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Abstract

Orthogonal Frequency Division Multiplexing (OFDM) suffers from high Peak-to-

Average Power Ratio (PAR) issues. A large PAR requires a linear High Power Am-

plifier (HPA), which, however, is inefficiently used. Moreover, the combination of an

HPA having insufficient linear-range and a large PAR leads to in-band distortion and

out-of-band radiation. Various PAR reduction techniques have been proposed.

This thesis focuses mainly on the PAR reduction of OFDM systems by using

tone-reservation, sign-selection, and coding techniques. We analyzed the clipping

noise by approximating it as a series of parabolic pulses. Our analysis explains peak

regrowth and the constant clipping noise power spectrum over the whole OFDM

band. We also establish the roughly proportional relationship between the clipping

noise at the end of several clipping and filtering iterations, and that generated in

the first iteration. The constant of proportionality is estimated via the level-crossing

theory. Two algorithms are proposed to reduce the PAR under the tone-reservation

constraints. These algorithms scale the filtered first-iteration clipping noise by a

constant or adaptively-calculated factor to compensate for peaks above the threshold.

The complexity analysis and simulation show that our proposed algorithms achieve

a larger PAR reduction and lower complexity than the active-set algorithm.

The PAR can also be reduced by optimizing the signs of data symbols. The

optimal signs may be transmitted to the receiver as side information to correctly

decode data symbols. In this thesis, we propose an adaptive mapping scheme to

eliminate the need for side information at the receiver. We also propose several

algorithms (based on using a stochastic search or clipping noise as a guide) to solve

the associated discrete optimization problem of the sign-selection technique. The

complexity analysis and simulation confirm the complexity advantages of the proposed

algorithms compared to the selective mapping and the derandomization algorithms.



Finally, we generalize the Rudin-Shapiro sequence. Constructed from an initial Phase

Shift Keying (PSK) sequence, the generalized sequence increases the coding rate at

the cost of an increased PAR. By optimizing the signs of the initial sequence, the

PAR of the generalized sequence can be further reduced.
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Notation

• Bold letter: A matrix or a vector.

• A: The clipping threshold.

• N : Number of subcarriers.

• J : The oversampling factor.

• L: Number of iterations.

• R: The tone reservation ratio.

• R: The reserved tone set.

• QM : The M-ary signal constellation.

• qm, m = 1, 2, ...,M : A constellation point in QM .

• Xk: The modulated data symbol on the k-th subcarrier.

• X: OFDM block where X = [X0, X1, ..., XN−1].

• x(t): The continuous-time domain OFDM signal.

• xn: The discrete-time domain OFDM signal.

• Ck: The peak reduction signal of the k-th subcarrier.

• C: The signal space of all possible C vectors.

• fn, n = 0, 1, ..., JN − 1: clipping noise.

• Fk: The frequency spectrum of clipping noise on the k-th subcarrier.



• sk: The symbol sign of the k-th subcarrier, where sk ∈ {1,−1}.

• S: The index set of data symbols or signal samples.

• Ts: The time duration of a data symbol.

• T : The time duration of an OFDM block.

• β: The scaling factor.

• σ2: The variance of the real or imaginary part of Xk.

• E{·}: Expectation.

• R [x]: The real part of x.

• I [x]: The imaginary part of x.

• (·)∗: Complex conjugate.

• 〈·〉M : Modulo-M .

• ⊙: Element-wise multiplication.



Chapter 1

Introduction

1.1 A Brief Overview of OFDM

With the development of modern electrical and computer technologies, the demand for

fast and reliably transmitting multimedia information over wired or wireless channels

is increasing rapidly. High-speed communications must efficiently use a bandlimited

channel to obtain a high bit-rate and must combat channel noise, distortion, fad-

ing, etc., to maintain a low bit-error rate (BER). Orthogonal Frequency Division

Multiplexing (OFDM) is a promising Multicarrier Modulation (MCM) technique for

high-speed communications. It has been widely used in a number of communica-

tion systems such as IEEE 802.11a/g, IEEE 802.16e, HIPERLAN/2, and Digital

Video Broadcasting (DVB). Its baseband version (Discrete Multitone (DMT)) has

become the standard modulation technique for the Asymmetrical Digital Subscriber

Line (ADSL) and the Very-high-speed Digital Subscriber Line (VDSL). OFDM is also

a candidate for IEEE 802.20. A prominent capability of OFDM systems is that it

can possibly reach the channel capacity over frequency-selective fading channels.

Unlike the traditional single-carrier modulation techniques, OFDM uses a set of

orthogonal subcarriers to divide the communication channel into subchannels. Data

bits are transmitted in these subchannels in parallel so as to obtain a high bit-rate [1].

Fig. 1.1(a) shows the ideal “brick wall” subchannel division, where the gain of each

subchannel is a constant in its passband and zero elsewhere. Such a subchannel di-

vision is, however, unrealistic because it requires infinite-length subchannel filters.

Shown in Fig. 1.1(b), OFDM uses finite-length orthogonal sinusoid subcarriers to di-

vide the subchannels. Although the subchannels are overlapped, and the frequency

1



response of each subchannel has nonzero sidelobes, the gains of the neighboring sub-

channels are zero at the peak of each subchannel. Thus, the transmitted data symbols

can be demodulated at the receiver without Intercarrier Interference (ICI). Usually,

a small number of subchannels at the two ends of the OFDM band are not used, in

order to prevent interference between neighboring frequency bands.

 

 

 

 

 

(a) “Brick wall” subchannel division 

OFDM Frequency Band f 

f 
(b) OFDM subchannel division 

Figure 1.1: Subchannel division.

OFDM can be efficiently implemented by using the Inverse Fast Fourier Trans-

form (IFFT) and the Fast Fourier Transform (FFT). OFDM eliminates the Inter-

Symbol Interference (ISI) by using the cyclic prefix. Because the bandwidth of each

subchannel is narrow, the subchannel response is approximately constant. There-

fore, channel distortion can be combated by using a set of one-tap Frequency-Domain

Equalizers (FEQs). The channel equalization in single-carrier systems is more compli-

cated. OFDM is also robust to the narrow-band interference. In wireline communica-

tions, the water-filling algorithm can be used to maximize the transmission bit-rate [2].

With this algorithm, subchannels having large Signal-to-Noise Ratios (SNRs) are as-

signed more bits, and those having small SNRs are assigned less bits or even not used

if the SNR is too small. In wireless communications, Forward Error Correction (FEC)

codes can be used to combat the narrow-band interference.
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The main drawbacks of OFDM are its sensitivity to the ICI (caused by carrier

frequency mismatch between the transmitter and receiver, and/or the Doppler shift)

and the large Peak-to-Average Power Ratio (PAR) [1]. Fig. 1.2 illustrates the ICI.

Because of the carrier frequency offset, the receiver cannot sample the received signal

(in the frequency domain) at the frequencies of the peaks of the subchannel responses.

The nonzero sidelobes of neighboring subchannels lead to the ICI. In OFDM systems,

the largest sidelobe is only 13 dB lower than the peak of the subchannel frequency

response. Thus, a small frequency offset may cause intolerable ICI. The ICI prob-

lem can be alleviated by using the Discrete Cosine Transform (DCT), the Discrete

Wavelet Transform (DWT), or other filterbank-based MCM systems that have small

subchannel sidelobes. However, these systems are more complicated than OFDM

systems using FFT. Many ICI-cancellation techniques for OFDM also have been pro-

posed in the literature [3–11]. Some PAR-reduction algorithms can also be used to

reduce the PAR and ICI simultaneously [6].
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d
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f Carrier frequency offset 

Figure 1.2: Carrier frequency offset and intercarrier interference.

The time-domain baseband equivalent OFDM signal has a complex Gaussian dis-

tribution. Thus, compared to its average power, the peak power of the OFDM signal

can be very high, but occurs rarely [1]. A large PAR requires a linear High Power Am-

plifier (HPA), which, however, is inefficiently used. Moreover, the combination of an

HPA having insufficient linear-range and a large PAR leads to in-band distortion and

out-of-band radiation, where the former increases the BER and the latter interferes

with communications in neighboring frequency bands [1]. Various techniques have

been proposed to reduce the PAR, including clipping and filtering [12], probabilistic

techniques [13], and coding techniques [14]. Clipping and filtering clips the OFDM

signal to a predefined threshold and uses a filter to eliminate out-of-band radiation.
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Probabilistic techniques use multiple candidates to represent the same information

and select the one with the lowest PAR for transmission. Although coding rates can

be low, coding techniques guarantee a low PAR.

1.2 Structure and Contributions of the Thesis

This thesis focuses mainly on the PAR reduction of OFDM systems. Chapter 2

describes the OFDM system and the PAR. The existing PAR-reduction techniques

are discussed in Chapter 3. Chapters 4 to 6 study the mechanism of peak clipping

and propose several new PAR-reduction algorithms. Chapter 7 concludes this thesis

and provides suggestions for future study.

The clipping noise is analyzed in Chapter 4 as a series of parabolic pulses under

tone-reservation constraints. We first consider the case in which the clipping noise

consists of a single pulse, and generalize our analysis to the case of multiple pulses.

Our analysis explains peak regrowth and the constant clipping noise power spectrum

over the whole OFDM band. We also establish the roughly proportional relationship

between the clipping noise at the end of several clipping and filtering iterations, and

that generated in the first iteration. The constant of proportionality is estimated by

using the level-crossing theory [15, 16].

Using the clipping noise analysis, we propose a constant-scaling algorithm and an

adaptive-scaling algorithm for tone-reservation. These algorithms scale the filtered

first-iteration clipping noise by a constant or adaptively-calculated factor to compen-

sate for peaks above the threshold. The simulation results show that our proposed

algorithms achieve a larger PAR reduction and lower complexity than the active-set

algorithm.

Compared to the previous works [17, 18], our main contributions are as follows:

1. Our analysis is focused on the complex OFDM signal. Compared to the base-

band real OFDM signal [17,18], which has a Gaussian distribution, the complex

OFDM signal has a Rayleigh distributed envelope and a complex phase, which

make theoretical analysis more difficult.

2. We exploit a new model where the basic clipping pulse is approximated as a
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parabolic magnitude function multiplied by a linear phase function. We derive

the distribution of the phase change (in Appendices 4.7.B and 4.7.E), and prove

that the phase change is small and can be omitted (in Appendix 4.7.D).

3. We prove all the conditions used in our analysis. Although these conditions are

intuitive, proving them is nontrivial.

4. We extend the frequency spectrum analysis from the single pulse case ( [19]) to

the multiple pulses case. Our analysis explains peak regrowth and the constant

clipping noise power spectrum over the whole OFDM band.

5. We propose two algorithms to find the near-optimal scaling factor. Compared

to the active-set algorithm [20], our algorithms obtain a larger PAR reduction

with lower complexity.

6. We propose a fast method to calculate the PAR and to find the clipping noise.

We provide a necessary condition of large peaks. Only the samples that satisfy

this condition need to be calculated. Because the number of such samples is

small, the execution time1 of calculating the PAR and finding the clipping noise

is small. This method can also be used in other PAR-reduction techniques such

as Selective Mapping (SLM) and Partial Transmit Sequences (PTS).

Chapter 5 focuses on reducing the PAR by using the sign-selection technique,

which optimizes the signs of data symbols to minimize the PAR. We first propose

an adaptive mapping scheme to eliminate the need for side information at the re-

ceiver. To solve the discrete optimization problem associated with the sign-selection

technique, we propose in Section 5.3 three new probabilistic algorithms (the ran-

dom selection, modified PTS, and recursive partial sequence methods) to find better

suboptimal solutions.

Stochastic search and optimization techniques [21] can also be used to find good

suboptimal solutions for the discrete optimization problem. In Section 5.4, we develop

two Cross-Entropy (CE)-based PAR-reduction algorithms. Near-optimal solutions

are obtained with lower complexity by simultaneously modifying the probabilities of

1In this thesis, the execution time is counted as the required number of real multiplica-
tions/additions.
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the signs of all the subcarriers via the CE method. With a fixed number of itera-

tions, these two algorithms obtain the same PAR reduction as the derandomization

method [22, 23] with an O(N logN) complexity. They also offer a flexible tradeoff

between PAR reduction and execution time. The simulations show that, for the same

level of PAR reduction, our algorithms require less execution time than the SLM

and derandomization methods. To the best of our knowledge, our work is this first

application of the CE method to PAR reduction.

Section 5.5 considers PAR reduction based on clipping-noise guided sign-selection.

The key idea of clipping-noise guided sign-selection (CGS) is to iteratively flip the

signs of those subcarriers with high levels of clipping noise. In each iteration, the key

task is to determine the number and locations of such subcarriers. We develop suitable

criteria for this task and derive two CGS algorithms that can handle both unitary

(e.g., M-ary Phase Shift Keying (PSK)) and non-unitary (e.g., M-ary Quadrature

amplitude modulation (QAM)) signal constellations. Although a direct comparison

among PTS and SLM and CGS is not possible (as PTS and SLM use much less side

information), CGS gains about 1–2 dB over these two methods for a 256-subcarrier

system. A fair comparison by fixing the amount of side information is possible among

CGS, derandomization and tone reservation. In this case, for a 256-subcarrier system,

CGS outperforms these two methods by about 1 dB.

In Chapter 6, we generalize the Rudin-Shapiro sequences [24–26] to trade off the

coding rate and the PAR. The generalized sequence is constructed from an initial

PSK sequence. Its PAR is then two times that of the initial sequence, and the coding

rate is increased to log2N+2m−2
Nm

, where N is the number of subcarriers, and m is the

length of the initial sequence. We show that the PAR of the generalized sequence can

be further reduced by optimizing the signs of the initial sequence.
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Chapter 2

OFDM Systems

2.1 OFDM Signalling

OFDM transmits data symbols through a set of orthogonal subcarriers [27]. At the

transmitter, data symbols on each subcarrier are chosen from a given Mk-point signal

constellation (k = 0, ..., N − 1), each of time duration Ts. Mk may be different

for different subcarriers if bit-loading algorithms are used (e.g., in DMT systems).

On the other hand, usually Mk ≡ M in wireless communication systems. Each N

data symbols form an OFDM block X = [X0, ...XN−1], which are modulated to N

subcarriers and then added together and up-converted to the carrier frequency for

transmission. The transmitted signal can be written as

xc(t) = R

[
∑

l

xl(t− lT )ej2πfct

]

, (2.1)

where R [x] represents the real part of x, fc is the carrier frequency, and xl(t) is the

l-th baseband equivalent time-domain OFDM symbol,

xl(t) =
1√
N

N/2−1
∑

k=−N/2
Xl,〈k+N〉e

j2πk∆ft, 0 ≤ t ≤ T , (2.2)

with 〈k + N〉 denoting (K + N) modulo N , ∆f = 1/T representing the frequency

spacing, and T = NTs being the time duration of the OFDM symbol. Because differ-

ent OFDM symbols do not overlap, only one OFDM symbol needs to be considered,

and the subscript “l” can be dropped.

Eq. (2.2) can be calculated more conveniently in the discrete-time domain. By

sampling x(t) at frequency fs = JN/T , where J is the oversampling factor, the
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discrete-time OFDM symbol xn can be written as

xn =
1√
N

N/2−1
∑

k=−N/2
X〈k+N〉e

j 2π
JN

nk, n = 0, ..., JN − 1. (2.3)

When J = 1, the above equation reduces to the Nyquist rate sampling case. Eq. (2.3)

can be implemented by using a length-(JN) IFFT operation with the input vector

Xext = [X0, ..., XN/2−1, 0, ..., 0
︸ ︷︷ ︸

(J−1)N zeros

, XN/2, ..., XN−1]. (2.4)

Thus, Xext is extended from X by using the so-called zero-insertion scheme, i.e., by

inserting (JN − 1) zeros in the middle of X.

In the literature, the zero-padding scheme, which appends (JN − 1) zeros at the

end of X, is also used. By using the zero-padding scheme, (2.2) and (2.3) may be

written as

x(t) =
1√
N

N−1∑

k=0

Xke
j2πk∆ft, 0 ≤ t ≤ T, (2.5)

xn =
1√
N

N−1∑

k=0

Xke
j 2π

JN
nk, n = 0, ..., JN − 1, (2.6)

and the implementation of (2.6) is a length-(JN) IFFT with the input vector

Xext = [X0, X1, ..., XN−1, 0, ..., 0
︸ ︷︷ ︸

(J−1)N zeros

]. (2.7)

The difference between the zero-insertion and zero-padding schemes is the po-

sition of the carrier frequency fc. Fig. 2.1 illustrates the frequency spectrum of

both schemes. If zero-insertion is used, fc is in the middle of the OFDM spectrum,

XN/2, ..., XN−1 are modulated to the lower side-band (i.e., to the negative frequencies

in the baseband equivalent model), and the (N/2−1)-th and (N/2)-th subcarriers are

of the highest and lowest frequencies, respectively. On the other hand, if zero-padding

is used, fc is on the left end of the OFDM spectrum, no lower side-band exists, and

the 0-th and (N − 1)-th subcarriers are of the highest and lowest frequencies, re-

spectively. The zero-insertion scheme matches practical situations and is easy to use

for clipping analysis by using the level-crossing theory. However, these two schemes
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Figure 2.1: OFDM spectrum of zero-insertion and zero-padding schemes

lead to no difference in PAR statistics. In this thesis, we will alternatively use both

schemes to facilitate the analysis.

At the receiver, the received signal is first down-converted to baseband and is

partitioned into signal blocks yl(t), each with time duration T . Then the l-th OFDM

block can be extracted from the yl(t) by using a set of orthogonal signal basis e−j2πk∆ft,

k = −N/2, ..., N/2− 1. Also, because any pair of yl(t) will not overlap, the subscript

“l” can be dropped in our analysis.

In practice, the received signal y(t) is first sampled at the Nyquist frequency to

obtain the discrete-time signal yn. Then, the OFDM block is demodulated by using

a length-N FFT operation in accordance with

Yk =
1√
N

N−1∑

n=0

yne
−j 2π

N
nk , k = 0, ..., N − 1 . (2.8)

2.2 Modulation and Demodulation Procedure

The block diagram of the OFDM system is shown in Fig. 2.2. In this figure, at the

transmitter, the input bitstream is first coded by using a FEC encoder. Then the

coded serial bitstream is parsed into N parallel bitstreams by using the Serial-to-

Parallel (S/P) converter. Each of these parallel bitstreams is subsequently converted
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to complex data symbols Xk. An IFFT converter is then used to modulate the OFDM

symbols to discrete-time OFDM signals one by one. The data symbols in each OFDM

block are therefore modulated into different subcarriers. After adding the cyclic prefix,

the discrete-time OFDM signal is converted to a serial signal by using the Parallel-

to-Serial (P/S) converter. The obtained discrete-time signal is then transferred into

the continuous-time domain by using a Digital-to-Analog (D/A) converter. Finally,

this signal is amplified by using an HPA and is up-converted to the carrier frequency

to facilitate its transfer in the actual wireless channel.
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Figure 2.2: The block diagram of the OFDM system

At the receiver, the received analog bandpass signal is first down-converted to an

analog baseband signal. After the Analog-to-Digital (A/D) conversion, the obtained

digital signal is parsed into parallel data symbols, and the cyclic prefixes are removed.

Then, the remaining data symbols are demodulated by using an FFT converter and

are equalized by using a set of one-tap FEQ. The FEQ output symbols are then con-

verted back to a serial bitstream by the digital demodulation and the P/S conversion.

After FEC decoding, the input bitstream is recovered at the receiver end.

2.3 Cyclic Prefix and FEQ

The cyclic prefix (CP) of a discrete-time signal xn is the last v samples of xn. It is

inserted at the beginning of xn to combat the ISI without using complicated equal-

ization techniques. Because of the multipath delay spread, signal dispersion and
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overlapping will occur, leading to ISI. In other words, if the channel impulse response

is hn, n = 0, ..., Lh − 1, with Lh representing the length of hn, the received signal

yn (without considering the channel noise) is the linear convolution of xn and hn.

However, with the use of a cyclic prefix, yn can be written as the circular convolution

of xn and hn, provided that v ≥ Lh − 1; i.e.,

yn = xn ⊗ hn, (2.9)

where ⊗ denotes the circular convolution. In this case, after the FFT operation and

dropping the cyclic prefix, we have

Yk = XkHk, k = 0, ..., N − 1, (2.10)

where Hk’s are the N -point FFT of hn. Therefore, if Hk’s are known, Xk can be

recovered at the receiver by using a set of FEQ Wk = 1/Hk in accordance with

Xk = YkWk = Yk/Hk. (2.11)

The cyclic prefix is only a replica of xn and will not affect our PAR analysis. Hence,

this prefix will not be considered in the following analysis.

2.4 Peak-to-Average Power Ratio

In OFDM systems, because the transmitted signal is the sum of a set of modulated

signals, the peak power of the transmitted signal can be very high compared to

its average power. Although occurring only with low probability, such large peaks

have negative ramifications for the overall system. For instance, the HPA for RF

transmission has to have a large linear range, which, however, is inefficiently used.

Moreover, the distortion incurred by the nonlinearity of the HPA leads to in-band

distortion and out-of-band radiation. The in-band distortion leads to increased BER

[1]. On the other hand, the out-of-band distortion may severely interfere with the

signal transmitted in the adjacent frequency bands.

The PAR of the transmitted signal can be defined as the ratio of the instantaneous

power over the average power of the transmitted signal [28]:

PARxc(t) ,
max |xc(t)|2
E {|xc(t)|2}

, 0 ≤ t ≤ T, (2.12)
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where E {·} represents the mean value of (·). On the other hand, the PAR problem

can also be measured by using the baseband equivalent signal x(t). Because [29]

max |xc(t)| ≈ max |x(t)|, (2.13)

and

E
{
|xc(t)|2

}
≈ 1

2
E
{
|x(t)|2

}
, (2.14)

we have

PARxc(t) ≈ 2PARx(t). (2.15)

The above definition of the PAR can be called the continuous-time PAR. In prac-

tical situations, usually the PAR is calculated based on the oversampled baseband

equivalent signal xn obtained from (2.3), in accordance with

PAR ,
max |xn|2
E {|xn|2}

. (2.16)

This PAR distribution is referred to as the discrete-time PAR in this thesis. It

was shown in [30, 31] that Nyquist sampling (J = 1) may not capture all peaks

of x(t). Therefore, oversampling is necessary to approximate the continuous-time

PAR by using the discrete-time PAR. It has been shown [28] that for an acceptable

approximation, the oversampling factor J is required to be J ≥ 4.

From (2.3) or (2.6),

E
{
|xn|2

}
=

1

N

∑

k

|Xk|2.

If Xk are independent, identically distributed (i.i.d.) random variables, the PAR of

an OFDM system is al = N. Therefore, in practice, a statistical definition of PAR is

more frequently used. An OFDM signal is said to have a peak at ξ with probability

Pc if

Pr[PAR(X) ≤ ξ] = Pc. (2.17)

The PAR Complementary Cumulative Distribution Function (CCDF), also called the

clip probability, is defined as P (ξ) = Pr[PAR(X) > ξ] = 1 − Pc; i.e., the probability

that PAR exceeds ξ is 1 − Pc. For example, the PAR distribution for different over-

sampling factors and for different N ’s are shown in Figures 2.3 and 2.4, respectively,

which show that J = 4 can provide an acceptable approximation to the continuous-

time PAR distribution.
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Figure 2.3: PAR distribution for different oversampling factors, N = 128.
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Chapter 3

PAR-Reduction Techniques

3.1 High-Power Amplifiers

The purpose of PAR reduction is to counteract the nonlinear effect of the HPA.

