostylev, “Energy detection of a signal with random amplitude,” in

Proc. IEEE Int. Conf. Commun. (ICC), 2002, pp. 1606–1610.

[70] F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy detection of

unknown signals over fading channels,” in Proc. IEEE Int. Conf. Commun.

(ICC), 2003, pp. 3575–3579.

[71] A. Abdi and M. Kaveh, “Comparison of DPSK and MSK bit error rates forK

and Rayleigh-lognormal fading distributions,” IEEE Commun. Lett., vol. 4,

no. 4, pp. 122–124, Apr. 2000.

125



[72] P. M. Shankar, “Performance analysis of diversity combining algorithms in

shadowed fading channels,” Wireless Personal Commun., vol. 37, no. 1, pp.

61–72, Apr. 2006.

[73] P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos, G. K. Karagiannidis, and A. A.

Rontogiannis, “On the performance analysis of digital communications over

generalized-K fading channels,” IEEE Commun. Lett., vol. 10, no. 5, pp.

353–355, May 2006.

[74] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,

7th ed. Academic Press Inc, 2007.

[75] Wolfram. The Wolfram functions site. [Online]. Available: http://functions.

wolfram.com

[76] T. Sauter, “Computation of irregularly oscillating integrals,” Appl. Numer.

Math., vol. 35, no. 3, pp. 245–264, Nov. 2000.

[77] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Func-

tions: with Formulas, Graphs, and Mathematical Tables. New York: Dover

Publications, 1965.

[78] J. P. Egan, Signal Detection Theory and ROC-Analysis. Series in cognition

and perception. New York: Academic press,, 1975.

[79] A. Laourine, M.-S. Alouini, S. Affes, and A. Stéphenne, “On the capacity
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Appendix A

Proofs for Chapter 3

A.1 Derivation of PK
d

the average detection probability over Rayleigh distribution, PK
d , can be evaluated

as
∫∞
0
P Fad
d (y)fY (y) dy where fY (y) is in (3.3) can be evaluated as in [53, eq. (9)]

which gives

P Fad
d (y) =e−

λ
2

N−2∑
n=0

1

n!

(
λ

2

)n

+

(
1 +Ny

Ny

)N−1 [
e−

λ
2(1+Ny) − e−

λ
2

N−2∑
n=0

1

n!

(
λNy

2(1 +Ny)

)n]
.

After applying series summation for exponential function, and with some algebraic

manipulations, PK
d can be written as

PK
d = e−

λ
2

N−2∑
n=0

1

n!

(
λ

2

)n

+
N1−N

Γ(k)Ωk

∞∑
n=0

(−λ
2
)n

n!

∞∫
0

yk−N(1 +Ny)N−n−1e−
y
Ω dy

− e−
λ
2

Γ(k)Ωk

N−2∑
n=0

N1−N+n(λ
2
)n

n!

∞∫
0

yn+k−N(1 +Ny)N−n−1e−
y
Ω dy.

PK
d can be derived as (3.4) with the aid of (3.5).
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A.2 Derivation of PKG
d

PKG
d can be evaluated as

∫∞
0
P Fad
d (y)fY (y) dy where P Fad

d (y) can be written using

[53, eq. (7)]. We use series summation of 1F1(a; c; x) =
∑∞

n=0
(a)nxn

(c)nn!
[136, eq.

(10.1)] and Ln(x) =
∑n

k=0(−1)k
(

n
n−k

)
xk

k!
[74, eq. (8.970.1)], where 1F1(·; ·; ·) and

Ln(·) are the confluent hypergeometric function and the Laguerre polynomial of

degree n, respectively. After some algebraic manipulations, equivalent P Fad
d (y)

can be expressed as 1

P Fad
d (y) =

m−1∑
v=0

(
m−1

m−v−1

) (
λ
2

)v
v!m1−m

e−
λ
2

m
m+Ny (Ny)v(m+Ny)1−m−v

+
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n=0

n∑
a=0

(
n

n−a

) (
λ
2

)a
a!m−n

e−
λ
2

m
m+Ny (Ny)a+1(m+Ny)−n−a−1

+
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s=0

N−1∑
n=1

e−
λ
2

(
λ
2

)n+s
mm

n!s!

(m)s
(n+ 1)s

(Ny)s(m+Ny)−s−m.