Usually, HPAs are characterized as memory-less nonlinear amplifiers in accordance

with

g(x(t)) = F (|x(t)|)ej(φ(t)+Φ(|x(t)|)), (3.1)

where g(x(t)) is the output of the HPA; x(t) = |x(t)|ejφ(t) is the time domain signal

input to the HPA; F (|x(t)|) and Φ(|x(t)|) are, respectively, the AM/AM and the

AM/PM distortion functions, where AM denotes the Amplitude Modulation, and

PM denotes the Phase Modulation. Usually HPAs can be partitioned into three

categories: the Soft Limiter (SL), the Solid State Power Amplifier (SSPA), and the

Traveling-Wave Tube (TWT). Their characteristics can be described as follows.

3.1.1 Soft Limiter

The Soft Limiter [32] is the simplest model of the HPA. It introduces no distortion in

the phase of the input signal and simply clips the signal magnitude when it exceeds

a threshold. Therefore, the output of the soft limiter can be written as

g(x(t)) =

{

Aejφ(t), |x(t)| > A ,

x(t), otherwise,
(3.2)

where A > 0 represents the threshold of the SL.
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3.1.2 Solid State Power Amplifier

The SSPA is the most commonly used amplifier in wireless communications. The

output of SSPA can be written as [1]

g(x(t)) =
|x(t)|

(

1 +

( |x(t)|
A

)2p
) 1

2p

ejφ(t); (3.3)

i.e., it introduces no distortion in the signal phase. When p→ ∞, the SSPA becomes

the SL. Usually, p = 3 for a practical SSPA.

3.1.3 Traveling-Wave Tube

TWTs are wideband amplifiers widely used in satellite communications [33,34]. The

AM/AM and AM/PM functions of TWT can be written as [28]

F (|x(t)|) =
|x(t)|

1 +

( |x(t)|
2A

)2 ,

Φ(|x(t)|) =
π

3

|x(t)|2
|x(t)|2 + 4A2

.

(3.4)

As a comparison, the AM/AM functions of SL, SSPA (for p = 3 and p = 10), and

TWT are shown in Fig. 3.1. The AM/PM function of TWT is shown in Fig. 3.2.

3.1.4 PAR Distribution and BER Performance

When Xk are PSK symbols, an upper bound of the PAR can be easily obtained as [35]

ξ ≤ 1 +
2

N

N−1∑

n=1

|RX(n)|, (3.5)

where RX(n) is the aperiodic autocorrelation function of Xk defined as

RX(n) =
N−n−1∑

k=0

Xk+nX
∗
k , (3.6)

with (·)∗ representing the complex conjugate. With the assumption that Xk are i.i.d.

random variables and based on the central limit theory, xn can be approximated
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as (complex) Gaussian random variables when N is large. Then, |xn| is Rayleigh

distributed. The PAR distribution can be approximated as [36]

Pr[ξ ≤ ξp] ≈
(

1 − e−ξp/2σ
2
)αN

, (3.7)

where σ2 is the variance of the real or imaginary part of xn, and α = 2.8 (obtained

from empirical experiments). More accurate approximations are also available [37–56].

In [46], by using the theory of the level-crossing rate and normalizing r(t) = |x(t)|
such that 2σ2 = 1, the probability that all peaks are lower than r is

Pr(max[r(t)] < r) ≈







(

1 − re−r2

r̄e−r̄2

)
√

π
3
Nr̄e−r̄2

, for r > r̄,

0, for r ≤ r̄,

(3.8)

where r̄ is empirically obtained as r̄ =
√
π for Quadrature Phase Shift Keying (QPSK)

and slightly lower for 16QAM. The PAR distribution can then be found by replacing

r and r̄ with
√
ξp and

√

ξ̄p, respectively.

The effect of signal clipping on BER performance has been extensively studied.

Such analysis focuses mainly on the Signal-to-Noise-plus-Distortion Ratio (SNDR)

and BER after the passage of x(t) through an SL.

Clipping x(t) by the SL introduces a clipping noise f(t) = x(t) − g(x(t)), which

includes in-band distortion and out-of-band radiation. Fig. 3.3 illustrates the power

spectral density (PSD) of unclipped and clipped OFDM signals. 9 dB clipping leads

to relatively small (−51 dB) out-of-band radiation. However, deeper clipping, e.g.,

6 dB and 3 dB clipping, significantly increases out-of-band radiation to −31 dB and

−21 dB, which may be unacceptable in practical communications. In [45], it is shown

that by applying Bussgang’s theorem [32], the clipped signal can be written as

x̂n = αxn + dn, n = 0, ..., JN − 1, (3.9)

where xn and dn are uncorrelated, and the attenuation factor α can be found as

α = 1 − e−γ
2

+

√
πγ

2
erfc (γ) (3.10)

with γ = A/
√
Pi.

For large N and small A, the clipping noise can be approximated as a Gaussian

process. For Nyquist-rate clipping (xn is Nyquist-rate sampled), no out-of-band ra-

diation exists. In this case, the SNDR for Additive White Gaussian Noise (AWGN)
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Figure 3.3: Power spectral density of unclipped and time-domain-clipped OFDM
signals.

channel is given by [45]

SNDR =
KγEs/N0

(1 −Kγ)Es/N0 + 1
, (3.11)

where Es/N0 is the ratio of the signal energy over the noise Power Spectral Density

(PSD) after clipping, and Kγ = α2/(1 − e−γ
2
). The BER of QPSK is then given by

Pb = Q(SNDR), (3.12)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt.

The assumption of Gaussian clipping noise holds only for small A. When A is

large, the clipping noise is a series of pulses which can be approximated as parabolic

arcs [15]. Based on this approximation, the BER of a real-valued time domain OFDM

signal (which is used for DMT applications) can be calculated as [17]

Pb =
8N(L− 1)√

3L
e−γ

2/2Q





[

3πγ2

√

8(L2 − 1)

]1/3


 , (3.13)
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where a square constellation of L2 points with a minimum distance of 2d is assumed.

In [49], the performance of OFDM with a strictly limited peak-power requirement

is analyzed. The analytical results show that the clipping technique exhibits the

lowest Input Back-off (IBO) requirement compared to the probabilistic techniques,

especially when N is large.

3.2 PAR-Reduction Techniques

Various techniques have been proposed to reduce the PAR, including clipping-based

techniques, probabilistic techniques and coding techniques.

3.3 Categorization of the PAR Problem

PAR research can be divided into two categories: PAR distribution and BER evalua-

tion, and the development of efficient PAR-reduction techniques. Fig. 3.4 illustrates

this categorization. PAR-reduction techniques can be further divided into two cate-

gories: techniques with distortion and without distortion. Techniques with distortion

are usually based on signal clipping and lead to continuous solutions where the OFDM

signals are modified in a continuous manner. These techniques include iterative clip-

ping and filtering [12, 19, 57, 58], and companding [59–81]. A detailed discussion of

iterative clipping and filtering will be presented in the next subsection.

For techniques with distortion, distortion-cancellation techniques are necessary

in order to reduce a possible BER loss. A task common to both categories is the

development of low complexity algorithms.

Distortion-less PAR-reduction techniques are more attractive because they do not

increase the BER. In fact, the BER can even be decreased by exploiting the inherent

redundancy. These techniques can be divided into three categories: (1) techniques

having continuous solutions such as tone reservation and Active Constellation Ex-

tension (ACE), (2) techniques having discrete solutions such as SLM, PTS and tone

injection, and (3) coding techniques. Distortion-less techniques may need side infor-

mation for correct detection. Developing efficient decoding techniques is also a related

research area.
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Figure 3.4: Categorization of the PAR problem

While the PAR problem has obvious practical value, it is also related to many

theoretical research areas such as discrete optimization and coding theories.

3.3.1 PAR-Reduction Techniques with Distortion

The simplest PAR-reduction technique is clipping and filtering [12, 19, 57, 58]. This

technique clips the OFDM signal to a predefined threshold and uses a filter to elimi-

nate the out-of-band radiation. The purpose of this technique is to satisfy the spectral

constraints so that the OFDM signal will not interfere with communications in the

neighboring frequency bands. The inband distortion, however, cannot be eliminated,

leading to increased BER. Because the probability of large peaks is small, the inband

distortion is also small when the clipping threshold is large. Consequently, the BER

increase may be small when, e.g., 4QAM is used, and may be tolerable in some ap-

plications. On the other hand, the inband distortion may be limited to a predefined

strength [82–85] to reduce the BER increase, with the cost of degraded PAR-reduction

performance. In [36], each clipping noise sample is multiplied by a window function

(e.g., Gaussian, Kaiser, or Hamming) to suppress the out-of-band noise. Because the

overall effect is the convolution of the clipping samples and the windowing function,
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this approach leads to a bandwidth increase. Alternatively, the inband distortion can

also be partly canceled at the receiver with additional computational cost. [86–89].

Filtering out-of-band radiation can be done in the time domain by using a lowpass

filter [12] or in the frequency domain by using an FFT/IFFT pair [19, 58, 90]. By

using frequency domain filtering, which requires less execution time than using a

time-domain lowpass filter, the clipping noise is converted to the frequency domain

by using oversampled FFT, and all out-of-band terms are set to zero. An IFFT is also

required to convert the filtered clipping noise back to the time domain. Nevertheless,

a side-effect of filtering is peak regrowth, shown in Fig. 3.5. After filtering, the signal

peaks grows higher than the clipping threshold (but lower than the original peaks).

Generally, peak regrowth can be combatted by iterative clipping and filtering [90].

However, the convergence is extremely slow after several iterations. To speed up the

convergence, [90] proposes using a slightly lower clipping threshold, say, 95% of the

desired PAR level [57], to better suppress peak regrowth.
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Figure 3.5: Peak regrowth.

Clipping the OFDM signal is equivalent to passing the signal through a Soft Lim-
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iter. The clipped portion of the signal cannot be perfectly recovered. In contrast, the

companding transform [59–81] passes the OFDM signal through a smooth nonlinear

function

y(t) = g(x(t)),

where x(t) is the input OFDM signal, and g(x) is the nonlinear companding transform,

to “compress” the large peaks in x(t). The probability that y(t) has large peaks is

then much smaller than before companding transforming.

At the receiver, x(t) is recovered by using g−1(t), the inverse transform of g(t).

The recovered OFDM signal can be written as

x̂(t) = g−1(g(x(t)) + z(t)),

where z(t) is the channel noise. The companding transform has two drawbacks. First,

the signal bandwidth is expanded after the transform.1 Second, the channel noise z(t)

is enhanced at the receiver when recovering the compressed samples. The bandwidth

expansion and noise enhancement depend on the target PAR level of the companding

transform. If the target PAR level is low, filtering is required at the transmitter

to eliminate the out-of-band radiation, which introduces inband distortion and peak

regrowth. At the receiver, the BER may be unacceptable.

3.3.1.1 Clipping Noise Cancelation

Clipping noise can be partly cancelled at the receiver. In [91], the clipping noise is

estimated and then cancelled by using oversampled signal reconstruction, which re-

constructs the clipped samples by interpolating the oversampled signal. This method

requires the transmission of a portion of the out-of-band radiation to the receiver.

Thus, the OFDM bandwidth must be expanded by 25% or more. [92] proposes a

decision-aided reconstruction method to mitigate the clipping noise. After channel

equalization, this method first makes a hard decision (in the frequency domain) on

the received signal samples x̂n to estimate the data symbols, and then converts them

back to the time domain to obtain x̃n. If the channel distortion and channel noise are

1The bandwidth of the compressed signal is the same as the original signal only when the com-
panding transform is applied to the Nyquist-rate samples. However, the PAR-reduction performance
is poor in this case.
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omitted2, x̂n = xn at the positions of |xn| ≤ A, where A is the clipping threshold. On

the other hand, x̃n contains samples larger than A at the positions of |xn| > A, which

may be a better estimation of xn than x̂n if the clipping is not severe. Therefore, xn

can be estimated more accurately by

x̄n =

{

x̂n, x̂n ≤ A,

x̃n, otherwise.

This method is further improved in [86–89] by reconstructing the clipping noise,

and is later applied to coded OFDM [93,94] and MIMO OFDM [95]. By using (3.9),

the received samples after the FFT operation can be written as

Yk = αHkXk +HkDk + Zk, (3.14)

where Yk, Hk, Dk and Zk are the received signal, channel response, clipping noise,

and AWGN on the k-th subcarrier, respectively. Assuming that Hk is known, a coarse

estimation X̄k can be obtained by making a hard decision on Yk/Hk. By converting

X̄k to the time domain, clipping it in the same fashion as at the transmitter, and

converting the clipped signal back to the frequency domain, we have

X̃k = αX̄k + D̄k. (3.15)

Assume that most X̄k are correct. Then D̄k ≈ Dk, and one can use D̄k to obtain a

better estimation of Xk; i.e.,

Ŷk = Yk −HkD̄k = αHkXk +Hk(Dk − D̄k) + Zk. (3.16)

This procedure can be repeated to improve the estimation accuracy.

3.3.2 Tone-Reservation

The tone-reservation technique reserves Nr tones for PAR reduction and uses the

remaining (N −Nr) tones for data transmission [18, 20, 96–104]. The reserved tones

may be randomly selected, or be selected from the subcarriers that have low SNR and

are not suitable for data transmission. The tone-reservation ratio R =
Nr

N
is typically

2The channel distortion and channel noise degrade the performance of clipping noise cancelation.
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small. The peak-canceling signal c(t) is generated based on the reserved tones, and

the peak-reduced signal is given by

x̂(t) = x(t) + c(t) =
1√
N

N
2
−1
∑

k=−N
2

(Xk + Ck)e
j2πkt/T , 0 ≤ t ≤ T,

where C = [C−N
2
, ..., CN

2
−1] is the set of peak-canceling tones. x̂(t) is amplified by

the HPA and transmitted to the receiver. Denote C as the signal space of all possible

C vectors.

Let R = {i0, ..., iNr−1} be the locations of the reserved tones, where −N
2
≤ i0 <

i1 < · · · < iNr−1 ≤ N
2
− 1. Let the index set Rc be the complement of R in N =

{−N
2
, ..., N

2
− 1}. The constraint on c(t) is that C must satisfy Ck ≡ 0 for k ∈ Rc.

On the other hand, X must satisfy Xk ≡ 0 for k ∈ R. X and C are not allowed to

be nonzero on the same subcarriers; i.e.,

Xk + Ck =

{

Xk k ∈ Rc,

Ck k ∈ R. (3.17)

Clearly, this technique reduces the normalized system throughput to (1−R). For

a frequency-selective fading channel (ignoring the nonlinear amplification), demodu-

lation is done on a per-tone basis. Thus, (3.17) allows the reserved tones to be readily

discarded. With this method, the BER of the data tones is the same as that of the

original OFDM system. However, the BER of the whole system is slightly increased

due to the slightly increased average transmit power.

With the tone-reservation, the PAR is redefined as

ξ =
max |x(t) + c(t)|2

E{|x(t)|2}
; (3.18)

that is, the peak-canceling signal c(t) is excluded from the calculation of the average

power to prevent the solution of a c(t) having an averaged power much larger than

that of x(t). The denominator in Eq. (3.18) is a constant. Thus, C must be chosen

to minimize the maximum of the time-domain signal:

C(opt) = arg min
C∈C

max
0≤t≤T

∣
∣
∣
∣
∣
∣

N
2
−1
∑

k=−N
2

(Xk + Ck)e
j2πkt/T

∣
∣
∣
∣
∣
∣

2

. (3.19)
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Eq. (3.19) can be reformulated as a Quadratically Constrained Quadratic Program

(QCQP) [18]:

min
C∈C

E

subject to |xn + qnC|2 ≤ E
(3.20)

for n = 0, 1, ..., JN − 1, where qn is n-th row of the IDFT matrix. (3.20) is convex,

and the global optimum exists [105]. However, finding the optimal solution requires

a high computational cost. Suboptimal solutions are typically employed.

The simplest optimization technique for tone-reservation is iterative clipping and

filtering [90]. In each iteration, this technique clips the OFDM signal to a predefined

threshold A. The clipped signal is then filtered such that the clipping noise exists

only on reserved tones. The convergence rate of this technique is extremely slow [18].

The controlled clipper algorithm [18] iteratively calculates the peak-reduced time-

domain OFDM signal as follows:

x̄(i+1) = x̄(i) − µ
∑

˛

˛

˛
x̄
(i)
n

˛

˛

˛
>A

α(i)
n P‖2

n

︸ ︷︷ ︸

c

, (3.21)

where x̄(i) is the peak-reduced signal at the i-th iteration, x̄(0) = x, x is the OFDM

signal, A is the target magnitude upper bound of the peak-reduced signal, α
(i)
n are

the clipping noise samples at the i-th iteration, P
‖2
n is the prototype peak-canceling

signal, and c is the sample vector of the peak-canceling signal c(t). The convergence

rate of this algorithm slows down after several iterations, and many iterations are

usually required to obtain a reasonable PAR reduction [18].

An active-set algorithm is proposed in [20] for tone-reservation. This algorithm

first approximates the peak boundary (a circle centered at the origin of the complex

plane) as a polygon. For example, Fig 3.6 shows an octagon of radius A. The

magnitude of point X can be approximated by

|X| ≈ |X|Approx = max
[
R [X] ,R

[
Xejπ/4

]
,R
[
Xejπ/2

]
,R
[
Xej3π/4

]]

= max
[
R [X] , I [X] ,R

[
Xejπ/4

]
, I
[
Xejπ/4

]]
,

where R [x] and I [x] represent the real and imaginary parts of x, respectively. On

the other hand, all points that satisfy |X|Approx ≤ A are within the octagon of radix
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A. In other words, if we reduce the approximated peak of an OFDM signal to A, its

actual peak would be only slightly larger than A.

With this polygonal approximation, the complex OFDM vector x is written as

a real vector x̂ consisting of the real and imaginary parts of x and its phase-shifted

versions. For example, if the octagon is used,

x̂ =
[
R [x] , I [x] ,R

[
xejπ/4

]
, I
[
xejπ/4

]]
. (3.22)

The optimization is then performed on real numbers.

X

ap
pr
ox

X

A

Figure 3.6: Polygonal approximation of the peak boundary.

The active-set algorithm uses the same prototype peak-canceling signal P
‖2
n (but

is rewritten to a real vector p̂, as explained above) to reduce the PAR. This algorithm

maintains an active set containing the peaks of x̂, whose magnitudes are reduced to

the same level as that in previous iterations. Each sample xni
in the active set is

associated with a peak-canceling kernel p̂i (a shifted version of p̂ whose peak is at

ni). These p̂i are weighted and summed together to form the peak-canceling signal

p̄. In each iteration, the weighting factors of p̂i are calculated by solving a set of

l linear equations, where l is the iteration number, to find a proper optimization
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direction. Then, at least all peaks of both x̂ and p̄ outside the active set3 are tested

to find a proper optimization step size µ. The peak-canceling signal p̄ is weighted by

µ and is subtracted from x̂. Then, the magnitudes of all samples in the active set are

equally reduced. The largest peak outside the active set is also reduced to the same

magnitude of the samples in the active set, and is included in the active set. After

several iterations, the PAR is reduced to a moderate level.

3.3.3 Active Constellation Extension

The ACE technique [106, 107] allows the constellation be extended (by the clipping

noise) so that the minimum Euclidian distance between any two constellation points

does not increase. For example, the shaded areas in Fig. 3.7 are the feasible extension

regions for the 16QAM constellation.

Figure 3.7: Feasible extension region for 16-QAM constellation.

Finding the optimal peak-canceling signal is similar to (3.20) but with the ad-

ditional constraint that the peak-canceling signal in the frequency domain does not

allow the use of any value beyond the feasible region. The optimization methods

discussed above can be applied to the ACE technique.

The ACE technique does not reduce the throughput. However, this technique

slightly increases the average transmit power, leading to a slightly increased BER. Its

3To ensure the active set criteria, generally all samples of x̂ outside the active set must be tested.
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PAR-reduction capability depends on the signal constellation. Only the outer signal

points in the constellation are allowed to move. If PSK or 4QAM constellations are

used, all input data symbols are free to move in the feasible region, and a large PAR

reduction is obtained. On the other hand, when an MQAM constellation, M > 4, is

used, in average only
4
√
M − 4

M
N subcarriers in each OFDM block are available for

PAR reduction. Thus, the PAR-reduction capability of ACE is small for large QAM

constellations.

3.3.4 Probabilistic Techniques

By modifying the phase, amplitude and/or subcarrier position of input symbols, these

techniques use several candidate OFDM signals to represent the same information,

and select the one with the lowest PAR. Side information may be required at the

receiver for correct detection.

3.3.4.1 Phase-Adjustment Techniques

A widely used technique is the modification of the phase of the input modulation

symbols to reduce the PAR [108–111]. Let X = [X0, ..., XN−1] be an OFDM vector,

and let s = [s0, ..., sN−1] = [ejφ0, ..., ejφN−1] be a phase-adjustment vector. Then, the

objective function is

min
s

(PAR of IDFT(s⊙ X)) , (3.23)

where ⊙ represents the element-wise multiplication. The optimal solution s(opt) may

be sent to the receiver as side information for the correct detection of the input

modulation symbols. The distribution of sk, k = 0, ..., N−1, determines the minimum

PAR that can be obtained. Assume that sk are i.i.d., N is large, and s(opt) is selected

from K randomly generated phase-adjustment vectors {s(1), ..., s(K)} according to a

predefined distribution of sk. If the PAR is calculated on the Nyquist-rate discrete-

time-domain samples (i.e., J = 1 for calculating the IDFT), it has been proved that

the PAR of IDFT(s(opt) ⊙ X) is minimized when E {sk} = 0 [112]. Thus, we may

choose sk from 1 or -1 with equal probability to minimize the resulting throughput

loss. On the other hand, if the PAR is calculated on the oversampled discrete-time-

domain samples (i.e., J > 1) or on the continuous-time-domain signal, choosing sk
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from a larger set (e.g., sk ∈ {1, j,−1,−j}) leads to only minor improvement in the

PAR reduction [113]. In this thesis, we use sk ∈ {1,−1}.
Eq. (3.23) describes a combinatorial optimization problem over the N dimensional

binary space {1, −1}N . Let s0 ≡ 1 without loss of generality. The size of the search

space is 2N−1, which grows exponentially with N . Also, finding the PAR of a phase

sequence requires the evaluation of all the JN samples of the phase-adjusted OFDM

block. The execution time of finding the optimal phase sequence is thus prohibitively

large when N is large. Many suboptimal techniques have been proposed to reduce the

optimization complexity by reducing the search space and/or by efficiently computing

the PAR of each phase sequence.

[114] proposes an method to estimate the PAR of a phase sequence without

computing all the JN samples. If the estimated PAR is large, the phase sequence is

rejected. Otherwise, the exact PAR is calculated as usual and compared with that of

other sequences to find the optimum sequence. In [115], the polygonal approximation

of the peak boundary [20] (3.22) is used to reduce the number of multiplications

in finding the PAR of a sequence, at the cost of an increased number of additions.

However, because the total number of arithmetic operations (multiplications and

additions) is still large, this method does not reduce the execution time when the

multiplier-accumulator [116] is used4. In [104], we propose a fast algorithm to compute

the PAR. (This algorithm will be discussed in Section 4.3.) The above methods can

be combined with other methods that reduce the search space to further speed up

the optimization.

To reduce the search space, [117] proposes two criteria for constructing a phase

sequence set that may lead to a low PAR. By studying the PAR relationship between

two sign sequences, [117] proves that the upper bound of the PAR difference between

two sign sequences is statistically maximized when the two sign sequences are orthog-

onal. Moreover, the element-wise product of any two sequences in the set should not

be periodical or similar to periodical. However, a systematic construction method

has not been found.

The SLM method [118–120] uses a set ofK, K ≪ 2N−1, randomly generated phase

4By using the multiplier-accumulator, the execution time of the multiplication is comparable to
that of the addition.
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sequences {s(1), ..., s(K)}. For each OFDM block, the phase sequence s(i) leading to

the lowest PAR is selected to adjust the phases of the OFDM block. Thus, the search

space is reduced to a set of K phase sequences. SLM reduces the probability of large

peaks. If the probability that si (i = 1, ..., K) leads to a PAR larger than ξ is Pξ, then

the probability that all si leading to a PAR larger than ξ is PK
ξ < Pξ. SLM requires

K IFFTs for each OFDM block, and the minimum side information is log2K bits.

The PTS technique [13,121–124] partitions each OFDM block X into K, K ≪ N ,

disjoint subblocks X = [X1, ...,XK ]. The sign sequence s is also partitioned into K

corresponding subblocks s = [s1, ..., sK ], where the elements within each si are the

same; i.e., si = [si, si, ..., si]. The size of the search space is then reduced from 2N−1 to

2K−1, making an exhaustive search possible. 2K−1 IFFTs are required for each OFDM

block if the PAR of each sign sequence is calculated by using an IFFT. However,

x = IFFT[s ⊙X] =

K∑

k=1

skIFFT[Xk], (3.24)

where x is the vector of time domain signal. Thus, IFFT[Xk] can be calculated and

stored before searching for the suitable phase sequence. Then, optimizing the PAR

of each OFDM block requires only K IFFTs and 2K−1JN(K− 1) complex additions.

The minimum side information is (K − 1) bits (because s1 ≡ 1).

It has been proved that global optimal s(opt) leads to a constant PAR [22]. By

using the derandomization method, the PAR can be iteratively reduced to less than

c logN where c is a constant [23,125]. This approach outperforms other probabilistic

techniques, but with a complexity of O(N2).

A sign-flipping method is proposed to reduce the execution time of PTS [126],

where, in each iteration, the sign of a subblock is flipped between +1 and −1, and

the one leading to the lower PAR is retained. The whole search space can be formu-

lated as a binary tree. The sign-flipping method searches only one branch of the tree.

By searching more branches, a larger PAR reduction can be obtained with increased

execution time [127]; for example, we may search only the all-1 phase sequence and

its neighbors having a Hamming distance less than or equal to r [128]. In addition

to the 2K−1 phase sequences (i.e., K subblocks) that modify the OFDM block to

reduce the PAR, extra modifications of the OFDM block can be obtained by complex
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conjugating, frequency-reversing or circular-shifting a subblock, or multiplying a sub-

block by a predefined phase sequence5 [129]. A dual-layer search scheme is proposed

in [130], where an OFDM block is divided into D subgroups, called divisions, and

each division is further divided into M subblocks. A suboptimal sign sequence can

be found by, e.g., first optimizing the signs of each subblock and then optimizing the

signs of each division. [131] proposes using a sphere decoder [132–135] to find the

optimal phase sequence for PTS. In [136], suboptimal solutions are found by using a

trellis search.

In [137, 138], the IFFT algorithm (used for converting the OFDM block to the

time domain) is modified such that the original OFDM block is first processed by

the IFFT algorithm for k stages (the complete N -point IFFT algorithm has log2N

stages) to obtain a intermediate sequence. Different phase sequences are applied to

the intermediate sequence and then converted to the time domain by completing the

last n − k stages. Because the last n − k stages involve only small-sized IFFTs, the

total execution time is then reduced. By exploiting the structure of IFFT, a set of

specially designed phase sequences can be constructed such that, after calculating

the PAR of a “base” phase sequence, the PAR of the other phase sequences can be

calculated from this “base” sequence by using additions only [139–141].

A threshold may be used to reduce the execution time. That is, we search the

whole solution space until a phase sequence leading to a PAR lower than a threshold

is found. The average execution time is low. However, the latency varies because,

with a small occurrence probability, some OFDM blocks may need to test a large

number of phase sequences to reach the threshold. Such a latency problem can be

alleviated by using an input buffer and an output buffer [142].

An alternative to the PTS technique is based on the quantization of the continu-

5If the IFFT of a subblock Xk has been obtained, the IFFT of these operations can be readily
obtained without any arithmetic operation.
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ously valued (sub)optimal solution. Rewrite (3.24) as

x =











A1,1 A1,2 · · · A1,M

A2,1 A2,2 · · · A2,M

...
...

...

AJN,1 AJN,2 · · · AJN,M











︸ ︷︷ ︸

A











s1

s2

...

sM











︸ ︷︷ ︸

s

, (3.25)

where [A1,m, A2,m, · · · , AJN,m]T is the IFFT of Xm. For each row of A, an optimal

s can be found either by sorting the elements in this row of A according to the

decreasing order of their magnitudes and letting sk alternatively be the phase and

negative phase of the corresponding An,m [143], or by projecting a predefined vector

to the null space of this row of A [144]. Then, the optimal continuous valued s is

quantized to discrete values. Eventually, JN candidates of s are found, and the one

leading to the lowest PAR is selected.

3.3.4.2 The Side Information Issue

Side information may be embedded in the OFDM block for transmission, or may be

eliminated at the cost of lowered throughput or coding gain. Side information must

be embedded in the OFDM block before PAR optimization because, otherwise, peak

regrowth may occur [145]. [146] proposes using a marking algorithm to embed side

information for PTS. For every possible sign sequence, this algorithm rotates every

other data symbol in the subblocks having negative signs by π/4. A sign sequence

with the lowest PAR is then searched. This method does not lead to any throughput

loss. However, if a high-order constellation is used, this method requires a large

computational cost for decoding, but the decoding results may not be reliable [147].

In [28], side information is inserted at the beginning and the middle of the OFDM

block if SLM or interleaving (discussed later) is used, or is inserted into the first

subblock of the next OFDM block if PTS is used.

[148] proposes an SLM scheme without transmitting side information for coded

OFDM. This scheme encodes data symbols by using a (n, k) non-binary code. Only

the parity-check symbols are allow to change signs by using one of the K predefined

sign sequences. The receiver also knows the K sign sequences. At the receiver, a
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new set of parity-check symbols are constructed by encoding the received k data

symbols, and then compared with the received parity-check symbols to estimate the

sign sequence. This estimated sequence is then compared to the K sign sequences to

find the one used at the transmitter. This scheme has no throughput loss due to side

information, but the coding gain is lowered.

[122] shows that transmitting side information is not necessary if the Hamming

distance of the phase sequences used in PTS or SLM is large, and the phase-adjusted

symbols do not fall on any modulation constellation points. By using a simplified

maximum likelihood (ML) decoder at the receiver, data symbols are recovered with

a slightly increased BER.

When a low PAR is required, the amount of side information is large, and finding a

set of phase sequences to satisfy the condition in [122] might be difficult. In this case,

one may modify the modulation constellation to eliminate side information. In [149],

we propose an adaptive mapping scheme to map the modulation constellation QM to

Q2M . We will discuss this scheme in Chapter 5. In [150,151], hexagonal constellations

are used to avoid side information. Fig. 3.8 illustrates an example of the 91-point

hexagonal (91-Hex) constellation. The 64 points marked by ◦ and △ are used to

carry six information bits. Thus, the 91-Hex constellation has the same throughput

and the same minimum Euclidian distance as the square 64QAM constellation. Its

average symbol energy is 10.36d2, where d is the minimum Euclidian distance, which

is slightly smaller than that of the square 64QAM (10.50d2).

The signs of 27 outer points △ can be modified (between △ and ×) to minimize

the PAR. Therefore, no side information is required at the receiver. However, on

average, only N̄s = 27 subcarriers are allowed to change for PAR reduction, and the

average search space is reduced to S = (1 + N̄s

N
)N .

3.3.4.3 Amplitude/Phase-Adjustment Techniques

The PAR of OFDM signals can be reduced by modifying the amplitude and phase of

the data symbols. The tone injection technique [18] expands the constellation. For

example, Fig. 3.9 shows the extension of 16QAM, where a point A1 of the original

16QAM (the shaded area) can be mapped to A1, A2, A3 or A4. A search in a discrete

solution space is then required to find the optimum mapping. To simplify the search,
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Figure 3.8: The 91-point hexagonal constellation.

usually only the points within the dashed square are used, and each 16QAM symbol

has two mapping choices. No side information is required at the receiver. However,

the average power is slightly increased.
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Figure 3.9: Tone Injection.
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Trellis shaping, which is ordinarily used for reducing the average power at the same

bit rate [152], can also be used to reduce the PAR [153–156]. This technique uses

the same constellation expansion as tone injection. However, by using a convolutional

code, this technique gives rise to higher throughput than tone injection. For example,

trellis shaping encodes each five bits to a point in Fig. 3.9. Similar to tone injection,

the trellis shaping technique first maps four bits to a point, say A1, in the shaded area.

The other bit s is extended to a 2-bit inverse syndrome of a rate-1/2 convolutional

codeword z = s(H−1)T , where H is the generator matrix of the convolutional code,

and (·)T represents the matrix transpose. By using the Viterbi decoder, a codeword y

is generated such that y + z selects the one among A1, ..., A4 that leads to the lowest

PAR.

3.3.4.4 Scrambling and interleaving

Data permutation can also be used to randomly generate K independent candidates

for PAR reduction [157–160]. The permutation can be performed either bit-wise or

symbol-wise. In [161], a selective scrambling approach is proposed where 4 scramblers

are used for picking up the candidate with the lowest PAR, and 2 bits (00,01,10, or 11)

are concatenated with information bits to indicate which scrambler is used. By using

a convolutional encoder [162] or a shift-register with a feedback branch [163], side

information can be embedded into the scrambled vector as the scrambler’s initial state.

Similar to the method proposed in [163], a guided scrambling method is proposed

in [164] for SLM and PTS, where the OFDM block (or subblocks if PTS is used) is

first augmented by different pattern labels (binary vectors), and then divided by the

scrambling polynomial. Side information (i.e., the label of the selected pattern) is

then embedded in the scrambled vector.

Usually, L pilot tones are inserted in each OFDM block to acquire the channel

state information. As long as the pilot tones are equal-power and equally spaced,

changing the position of the pilot tone set does not affect channel estimation [165].

Thus, one may reduce the PAR of an OFDM block by shifting the pilot tone set to

the optimal position [166]. Because the average power of the pilot tones is larger than

that of the data tones, the former can be easily separated from the latter without

side information at the receiver. PAR can also be reduced by setting some carefully-
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selected subcarriers to zero to obtain a zero-padded PSK [9]. This approach can

also be viewed as modifying the signal constellation such that zero is included in the

constellation.

3.3.5 Coding Techniques

Coding techniques transmit only the low-PAR codewords [30, 167, 168]. Golay com-

plementary sets may be used to generate polyphase sequences with a low PAR [14].

K sequences X1, ...,XK are said to be complementary if the sum of their aperiodic

autocorrelation functions satisfies

K∑

k=1

RXk
(n) = δ(n)

K∑

k=1

RXk
(0), (3.26)

where δ(n) is the Kronecker delta function, and RXk
(n) is defined in (3.6). Golay

complementary sets become Golay complementary pairs when K = 2. We can show

that

PARXk
≤ K, k = 1, ..., K. (3.27)

The Rudin-Shapiro sequence [14] is a special case of the Golay complementary

pair, which can be generated recursively as follows:

pn+1 = pn + ejθnz2n

qn, (3.28)

qn+1 = pn − ejθnz2n

qn, (3.29)

where p0 = q0 = 1, z = ejω0t, and ejθn are PSK symbols. The PAR of pn or qn is no

larger than 2.

Golay complementary sequences can also be generated by concatenating or inter-

leaving two short complementary sequences [168]. [14] shows that most Golay com-

plementary sets are related to first-order Reed-Muller codes. Therefore, a Golay

complementary sequence can be generated by

X = [u0, u1, ..., um, c1, c2, ..., cK ]G, (3.30)

where ui ∈ {0, ...,M − 1} (i = 0, ..., m, and M is an even number) are phase indices

of M-PSK symbols, ck ∈ {0,M/2} (k = 1, ..., K, and K =
(
m
2

)
) defines the second-

order coset, G is the generator matrix of the second-order Reed-Muller code with

36



elements of 0 or 1 and the dimension of (m + K + 1) × 2m, and the addition and

multiplication operations in the matrix multiplication are defined over the modulo-

M . The corresponding M-PSK OFDM block is ejX/M .

For a given ck, the minimum Hamming distance is dmin = 2m−1, and the coding

rate is

R =
m+ 1

2m
=

log2N + 1

N
, (3.31)

where N is the length of the coded codewords. With N increasing, R goes to zero.

Many choices of ck lead to codewords with a PAR of less than 2. If all these code-

words are used, the minimum Hamming distance is dmin = 2m−2, and the increased

coding rate is bounded as

R ≤ m+ 1 +
(
m
2

)

2m
. (3.32)

However, R is close to zero when N is very large.

Reed-Muller codes can be written as a boolean function f(x1, ..., xm), where

[xm, ..., x1]
T forms a m by 2m matrix with columns, from left to right, being the

binary representation of 1, 2, ..., 2m, respectively. The second-order Reed-Muller code

contains only the terms of xi and xixj (∀i and j). [14] shows that, for any permutation

π of the symbols {1, 2, ..., m} and for any u, uk ∈ Z2h , where h is an integer,

a(x1, ..., xm) =

m∑

k=1

ukxk + 2h−1

m−1∑

k=1

xπ(k)xπ(k+1) + u, (3.33)

is a Golay complementary sequence over Z2h of length 2m. The second term de-

termines the value of ck in (3.30). This equation gives m!/2 cosets of first-order

Reed-Muller codes. Therefore, the coding rate is

R =
m+ 1 + ⌊log2(m!/2)⌋

2m
. (3.34)

[169] proves that (3.33) forms a path on a graphG(Q) with vertices of x1, x2, ...xm.

If deleting k vertices of the graph results in a path, then all codewords of the coset

Q + RMq(1, m) (q is an even number) have a PAR no larger than 2k+1. Therefore,

a tradeoff is allowed between the coding rate and the PAR. Similarly, [170] proposed

multiple shift codes, which also make a tradeoff between the coding rate and the

PAR. The main property of multiple shift codes is

RX(n) +RY(n) = 0, for 1 ≤ n ≤ N − 1 and n mod L = 0, (3.35)
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where L ∈ {1, 2, ..., N − 1}. The PAR of X or Y is then no larger than L.

Ordinary Golay complementary sequences are restricted to PSK modulation. Re-

cently, methods of constructing complementary sequences on high-order QAM con-

stellations have been proposed [171, 172]. These methods use two 4QAM on the

complex plane. By properly choosing the offsets of the two 4QAM, complementary

sequences can be constructed on 16QAM or 64QAM. For more detail, see [172] and

the references therein.

3.3.6 PAR Reduction for MIMO OFDM Systems

Interest has been growing in the application of OFDM in multiple antenna sys-

tems and the use of Space-Time Block Codes (STBCs) or Space-Frequency Block

Codes (SFBCs) to combat fading and reduce the outage probability. The Multiple-

Input Multiple-Output (MIMO) OFDM system also suffers from a high PAR. Gen-

erally, PAR-reduction techniques for conventional Single-Input Single-Output (SISO)

OFDM systems can be directly applied to MIMO OFDM systems. Some modifi-

cations exploiting the structure of MIMO systems are also proposed in the litera-

ture [173–178].

Instead of optimizing each antenna separately as in SISO OFDM, most modifica-

tions for PAR reduction in MIMO OFDM focus on optimization over all the antennas

to reduce the amount of side information and/or the computational cost (with a slight

loss of PAR-reduction performance). For example, when SLM is used, each phase-

adjustment vector is multiplied to all antennas. The phase-adjustment vector leading

to the lowest PAR on all antennas is selected [175]. The cross-antenna rotation and

inversion (CARI) method also adjusts the phase of the data symbols and swaps data

symbols between two antennas to reduce the PAR [178]. When SFBCs is used in

MIMO OFDM, CARI must be modified such that the SFBCs code structure is not

violated [173].
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Chapter 4

PAR Reduction Using
Clipping-based Techniques

In this chapter, we analyze the clipping noise under the tone-reservation constraints

and propose two clipping-based algorithms for peak reduction in OFDM systems [104].

To facilitate our analysis, we use the zero-inserting OFDM system where the carrier

frequency is in the middle of the OFDM frequency band. The time-domain OFDM

symbol x(t) and its discrete-time samples xn may be written as

x(t) =
1√
N

N
2
−1
∑

k=−N
2

Xke
j2πkt/T , 0 ≤ t ≤ T, (4.1)

where N data symbols Xk form an OFDM block X = [X−N
2
, ..., XN

2
−1], and T is the

OFDM symbol period, and

xn =
1√
N

N
2
−1
∑

k=−N
2

Xke
j2π nk

JN , n = 0, ..., JN − 1 , (4.2)

where J is the oversampling factor.

4.1 Problem Formulation

The tone-reservation technique [18] reserves Nr tones for PAR reduction and uses the

remaining (N−Nr) tones for data transmission. The tone-reservation ratio R =
Nr

N
is

typically small. The simplest method to generate the peak-canceling signal is iterative

clipping and filtering [90]. In each iteration, this technique clips the OFDM signal to
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a predefined threshold A. The clipped signal is then filtered such that the clipping

noise exists on the reserved tones only. The convergence rate of this technique is slow.

Alternatively, we scale the filtered clipping noise to form the peak-canceling signal

c(t). For clipping x(t) using a soft limiter [32], the clipped OFDM signal x̃(t) becomes

x̃(t) =

{

Aejθ(t), |x(t)| > A ,

x(t), |x(t)| ≤ A ,
(4.3)

where A is the predefined threshold, and θ(t) is the phase of x(t). The clipping noise

is

f(t) = x(t) − x̃(t). (4.4)

The clipping noise f(t) consists of the segments of x(t) where |x(t)| exceeds A. Unless

A is small, f(t) is thus a series of pulses,

f(t) =

Np∑

i=1

fi(t),

where fi(t) is the i-th clipping pulse with pulse duration τi, with its amplitude max-

imum at ti, and Np is the number of clipping pulses.

The filtered clipping noise f̂(t) is obtained by passing f(t) through a filter whose

passbands are on the reserved tones. The peak-canceling signal is a scaled version of

the filtered clipping noise:

c(t) = −βf̂(t),

where β is the scaling factor to be optimized. One of our objectives is to optimize β

such that the PAR is minimized. Thus, the optimization problem is

min
β

max
0≤t≤T

∣
∣
∣x(t) − βf̂(t)

∣
∣
∣

2

. (4.5)

We will start with the analysis of clipping and filtering, and reveal the mechanism

of peak regrowth; i.e., the clipped peaks may grow and exceed A after filtering. The

analysis of the peak regrowth will facilitate the optimization of β. We will also give

an analytical explanation of the flat spectrum of the clipping noise, which has been

observed in [99] by simulation.
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4.2 Analysis of Clipping and Filtering

4.2.1 Time Domain Analysis of Clipping Noise

In our analysis, we assume that the real and imaginary parts of input data symbol

Xk are independent, identically distributed (i.i.d.) random variables with zero mean

and variance σ2. We also assume that A and N are large, T is small, and the OFDM

bandwidth W = N/T is a constant.

In DMT systems, x(t) is real. Based on the central limit theory, x(t) is a Gaussian

random process whenN is large. The clipping noise f(t) is then the consequence of the

upward level crossing of x(t) at level A and the down level crossing of x(t) at level −A.

The level crossing of a Gaussian process has been extensively studied [15,32,179–188].

The spectrum of the clipped Gaussian process is given in [189] and the BER of the

clipped DMT signal is given in [17].

In OFDM systems, x(t) is a complex signal. Let x(t) = xR(t)+ jxI(t) = r(t)ejθ(t),

where xR(t), xI(t), r(t) ≥ 0 and θ(t) are the real and imaginary parts, the magnitude

and the phase of x(t), respectively. Based on the central limit theory, xR(t) and

xI(t) are i.i.d. Gaussian random processes with zero mean and variance1 σ2, r(t) is a

Rayleigh process, θ(t) is uniformly distributed between [0, 2π), and r(t) is independent

to θ(t). The power of x(t) (i.e., r2(t)), is a χ2 process with two degrees of freedom.

The clipping noise f(t) is the consequence of the upward level crossing of r(t) at

level A, or equivalently, of r2(t) at level A2. The level crossing of a χ2 process has

been studied in [190, 191]. We will use the results from these studies to analyze the

time and frequency domain characteristics of the clipping noise f(t).

The level crossing rate (the expected number of crossings of level A per second)

can be found as [16]

λA =
σ̇√
2π

A

σ2
e−A

2/2σ2

, (4.6)

where [15]

σ̇2 = E{ẋ2
R(t)} = E{ẋ2

I(t)} =
1

2π

∫

ω2S(ω)dω,

and S(ω) is the PSD of xR(t) or xI(t). When N is large, S(ω) is (approximately)

1If Nr = RN tones are reserved, the variance of xR(t) and xI(t) is then σ2R.
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constant over a fixed frequency band [−W/2, W/2]. Then, we have

σ̇2 =
(πN)2σ2

3T 2
=
π2

3
W 2σ2. (4.7)

By substituting (4.7) into (4.6), the level crossing rate is

λA =

√
π

6

A

σ

N

T
e−A

2/2σ2

. (4.8)

With our assumption of a large A, each up-crossing of level A leads to a clipping pulse.

Therefore, the average number of clipping pulses in one OFDM signal duration can

be calculated as

N̄p = E{Np} = λAT = N

√
π

6

A

σ
e−A

2/2σ2

. (4.9)

The clipping pulse duration τ is a Rayleigh random variable with a probability density

function [190]

p(τ) =
πτ

2τ̄ 2
exp

(

−πτ
2

4τ̄ 2

)

, (4.10)

where τ̄ is the mean of τ . Because λAτ̄ = Pr[r(t) > A], τ̄ can be calculated as

τ̄ =
Pr[r(t) > A]

λA
=
σ2
√

2π

σ̇A
=

√

6

π

σ

AW
. (4.11)

Let us consider a clipping pulse fi(t) that reaches its maximum magnitude at ti

and has a time duration τi. That is, fi(t) = (r(t) −A)ejθ(t) within its pulse duration

and is zero elsewhere. Eqs. (4.10) and (4.11) imply that, most probably, τ is very

small in practical OFDM systems. Then, r(t) can be approximated as a parabolic

function by using its Taylor’s series expansion at t = ti. Let ∆ti = t − ti. Because

r(ti) > A, ṙ(ti) = 0 and r̈(ti) < 0, we have

r(t) = r(ti + ∆ti) ≈ r(ti) + ṙ(ti)∆ti +
1

2
r̈(ti)∆t

2
i

= r(ti) +
1

2
r̈(ti)∆t

2
i .

(4.12)

With this approximation, r(ti + ∆ti) is symmetric to ti. Then, r(ti − τi/2) ≈ r(ti +

τi/2) ≈ A, and

τi ≈
√

−8(r(ti) −A)

r̈(ti)
. (4.13)

Let bi = −r̈(ti). We have

r(ti + ∆t) − A ≈ −1

2
bi∆t

2
i +

1

8
biτ

2
i , −τi

2
≤ ∆ti <

τi
2
. (4.14)
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Now let us look at the phase θ(t) = θ(ti+∆ti). The phase change within −τi/2 ≤
∆ti ≤ τi/2 is generally small. The phase of fi(ti + ∆ti) is determined by all the

constituent frequency components of x(t), where x(t) is a band-limited signal. The

phase change of the k-th frequency component, from t = ti to t = ti +
τi
2

, is

∆θk = 2πk
τi
2T

, k = −N
2
,−N

2
+ 1, ...