(A.1)

Applying series summation for exponential function and averaging it over fY (y),

(A.1) can be re-written as

PKG
d =

1

Γ(k)(Ω)k

×

[
∞∑
t=0

m−1∑
v=0

(−1)t(λ
2
)t+vN v
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0
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Ω dy

+ e−
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2

∞∑
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N s

n!s!ms

(m)s
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∞∫
0
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(
1 +

Ny

m

)−m−s

e−
y
Ω dy

]
.

(A.2)

Then, PKG
d can be evaluated as (3.6) with the aid of (3.5).

∼

1The expression in [53, eq. (8)] has a typo. The power of the exponential term should be − λβ
2σ2 .
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Appendix B

Proofs for Chapter 5

B.1 Necessary Integrations

Some integrations necessary for derivations in Chapter 5 are presented below.

First, J1(a, p, r, c) is defined as

J1(a, p, r, c) ,
∞∫
0

xa−1e−px2

Ir(cx) dx (B.1)

with parameters a, p, r, c, where Re[a] > 0 ∧ Re[p] > 0.1 Although a closed-form

solution for J1(a, p, r, c) is available in [126, eq. (2.15.5.4)], it can not be applied

for negative integer values of r. Therefore, an alternative method is presented for

any integer r, as follows.

After applying series expansion of Ir(cx) in (B.1), and with transformation t =

x2, J1(a, p, r, c) can be written as

J1(a, p, r, c) =
∞∑
k=0

(
c
2

)2k+r

Γ(k + r + 1)k!

1

2

∞∫
0

tk+
r+a
2

−1e−pt dt.

Further, J1(a, p, r, c) can be shown to be

J1(a, p, r, c) =
cr

2r+1
p−

a+r
2 Γ

(
a+ r

2

) ∞∑
k=0

(
a+r
2

)
k
p−k

Γ(k + r + 1) k!

(
c2

4

)k

where (n)k is the Pochhammer symbol defined as (n)k = Γ(n+k)
Γ(n)

[74]. Given a

hypergeometric or generalized hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z),

1Here ∧ stands for AND.
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the regularized hypergeometric function is defined as [75, eq. 07.32.02.0001.01]

pF̃q(a1, ..., ap; b1, ..., bq; z) ,pFq(a1, ..., ap; b1, ..., bq; z)

Γ(b1)...Γ(bq)

=
∞∑
k=0

∏p
j=1 (aj)k z

k

k!
∏q

j=1 Γ(k + bj)
.

(B.2)

Therefore, J1(a, p, r, c) can be evaluated as

J1(a, p, r, c) =
crp−

a+r
2 Γ

(
a+r
2

)
2r+1 1F̃1

(
a+ r

2
; r + 1;

c2

4p

)
. (B.3)

Next, J2(a, p, b, d, c) is defined as

J2(a, p, b, d, c) ,
∞∫
0

xa−1e−px
1F̃1 (b; d; cx) dx (B.4)

with parameters a, p, b, d, c, where Re[a] > 0 ∧ Re[p] > 0. Using the definition of

the regularized hypergeometric functions pF̃q in (B.2), J2(a, p, b, d, c) can be solved

as

J2(a, p, b, d, c) =
∞∑
k=0

(a)k c
k

k! Γ(b+ k)

∞∫
0

xk+a−1e−px dx =
∞∑
k=0

(a)kc
k

k! Γ(b+ k)

Γ(k + a)

pk+a
.

With the relationship of Γ(k+a) = (a)kΓ(a) for integer values of a, J2(a, p, b, d, c)

is shown to be

J2(a, p, b, d, c) = p−aΓ(a)2F̃1

(
a, b; d;

c

p

)
. (B.5)

B.2 Derivation of A(γ) in (5.7)

(5.6) can be written as

A(γ) =
1

2N−1Γ(N)
(I1 − I2 + I3) (B.6)

where I1, I2 and I3 are defined as follows

I1 ,
∞∫
0

t2N−1e−
t2

2 dt = 22N−1Γ(N)
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I2 ,
∞∫
0

t2N−1e−
t2

2 QN(t,
√
2γ) dt = 22N−1(N − 1)! e−

γ
2

N−1∑
k=0

1

k!