N

2
− 1.

Substituting τi by τ̄ , we find

∆θk =

√
6πkσ

NA
, k = −N

2
,−N

2
+ 1, ...

N

2
− 1.

The largest phase change happens on k = −N
2
, and its value does not depend on N .

By letting θk = θN
2

for all k, the phase variation of fi(t) from t = ti to t = ti +
τi
2

is upper-bounded by

√
6πσ

2A
. Clearly, the upper bound is quite loose, and the actual

phase variation of fi(t) is much smaller than this bound because some negative and

positive phase changes may cancel each other. Nevertheless, because this upper bound

is small when A is large, we can approximate θ(ti + ∆ti) = arcsin

(
xI(ti + ∆ti)

r(ti + ∆ti)

)

by

its Taylor’s series expansion at t = ti:

θ(ti + ∆ti) ≈ θi + γi∆ti,

where θi = θ(ti) and

γi =
ẋI(ti)

|xR(ti)|
.

Then,

fi(t) = fi(ti + ∆ti) = (r(ti + ∆ti) −A)ejθ(tt+∆ti)

≈ (−1

2
bi∆t

2
i +

1

8
biτ

2
i )e

j(θi+γi∆ti), −τi
2
≤ ∆ti <

τi
2
.

The absolute value of the phase term γi∆ti is most probably small and can be

omitted. Appendix 4.7.B gives the conditional probability density function (pdf) and

moments of γi given ṙ(ti) = 0 and r(ti) ≥ A. Using these results, we have

E{|γi|}E{τi} =

√
2πσ

A
erfc

(
A√
2σ

)

eA
2/2σ2

, (4.15)

where

erfc (x) = 1 − erf (x) = 1 − 2√
π

∫ x

0

e−t
2

dt.
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In Appendix 4.7.D, we show that γi and τi are uncorrelated. Thus, (4.15) may provide

us some information about how small γiτi usually is. For example, E{|γi|}E{τi} ≈
0.07π when A/

√
2σ = 6 dB, and is 0.04π when A/

√
2σ = 9 dB. A rigid justification of

small |γi∆ti| requires the joint cumulative distribution function (cdf) of γiτi, which,

unfortunately, is difficult to write in the closed form. However, an upper bound for

the phase change of fi(t) can be found.

Because |fi(t)| is close to zero when |∆ti| is close to τi/2, we may look at the

phase change within the 6 dB width of fi(t), which is defined as the time duration

when |fi(t)| is no less than half of its maximum magnitude and is equal to τi/
√

2. By

using the Chebyshev inequality, we have

Pr[|γiτi/
√

2| ≥ δ] ≤ σ2
0

δ2
,

where σ2
0 is the variance of γiτi/

√
2, and δ > 0. However, by using the Cauchy-Schwarz

inequality,

σ2
0 = E{1

2
γ2
i τ

2
i } ≤ 1

2

√

E{γ4
i }E{τ 4

i }.

Denote the right-hand side of this inequality as σ2
1. It is calculated by using the

results of Appendix 4.7.B as

σ2
1 =

2
√

6σ3

A3

√

2 − E1

(
A2

2σ2

)
A2

σ2
eA2/2σ2 ,

where

E1 (x) =

∫ ∞

1

e−tx

t
dt.

Then, we have

Pr[|γiτi/
√

2| ≥ δσ1] ≤
1

δ2
.

For example, by letting δ = 3, the probability that the phase change within the 6 dB

width of fi(t) is larger than 0.12π for A/
√

2σ = 6 dB, or 0.03π for A/
√

2σ = 9 dB, is

less than or equal to 1/9. Therefore, we can omit the phase term γiτi and approximate

the clipping pulse as a constant phase parabolic function:

fi(t) = fi(ti + ∆ti) ≈ (−1

2
bi∆t

2
i +

1

8
biτ

2
i )e

jθi, −τi
2
≤ ∆ti <

τi
2
. (4.16)

44



Remark 4.1. In our approximation, we implicitly assume that fi(t) has only one local

maximum (at t = ti). In other words, r̈(ti) is always negative. Appendix 4.7.C shows

that Pr[r̈(ti) > 0|ṙ(ti) = 0, r(ti) ≥ A] → 0 when A → ∞, and in practical OFDM

systems, Pr[r̈(ti) > 0|ṙ(ti) = 0, r(ti) ≥ A] ≈ 0 unless A is very small. On the other

hand, some papers (e.g., [17]) approximate fi(t) by expanding r(t) at t = ti − τi/2,

where r(ti − τi/2) = A and ṙ(ti − τi/2) ≥ 0. Then, τi becomes

τi ≈ −2ṙ(ti − τi/2)

r̈(ti − τi/2)

with an assumption that r̈(ti − τi/2) < 0. Although such an assumptions holds for

A→ ∞, simulation results show that it is frequently violated even for A = 6 dB.

4.2.2 Frequency Domain Analysis of Clipping Noise

The frequency spectrum of the Nyquist-rate sampled discrete-time real clipping noise

is given in [17]. For the continuous-time complex clipping noise, the frequency spec-

trum of fi(t) is the Fourier transform of (4.16); i.e.,

Fi(ω) = ej(θi−ωti) biτi
ω2

(

sinc
ωτi
2

− cos
ωτi
2

)

, (4.17)

where sinc x =
sin x

x
. Fi(ω) is distributed over the whole frequency band from ω =

−∞ to ∞. Fig. 4.1 shows an example of Fi(ω), which is the Fourier transform of a

clipping pulse we arbitrarily selected from the simulation. The solid curve represents

|Fi(ω)|, and the dashed line illustrates the OFDM frequency band. We observe that

Fi(ω) contributes a large portion of the out-of-band radiation. The in-band clipping

noise is only a small portion of Fi(ω).

For multiple pulses, the PSD of the clipping noise is

Sf(ω) =
1

T
E{|F (ω)|2} =

1

T
E

{
Np∑

i=1

|Fi(ω)|2
}

+
1

T
E







Np∑

i=1

Np∑

k=1
k 6=i

Fi(ω)F ∗
k (ω)







.

Because Np is a random variable, we cannot directly exchange the order of summation
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Figure 4.1: Frequency spectrum of fi(t).

and expectation. However, by the definition,

1

T
E

{
Np∑

i=1

|Fi(ω)|2
}

=
1

T
lim
n→∞

1

n

n∑

l=1

Nc,l∑

i=1

|Fi,l(ω)|2

=
1

T
lim
n→∞

∑n
l=1Nc,l

n

∑n
l=1

∑Nc,l

i=1 |Fi,l(ω)|2
∑n

l=1Nc,l

=
N̄p

T
E{|Fi(ω)|2} = λAE{|Fi(ω)|2},

where the subscript l represents the l-th trial. Therefore,

Sf (ω) = λAE{|Fi(ω)|2} +
1

T
E

{(
Np

2

)}

E{Fi(ω)F ∗
k (ω)},

where i 6= k. Note that

Fi(ω)F ∗
k (ω) =

∫ ∞

−∞

∫ ∞

−∞
fi(t̂)f

∗
k (t̃)e

−jω(t̂−t̃)dt̂dt̃,

E{Fi(ω)F ∗
k (ω)} is determined by

E{fi(t̂)f ∗
k (t̃)} = E{(r(ti + ∆ti) − A)ejθ(ti+∆ti)(r(tk + ∆tk) − A)e−jθ(tk+∆tk)}.
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However, r(t) and θ(t) are independent. Thus, we have

E{fi(t̂)f ∗
k (t̃)} = E{(r(ti + ∆ti) −A)(r(tk + ∆tk) − A)}E{ejθ(ti+∆ti)ejθ(tk+∆tk)}.

We show in Appendix 4.7.A that, when (ti + ∆ti) and (tk + ∆tk) belong to different

clipping pulses (as is true in our case), x(ti + ∆ti) and x(tk + ∆tk) are approxi-

mately independent, and thus θ(ti + ∆ti) and θ(tk + ∆tk) are uncorrelated. Then,

E{Fi(ω)F ∗
k (ω)} = 0 and

Sf(ω) = λAE{|Fi(ω)|2}. (4.18)

The out-of-band radiation will be eliminated by filtering. Therefore, we are in-

terested in the in-band clipping noise. When A is large, generally
ωτi
2

is small for

|ω| ≤ πN

T
. Thus, we may approximate Fi(ω) as

Fi(ω) ≈ ej(θi−ωti) biτ
3
i

12
(4.19)

by using [17] sinc x − cosx ≈ x2

3
. Because Fi(ω) does not depend on the frequency

ω, Sf(ω) is (approximately) constant over the OFDM band.

We may write bi and τi as a function of xR(ti), xI(ti), ẋI(ti), ẍR(ti), and ẍI(ti).

The joint pdf of these random variables can be easily found. However, a closed-form

expression of E{b2i τ 6
i } cannot be obtained.

4.2.3 Clipping Noise Power Spectral Density

In this subsection, we calculate the in-band clipping noise PSD by using a result

in [191]. Define y(t) =
r2(t)

σ2
, λ =

σ̇2

σ2
and u =

A2

σ2
. [191, Theorem 2.2] shows that,

if y(t) up-crosses the level u at t = 0, with probability 1, y(t) around t = 0 can be

written as

y(t) = −λut2 + 2z
√
λut+ u, when u→ ∞, (4.20)

where z is a Rayleigh random variable with the pdf

p(z) = ze−z
2/2, z > 0.

Also, the time duration τ between this up-crossing and the successive down-crossing

is [191, Theorem 3.1]

τ =
2z√
λu
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with probability 1 when u → ∞. Because, most probably, τ is very small for large

A/σ in practical OFDM systems, we may use (4.20) to approximate the whole clipping

pulse. Expanding r(t) = σ
√

y(t) by using its Taylor’s series at t = 0, we have

r(t) ≈ σ
√
u+

√
λσzt− 1

2
λσ

(√
u+

z2

√
u

)

t2

≈ σ
√
u+

√
λσzt− 1

2
λσ

√
ut2

= − σ̇
2A

2σ2

(

t− τ

2

)2

+
Aσ̇2τ 2

8σ2
+ A, 0 ≤ t ≤ τ.

(4.21)

The second step is obtained because
z2

√
u
≪ √

u when u→ ∞.

Remark 4.2. In the proof of [191, Theorem 2.2], y(t/
√
u) is first approximated by

approximating R(t) and its first derivative Ṙ(t), where R(t) is the correlation function

of xR(t) or xI(t), as polynomials of t with orders no larger than 2. Then, (4.20) is

obtained for u → ∞ by letting all terms that contain u−v, where v > 0, be zero.

In this paper, it is easy to check that the same approximation of r(t) as in (4.21)

is also obtained if y(t/
√
u) is approximated by approximating R(t) and Ṙ(t) with

polynomials of orders higher than 2.

Now, we can approximate a clipping pulse fk(t) that occurs in tk ≤ t ≤ tk + τk as

fk(t) = |r(tk + ∆tk) − A|ej(θ(tk+∆tk)

≈
(

− σ̇
2A

2σ2

(

∆tk −
τk
2

)2

+
Aσ̇2τ 2

k

8σ2

)

ej(θk+ηk∆tk), 0 ≤ ∆tk ≤ τ,

where θk = θ(tk), and

ηk =
ẋI(tk)r(tk) − xI(tk)ṙ(tk)

r(tk)|xR(tk)|

=
ẋI(tk)A− xI(tk)ṙ(tk)

A|xR(tk)|
.

Appendix 4.7.E shows that, when A is large, ηk has the same distribution as the γi

used in the previous subsection. Thus, ηk∆tk is most probably small and can be

ignored. Following the same procedure of the previous subsection, we have

Fk(ω) = ej(θk−ω(tk+τk/2))
σ̇2Aτi

σ2(ω − ηk)2

(

sinc
(ω − ηk)τk

2
− cos

(ω − ηk)τi
2

)

≈ Aσ̇2τ 3
k

12σ2
ej(θk−ω(tk+τk/2)).
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Then, the in-band clipping noise PSD is

Sf(ω) = λAE{|Fk(ω)|2}

≈ A3σ̇5

144
√

2πσ6
e−A

2/2σ2

E{τ 6
k}

=
32
√

2σ6

3
√
πσ̇A3

e−A
2/2σ2

=
32
√

2σ2

π
√

3π(A/σ)3W
e−A

2/2σ2

=
16
√

2

π
√

3π(A/σ)3
e−A

2/2σ2

Sx,

(4.22)

where Sx =
2σ2

W
is the PSD of the OFDM signal x(t). For example, when A/

√
2σ =

6 dB, the PSD of in-band clipping noise is −27 dB lower than that of the input OFDM

signal.

4.2.4 Filtered Clipping Noise

The in-band clipping noise falls on both the reserved tones and the data tones. While

the former must be kept for PAR reduction, the latter, as well as the out-of-band

radiation, has to be filtered such that the clipping noise will not interfere with the

data symbols or the communications on the neighboring frequency bands. In this sub-

section, we first consider reserving Nr consecutive tones around the center frequency;

i.e., R = {−Nr

2
,−Nr

2
+ 1, ..., Nr

2
− 1}. Other distributions of the reserved tones will

be discussed later. To filter the clipping noise, we use an ideal lowpass filter with the

passband [−ωc, ωc] where

ωc = 2πfc = 2π
Nr

2T
= πRW.

The filtered clipping noise is then given by

f̂(t) =
1

2π

∫ ωc

−ωc

Np∑

i=1

Fi(ω)ejωtdω. (4.23)

By substituting (4.19) into (4.23), the filtered clipping noise may be expressed as

f̂(t) = f̂(ti + ∆ti) =

Np∑

i=1

f̂i(t) =

Np∑

i=1

ejθi
biτ

3
i fc
6

sinc 2πfc∆ti. (4.24)
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Without loss of generality, we consider the clipping pulse fi(t) and assume it

occurs at ti = 0 and has the phase θi = 0. Its filtered version is

f̂i(t) =
biτ

3
i fc
6

sinc 2πfct. (4.25)

Fig. 4.2 shows fi(t) and f̂i(t). Several observations can be made by comparing fi(t)

with f̂i(t):

Time

M
a
g
n
it

u
d
e

fi(t)

f̂i(t)

Figure 4.2: The clipping pulse fi(t) and its filtered version f̂i(t).

1. fi(t) and f̂i(t) reach their peaks at the same time instant t = 0.

2. fi(t) and f̂i(t) have the same direction within the pulse duration of fi(t).

3. The mainlobe duration of f̂i(t) is much wider than that of fi(t). The mainlobe

duration of f̂i(t) can be calculated as

τ̂ =
2T

Nr
.

By using (4.11), the ratio of the average clipping pulse duration τ̄ over τ̂ is

τ̄

τ̂
=

√

3

2π

Nr

N(A
σ
)
≪ 1
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when A/σ is large.

4. The sidelobe peaks of
∣
∣
∣f̂i(t)

∣
∣
∣ decay with the rate of 1/t. Specifically, the sidelobe

peaks of
∣
∣
∣f̂i(t)

∣
∣
∣ are

∣
∣
∣f̂i(Tk)

∣
∣
∣ ≈ biτ

3
i fc

3(2k + 1)π
=

2

(2k + 1)π

∣
∣
∣f̂i(t)

∣
∣
∣
max

, k = 1, 2, 3, ..., (4.26)

with Tk representing the sidelobe peak occurrence time in accordance with

Tk ≈
(2k + 1)T

2Nr
=

2k + 1

2RW
. (4.27)

For example, the peak of the first sidelobe is only 21.22% of that of the mainlobe.

5. The maximum of f̂i(t) is much less than that of fi(t). In fact,

∣
∣
∣f̂i(t)

∣
∣
∣
max

= ατi |fi(t)|max ,

where α is defined as

α =
4

3
fc =

2RW

3
, (4.28)

and the expectation of ατi is

E{ατi} = ατ̄ = R
2
√

2√
3π

σ

A
≪ 1

when A/σ is large. For example, ατ̄ ≈ 1.63% when A = 6 dB ≈ 1.9953, σ2 =
1

2
,

and R = 5%.

Point 5 explains why the peak regrows after filtering. Recall that the clipped

signal is x̃(t) = x(t) − f(t), and that after filtering it becomes x̂(t) = x(t) − f̂(t).

While f(t) is chosen such that |x̃(ti)| = A at the peaks of x(t)|t=ti , the clipped and

filtered signal x̂(ti) > A because
∣
∣
∣f̂i(t)

∣
∣
∣
max

< |fi(t)|max.

4.2.5 Iterative Clipping and Filtering: Single Clipping Pulse

To suppress the peak regrowth, clipping and filtering may be repeated until a suitable

criterion is met. We first temporarily assume that the clipping noise at the first iter-

ation f (1)(t) consists of only one dominant clipping pulse f
(1)
i (t) (with pulse duration
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τ
(1)
i ) that is much larger than other clipping pulses; i.e.,

f (1)(t) =
∑

k

f
(1)
k (t),

∣
∣
∣f

(1)
i (t)

∣
∣
∣≫

∣
∣
∣f

(1)
k (t)

∣
∣
∣ , for all k 6= i.

In this case, the clipped and filtered OFDM signal after the first iteration x̂(1)(t) ≈
x(t)− f̂

(1)
i (t), where f̂

(1)
i (t) is the filtered version of f

(1)
i (t), can be divided into three

parts:

1) |t| ≤ τ
(1)
i /2.

Within this range, f̂
(1)
i (t), f

(1)
i (t) and x(t) have the same phase and

∣
∣
∣f̂

(1)
i (t)

∣
∣
∣ <

∣
∣
∣f

(1)
i (t)

∣
∣
∣. Therefore,

∣
∣x̂(1)(t)

∣
∣ ≈

∣
∣
∣x(t) − f̂

(1)
i (t)

∣
∣
∣ >

∣
∣
∣x(t) − f

(1)
i (t)

∣
∣
∣ = A.

In other words, after passing x̂(1)(t) through the SL, a clipping pulse, denoted as

f
(2)
i (t), occurs in the second clipping iteration at the same position as f

(1)
i (t). By

applying Taylor’s series expansion to (4.25), and because
ωcτ

(1)
i

2
≪ 1, we can approx-

imate the filtered clipping pulse f̂
(1)
i (t) as a constant

f̂
(1)
i (t) ≈ bi(τ

(1)
i )3fc
6

=
∣
∣
∣f̂

(1)
i (t)

∣
∣
∣
max

, |t| ≤ τ
(1)
i

2
.

Then, the clipping pulse at the second iteration f
(2)
i (t) can be written as

f
(2)
i (t) = f

(1)
i (t) − f̂

(1)
i (t) ≈ −1

2
bit

2 +
1

8
bi(τ

(1)
i )2 − bi(τ

(1)
i )3fc
6

, (4.29)

which is also a parabolic arc with reduced magnitude. By solving f
(2)
i (t) = 0, the

time duration of f
(2)
i (t) can be found as

τ
(2)
i = τ

(1)
i

√

1 − 4

3
τ

(1)
i fc = τ

(1)
i

√

1 − α(1)τ
(1)
i ,

where α(1) is the α defined in (4.28).

2)
τ

(1)
i

2
< |t| < T2, where T2 is given in (4.27).

In this range, |x(t)| < A because only one clipping pulse exists. However, de-

pending on the phase of f̂
(1)
i (t),

∣
∣x̂(1)(t)

∣
∣ may be greater than A. In other words, new

clipping pulses may be generated in the second clipping iteration. However, because
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∣
∣
∣f̂

(1)
i (t)

∣
∣
∣
max

≪
∣
∣
∣f

(1)
i (t)

∣
∣
∣
max

, these new clipping pulses are very small compared to the

clipping pulse f
(2)
i (t), and their effects can be ignored.

3) |t| > T2.

Because the peaks of f̂
(1)
i (t) decay with the rate of 1/t, we can see that, in this

range, x̂(1)(t) ≈ x(t). Therefore, no clipping pulses exist at |t| > T2 in the second

clipping iteration.

The successive clipping and filtering iterations repeat this procedure. Therefore,

we conclude:

For the case of only one dominant clipping pulse, in the l-th (l = 2, 3, ...) clipping

and filtering iteration, f
(l−1)
i (t) shrinks to f

(l)
i (t), and some new pulses possibly ap-

pear. Here, f
(l−1)
i (t) and f

(l)
i (t) are the dominant clipping pulses at the (l−1)-th and

l-th iterations, respectively. Until f
(l)
i (t) is comparable to the new pulses, the latter

can be omitted, and the former can be written as

f
(l)
i (t) = −1

2
bit

2 +
1

8
bi(τ

(l)
i )2, i = 1, 2, 3, ..., (4.30)

where

f
(1)
i (t) = fi(t),

τ
(1)
i = τi,

and

τ
(l)
i = τ

(l−1)
i

√

1 − ατ
(l−1)
i , i = 2, 3, 4, ..., (4.31)

and α is defined in (4.28). Moreover, the filtered clipping pulse in the l-th iteration

is

f̂
(l)
i (t) =

bi(τ
(l)
i )3fc
6

sinc 2πfct. (4.32)

Thus, the filtered clipping noise generated in the l-th iteration is proportional to

that generated in the first iteration. Define β as

β ,
total filtered clipping noise after K iterations

filtered clipping noise generated in the first iteration
.

If only one dominant clipping pulse exists,

β =

∑K
l=1 f̂

(l)
i (t)

f̂
(1)
i (t)

=

∑K−1
l=1 (τ

(l)
i )3

(τ
(1)
i )3

. (4.33)
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Finding β̄, the mean of β, is difficult. However, an estimation of β̄ can be obtained

when K is not large. When A is large, ατ
(l)
i ≪ 1. Then,

√

1 − ατ
(l)
i can be treated

as a constant. β̄ can then be estimated by replacing τ
(1)
i with its mean τ̄ . Thus,

β̄ ≈ 1 − (1 − ατ̄ )3K/2

1 − (1 − ατ̄)3/2
. (4.34)

We will use β̄ in the constant-scaling algorithm proposed in the next section.

Remark 4.3. Because πτiW is most probably very small when A is large, it is easy to

show that (4.33) and (4.34) also apply to other reserved tone sets.

4.2.6 Iterative Clipping and Filtering: Multiple Pulses

In OFDM systems, the (unfiltered) clipping noise is usually a series of parabolic pulses.

In each clipping and filtering iteration, the filtered clipping noise at ti − τ
(l)
i /2 ≤

t ≤ t + τ
(l)
i /2 is the mainlobe of f̂

(l)
i (t) plus the mainlobes (if they are close to

t = ti) or the sidelobes (if they are far from t = ti) of all the other filtered pulses at

ti − τ
(l)
i /2 ≤ t ≤ t+ τ

(l)
i /2.

If a clipping pulse contributes an impact stronger than its k-th sidelobe, where k is

properly chosen such that the k-th sidelobe is relatively large and cannot be omitted,

the clipping pulse must occur within the time interval ti−Tk ≤ t ≤ ti+Tk. Eq. (4.57)

in Appendix 4.7.A gives the probability that two or more clipping pulses occur within

a time interval. Substituting (4.27) into (4.57), we can see that such a probability is

independent of N . In other words, with a fixed probability, the number of clipping

pulses that occur within the time interval ti − Tk ≤ t ≤ ti + Tk is independent of N .

However, while N → ∞, the average number of clipping pulses also goes to ∞ (see

(4.9)). Therefore, the effect of most other filtered pulses at ti− τ
(l)
i /2 ≤ t ≤ t+ τ

(l)
i /2

can be omitted. We need to consider only the pulses close to the mainlobe of f̂
(l)
i (t).

After the l-th iteration, the peak-reduced OFDM signal at t = ti becomes

x̂(l+1)(ti) = (A+ |f (l)
i (ti)| − |f̂ (l)

i (ti)|)ejθ
(l)(ti) −

∑

m6=i
f̂ (l)
m (ti),

where θ(l)(ti) is the phase of x̂(l)(ti). When A is very large, say A ≥ 9 dB, all f
(l)
m (t)

are far apart from f
(l)
i (t), and |f̂ (l)

m (ti)| ≈ 0 for all m 6= i. In this case, our conclusions
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in the previous section hold. It is easy to show that, with l → ∞, the clipping noise

at the l-th iteration f (l)(t) → 0, and the peak of x(t) at t = ti is reduced to A.

On the other hand, for moderate A, some of f̂
(l)
m (ti) may be relatively large and

cannot be omitted. In this case, we decompose f̂
(l)
m (ti) as

f̂ (l)
m (ti) = (f̂

(l)
m,I(ti) + jf̂

(l)
m,Q(ti))e

jθ(l)(ti),

where f̂
(l)
m,I(ti) and f̂

(l)
m,Q(ti) are the inphase and quadrature components along the

direction of x̂(l)(ti), respectively. By noting that, most probably, A is much larger

than any clipping pulse, f̂
(l)
m,Q(ti) can be omitted when calculating x̂(l+1)(ti). Then, in

the (l + 1)-th iteration, the clipping pulse at t = ti is

f
(l+1)
i (ti) ≈

(

|f (l)
i (ti)| − |f̂ (l)

i (ti)| −
∑

m6=i
f̂

(l)
m,I(ti)

)

ejθ
(l)(ti).

Depending on the sign of
∑

m6=i f̂
(l)
m,I(ti), the peak reduction may be strengthened

or weakened. Moreover, |f (l+1)
i (ti)| > |f (l)

i (ti)|; i.e., the peak is increased, when
∑

m6=i f̂
(l)
m,I(ti) < −|f̂ (l)

i (ti)|.

Remark 4.4. In the multiple clipping pulses case, the validity of (4.33) and (4.34)

depends on A. That is, (4.33) and (4.34) are valid when A is large. Otherwise,

the estimation error of these two equations is relatively large. However, the above

analysis is still valid, and the total filtered clipping noise is still proportional to that

generated in the first iteration until A is so small that the width of the mainlobe of

Fi(ω) is comparable to or smaller than W .

Remark 4.5. A wider mainlobe of a filtered clipping pulse implies that its magnitude

will be interfered with by more neighboring clipping pulses. This interference, in turn,

implies a worse PAR-reduction performance. Therefore, the filtered clipping pulse

should be made close to an impulse function; i.e., both the width of the mainlobe and

the magnitudes of the sidelobes must be minimized.

We will now check at what level of A (4.33) and (4.34) are valid. Such a level of

A, denoted as Athres, depends on the choice of the reserved-tone set. [18] proves that

a close-to-optimum reserved-tone set can be found from a small number of randomly

selected reserved-tone sets. This proof implies that consecutive reserved tones usually
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lead to non-optimal solutions. Therefore, we may use the consecutive reserved tones

to find Athres. In other words, if (4.33) and (4.34) are valid for consecutive reserved

tones when A ≥ Athres, they are also valid for most other reserved-tone sets when

A ≥ Athres.

Eq. (4.27) indicates that the width of the mainlobe and sidelobes of the filtered

clipping pulse f̂i(t) is determined only by the tone reservation ratio R and the OFDM

bandwidth W . Therefore, we may use a Tk as a reference such that the tail of f̂i(t)

beyond Tk is small and can be ignored. From (4.26), the peak of the 4th sidelobe

is only 7% of that of the mainlobe. Therefore, if any pair of pulses are apart by

at least T4 seconds, (4.33) and (4.34) are valid. By substituting T4 into (4.59), the

probability that more than one clipping pulse occur with a time duration of T4, given

that a clipping pulse has already occurred in this time interval, is

Pr(1) = 1 − e−T4λA.

Fig. 4.3 illustrates the relationship of Pr(1) and A for R = 0.05, 0.1 and 0.2, where

σ = 1/
√

2 and T4 are used. In this figure, we also include R = 1 as a reference. We

refer to R = 1 as the iterative clipping and filtering technique [12] where no tone is

reserved and clipping noise is distributed over the whole OFDM band.

We see that, for R = 0.05, 0.1 and 0.2, (4.33) and (4.34) can be used with a small

approximation error when A ≥ 9 dB, 8.5 dB and 8 dB, respectively. However, if no

tone is reserved and the clipping noise is distributed over the whole OFDM band

(R = 1), the two equations are valid when A ≥ 6.5 dB.

Remark 4.6. Here, we choose a strict criterion to find Athres. A less strict criterion

can be obtained by selecting a larger sidelobe (e.g., T1) as the reference, by using a

Pr(m) where m > 1, and/or allowing a larger Pr(m) in determining Athres.

4.2.7 Effect of Reserved-Tone Position on PAR Reduction

Let us consider using an ideal bandpass filter with passbands on only the reserved

tones R to filter the i-th clipping pulse fi(t).
2 We assume that fi(t) occurs at ti = 0

2Although R is a discrete set, here, for simplicity, we slightly misuse R to represent the reserved
tones in the continuous frequency domain. In this case, each item i ∈ R represents a frequency band
with width 1

T
and the central frequency i

T
.
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Figure 4.3: The probability that more than one clipping pulses occur with a time
duration of T4, given a clipping pulse has already occurred in this time interval,
where σ = 1/

√
2.

and has a phase θi = 0. The filtered clipping pulse is

f̂i(t) =
1

2π

∫

R

bi(τi)
3

12
ejωtdω =

bi(τi)
3

12T
h(t), (4.35)

where

h(t) = sinc
πt

T

∑

k∈R
ej2πk

t
T (4.36)

is the impulse response of the bandpass filter, and3 −T ≤ t ≤ T because the time

duration of an OFDM symbol is T . When R = {−Nr

2
,−Nr

2
+ 1, ..., Nr

2
− 1}, (4.35)

reduces to (4.25).

To make f̂i(t) close to an impulse function, we need to consider only the magnitude

response |h(t)|. Some conclusions can be obtained from (4.36):

1) The mainlobe of h(t) is of the maximum width when Nr = 1, implying the

worst PAR-reduction capability.

3The actual range of t is −tk ≤ t ≤ T − tk. Considering 0 ≤ tk ≤ T , we have −T ≤ t ≤ T .
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2) For consecutive reserved tones, the mainlobe of h(t) is of the minimum width

when Nr = N , implying the best PAR-reduction capability.

If we choose another set of reserved tones R′, which is a shift of R; i.e., R′ = R+ns,

where R is of any kind, and ns is an integer, then the impulse response of R′ is

|h′(t)| =

∣
∣
∣
∣
∣
sinc

πt

T

∑

k∈R′

ej2πk
t
T

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
ej2πns

t
T sinc

πt

T

∑

k∈R
ej2πk

t
T

∣
∣
∣
∣
∣

= |h(t)|.
(4.37)

That is, h′(t) has the same magnitude response as h(t).

3) Therefore, shifting R cannot change the PAR-reduction capability.

In (4.36), the term sinc
πt

T
renders the envelope of h(t), and the width of the

mainlobe of h(t) is determined by

g(t) =
∑

k∈R
ej2πk

t
T .

Let b = [b−N
2
, b−N

2
+1, ..., bN

2
−1] be the indicator of reserved tones; i.e.,

bk =

{

1, k ∈ R,
0, otherwise.

Then,

g(t) =

N
2
−1
∑

k=−N
2

bke
j2πk t

T .

Because the phase of h(t) is irrelevant to our consideration, we can focus on |g(t)|2,
but

|g(t)|2 =

N−1∑

n=−N+1

Ψ(n)ej2πnt/T ,

where

Ψ(n) =







∑N
2
−1−n

k=−N
2

bkbk+n, n ≥ 0,
∑N

2
−1

k=−N
2
−n bkbk+n, n < 0

is the aperiodic autocorrelation function of b. The width of Ψ(n) is inversely propor-

tional to that of |g(t)|2.
4) Then, for fixed Nr, the consecutive reserved-tone positioning leads to a small

PAR reduction because the consecutive reserved-tone positioning has the narrowest
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width of Ψ(n) compared to that of other positioning schemes. In other words, a ran-

domly chosen reserved-tone set usually leads to a better PAR-reduction performance

than the consecutive reserved-tone set [18].

Minimizing only the mainlobe width of h(t) does not maximize the PAR-reduction

performance. In fact, the minimum width of h(t) can be obtained by maximizing the

width of Ψ(n); i.e., putting reserved tones at the both ends of the OFDM frequency

band. In other words,

R = {−N
2
,−N

2
+ 1, ...,−N

2
+
Nr

2
− 1} ∪ {N

2
− Nr

2
,
N

2
− Nr

2
+ 1, ...

N

2
− 1}.4 (4.38)

Fig. 4.4 (a) illustrates this positioning scheme. The corresponding h(t) is shown in

Fig. 4.4 (b) as the solid curve. As a reference, a randomly chosen positioning scheme

is also shown in Fig. 4.4 (b) as the dashed curve. Although the minimum-width po-

sitioning scheme of (4.38) leads to the minimum width of h(t), it also leads to signifi-

cantly larger sidelobes than the randomly chosen positioning scheme. Therefore, the

minimum-width positioning scheme cannot maximize PAR reduction performance.

To find the optimal positioning scheme, we may optimize R such that the maxi-

mum peak in |t| > τ̄

2
is minimized; i.e.,

min
R

max
T≥|t|> τ̄

2

|h(t)|, (4.39)

which is equivalent to

min
b

max
T≥|t|> τ̄

2

∣
∣
∣
∣
g(t)sinc

πt

T

∣
∣
∣
∣
,

subject to:

N
2
−1
∑

k=−N
2

bk = Nr.

(4.40)

sinc
πt

T
is only a weighting factor, and g(t) is periodic with a period of T . Moreover,

|g(t)| = |g(−t)| and

∣
∣
∣
∣
sinc

πt

T

∣
∣
∣
∣

=

∣
∣
∣
∣
sinc (−πt

T
)

∣
∣
∣
∣

because bi are integers. Then, (4.40) is

4(4.38) is valid only for the zero-inserting scheme. For the zero-padding scheme, which pads
JN − N zeros at the end of an OFDM block, the R in (4.38) will be R = {0, 1, ..., Nr

2 − 1} ∪ {N −
Nr

2 + 1, N − Nr

2 + 2, ..., N}.
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Figure 4.4: Tone positions and the corresponding impulse response h(t).

equivalent to

min
b

max
T
2
≥|t|> τ̄

2

∣
∣
∣
∣
g(t)sinc

πt

T

∣
∣
∣
∣
,

subject to:

N
2
−1
∑

k=−N
2

bk = Nr.

(4.41)

Sampling the objective function with the sampling frequency JN
T

, where J is the

oversampling factor, (4.41) becomes

min
b

max
nτ≤n≤JN

2
−1

∣
∣
∣g(n)sinc

πn

JN

∣
∣
∣ ,

subject to:

N
2
−1
∑

k=−N
2

bk = Nr,

(4.42)

where

g(n) =

N
2
−1
∑

k=−N
2

bke
j2π kn

JN , n = 0, 1, ...,
JN

2
− 1,
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and

nτ =

⌈

J

√

6

π

σ

A

⌉

,

with ⌈x⌉ representing the minimum integer that is greater than x. If the factor

sinc
πn

JN
is omitted, and we let nτ = J , (4.42) reduces to the optimization of R

proposed in [18].

The search space of (4.42) is
(
N
Nr

)
, which is prohibitively large when N and Nr are

large. Alternatively, we can use the random set optimization [18] to find a suboptimal

solution R∗, i.e., to select the best from M randomly generated reserved-tone sets

R1, ...,RM .

4.3 New Tone-Reservation Algorithms

Based on our analysis of clipping noise, we propose two new tone-reservation algo-

rithms for PAR reduction. The main idea is that because the clipping noise in each

iteration is similar, the total filtered clipping noise can be approximated by scaling

the filtered clipping noise generated in the first iteration.

4.3.1 Constant Scaling Tone Reservation Algorithm

If a relatively high PAR is tolerable, but fast execution time is a must, we propose

a constant-scaling tone-reservation algorithm. This algorithm scales the filtered clip-

ping noise by a constant factor β̄, and subtracts the scaled clipping noise from the

original OFDM symbol. This algorithm can be stated as follows:

Algorithm 4.1 (Constant-Scaling).

Initialization:

This stage needs to run only once.

1. Choose a relatively high clipping threshold A; randomly choose the reserved-

tone set R, or set it up by using random set optimization.

2. Choose a K, and calculate β̄ by using (4.34).

Runtime:
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1. Distribute (N − Nr) input symbols to data tones Rc, and calculate the corre-

sponding time domain signal xn by using (4.2). Oversampling may be required.

2. If PAR > A, go to step 3; otherwise, transmit xn and terminate.

3. Clip xn to the threshold A to find the clipping noise fn by using the discrete-time

version of (4.4).

4. Filter fn subject to tone-reservation and other constraints, and obtain the peak-

canceling signal cn. The filtering can be done by using a pair of Discrete Fourier

Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) as follows:

4-a. Convert fn to the frequency domain by using a DFT to obtain Fk =

DFT{f}, where f = [f0, ..., fJN−1].

4-b. Keep the first and last
N

2
items of Fk to obtain the in-band distortion F̃;

i.e.,

F̃ = [F̃0, F̃1, ..., F̃N−1] = [F0, F1, ..., FN
2
−1, FJN−N

2
, FJN−N

2
+1, ..., FJN−1].

4-c. The filtered clipping noise is F̂ = [F̂0, F̂1, ..., F̂N−1], where

F̂k =

{

F̃k, k ∈ R,
0, otherwise.

(4.43)

Then, by scaling F̂k, the peak reduction signal Ck becomes Ck = −β̄F̂k.
Scaling the filtered clipping noise in the frequency domain involves less

arithmetic operations than scaling it in the time domain.

4-d. Convert Ck to time domain to obtain cn by using an IDFT.

5. Calculate the PAR-reduced OFDM signal as x̂n = xn + cn, and transmit it.

Remark 4.7. Calculating the PAR and finding fn require the calculation of |xn|, which

is costly if all |xn| are calculated. Here, we propose a method to reduce such a cost.

We need to calculate only |xn| for those |xn| ≥ A. A necessary condition of |xn| ≥ A

is (

|xn,R| ≥
A√
2

OR |xn,I | ≥
A√
2

)

AND (|xn,R| + |xn,I | ≥ A), (4.44)
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where xn,R and xn,I are the real and imaginary parts of xn, respectively. Thus, we

need to calculate only |xn| for the samples satisfying (4.44). Later, we will show that

the number of the samples satisfying (4.44) is small. This method can also be used

in other PAR-reduction techniques such as SLM and PTS.

4.3.2 Adaptive-Scaling Tone-Reservation Algorithm

In this subsection, we propose an adaptive-scaling tone-reservation algorithm to ob-

tain a large PAR reduction. Instead of using β̄, this algorithm calculates β for each

OFDM symbol.

A discrete-time domain description of the algorithm is given here. Filtering the

clipping noise fn to R, we get the filtered clipping noise f̂n = IDFT{F̂}, where F̂ is

obtained by using (4.43). The PAR-reduced signal x̂n can be written as

x̂n = xn − βf̂n = Aejθn + fn − βf̂n, (4.45)

where θn is the phase of xn. Our task is to minimize the out-of-range power P , i.e.,

the total power of those |x̂n| > A. The objective function is

min
β
P, (4.46)

where

P =
∑

|x̂n|>A
(|x̂n| −A)2. (4.47)

Eq. (4.47) can be rewritten as

P =
∑

n∈S1

(|x̂n| −A)2 −
∑

n∈S1
|x̂n|≤A

(|x̂n| −A)2 +
∑

n∈S2

(|x̂n| −A)2, (4.48)

where S1 = {n : |fn| > 0} is the index set of all clipping pulses, and S2 = {n :

|fn| = 0 and |x̂n| > A}. Because clipping pulses are parabolic arcs, the power of any

clipping pulse is a monotonic function of its peak amplitude. Minimizing (4.48) is

equivalent to minimizing

P̂ =
∑

n∈Sp

(|x̂n| − A)2

︸ ︷︷ ︸

P1

−
∑

n∈Sp

|x̂n|≤A

(|x̂n| −A)2

︸ ︷︷ ︸

P2

+
∑

n∈S+
p

(|x̂n| − A)2

︸ ︷︷ ︸

P3

, (4.49)
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where Sp = {n : n ∈ S1, |xn| > |xn−1|, and |xn| ≥ |xn+1|} is the index set of the

peaks of fn; S+
p = {n : n ∈ S2, |x̂n| > |x̂n−1|, and |x̂n| ≥ |x̂n+1|} is the index set of

the peaks of newly generated pulses whose amplitudes are larger than A. That is, if

P̂ is minimized, P is also close-to-optimally minimized.

Eq. (4.49) implies that the optimal β, denoted as β(opt), must both minimize the

peaks of xn and prevent any large newly-generated pulses. This implication, in turn,

implies that β cannot be large. Thus, P2 and P3 are small and their difference can

be omitted. Therefore,

P̂ ≈ P1 =
∑

n∈Sp

|x̂n − Aejθ̂n|2

=
∑

n∈Sp

|fn − βf̂n + A(ejθn − ejθ̂n)|2,
(4.50)

where θ̂n is the phase of x̂n.

Because β(opt) is not large, we can see that|xn| = |Aejθn + fn| ≫ |βf̂n|, i.e., βf̂n

could not significantly change the phase of xn. Therefore, θ̂n ≈ θn, and

P̂ ≈
∑

n∈Sp

|fn − βf̂n|2. (4.51)

The optimal solution is

β(opt) =
Re[
∑

n∈Sp
fnf̂

∗
n]

∑

n∈Sp
|f̂n|2

, (4.52)

where Re[x] represents the real part of x, and (·)∗ represents the complex conjugate.

If β can be a complex number, the optimal solution is

β(opt)
c =

∑

n∈Sp
fnf̂

∗
n

∑

n∈Sp
|f̂n|2

.

However, β(opt) is determined mainly by some dominant peaks. Most likely, if fn is a

dominant peak, f̂n is also large, and the phase of f̂n is close to that of fn. Therefore,

the imaginary part of β
(opt)
c is small and can be omitted.

To further reduce the execution time, some small samples of fn can be excluded

from (4.52). Doing so, however, may degrade the PAR-reduction performance.

Now, the adaptive-scaling tone-reservation algorithm can be summarized as fol-

lows:
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Algorithm 4.2 (Adaptive-Scaling).

Initialization:

1. Set up A, R, and the maximum number of iterations L.

Runtime:

For each length (N −Nr) OFDM block,

1. Find xn.

2. If PAR > A, go to step 3; otherwise, transmit xn and terminate the algorithm.

3. Find the clipping noise fn.

4. Find cn as follows:

4-a. Find the filtered clipping noise (in the frequency domain) F̂ as in Algo-

rithm 4.1. Here, a DFT on f is needed.

4-b. Convert F̂ to the time domain to obtain f̂n = IDFT(F̂).

4-c. Find the peaks of fn to obtain Sp.

4-d. Find β(opt) by using (4.52).

4-e. The peak reduction signal is cn = −β(opt)f̂n.

5. Calculate the PAR-reduced OFDM signal as x̂n = xn + cn. If PAR > A, and

the iteration number is less than L, go to Step 3. Otherwise, transmit x̂n, and

terminate the algorithm.

4.3.3 Complexity Comparison

4.3.3.1 Complexity Analysis of the Proposed Algorithms

We now consider the complexity of our algorithms by calculating the number of real

multiplications. Here, we count a complex multiplication as three real multiplica-

tions [192]. Only the runtime computational cost is considered, and the cost of the

initialization stage can be omitted because it occurs only once. In the runtime stage

of both algorithms, Steps 1 and 2 are not counted either because all OFDM systems

65



must execute Step 1, and all PAR-reduction techniques require at least one iteration

of these two steps.

In Step 3, fn can be calculated as fn = xn(1−
A

|xn|
), where n ∈ F = {n : |xn| > A},

and Nf is the size of F . The execution time of this step is determined by that of

calculating |xn| and fn.

By applying the condition (4.44) to exclude small samples, the execution time of

calculating |xn| is small. The number of samples that satisfy (4.44) is

N̄c = JN
(
1 − (erf (A/2σ))2 − P1

)
,

where

P1 =

∫ A

A/
√

2

2
√

2

σ
√
π

erf

(
A− x

σ
√

2

)

e−x
2/2σ2

dx.

For example, N̄c ≈ 0.0038JN , 0.057JN and 0.10JN when A/
√

2σ = 9 dB, 6 dB and

5 dB, respectively. Calculating |xn| then requires 2N̄c real multiplications.

Calculating fn for n ∈ F requires 2Nf real multiplications and Nf real divisions.

However, Nf is a function of N , which can be see by calculating the mean of Nf as

N̄f = N̄pτ̄ fs,

where fs =
JN

T
is the sampling frequency, and N̄p is the average number of pulses in

an OFDM signal duration, calculated in (4.9). Because N̄p is the average size of S,

we have

N̄f = JNe−A
2/2σ2

. (4.53)

Nf may change after the first iteration. However, because the OFDM signal after

the first iteration is x̂n = xn + cn, the Nf for x̂n, denoted as N̂f , is

N̂f = Nf −N1 +N2,

where N1 is the number of samples that are higher than A in the first iteration but

are lower than A after the first iteration, and N2 is the number of samples of the

newly-generated peaks (i.e., samples that are lower than A in the first iteration but

are higher than A after the first iteration).

Because cn is very small (its average power is usually 10 dB below the OFDM

average power, or less), only those peaks of xn that are slightly smaller or higher than
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A will contribute to N1 or N2. By using (4.53), N1 and N2 can be easily shown to

be small numbers, and their difference can be omitted. Thus, Nf is roughly constant

in all iterations. We may estimate the execution time of calculating fn as 2N̄f real

multiplications and N̄f real divisions, or a complexity of O(N) with a small constant

of proportionality. For example, N̄f = 3.5 × 10−4JN , 0.019JN and 0.042JN for

A/
√

2σ = 9 dB, 6 dB and 5 dB, respectively.

In Step 4, finding β(opt) requires 4N̄p real multiplications and one real division5.

From (4.9), N̄p is a small number proportional to N and is independent of J . Thus,

the execution time of this step is determined mainly by the JN -point DFT/IDFT

pair and weighting the clipping noise. The latter requires 2JN real multiplications

for adaptive-scaling and 2N real multiplications for constant-scaling.

The fastest way of calculating the DFT/IDFT depends on the number of in-

puts/outputs of the DFT/IDFT. For example, when A is large and N is small

such that the clipping noise usually contains only one or two pulses, direct calcu-

lation of DFT/IDFT (having a complexity of O(N2) but with small constants of

proportionality) may be more preferable. For moderate A and/or large N , FFT algo-

rithms [193–210] must be used. Here, we use the decimation-in-time (DIT) split-radix

FFT algorithm [207]. The JN -point DFT in Step 4 has Nf nonzero inputs and N

inband outputs (other outputs are not needed). Then its averaged number of real

multiplications MDFT can be calculated by using (4.79) – (4.81) (see Appendix 4.8)

and replacing Nf by N̄f . On the other hand, the JN -point IDFT in Step 4 has Nr

nonzero inputs and JN outputs. Its number of real multiplications MIDFT can be

calculated by using (4.79) – (4.81) and replacing Nf , N and J by Nr, JN and 1.