(γ
2

)k

I3 ,e−γ

N−1∑
k=1−N

(
1

2γ

) k
2

∞∫
0

t2N+k−1e−t2Ik

(√
2γt
)

dt

=e−γ

N−1∑
k=1−N

2−(1+k)Γ(N + k) 1F̃1

(
N + k; 1 + k;

γ

2

)
where the second equality of I2 is from [137, eq. (28)], and the second equality of

I3 is from (B.1) and (B.3). 1F̃1(·; ·; ·) is the regularized confluent hypergeometric

function of 1F1 [75].

After replacing I1, I2, and I3 by the above definitions, (B.6) is exactly (5.7).

B.3 Derivation of ĀNak in (5.13)

With (5.7), (5.12), (5.11) and the fact
∫∞
0
fγ(x) dx = 1, ĀNak can be written as

ĀNak = 1− 1

Γ(m)

(
m

γ̄

)m N−1∑
k=0

1

2k k!
I4 +

1

Γ(m)

(
m

γ̄

)m N−1∑
k=1−N

Γ(N + k)

2N+kΓ(N)
I5

(B.7)

where I4 and I5 are defined as

I4 ,
∞∫
0

xm+k−1e−(
m
γ̄
+ 1

2)x dx = Γ(k +m)

(
m

γ̄
+

1

2

)−(k+m)

(B.8)

and

I5 ,
∞∫
0

xm−1e−(
m
γ̄
+1)x

1F̃1

(
N + k; 1 + k;

x

2

)
dx.

Using the transformation x = 2y and based on (B.4) and (B.5), I5 can be evaluated

for integer m as

I5 =
Γ(m)(

m
γ̄
+ 1
)m 2F̃1

(
m;N + k; 1 + k;

γ̄

2(m+ γ̄)

)
. (B.9)

After replacing I4 by (B.8) and replacing I5 by (B.9), (B.7) is exactly (5.13).

∼
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Appendix C

Expressions for Chapter 6

C.1 Calculation of Residue

If g(z) has the Laurent series representation, i.e., g(z) =
∑∞

i=−∞ ai(z − z0)
i for all

z, the coefficient a−1 of (z − z0)
−1 is the residue of g(z) at z0 [112]. For g(z) given

in (6.3), assume there are k different poles at z = ηi (i = 1, 2, ..., k) and ni poles at

z = ηi. Thus, Pd in 6.4 can be calculated as Pd = e−
λ
2

∑k
i=1 Res(g; ηi), where

Res (g; ηi) =
Dni−1 (g(z)(z − ηi)

ni)
∣∣
z=ηi

(ni − 1)!
,

and Dn(f(z)) denotes the nth derivative of f(z) with respect to z.

Residues of equation (6.5)

Res (g; 0) =
DN−βi−1

(
g(z)zN−βi

) ∣∣
z=0

(N − βi − 1)!

Res
(
g;

N

N + ζi

)
=
Dβi−1

(
g(z)(z − N

N+ζi
)βi

) ∣∣
z= N

N+ζi

(βi − 1)!
.

Residues of equation (6.9)

Res (g; 0) =

DN−K−1

(
e
λ
2 z

(1−z)

K∏
i=1

(
1−∆i

z−∆i

)) ∣∣∣∣∣
z=0

(N −K − 1)!
,

Res (g; ∆j) =
e

λ
2
∆j

∆N−K
j

K∏
i=1,i̸=j

(
1−∆i

∆j −∆i

)
for j = 1, ...., K.
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Residues of equation (6.11)

Res (g; 0) =

DN−K−2

(
(1−∆)e

λ
2 z

(1−z)(z−∆)

K∏
i=1

1−∆i

z−∆i

) ∣∣∣∣∣
z=0

(N −K − 2)!
,

Res (g; ∆) =
e

λ
2
∆

∆N−K−1

K∏
i=1

1−∆i

∆−∆i

,

Res (g; ∆j) =
(1−∆)e

λ
2
∆j

(∆j −∆)∆N−K−1
j

K∏
i=1,i ̸=j

(
1−∆i

∆j −∆i

)
,

for j = 1, ...., K.

Residues of equation (6.14)

Res (gi; 0) =
1

(N − 2)!
DN−2

 e
λ
2
z

(1− z)
(
z − 1

1+pi

)
∣∣∣∣∣

z=0

,

Res
(
gi;

1

1 + pi

)
=

e
λ
2

1
1+pi

pi(1 + pi)−N
.