From the above discussion, the adaptive-scaling algorithm with L iterations re-

quires

MAS = L(2N̄f + 2N̄c + 4N̄p + MDFT + MIDFT + 2JN)

real multiplications and L(N̄f +1) real divisions. Constant-scaling algorithm requires

MCS = 2N̄f + 2N̄c + MDFT + MIDFT + 2N

real multiplications and N̄f real divisions. The execution time of constant-scaling is

smaller than that of adaptive-scaling with one iteration.

5Constant-scaling does not need to find a β(opt).
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The number of iterations L that adaptive-scaling requires to reach a fixed PAR

(i.e., independent of N) does not depend on J and N . Based on our analysis, the

strength of the clipping pulses and the distances between them are independent of J

and N . As well, the adaptive-scaling algorithm proceeds all peaks in each iteration.

Then, once other parameters (e.g., A, R and the reserved tone set) are fixed, the

PAR reduction obtained in each iteration is also fixed no matter what J and N are.

Therefore, the complexity of adaptive-scaling for reaching a fixed PAR is O(N logN),

which is determined by the of complexity of DFT/IDFT. Moreover, because the

inputs/outputs of the DFT/IDFT used in our algorithms are sparse, the complexity

of DFT/IDFT may be further reduced to O(N) by using a proper wavelet transform

[199,200].

4.3.3.2 Complexity Analysis of the Active-Set Algorithm

Assume that the active-set algorithm uses the (2G)-agon approximation (G = 4, 8, ...).

Then, the length of the OFDM signal vector and that of the peak-canceling vector

proceeded in each iteration is 2GJN . In each iteration, the execution time of the

active-set algorithm is determined by the following steps of this algorithm:

1) Find a suitable optimization direction by solving a set of l linear equations with

l variable, where l is the iteration number. We omit the execution time of this step

when the total number of iterations L is small.

2) Weight the l peak-canceling kernels associated with the active set. This step

requires lGJN real multiplications (because the peak-canceling kernel is symmetric),

except in the first iteration.

3) Find the optimal optimization step size µ. If all samples not belonging to

the active set are tested, where testing each sample requires one real division, the

execution time is approximately 2GJN real divisions because the size of the active

set is small. The execution time can be reduced by testing only the large peaks

of both the OFDM vector and the peak-canceling vector. However, appropriately

defining “large peaks” is difficult. Here, we give a lower bound by assuming that

the large peaks of the OFDM vector are the peaks higher than A, and that all large

peaks of the peak-canceling vector coincide with those of the OFDM vector. Then,

the average number of real divisions is 2GN̄f = 2GJNe−A
2/2σ2

. The execution time
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of this step is larger than that of calculating fn in our algorithms.

4) Weight the peak-canceling signal by µ. This step requires 2GJN real multipli-

cations.

With L iterations, the active-set algorithm requires

MAct. ≈ 2LGJN +

L∑

l=2

lGJN =
1

2
(L2 + 5L− 2)GJN

real multiplications and 2LGJNe−A
2/2σ2

real divisions.

The active-set algorithm proceeds one peak (outside the active set) in each itera-

tion. In order to reach a fixed PAR A for different N , all peaks higher than A must be

compensated for by the peak-canceling signal. Because the number of peaks higher

than A is proportional to N , the required number of iterations is also proportional

to N . That is, the complexity of the active-set algorithm for reaching a fixed PAR

is6 O(N3).

4.4 Simulation Results

In this section, simulation results are given to verify the estimation of β̄ used in

our constant-scaling algorithm. Then, we compare our proposed algorithms with

the active-set algorithm [20] by using simulation. We use N = 512, J = 4, and

106 uniformly distributed 64QAM symbols as the input to the OFDM system. The

clipping threshold A is measured in dB with respect to the average signal power before

PAR reduction.

4.4.1 Theoretical and Actual Values of β

First, we compare the theoretical value of β̄ calculated by using (4.34), denoted as

β̄Theo, and the actual value obtained by using simulation, denoted as β̄Simu. Here,

β̄Simu is calculated as

β̄Simu = E{βSimu},

where

βSimu = arg min
β

∑

k∈R
|F̂ (K)
k − βF̂k|2,

6A similar analysis shows that the complexity of the controlled clipper algorithm [18] is O(N2).
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and F̂k and F̂
(K)
k are the in-band clipping noise at the first and K-th iterations,

respectively.

Fig. 4.5 compares β̄Theo and β̄Simu, where the tone-reservation ratio R = 4.88%,

9.96%, 19.92%, respectively; the number of clipping and filtering iterations K = 20;

and the set of reserved tones R is randomly selected at the initialization stage. The

relative difference d defined as

d =
β̄Theo − β̄Simu

β̄Simu

is shown in Fig. 4.6.
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Figure 4.5: Comparison of β̄Theo and β̄Simu.

β̄Theo matches β̄Simu when A ≥ 9 dB because the clipping noise contains only one

or two pulses. The difference becomes larger when A < 9 dB because of the existence

of multiple clipping pulses in the clipping noise. However, the difference may still be

acceptable for A ≥ 6 dB (where d ≤ 10%). Therefore, we can use β̄Theo to evaluate

the PAR-reduction performance, or use β̄Theo in our constant-scaling algorithm.

The approximation error in β̄Theo depends mainly on the strength of the mainlobe

(outside the pulse duration) and the sidelobes of the filtered pulses. This strength is
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Figure 4.6: Relative difference d between β̄Theo and β̄Simu.

determined by R and the selection of reserved tones, as well as the distances between

the clipping pulses, which is determined by A. When R is large, e.g., R = 19.92%

in Fig. 4.5, the mainlobe outside the pulse duration and the sidelobes of the filtered

pulses are small, and the approximation error is small. On the other hand, for small

R (e.g., R = 4.88% or R = 9.96% in Fig. 4.5), the distances between the clipping

pulses are large when A is large (e.g., A ≥ 6 dB in Fig. 4.5), and the approximation

error is small.

Figs. 4.7 and 4.8 illustrate the mean and standard deviation (STD) of the phase

and magnitude, respectively, of βSimu, where N = 512, R = 4.88%, A = 6 dB and R
is randomly selected. Fig. 4.7 shows that both the mean and STD of the phase of

βSimu are close to 0. Thus, βSimu can be well approximated as a real value. Fig. 4.8

shows that, for small K, the STD of |βSimu| is small, and β̄Theo closely matches β̄Simu.

With the increase of K, the STD of |βSimu| and the difference between β̄Theo and β̄Simu

become larger.

Fig. 4.9 shows the mean and STD of the normalized approximation error D for
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Figure 4.7: Phase of βSimu and its standard deviation.
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different K when approximating F̂
(K)
k by βSimuF̂k. D is defined as

D =

∑

k∈R |F̂ (K)
k − βSimuF̂k|2

∑

k∈R |F̂ (K)
k |2

.

The simulation parameters are N = 512, R = 4.88%, A = 6 dB, and R is randomly

selected.
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Figure 4.9: Approximation error D and its standard deviation when using βSimu.

We observe that the normalized approximation error D is small when the number

of iterations K is small, and D becomes more than 35% when K → ∞.Therefore, K

must be carefully selected when using the constant-scaling algorithm because a large

K may lead to PAR-reduction performance degradation.

4.4.2 Performance of Proposed Algorithms

We now compare the constant-scaling and adaptive-scaling algorithms with the active-

set algorithm under tone-reservation constraints. Here, we use the modified PAR

definition (3.18). The PAR CCDF is used to indicate the clip probability. Constant-

scaling, where the parameter K is used in constant-scaling to calculate β̄, has only
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one iteration. The execution time of the algorithms we simulated is listed in Table 4.1

in terms of the number of real multiplications/divisions, where L denotes the number

of iterations for the adaptive-scaling and the active-set algorithms. As a reference,

the execution time of a JN -point FFT is also listed in this table.

Table 4.1: Number of real multiplications/divisions for constant-scaling (CS),
adaptive-scaling (AS) and active-set (Act. Set), where N=512, J = 4.

R = 4.88%,
A = 6.22 dB

R = 19.92%,
A = 4.96 dB

CS/AS, L = 1 22350.68 / 32.16 29273.32 / 89.93

AS, L = 3 67052.05 / 96.48 87819.96 / 269.78

AS, L = 16 357610.95 / 514.58 468373.12 / 1438.84

Act. Set, L = 2 49152.00 / 498.58 49152.00 / 1422.84

Act. Set, L = 9 507904.00 / 2243.62 507904.00 / 6402.80

2048-point FFT 16388 / 0 16388 / 0

Fig. 4.10 illustrates the comparison of these algorithms, where the clipping thresh-

old A = 6.22 dB, the tone-reservation ratio R = 4.88%, and the set of reserved tones

R is randomly selected. The PAR of the original OFDM (no reserved tones) and that

of the OFDM with null reserved tones (reserved tones are set to 0) are also plotted

in this figure as the dotted and dash-dot curves, respectively.

Setting reserved tones to 0 does not reduce the PAR. For a 10−4 clip probability,

constant-scaling that approximates 50 clipping and filtering iterations obtains 3.1 dB

PAR reduction, which is the same as that of the adaptive-scaling with one itera-

tion, and is about 1.4 dB larger than that of the active-set with two iterations. The

adaptive-scaling with three iterations obtains 0.4 dB larger PAR reduction than the

active-set with nine iterations for a 10−4 clip probability, but with only 13% of the

execution time of the latter. With 16 iterations, the adaptive-scaling leads to 5.1 dB

PAR reduction (1.3 dB larger than that of the active-set with nine iterations) for a

10−4 clip probability. The execution time of this adaptive-scaling is only 70% of that

of the active-set with nine iterations.

Fig. 4.11 compares these algorithms for 4.96 dB clipping, 19.92% tone-reservation,
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Figure 4.10: PAR reduction of constant-scaling (CS), adaptive-scaling (AS) and
active-set (Act. Set), where R = 4.88%, A = 6.22 dB, and R is randomly selected.

and a randomly selected set of reserved tones. Again, setting the reserved tones

to 0 does not reduce the PAR. The adaptive-scaling with one iteration obtains a

4.3 dB PAR reduction, which is about the same as that of the constant-scaling, which

approximates 20 clipping and filtering iterations, and is 2.6 dB larger than that of

the active-set with two iterations, and 0.7 dB larger than that of the active-set with

nine iterations. With three and 16 iterations, adaptive-scaling obtains a 5.7 dB and

6.9 dB reduction (2.1 dB and 3.3 dB larger than that of the active-set with nine itera-

tions) with 17% and 90% of the execution time of the active-set with nine iterations,

respectively.

Table 4.2 lists the average power increase in dB. The larger the PAR reduction is,

the more the average power increases. However, the largest average power increase is

only 0.44 dB. Therefore, the power increase will not significantly increase the BER.

Note that the active-set has a negligible average power increase. However, because its

PAR reduction is much smaller than that of adaptive-scaling, its BER performance
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Figure 4.11: PAR reduction of constant-scaling (CS), adaptive-scaling (AS) and
active-set (Act. Set), where R = 19.92%, A = 4.96 dB, and R is randomly selected.

Table 4.2: Average power increase in dB of constant-scaling (CS), adaptive-scaling
(AS) and active-set (Act. Set), where the reserved tone set is randomly selected.

R = 4.88%,
A = 6 dB

R = 19.92%,
A = 4 dB

CS, K = 50 for R = 4.88%,
K = 20 for R = 19.92%

0.14 0.13

AS, L = 1 0.11 0.13

AS, L = 3 0.23 0.23

AS, L = 16 0.44 0.39

Act. Set, L = 2 0.02 0.005

Act. Set, L = 9 0.11 0.03

is worse than that of the latter.

Given the PAR reduction, execution time and power increase, constant scaling

may be a good choice if fast execution is desired. If a large PAR reduction is desired,
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the adaptive-scaling with three and 16 iterations, respectively, may be good choices

for the 4.88% and 19.92% reserved-tone cases.

Fig. 4.12 compares the BER performance of the adaptive-scaling and the active-

set, where 19.92% randomly selected tones are reserved for the PAR reduction, and

the clipping threshold is A = 4.96 dB. The OFDM signal is first processed by using

the adaptive-scaling with 16 iterations and the active-set with nine iterations, respec-

tively. The peak reduced signal is passed through a SSPA with a limited linear range.

The SSPA output is then transmitted through an AWGN channel. The input/output

relationship of SSPA can be written as [1]

y(t) =
|x(t)|

(

1 +

( |x(t)|
C

)2p
) 1

2p

ejφ(t),

where x(t) = |x(t)|ejφ(t) is the input, and y(t) is the output of SSPA. Usually, p = 3

for practical SSPA. In our simulation, the saturation point C = 5.46 dB. In Fig. 4.12,

the BER of the original OFDM signal (without PAR reduction) passing through the

SSPA with C = 5.46 dB and passing through an ideal power amplifier with infinite

linear range, respectively, are also included for reference.

If an ideal power amplifier is used, the OFDM system has a BER of 10−6 when

Eb/N0 = 18.6 dB. However, if the SSPA with C = 5.46 dB is used, the OFDM system

has a BER floor of 6 × 10−3. By using the adaptive-scaling with 16 iterations, the

OFDM system obtains a BER of 10−6 with Eb/N0 = 22.0 dB. On the other hand,

the active-set with nine iterations has a BER floor of 2 × 10−5.

Fig. 4.13 compares the radiation out of the OFDM frequency band

[

− N

2T
,
N

2T

]

for the adaptive-scaling and active-set. The simulation parameters are the same as

above. If no PAR reduction is used, the out-of-band radiation is −24.5 dB. By using

the active-set with nine iterations, the out-of-band radiation is reduced to −29.5 dB.

However, by using the adaptive-scaling with 16 iterations, the out-of-band radiation

is only −34.5 dB.
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Figure 4.12: BER comparison of adaptive-scaling (AS) and active-set (Act. Set),
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Figure 4.13: Out-of-band radiation of adaptive-scaling (AS) and active-set (Act. Set),
where R = 19.92%, A = 4.96 dB, R is randomly selected, and C = 5.46 dB.
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4.4.3 Tradeoff of PAR Reduction and Execution Time for
the Adaptive-Scaling Algorithm

Tradeoffs for the adaptive-scaling algorithm can be made between the PAR reduction

and execution time. In this subsection, we find the optimal number of iterations by

using simulation.

Fig. 4.14 illustrates the PAR-reduction performance of the adaptive-scaling algo-

rithm at the first 16 iterations, where the clipping threshold is 4.96 dB, the tone-

reservation ratio is 19.92%, and the reserved tones are randomly selected. In this

figure, the curves represent the PAR distribution for the adaptive-scaling with, from

right to left, one to 16 iterations.
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Figure 4.14: PAR reduction of adaptive-scaling at the first 16 iterations, where R =
19.92%, A = 4.96 dB, and R is randomly selected.

The (2l + 1)-th iteration of the adaptive-scaling exhibits approximately the same

PAR-reduction performance as the 2l-th iteration for l ≥ 1. The adaptive-scaling

with three iterations may be a good choice to balance PAR reduction and execution

time. On the other hand, the adaptive-scaling with five iterations reduces the PAR
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to about 6 dB at a 10−4 clip probability. The next 11 iterations further obtain only a

0.7 dB PAR reduction at a 10−4 clip probability.

Similarly, Fig. 4.15 shows that, when a 6.22 dB clipping threshold and a 4.88%

randomly selected reserved tone set are used, three iterations may be a good tradeoff

in order for adaptive-scaling to balance PAR reduction and execution time. The next

13 iterations further obtain only a 0.9 dB PAR reduction at a 10−4 clip probability.
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Figure 4.15: PAR reduction of adaptive-scaling at the first 16 iterations, where R =
4.88%, A = 6.22 dB, and R is randomly selected.

4.5 The Constant-Scaling Algorithm: when Inband

Distortion Is Allowed

The nonlinearity of the HPA introduces both inband distortion, which increases the

BER, and out-of-band radiation, which interferes with neighboring communications.

While the latter is unacceptable, the former may be tolerable in low bit rate com-

munications. Thus, we may apply the constant-scaling algorithm, as a substitution
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for the iterative clipping and filtering algorithm [90], to suppress the out-of-band

radiation [19].

In distortion-tolerable cases, the clipping noise is distributed on all the subcarriers

and mixed with the data symbols. In terms of PAR reduction, this situation can be

considered as a special case of tone-reservation where R = 1, and the constraint of

(3.17) is discarded. The above discussion leads to the following conclusions:

1. The constraint of (3.17) affects the BER performance and the average power.

However, this constraint does not affect the performance of the peak reduction.

2. Applying (3.17) in PAR reduction ensures the orthogonality of the data symbols

and the clipping noise, but slightly increases the average power. The BER is

slightly increased only due to the increased average power.

3. Discarding (3.17) in PAR reduction decreases the average power. However, the

BER is increased due to the clipping noise. However, the clipping noise can be

partly canceled at the receiver by using clipping noise cancelation algorithms

[86, 88, 89, 91, 95].

Letting R = 1 and discarding (3.17), we apply the constant-scaling algorithm

that approximates three clipping and filtering iterations to an OFDM system with

256 subcarriers and a unitary QPSK symbol input. We compare the constant-scaling

algorithm to the iterative clipping and filtering algorithm with three iterations in

terms of PAR reduction, BER and out-of-band radiation. In our simulations, we

consider the 6 dB and 3 dB clipping cases. The clipping threshold A is small in the

3 dB clipping case. However, our simulation results show that the constant-scaling

algorithm can also be used together with clipping noise cancelation techniques [86,88].

Fig. 4.16 compares the PAR reduction of the constant-scaling algorithm and that

of the iterative clipping and filtering (ICF) algorithm. Their PAR reduction is close.

For the 6dB clipping case, our proposed technique is about 0.3dB better than the

iterative clipping and filtering at a 10−4 clip probability.

To investigate BER performance degradation and out-of-band distortion, we con-

sider passing the PAR-reduced signal through an SSPA with limited linear range.

The input/output relationship of SSPA is given in (3.3).
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Figure 4.16: PAR CCDF comparison of the constant-scaling algorithm and the iter-
ative clipping and filtering algorithm.

For the 6 dB clipping case, the clipping threshold of both algorithms is A = 6 dB.

After peak reduction, the PAR-reduced signal is passed through the SSPA with C =

6 dB. For the 3 dB clipping, both A and C are set to 3 dB. Figures 4.17 compares

the BER performance of both algorithms. As a reference, the dotted curve shows the

BER of the ideal case when the HPA has enough linear range and no PAR-reduction

technique is needed. The solid curves represent the BER when using the clipping

noise cancelation technique [86] while the dashed curves represent the BER without

clipping noise cancelation. The “◦” is for the constant-scaling algorithm, and the “×”

is for the iterative clipping and filtering algorithm.

For the 6 dB clipping, the BER performances of these two algorithms are very

close, and there is little need to use clipping noise cancelation. The BER performance

in this case is only about 1 dB worse than that of the ideal case. On the other hand,

in the 3 dB clipping both techniques are quite worse than that of the ideal case (6.5

– 8.5 dB at the BER of 10−5) when no clipping noise cancelation is used, while the
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Figure 4.17: BER performance comparison of the constant-scaling algorithm and the
iterative clipping and filtering algorithm.

gap between these two techniques at the BER of 10−5 is about 2 dB. However, when

clipping noise cancelation is used, the BER performance of these two techniques is

improved by 2.5 – 3.5 dB, and the constant-scaling algorithm is only about 1 dB

worse than the iterative clipping and filtering algorithm. Therefore, the performance

of the constant-scaling algorithm is comparable to that of the iterative clipping and

filtering algorithm. However, because the constant-scaling algorithm performs only

one iteration, its execution time is significantly less than that of iterative clipping and

filtering at both the transmitter and the receiver.7

The out-of-band radiation comparison for the 3 dB clipping case is shown in

Fig. 4.18. Here, pulse shaping is not considered for simplicity. Fig. 4.18 shows

that iterative clipping and filtering leads to about 6 dB lower out-of-band radiation

than that obtained without using any PAR-reduction technique, and our proposed

technique leads to about 2.5 dB lower out-of-band radiation than that obtained by

7As in [86], the same number of iterations has to be performed at the receiver to cancel the
clipping noise.
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iterative clipping and filtering.
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Figure 4.18: Out-of-band radiation comparison of the constant-scaling algorithm and
the iterative clipping and filtering algorithm for the 3 dB clipping case.

4.6 Conclusions

In this chapter, using a parabolic approximation of clipping pulses, we analyzed the

peak regrowth and the flat power spectrum of the in-band clipping noise of tone-

reservation by using iterative clipping and filtering. We showed that the clipping noise

obtained after several clipping and filtering iterations is approximately proportional

to that generated in the first iteration, and derived the constant of proportionality by

using the level-crossing theory. We have also proposed a constant scaling algorithm

and an adaptive scaling algorithm for tone-reservation. These algorithms scale the

filtered clipping noise by a constant or an adaptively calculated factor to generate a

peak-canceling signal. Our simulation showed that the PAR and the execution time

of the proposed algorithms are lower than those of the active-set algorithm.

84



4.7 Appendices

4.7.A Time Independence of Different Clipping Pulses

x(t) can be shown to be a cyclostationary process. Then, the correlation of x(t) of

time ti and tk depends only on the time difference ∆t = ti − tk. The correlation of

x(t) and x(t+ ∆t) is

Rx(∆t) =
1

2
E{x(t)x∗(t+ ∆t)}

=
1

2N

N/2−1
∑

m=−N/2

N/2−1
∑

l=−N/2
E{XmX

∗
l }ej2π(mti−l(t+∆t))/T

=
σ2

N

N/2−1
∑

m=−N/2
ej2πm∆t/T

= σ2 sin(πN∆t/T )

N sin(π∆t/T )
e−jπ∆t/T .

(4.54)

Because 1
2
E{x(t)x(t)∗} = σ2, the correlation coefficient of x(t) and x(t+ ∆t) is

ρx(∆t) =
sin(πN∆t/T )

N sin(π∆t/T )
e−jπ∆t/T . (4.55)

Strictly speaking, ρx(n) = δ(n), and the samples of x(n) are independent only when

the Nyquist sampling rate T/N is used. However, we will show that, in the continuous-

time domain, the possibility that two or more clipping pulses fall within a small time

interval and have a large correlation is small and can be omitted. Then, the clipping

pulses occurring at different time instances can be effectively treated as independent.

Without loss of generality, let ∆t = nT/N , where n is a real number, and 0 ≤
n < N . When n is small8 compared to N , then,

|ρx(nT/N)| =

∣
∣
∣
∣

sin(πn)

N sin(πn/N)

∣
∣
∣
∣
=

∣
∣
∣
∣

sin(πn)

πn

∣
∣
∣
∣
, (when N → ∞). (4.56)

For example, |ρx(nT/N)| ≈ 0.071 when n = 4.5.

The probability that two or more clipping pulses occur within a time interval of

4.5T/N is small. [190] shows that the up-crossing time of x(t) is Poisson distributed

when N → ∞:

lim
A→∞

Pr[Un,A(0,∆t) = k] =
(∆tλA)ke−∆tλA

k!
, (4.57)

8We do not need to consider a large n because, at a large n, ρx(n) is virtually 0.
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where Un,A(0,∆t) is the number of the up-crossing that a χ2 random process

Y (t) = X2
1 (t) +X2

2 (t) + · · ·+X2
n(t) (4.58)

up-crosses a fixed level A/σ > 0, with σ = E{X2
k(t)} for all k, during the time interval

(0,∆t), and λA is the up-crossing rate. Based on our assumption of a large A, each

up-crossing corresponds to a parabolic clipping pulse. Then, given the condition that

a clipping pulse occurs in (0,∆t), the probability that more than m (m ≥ 1) clipping

pulses occur in the same time interval (0,∆t), denoted as Pr(m), is

Pr(m) = Pr[Un,A(0,∆t) > m|A clipping pulse occurs]

= Pr[Un,A(0,∆t) > m− 1]

= 1 −
m−1∑

l=0

(∆tλA)le−∆tλA

l!
.