C.2 Cascaded BSC

The transition probability matrix Ti of the ith hop can be written using the singular

value decomposition as Ti = P−1QiP , where

P =

(
1 1
1 −1

)
, Qi =

(
1 0
0 1− 2pe,i

)
, Ti =

(
1− pe,i pe,i
pe,i 1− pe,i

)
.

Then, the equivalent transition probability matrix T for n-cascaded binary symmet-

ric channel (BSC)s can be evaluated as T =
∏n

i=1 Ti to yield

T =
1

2

(
1 +

∏n
i=1(1− 2pe,i) 1−

∏n
i=1(1− 2pe,i)

1−
∏n

i=1(1− 2pe,i) 1 +
∏n

i=1(1− 2pe,i)

)
.

Therefore, the effective cross-over probability Pe is given as

Pe =
1

2

(
1−

n∏
i=1

(1− 2pe,i)

)
.

∼

139



Appendix D

Proofs for Chapter 7

D.1 Proof of Theorem 7.1

As λ varies from −∞ to ∞, Pf varies from 1 to 0. Therefore, the area under Pd

versus Pf curve can be written as

A =

1∫
0

1

2
Erfc

(
σ0
σ1

Erfc−1(2x)− m1 −m0√
2σ1

)
dx

=

+∞∫
−∞

1

2
Erfc

(
σ0
σ1
z − m1 −m0√

2σ1

)
e−z2

√
π

dz

(D.1)

where the second equality comes after substituting z = Erfc−1(2x). Moreover, by

using Erfc(x) = 2√
π

∫∞
x
e−w2

dw, and with some algebraic manipulations, (D.1)

can be re-written as

A =
1

π

+∞∫
−∞

+∞∫
σ0
σ1

z−m1−m0√
2σ1

e−(w2+z2) dw dz.

Now, clockwise rotation to the (w, z) axis through angle θ is applied to generate

the (u, v) axis, which is also equivalent to
[
u
v

]
=

[
cos θ − sin θ
sin θ cos θ

] [
w
z

]
axis

transformation where tan θ = σ0

σ1
. This result gives

A =
1√
π

+∞∫
−∞

e−u2

du
1√
π

+∞∫
− m1−m0√

2(σ2
0+σ2

1)

e−v2 dv =
1

2
Erfc

(
− m1 −m0√

2(σ2
0 + σ2

1)

)
, (D.2)
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where the second equality is due to the fact that 1√
π

∫ +∞
−∞ e−u2

du = 1 and the

definition of the Erfc(·) function. (7.11) can be obtained from (D.2) by using

Erfc(−x) = 2− Erfc(x).

D.2 Optimal Threshold for AWGN Channel

For the optimal threshold, λ∗ = arg min
λ
Pe(λ) is achieved when ∂Pe(λ)

∂λ
= 0. With

the aid of (2.23), and ∂
∂x

Erfc
(
x−a
b

)
= −2e

− (x−a)2

b2

b
√
π

, it can be written

∂Pe(λ)

∂λ
=

e
− (λ−N(1+γ)σ2)2

2N(1+2γ)σ4√
2πN(1 + 2γ)σ2

− e−
(λ−Nσ2)2

2Nσ4

√
2πNσ2

= 0. (D.3)

After some algebraic manipulations and taking the logarithm, (D.3) can be simpli-

fied into a quadratic equation of λ as

λ2 −Nσ2λ− Nσ4

2

(
Nγ +

(1 + 2γ) ln(1 + 2γ)

γ

)
= 0. (D.4)

Thus, the solution for λ is given in (7.18) (here the negative root of (D.4) is omitted

since λ ≥ 0).

The second-order derivative of Pe(λ) is given as

∂2Pe(λ)

∂λ2
=

(λ−Nσ2)e−
(λ−Nσ2)2

2Nσ4

√
2πN3/2σ6

− (λ−N(1 + γ)σ2)e
− (λ−N(1+γ)σ2)2

2N(1+2γ)σ4

√
2πN3/2σ6(1 + 2γ)3/2

. (D.5)

It can be shown that ∂2Pe(λ)
∂λ2 |λ=λ∗ > 0 at low SNR when λ∗e is given in (7.18).

Therefore, there is a minimum point of Pe(λ) at λ = λ∗e for λ ≥ 0.

∼
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