(4.59)

By substituting ∆t = nT/N into (4.59), Pr(m) is independent of N . Table 4.3 lists

Pr(m) for different clipping thresholds, where n = 4.5T/N . This table shows that,

when A is large, the chance that two or more clipping pulses will fall within the same

time interval (0, 4.5T/N) is small. In other words, most clipping pulses are a large

“distance” apart from each other, so that the |ρx(∆t)|’s between these pulses are

small and can be approximated as 0. Because x(t) is Gaussian, x(t) and x(t + ∆t)

are also independent with respect to ∆t.

Table 4.3: Given that a clipping pulse occurs in (0, 4.5T/N), the probability that
more than k (k ≥ 1) clipping pulses occur in the same time interval (0, 4.5T/N).

A( dB) 3 6 9

Pr(1) 0.59 0.16 4.6 × 10−3

Pr(2) 0.22 1.3 × 10−2 1.1 × 10−5

Pr(3) 6.0 × 10−2 7.4 × 10−4 1.6 × 10−8

Pr(4) 1.3 × 10−2 3.1 × 10−5 1.9 × 10−11

Pr(5) 2.2 × 10−3 1.1 × 10−6 1.7 × 10−14

Table 4.3 also includes a low clipping threshold case, where A = 3 dB. In this

case, Pr(1) and Pr(2) are relatively large at n = 4.5. However, taking into account

that the |ρx(∆t)| is only 0.071 at n = 4.5, we may still treat the clipping pulses in

this case as uncorrelated to simplify the power spectrum estimation.
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4.7.B The Conditional pdf and moments of γi

In this section, we find the conditional pdf and moments of γi =
ẋI(ti)

|xR(ti)|
, given

ṙ(ti) = 0 and r(ti) ≥ A. For the ease of notation, we drop off the subscript i and the

time index ti in the following analysis. Strictly speaking, we also need a condition of

r̈ ≤ 0. However, Appendix 4.7.C shows that Pr[r̈|ṙ = 0, r ≤ A] ≈ 0 unless A is small.

First, we show that xR, xI , ẋR and ẋI are independent when N is large. ẋR =
1

2
(ẋ+ ẋ∗) and ẋI =

1

2j
(ẋ− ẋ∗), where

ẋ(t) =
dx(t)

dt
=

1√
N

N/2−1
∑

k=−N/2

j2πk

T
Xke

j2πkt/T . (4.60)

As well, E{XkXl} = 0 for any k and l. Then, ẋR and ẋI are i.i.d. Gaussian processes

with zero mean and variance

σ̇2 =
4π2σ2

NT 2

n/2−1
∑

k=−N/2
k2 =

(N2 + 2)π2σ2

3T 2
.

When N is large, σ̇2 ≈ π2N2σ2

3T 2
=
π2

3
W 2σ2, which agrees with (4.7).

Using (4.1) and (4.60), we have

E{xRẋR} = E{xI ẋI} = 0.

On the other hand,

E{xRẋI} = −E{xI ẋR} =
2πσ2

NT

N/2−1
∑

k=−N/2
k = −πσ

2

T
,

and their correlation coefficients are

ρxRẋI
= −ρxI ẋR

= − 3√
N2 + 2

,

which is zero when N → ∞ (less than 0.014 when N ≥ 128). Therefore, xR, xI , ẋR

and ẋI are independent when N is large.

We now find the joint pdf p(ẋI , xR, xI |ṙ = 0). Because xR, xI , ẋR and ẋI are

independent, fixing xR and xI does not change the distribution of ẋR and ẋI . Note

that

ṙ =
1

r
(xRẋR + xI ẋI).
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Then, given xR and xI , ṙ is also a Gaussian process with zero mean and variance

σ̇2
r = E{ṙ2} = σ̇2.

Because σ̇2
r is independent of xR and xI , ṙ is independent of xR, xI and r, and

p(ṙ) =
1√
2πσ̇

e−ṙ/2σ̇
2

.

Given xR and xI , the correlation coefficient between ẋI and ṙ is

ρẋI ,ṙ =
xI
r
.

Then,

p(ẋI , ṙ|xR, xI) =

√

x2
R + x2

I

2πσ̇2|xR|
exp

(

−x
2
R + x2

I

2σ̇2x2
R

(ẋ2
I − 2

xI ẋI ṙ
√

x2
R + x2

I

+ ṙ2)

)

, (4.61)

and

p(ẋI , xR, xI |ṙ = 0) =
p(ẋI , ṙ|xR, xI)p(xR)p(xI)

p(ṙ)

∣
∣
∣
∣
ṙ=0

=

√

x2
R + x2

I

(2π)3/2σ̇σ2|xR|
exp

(

−(x2
R + x2

I)ẋ
2
I

2σ̇2x2
R

− x2
R + x2

I

2σ2

)

.

(4.62)

We use the following transforms to obtain p(γ, r, θ|ṙ = 0):

ẋI = rγ| cos θ| + ṙ sin θ, (4.63)

xR = r cos θ, (4.64)

xI = r sin θ. (4.65)

The Jacobian of the transformation from ẋI , xR, xI to γ, r and θ is

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣

r cos θ γ cos θ −rγ sin θ + ṙ cos θ

0 cos θ −r sin θ

0 sin θ r cos θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
ṙ=0

= r2 cos θ,

for −π/2 ≤ θ ≤ π/2, and

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣

−r cos θ −γ cos θ rγ sin θ + ṙ cos θ

0 cos θ −r sin θ

0 sin θ r cos θ

∣
∣
∣
∣
∣
∣
∣
∣
∣
ṙ=0

= −r2 cos θ,
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for −π/2 ≤ θ ≤ π/2. Thus,

J = r2| cos θ| (4.66)

for 0 ≤ θ ≤ 2π. Then, we have

p(γ, r, θ|ṙ = 0) = p(ẋI , xR, xI |ṙ = 0)|J|

=
r2

(2π)3/2σ̇σ2
exp

(

−r
2γ2

2σ̇2
− r2

2σ2

)

.
(4.67)

The pdf of γ conditioned on ṙ = 0 and r ≥ A is

p(γ|ṙ = 0, r ≥ A) =

∫∞
A

∫ 2π

0
p(γ, r, θ|ṙ = 0)dθdr
∫∞
A
p(r)dr

=
A3

4
√

2πσ̇σ2ψ3

(

2ψe−ψ
2

+
√
πerfc (ψ)

)

eA
2/2σ2

,

(4.68)

where

ψ =
A
√

γ2σ2 + σ̇2

√
2σ̇σ

.

The conditional cumulative distribution function (cdf) of γ cannot be written in

a closed form. However, because p(γ|ṙ = 0, r ≥ A) = p(−γ|ṙ = 0, r ≥ A), the

conditional mean mγ = E{γ|ṙ = 0, r ≥ A} = 0. The conditional variance σ2
γ =

E{γ2|ṙ = 0, r ≥ A} can be found by using (4.62).

We first transform p(ẋI , xR, xI |ṙ = 0) to p(ẋI , r, θ|ṙ = 0). The Jacobian of the

transformation is J = r. Then,

σ2
γ =

∫∞
−∞
∫∞
A

∫ 2π

0

ẋ2
I

r2 cos2 θ
p(ẋI , r, θ|ṙ = 0)dθdrdẋI

∫∞
−∞
∫∞
A

∫ 2π

0
p(ẋI , r, θ|ṙ = 0)dθdrdẋI

=
π2W 2

6
E1

(
A2

2σ2

)

eA
2/2σ2

,

(4.69)

and

σ4
γ =

π4W 4

12

(

E1

(
A2

2σ2

)

eA
2/2σ2 − 2σ2

A2

)

. (4.70)

We may also find the central moments of |γ| by using (4.62). The conditional mean

of |γ| is

m|γ| = E
{
|γ|
∣
∣ṙ = 0, r ≥ A

}

=

∫∞
−∞
∫∞
A

∫ 2π

0

|ẋI |
r| cos θ|p(ẋI , r, θ|ṙ = 0)dθdrdẋI

∫∞
−∞
∫∞
A

∫ 2π

0
p(ẋI , r, θ|ṙ = 0)dθdrdẋI

=
πW√

3
erfc

(
A√
2σ

)

eA
2/2σ2

.

(4.71)
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The conditional variance of |γ| is σ2
|γ| = σ2

γ −m2
|γ|.

When A → ∞, m|γ| and σ|γ| are virtually zero. For practical A’s, m|γ| and σ|γ|

are also small compared to the OFDM half bandwidth (in rad/s) πW . Table 4.4 lists

the theoretical and simulated values of m|γ| and σ2
|γ| for different A. γi introduces a

frequency shift to Fi(ω), the frequency spectrum of the clipping pulse fi(t). Moreover,

Fi(ω) reaches its maximum magnitude at ω = 0 if γi = 0. Then, we can measure the

frequency at which Fi(ω) reaches its maximum magnitude to obtain the simulated

statistics of γi. In our simulation, we use N = 512, J = 128 and QPSK input

symbols9.

Table 4.4: m|γ| and σ|γ| for different A. Simulated results are obtained with N = 512,
J = 128 and QPSK input symbols.

A/
√

2σ( dB) 3 6 9

m|γ|, Theoretical (×πW ) 0.19 0.15 0.11

m|γ|, Simulated (×πW ) 0.16 0.13 0.11

σ|γ|, Theoretical (×πW ) 0.15 0.11 0.083

σ|γ|, Simulated (×πW ) 0.12 0.10 0.078

4.7.C Pr[r̈(ti) > 0|ṙ(ti) = 0, r(ti) ≥ A] → 0 when A→ ∞

In this section, we prove that Pr[r̈(ti) > 0|ṙ(ti) = 0, r(ti) ≥ A] → 0 when A→ ∞. In

the following, we drop off the time index ti for the ease of notation.

Because ẍR =
1

2
(ẍ+ ẍ∗) and ẍI =

1

2j
(ẍ− ẍ∗), where

ẍ(t) =
dẋ(t)

dt
= − 1√

N

N/2−1
∑

k=−N/2

4π2k2

T 2
Xke

j2πkt/T , (4.72)

ẍR and ẍI are i.i.d. Gaussian processes with zero mean and variance10

σ̈2 =
16π4σ2

NT 4

N/2−1
∑

k=−N/2
k4 =

π4σ2

15T 4
(3N4 + 20N2 − 8)

≈ N4π4σ2

5T 4
=
π4

5
W 4σ2.

9We choose a large oversampling factor J to avoid the case in which the clipping pulse has only
one nonzero sample.

10We may also calculate σ̈2 as [15]: σ̈2 =
∫

ω4S(ω)dω =
π4

5
W 4σ2.
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By using (4.1) and (4.72), we have

E{xRẍI} = E{xI ẍR} = 0,

E{xRẍR} = E{xI ẍI} = −E{ẋ2
I} = −π

2

3
W 2σ2,

and

ρxRẍR
= ρxI ẍI

= −
√

5

3
,

Thus, given xR and xI , ẍR and ẍI are independent Gaussian processes with mean

−π
2

3
W 2xR (for ẍR) and −π

2

3
W 2xI (for ẍI) and variances of

4

9
σ̈2.

Note that ẋI = γ|xR|. Given ṙ =
1

r
(xRẋR + xI ẋI) = 0, we have ẋR = −xI ẋI

xR
, and

r̈ =
1

r
(ẋ2

R + ẋ2
I + xRẍR + xI ẍI) =

1

r
(r2γ2 + xRẍR + xI ẍI). (4.73)

Then, given xR, xI , γ, and ṙ = 0, r̈ is a Gaussian process with mean

m̂r̈ = E{r̈|xR, xI , γ, ṙ = 0} =
1

r

(

r2γ2 − π2

3
W 2(x2

R + x2
I)

)

= r(γ2 − π2W 2

3
),

and variance

σ2
r̈ = E{r̈2|xR, xI , γ, ṙ = 0} − m̂2

r̈

=
4

9
σ̈2 =

4π4

45
W 4σ2.

Because σ2
r̈ is independent of xR, xI and γ, it is also the variance of r̈ given ṙ = 0

and r ≥ A. By normalizing r̈ by dividing it by σ, the variance of r̈/σ given ṙ = 0 and

r ≥ A is σ2
r̈/σ

2 =
4π4W 4

45
, which is a constant related to only the OFDM bandwidth

W .

m̂r̈ is also the mean of r̈ given r, γ and ṙ = 0 because m̂r̈ depends on r instead of

the individual xR and xI . Then, we have

p(r̈|γ, r, ṙ = 0) = p(r̈|γ, xR, xI , ṙ = 0)

=
1√

2πσr̈
exp

(

−(r̈ − m̂r̈)
2

2σ2
r̈

)

.
(4.74)

The conditional mean of r̈/σ given ṙ = 0 and r ≥ A can be calculated as

mr̈/σ = E{ r̈
σ
|ṙ = 0, r ≥ A}

=

∫∞
−∞
∫∞
A

∫∞
−∞
∫ 2π

0
r̈p(r̈, γ, r, θ|ṙ = 0)dθdγdrdr̈

σ
∫∞
A
p(r)dr

.
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However,

∫ ∞

−∞
r̈p(r̈, γ, r, θ|ṙ = 0)dr̈ =

∫ ∞

−∞
r̈p(r̈|γ, r, θ, ṙ = 0)p(γ, r, θ|ṙ = 0)dr̈

= m̂r̈p(γ, r, θ|ṙ = 0),

where p(γ, r, θ|ṙ = 0) is calculated in (4.67). Therefore,

mr̈/σ =

∫∞
A

∫∞
−∞
∫ 2π

0
m̂r̈p(γ, r, θ|ṙ = 0)dθdγdr

σ
∫∞
A
p(r)dr

=

√
2π(

√
5σσ̈ − 3σ̇2)erfc

(
A√
2σ

)

eA
2/2σ2 − 2

√
5σ̈A

6σ2

= −π
2W 2A

3σ
.

When A → ∞, mr̈/σ → −∞. Because r̈/σ has a constant (conditional) variance

for any A, we have Pr[r̈ > 0|ṙ = 0, r ≥ A] → 0 when A → ∞. Moreover, the OFDM

bandwidth W is usually large (several MHz). Thus, unless A is very small, mr̈/σ ≪ 0,

implying that Pr[r̈ > 0|ṙ = 0, r ≥ A] ≈ 0.

4.7.D Given ṙ = 0 and r ≥ A, γi and τi Are Uncorrelated

We first find the conditional joint pdf p(r̈, γ, r|ṙ = 0). By using (4.67) and (4.74), we

have

p(r̈, γ, r|ṙ = 0) = p(r̈|γ, r, θ, ṙ = 0)p(γ, r, θ|ṙ = 0)p(θ)

=
r2

2πσr̈σ̇σ2
exp

(

−(r̈ −mr̈)
2

2σ2
r̈

− r2γ2

2σ̇2
− r2

2σ2

)

.

Because τ =

√

−8(r − A)

r̈
, the conditional joint moments of τ and γ can be found as

E{τmγn|ṙ = 0, r ≥ A} =

∫∞
A

∫∞
−∞
∫ 0

−∞ τmγnp(r̈, γ, r|ṙ = 0)dr̈dγdr
∫∞
A
p(r)dr

,

where m and n are positive integers. However, note that p(r̈, γ, r|ṙ = 0) is symmetric

to γ. Therefore,
∫ ∞

−∞
τmγnp(r̈, γ, r|ṙ = 0)dγ = 0

for any odd n, and, in turn, E{τmγn|ṙ = 0, r ≥ A} = 0 for any odd n. Specifically,

E{τγ|ṙ = 0, r ≥ A} = 0. That is, given ṙ = 0 and r ≥ A, τ and γ are uncorrelated.
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4.7.E The Conditional pdf and moments of ηk

In this section, we find the conditional mean and variance of

ηk =
ẋI(tk)r(tk) − xI(tk)ṙ(tk)

r(tk)|xR(tk)|
,

given ṙ(tk) ≥ 0 and r(tk) = A. In the following, we drop off the time index tk for the

ease of notation.

Note that

p(xR, xI , ẋI , ṙ) = p(ẋI , ṙ|xR, xI)p(xR)p(xI),

where p(ẋI , ṙ|xR, xI) is defined in (4.61). We have

p(ẋI , ṙ, θ|r) =
rp(xR = r cos θ, xI = r cos θ, ẋI , ṙ)

p(r)

=
1

4π2σ̇2| cos θ| exp

(

− ẋ
2
I − 2ẋI ṙ sin θ + ṙ2

2σ̇2 cos2 θ

)

.

The Jacobian of transforming p(ẋI , ṙ, θ|r) to p(ηk, ṙ, θ|r) is r| cos θ| because ẋI =

rηk| cos θ| + ṙ sin θ. Then, the pdf of ηk conditioned on ṙ ≥ 0 and r = A is

p(ηk|ṙ ≥ 0, r = A) =

∫∞
0

∫ 2π

0
r| cos θ|p(ẋI = rηk| cos θ| + ṙ sin θ, ṙ, θ|r)dθdṙ

∫∞
0
p(ṙ)dṙ

=

√
6A

2π
√
πWσ

exp

(

− 3A2η2
k

2π2W 2σ2

)

,

The conditional moments of ηk can be found:

mηk
= E{ηk|ṙ ≥ 0, r = A} = 0,

σ2
ηk

= E{η2
k|ṙ ≥ 0, r = A} =

σ̇2

A2
=
π2W 2σ2

3A2
,

σ4
ηk

= E{η4
k|ṙ ≥ 0, r = A} =

π4W 4σ4

3A4
,

m|ηk| = E
{
|ηk|
∣
∣ṙ ≥ 0, r = A

}
=

√

2π

3

Wσ

A
,

and the conditional variance of |ηk| is

σ2
|ηk | = σ2

ηk
−m2

|ηk| =

(
π2

3
− 2π

3

)
W 2σ2

A2
. (4.75)

When A is large, ηk has approximately the same distribution as γi (calculated in

Appendix 4.7.B). (4.68) shows that ψ ≫ 1 when A is large. Then,

√
πerfc (ψ) ≈ e−ψ

2

ψ
≪ 2ψe−ψ

2

.
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Thus, (4.68) can be approximated as

p(γi|ṙ = 0, r ≥ A) ≈ A3ψe−ψ
2
eA

2/2σ2

2
√

2πσ̇σ2ψ3

=
π2W 2

3γ2
i + π2W 2

√
6A

2π
√
πWσ

exp

(

− 3A2γ2
i

2π2W 2σ2

)

≈
√

6A

2π
√
πWσ

exp

(

− 3A2γ2
i

2π2W 2σ2

)

,

which is the same as p(ηk|ṙ ≥ 0, r = A). This approximation is valid when 3γ2
i ≪

π2W 2. On the other hand, when 3γ2
i is comparable to or larger than π2W 2, both

p(γi|ṙ = 0, r ≥ A) and this approximation are virtually zero. Therefore, we may use

this approximation for all γi.

Remark 4.8. By using the asymptotic expansion of erfc (x) and E1 (x) [211], it is easy

to verify that the moments of ηk are approximately the same as those of γi when A

is large. Intuitively, we can explain this fact by observing that ηk is measured at the

time that r(t) up-crosses the level A, and γi is measured at the time that r(t) reaches

its local peak after the up-crossing. Because these two time instances are very close

when A is large, the statistics of ηk and γi are the same.

4.8 The Execution Time of DIT Split-Radix JN-

Point FFT with Nf Nonzero Inputs and N De-

sired Outputs

In this section, we analyze the execution time of calculating the JN -point FFT with

Nf nonzero inputs and N desired outputs by using the DIT algorithm. The execution

time is measured as the number of real multiplications. A complex multiplication is

equivalent to three real multiplications [197], except one of the multipliers is 1 (no

multiplication needed) or (1 + j)
√

2
2

(two real multiplications).

Consider the DFT

Xk =

JN−1∑

n=0

xne
−j2πnk/JN ,

where n = 0, ..., JN − 1, and k = 0, ..., N/2 − 1, JN − N/2, ..., JN − 1 (which are

the desired outputs of the DFT corresponding to the N inband frequency-domain

samples of the N -subcarrier OFDM system). The input xn has only Nf nonzero
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values randomly distributed on n = 0, ..., JN − 1. We assume that both J and N are

the power of 2.

Define WJN = ej2π/JN . By using the DIT decomposition, the split-radix FFT can

be written as [197]

X2k =

JN/2−1
∑

n=0

(xn + xn+JN/2)W
2nk
JN

(4.76)

X4k+1 =

JN/4−1
∑

n=0

((xn − xn+JN/2) − j(xn+JN/4 − xn+3JN/4))W
n
JNW

4nk
JN

(4.77)

X4k+1 =

JN/4−1
∑

n=0

((xn − xn+JN/2) + j(xn+JN/4 − xn+3JN/4))W
3n
JNW

4nk
JN . (4.78)

Eq. (4.76) is a (JN/2)-point DFT with N/2 desired outputs (k = 0, ...,
N

4
− 1,

JN

2
−

N

4
, ...,

JN

2
− 1). The minimum number of nonzero inputs is min(Nf/2, JN/2), and

the maximum number of nonzero inputs is min(Nf , JN/2). Here, we assume the xn’s

are distributed in a way such that all the DFT involved in the DIT decomposition

have the maximum number of nonzero inputs, leading to the worst (i.e., the largest)

execution time.

Eqs. (4.77) and (4.78) are two (JN/4)-point DFT with N/4 desired outputs

(k = 0, ..., N/8 − 1, JN/4 − N/8, ..., JN/4 − 1), and min(Nf , JN/4) nonzero inputs.

Calculating each input requires three real multiplications except for n = 0 (no multi-

plication is needed) and n = JN/8 (which requires two real multiplications). However,

the 0-th and (JN/8)-th inputs may be zero unless Nf ≥ JN/4. Therefore, in view of

the worst execution time, calculating (4.76) – (4.78) requires

MJN = MJN/2 + 2MJN/4 + max(0,min(6Nf , 3JN/2 − 8)) (4.79)

real multiplications, where MJN , MJN/2 and MJN/4 are the number of real multi-

plications for calculating the (JN)-, (JN/2)- and (JN/4)-point DFT, respectively.

The DIT decomposition continues until each (2J)-point DFT decomposes to one

J-point DFT and two (J/2)-point DFT. The J-point DFT has only one desired output

at k = 0. Therefore, its calculation needs no multiplications, i.e.,

MJ = 0. (4.80)
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The (J/2)-point DFT corresponding to (4.77) has no desired outputs and can be

omitted. On the other hand, the (J/2)-point DFT corresponding to (4.78) has one

desired output at k = J/2 − 1, and min(Nf , J/2) nonzero inputs. By pre-computing

and storing W n+4nk
2J and W 3n+4nk

2J (n = 1, ..., J/2−1 and k = J/2−1), (4.78) requires

max(0,min(3Nf , 3J/2 − 4)) real multiplications. Therefore,

M2J = max(0,min(3Nf , 3J/2 − 4)). (4.81)

Now, the execution time of calculating the JN -point FFT with Nf nonzero inputs

and N desired outputs by using DIT can be found by recursively using (4.79) and

applying the initial conditions (4.80) and (4.81).

From the above analysis, we see that the overall execution time is a function of

Nf . If Nf is a random variable, we may estimate the averaged FFT execution time

by replacing Nf in (4.79) and (4.81) by its mean N̄f .
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Chapter 5

PAR Reduction with Discrete
Solutions

This chapter focuses on discrete PAR-reduction techniques, which modify the phase

and/or amplitude of the data symbols in a discrete manner to reduce the PAR. We first

propose a method to eliminate the side information for the sign-selection technique.

This method optimizes the signs of the data symbols to minimize the PAR. Then, we

propose new probabilistic algorithms to find better suboptimal solutions for discrete

PAR-reduction techniques. In this chapter, we use the zero-padding OFDM system

where the carrier frequency is on the left end of the OFDM frequency band. The

time-domain OFDM symbol x(t) and its discrete-time samples xn may be written as

x(t) =
1√
N

N−1∑

k=0

Xke
j2πkt/T , 0 ≤ t ≤ T, (5.1)

where N data symbols Xk form an OFDM block X = [X0, ..., XN−1], T is the OFDM

symbol period, and

xn =
1√
N

N−1∑

k=0

Xke
j 2π

JN
nk, n = 0, ..., JN − 1, (5.2)

where J is the oversampling factor.

5.1 Characterization of Discrete Solutions

Discrete PAR-reduction techniques use a set of candidates to represent an OFDM

block, and choose the one leading to the lowest PAR for transmission. In other
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words, given an input OFDM block X, we form a candidate set Xk for each data

symbol Xk, k = 0, ..., N − 1; i.e.,

Xk = {Xk,0, Xk,1, ..., Xk,Ik−1}, k = 0, ..., N − 1, (5.3)

where Ik is the size of Xk, and Xk,i is determined by Xk and the predefined rules of

the candidate set. For example, the multiple representation technique uses

Xk,i = Xke
jφi, i = 0, ..., I − 1,

where φi’s are a set of predefined phases. The data symbols X̂k of the transmitted

OFDM block are chosen from Xk such that the PAR is minimized. Thus, the objective

function of discrete PAR-reduction techniques can be written as

min
X̂0,...,X̂N−1

max |xn|2

E
{
|xn|2

} , (5.4a)

where xn =
1√
N

N−1∑

k=0

X̂ke
j2πnk

JN , n = 0, ..., N − 1, (5.4b)

subject to X̂k ∈ Xk, i = 0, ..., N − 1. (5.4c)

The denominator in (5.4a) may be omitted if the average power E
{
|xn|2

}
does not

change with the choice of Xk. The search space of this optimization can be written

as

Λ =
N−1∏

k=0

Ik.

For example, the sign-selection technique optimizes the signs of the data symbols to

minimize the PAR. That is,

Xk = {Xk,−Xk}. (5.5)

The PAR of an OFDM block X = {X0, ..., XN−1} is equal to the PAR of −X.

Therefore, we may always fix the sign of one data symbol, e.g., X0, to be 1. Thus,

X0 = {X0}, I0 = 1, and Ik = 2 for k 6= 0, and the search space is Λ = 2N−1.

If the elements of Xk belong to the same constellation, the index of the selected

candidate must be transmitted to the receiver as side information in order to correctly

decode the data symbols. The uncoded side information requires

Bs =
N−1∑

k=0

log2 Ik (bits).
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For example, the side information of the sign-selection technique is Bs = N − 1 bits.

5.2 PAR Reduction By Using Adaptive Mapping

The adaptive mapping technique for PAR reduction is based on the fact that, for

an arbitrarily given signal constellation, some data sequences have a low PAR [1].

By using the adaptive mapping technique, an M-point signal constellation QM can

be mapped to a 2M-point signal constellation Q2M . In this case, each point in QM

can be represented by either of the two corresponding points in Q2M . That is, each

OFDM subcarrier has two modulation choices. The extra freedom provided by this

method allows each subcarrier modulation symbol to be carefully selected to reduce

the PAR. On the other hand, in order to decode the received signal easily and reliably

(such decoding is especially important for the mobile handset because of its low cost

requirement), the mapping scheme has to be simple and revertible without any side

information.

Given the above consideration, we propose an adaptive mapping technique that

involves only sign-selection to map QM to Q2M .

Let qm, m = 1, ..., 2M , represent an arbitrary point in Q2M . For any origin-

symmetrical signal constellation such as PSK or QAM,

q〈m+M〉2M
= −qm ∈ Q2M , (5.6)

where 〈·〉2M represents modulo-2M operation. Then, Q2M is divided into two dis-

jointed sets by choosing M adjacent points {qm, m = 1, ..., M} to form a subset Q(1)
2M ,

and choosing the remaining M adjacent points {qm+M , m = 1, ..., M} = {−qm, m =

1, ..., M} to form another subset Q(2)
2M .

Now, given an arbitrary point q̂m ∈ QM , we can map it to either qm ∈ Q(1)
2M or

−qm ∈ Q(2)
2M . As an example, the mapping from QPSK to 8PSK is shown in Fig. 5.1,

where 1 in QPSK is mapped to either −1 or 1 in 8PSK, and -1 in QPSK is mapped

to either −j or j in QPSK, and so on.

For any qm ∈ Q(1)
2M (m = 1, ..., M), −qm is not a member of Q(1)

2M . Therefore,

the inverse mapping from Q(1)
2M (or Q(2)

2M ) to QM is unique, and no side information

is needed for decoding.

99



QM
Q(1)

2M

Q(2)
2M

00

0000

01

01
01

10

10

10 11

11

11

Figure 5.1: QPSK mapping to 8PSK

With this mapping scheme, we first encode each log2M input bits to a point in,

say, Q(1)
2M to obtain X = [X0, ..., XN−1]. We associate each Xk with a sign-selection

variable sk. The original OFDM block X is thus replaced by

X̂ = [s0X0, ..., sN−1XN−1], (5.7)

and the discrete-time transmit signal is given by

x̂n =
1√
N

N−1∑

k=0

skXke
j2π nk

JN , n = 0, ..., JN − 1. (5.8)

The choice of sk does not affect the average power of x̂n, which is the same as that of

xn. The PAR-reduction problem is therefore equivalent to minimizing the maximum

peak of the amplitude of x̂n. Consequently, this problem is reformulated as

min
s

max
n=0,...,JN−1

∣
∣
∣
∣
∣

N−1∑

k=0

skXke
j2π nk

JN

∣
∣
∣
∣
∣

2

subject to: s ∈ {1, −1}N ,
(5.9)

where s = [s0, ..., sN−1], and {1, −1}N is the set of N -dimensional binary vectors. For

any sign sequence s, a sign sequence −s always exists that leads to the same PAR.

Therefore, we can always let s0 ≡ 1. The redundancy introduced by this technique

is 1/ log2(2M) = 1/(1 + log2M). By using a large constellation, we can keep the

redundancy small (e.g., 16.67% for M = 32).

The adaptive mapping technique proposed above can significantly reduce the PAR.

For example, the PAR distribution for a 16-subcarrier OFDM system (N = 16) with a
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Binary Phase Shift Keying (BPSK) input (M = 2) is investigated. The total number

of possible input OFDM blocks is 216 = 65536. After mapping BPSK to QPSK by

using the adaptive mapping technique, the search space of each input OFDM block

is 215 = 32768. Fig. 5.2 shows the PAR distribution of ordinary BPSK OFDM blocks

and that of the optimum adaptively-mapped QPSK OFDM blocks found by using

the exhaustive search. For ordinary BPSK OFDM blocks, the PAR is 11 dB at a

clip probability of 10−4, and the worst PAR is 10 log10N = 12.04 dB. However, after

adaptive mapping, the optimized QPSK OFDM blocks has the worst PAR of only

3.5 dB (with a clip probability of 1.22 × 10−4). Therefore, the adaptive mapping

technique can reduce the PAR significantly.

Finding the optimal sign sequence for each OFDM block requires an exhaustive

search among all 2N−1 possible choices, where testing each choice requires an IFFT

operation. Thus, the complexity of the exhaustive search is a exponential function

of the number of subcarriers, making an exhaustive search impractical when N is

large. For example, 2127 ≈ 1.7 × 1038 IFFTs are required when N = 128. Many

algorithms have been proposed in the literature to find the suboptimal solutions of

the discrete optimization problem (5.9). Generally, the execution time of finding a

nearly optimal solution of (5.9) may be prohibitively high. For example, to limit the

PAR of a 128-subcarrier 16QAM-modulated OFDM system to no larger than 6 dB at

a clip probability of 10−4, SLM requires an average of 556 IFFTs, and 7425 IFFTs in

the worst case of our simulation, where 105 OFDM blocks are tested.

The existing algorithms can be divided into two groups: (1) Algorithms with low-

complexity , e.g., SLM and PTS [13,113], which, however, obtain only moderate PAR

reduction; and (2) algorithms with near-optimal solutions, e.g., the derandomization

method [22], which have relatively high complexity (O(N2)) but may serve as the

foundation of future fast algorithms.

In the rest of this chapter, we propose several suboptimal algorithms to solve

(5.9). These algorithms belong to the second group for solving (5.9), i.e., for finding

a near-optimal solution. These algorithms also offer a flexible tradeoff between PAR

reduction and execution time. Our simulations show that, for the same level of PAR

reduction, our algorithms require less execution time than the SLM and derandom-

ization methods. In the last section of this chapter, two fast algorithms are proposed,

101



0 1 2 3 4 5 6 7 8 9 10 11 12 13

10
−4

10
−3

10
−2

10
−1

10
0

Peak−to−Average Power Ratio ( 10log
10

ξ
0
 ) (dB)

P
A

R
 C

C
D

F

 

 
Original
Adaptive Mapping

Figure 5.2: PAR for uncoded BPSK symbol sequences and for adaptive-mapping
coded symbol sequences, where N = 16, M = 2.

which reduce the PAR of a 128-subcarrier OFDM system to about 6 dB at a clip

probability of 10−4 with only 16 IFFTs.

5.3 Probabilistic Solutions

5.3.1 Random Selection Method

The first method is based on the random selection of s. We first randomly select K

sign sequences s(1), s(2), ..., s(K). For each OFDM block X, the maximum instanta-

neous power (or PAR) of each s(l) ⊙ X = [s
(l)
0 X0, ..., s

(l)
N−1XN−1], where l = 1, ..., K

and ⊙ represents element-wise multiplication, is calculated. The one with the lowest

maximum instantaneous power is then selected for transmission. The search space is

2K . A tradeoff between K and the PAR requirement can be made.

In (5.9), X comes from half of the (2M)-ary constellation. By using the random

selected sign sequence s, the adaptively mapped OFDM block becomes a sequence

coming from the (2M)-ary constellation Q2M . Therefore, this method is equivalent to
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randomly selecting a sequence from Q2M . Because the PAR distribution of Q2M sym-

bol sequences is exponentially distributed, this method can achieve only a moderate

PAR reduction for a moderate K.

5.3.2 Modified PTS Algorithms

The PTS technique [13] partitions the input sequence into several subgroups, called

partial transmit sequences. A sign sequence, where each element corresponds to the

sign for each subgroup, is used to obtain a suboptimal solution. Several algorithms

for the PTS technique have been proposed in the literature [28]. With some modifi-

cations, these algorithms can also be used here.

As mentioned above, X comes from Q(1)
2M , which is a non-origin-symmetrical con-

stellation. This fact implies that its PAR distribution is much higher than that of

Q2M , an origin-symmetrical constellation (see Fig. 5.3). Therefore, directly applying

a PTS algorithm to X would not achieve a significant PAR reduction compared to

applying it to the original M-ary constellation symbol sequences.

Because PTS algorithms work well for origin-symmetrical constellation symbol se-

quences, the modification is simple. First, randomly generate an initial sign sequence,

denoted as sini, such that X is mapped to a Q2M symbol sequence Xini = sini ⊙ X.

Then, PTS algorithms can be used on Xini to reduce its PAR.

As an example, Fig. 5.3 illustrates the PAR distribution for (1) original Q(1)
2M

symbol sequences (– –), (2) original Q2M symbol sequences (—), (3) Q(1)
2M symbol

sequences with PTS (– ·), and (4) Q2M symbol sequences with PTS (· · · ). Here, an

OFDM system of N = 64 subcarriers and 8PSK (M = 8) data input is used. When

PTS is used, each OFDM block is partitioned into four subgroups. The PAR for Q(1)
2M

symbol sequences is quite high no matter if the PTS technique is used or not. On the

other hand, with the use of the initial sign sequence sini, the PAR can be significantly

lowered.

5.3.3 Recursive Partial Sequence Method

This method is based on the recursive optimization of the partial symbol sequence.

Given a OFDM block X (from Q(1)
2M ), one can partition it into Lg sub-blocks with
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Figure 5.3: PAR CCDF for (1) original Q(1)
2M symbol sequences (– –), (2) original

Q2M symbol sequences (—), (3) Q(1)
2M symbol sequences with PTS (– ·), and (4) Q2M

symbol sequences with PTS (· · · ), where N = 64, M = 8, and each OFDM block is
partitioned into four subgroups when using PTS.

each sub-block containing K = N/Lg symbols:

X = [X0, ..., XLg−1]. (5.10)

Similarly, s can also be partitioned into Lg sub-blocks:

s = [s0, ..., sN−1] = [s0, ..., sLg−1]. (5.11)

Let Sk denote the symbol index set of the sub-block Xk or sk. Then Sk satisfies the

following relationships:

Sk ∩ Sl = ⊘, k 6= l, k, l = 0, ..., Lg − 1, (5.12)

Lg⋃

k=1

Sk = {1, ..., N − 1} , (5.13)

where ⊘ represents the empty set. Similar to the partitioning with the PTS technique,

adjacent, interleaved, and pseudo random sub-block partitioning can be used. Here,
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we use adjacent partitioning. Therefore,

Sk =

{
kN

Lg
,
kN

Lg
+ 1, ...,

(k + 1)N

Lg
− 1

}

, k = 0, ..., Lg − 1. (5.14)

Now, let us form a partial symbol sequence X̃ = X0 and a corresponding sign

sequence s̃ = s0. Then, the optimal s0, denoted as s
(opt)
0 , can be found by minimizing

the PAR of s̃ ⊙ X̃. Then, X̃ and s̃ are updated such that X̃ = [X0, X1], and

s̃ = [s
(opt)
0 , s1], respectively. Similarly, s

(opt)
1 can be found by minimizing the PAR of

the updated s̃ ⊙ X̃. This procedure is repeated until s
(opt)
Lg−1 is found. Generally, this

method can be written as [212]

FOR k = 0 TO Lg − 1

X̃ = [X0, ..., Xk], s̃ = [s0, ..., sk]

s
(opt)
k = arg min

sk

(

PAR of s̃⊙ X̃
)

END FOR

(5.15)

When using this method, a search for 2K possible choices is required in each iteration.

That is, 2K (partial) IFFTs are required in each iteration except the first iteration,

where 2K−1 IFFTs are required because s0 ≡ 1. Therefore, the total number of IFFTs

is

Number of IFFTs =

{

2(N − 1) , K = 1 ,
N
K

2K − 2K−1 , otherwise.
(5.16)

As an example, Table 5.1 lists the total numbers of IFFTs for different K. Com-

pared to the complete search (2N−1 IFFTs), the proposed method significantly reduces

the complexity. Moreover, because most IFFTs involved in this method are partial

IFFTs (i.e., most inputs of the IFFT are zeros), the execution time can be further

reduced by using fast IFFT algorithms exploiting this fact.

5.3.4 Simulation Results

In this section, numerical simulations are performed for an OFDM system with 256

subcarriers. 105 8PSK (M = 8) input OFDM blocks are generated and then are

mapped to 16PSK blocks by using adaptive mapping. We compare the PAR reduction

performance of the recursive partial sequence method with that of PTS. When using

the recursive partial sequence method, we consider three cases where the sub-block

105



Table 5.1: The total numbers of IFFTs for different K

K Number of IFFT

1 2N − 2

2 2N − 2

4 4N − 8

8 32N − 128
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Figure 5.4: PAR comparison, where N = 256, M = 8.

length K = 1, 2, 4, respectively. When using PTS, the number of sub-blocks is

L = 11.

Fig. 5.4 shows the PAR distribution for both methods. It is clear that the recursive

partial sequence method can significantly reduce the PAR. When K = 1, the recursive

partial sequence method obtains a 4.8 dB PAR reduction at a clip probability of 10−4.

When K = 2, the PAR-reduction performance is improved by 0.3 dB. From Table

5.1, the execution time of K = 1 and K = 2 is the same. Therefore, K = 2 is a better

choice in practical situations. By increasing the execution time, the recursive partial
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sequence method can obtain about a 5.5 dB PAR reduction for K = 4, whereas 1016

(partial) IFFTs are required to find the (sub)optimal sign sequences.

The performance of the proposed technique is better than that of PTS. In our

simulations, the total number of IFFTs required for PTS is 2R−1 = 1024, which is

roughly the same as that for recursive partial sequence method with K = 4. However,

the PAR reduction of PTS is about 7.4 dB at a clip probability of 10−4, which is about

0.5 dB worse than that of the recursive partial sequence method withK = 2 and about

0.9 dB worse than that of the recursive partial sequence method with K = 4.
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5.4 Cross-Entropy Method for PAR Reduction

Stochastic search and optimization techniques [21] can be used to find good subopti-

mal solutions of the discrete optimization problem (5.9), which is copied to here for

the ease of reference:

min
s
L(s)

subject to: s ∈ {1, −1}N ,
(5.17)

where s = [s0, ..., sN−1], and

L(s) = max
n=0,...,JN−1

∣
∣
∣
∣
∣

1√
N

N−1∑

k=0

skXke
j2πnk

JN

∣
∣
∣
∣
∣

2

. (5.18)

When we consider s as a random vector, L(s) is thus an event in the N -dimensional

space {1, −1}N . Because the occurrence of the optimal solution s(opt) has a very small

probability, L(s(opt)) is a rare event. The random selection method described in the

previous section belongs to the crude Monte-Carlo method [21], where the suboptimal

s is found from a set of random samples s1, ..., sn drawn from a (usually arbitrarily

defined) distribution of s. Other methods, e.g., simulated annealing [213–216], Tabu

search [217–220], and genetic algorithms [221–224], can also be used to obtain better

solutions than those obtained by using the crude Monte-Carlo method.

The CE method is an iterative procedure for combinatorial optimization [225–

229]. Each iteration involves generating a random sample according to a probability

distribution and then updating the parameters of the probability distribution in order

to produce better samples in the next iteration [227]. In this section, we develop two

CE-based PAR-reduction algorithms [230, 231]. Near-optimal solutions are obtained

by simultaneously modifying the probabilities of the signs of all subcarriers via the

CE method. In contrast, the derandomization method [22, 23] modifies the signs

one-by-one. With a fixed number of iterations, our algorithms obtain the same PAR

reduction with an O(N logN) complexity. They also offer a flexible tradeoff between

PAR reduction and execution time. The simulations show that, for the same level of

PAR reduction, our algorithms requires less execution time than the SLM [13, 122]

and derandomization methods. To the best of our knowledge, our work is the first

application of the CE method to PAR reduction.
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5.4.1 The CE Method

Let f(x;u) be the probability density function (pdf) of a random vector X with a set

of parameters u; and L(X) represents a real-valued cost function of X. Also, let the

optimization problem be

max
X

L(X). (5.19)

The CE method for finding the optimal solution X(opt) involves two phases [225–227]:

1. Randomly generating a set of samples X1, ...,Xn with respect to a pdf f(x;u),

where u is the parameter vector to be optimized.

2. Optimizing u based on L(X1), ...,L(Xn) and updating f(x;u) in order to pro-

duce “better” samples in the next iteration.

The optimization of u is to produce an optimal pdf f(x;u(opt)) such that X(opt)

occurs with large probability (this is the basic idea of importance sampling [232–235]).

Fig. 5.5 shows that, if we use the Monte-Carlo method to generate a set of n samples

X1, ..., Xn according to a pdf f(x), most of these samples occur at the places where

f(x) is large. Because X(opt) is a rare event, its occurrence generally requires a large

n. The ideal pdf that generates X(opt) with only one sample is

f (opt)(x) =







1, X = X(opt),

0, otherwise.

However, f (opt)(x) is not feasible because X(opt) is unknown. On the other hand,

if f(x) can be controlled by a parameter u such that f(x;u1) and f(x;u2) have a

similar “shape” but the different “positions” of maxima, we can “shift” f(x;u) such

that its maximum value is in the neighborhood of X(opt). Then, we need only a small

number of samples to generate X(opt).

The CE method associates the optimization problem with a probability estimation

problem. By using the Monte-Carlo method, the probability that L(X) is greater than

or equal to a threshold γ may be estimated as

l = Pf (L(X) ≥ γ) = Ef [I{L(X)≥γ}] =

∫

I{L(x)≥γ}f(x;u)dx

≈ 1

n

n∑

i=1

I{L(Xi)≥γ},
(5.20)

109



L(X)

f (opt)(x)

f(x;u)

f(x;u(opt))
“shift”

X

Figure 5.5: Basic idea of the CE method.

where the subscript f means that X is distributed with respect to the pdf f , and

I{L(X)≥γ} =

{

1, when L(X) ≥ γ,

0, otherwise
(5.21)

is the indicator function.

When L(Xi) ≥ γ is rare, estimating l requires a large n such that L(Xi) ≥ γ

happens often. We use importance sampling to reduce n. That is, we find another

pdf g for generating X such that L(Xi) ≥ γ occurs more often. By using g, (5.20)

can be rewritten as

l =

∫

I{L(x)≥γ}
f(x;u)

g(x)
g(x)dx = Eg[I{L(X)≥γ}

f(X;u)

g(X)
]

≈ 1

n

n∑

i=1

I{L(Xi)≥γ}
f(Xi;u)

g(Xi)
,

(5.22)

where Xi are generated with respect to the pdf g.

The optimal g can be obtained by minimizing the variance of l, which is

g(opt)(x) =
I{L(Xi)≥γ}f(x;u)

l
. (5.23)

However, because (5.23) requires knowledge of l, g(opt) cannot be obtained a priori.

The CE method approximates g(opt) with a pdf function f(x;v), which belongs to the

same class of f(x;u) but with a different set of parameters. The optimal parameters v

can be found by minimizing the cross entropy (or Kullback-Leibler distance) between
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g(opt)(x) and f(x;v) as

min
v
D(g(opt)(x), f(x;v)), (5.24)

where

D(g(opt)(x), f(x;v)) = Eg(opt)

[

ln
g(opt)(x)

f(x;v)

]

, (5.25)

which is equivalent to

max
v

D(v) = max
v

Eu

[
I{L(X)≥γ} ln f(X;v)

]

= max
v

Ew

[
I{L(X)≥γ}W (X;u,v) ln f(X;v)

]
,

(5.26)

where

W (X;u,v) =
f(X;u)

f(X;w)
.

The optimal solution v(opt) can be found by solving

1

n

n∑

i=1

I{L(Xi)≥γ}W (Xi;u,w)∇ ln f(Xi;v) = 0 (5.27)

with respect to v. When v(opt) is found, a sample vector X(opt) can be easily generated

such that L(X(opt)) ≥ γ.

To ensure the efficiency of the Monte-Carlo simulation, γ has to be relatively small

such that the probability of L(X(opt)) ≥ γ is not too small. On the other hand, one

can predefine a relatively large probability and use it to find the corresponding γ.

After finding v(opt) by using this γ, this procedure can be repeated to find a larger γ.

The maximum γ and the corresponding v(opt) are then obtained when this procedure

converges. At this time, the optimal X can be generated by using f(x;v(opt)). The

CE algorithm is summarized as follows:

1. Generate n samples Xi with respect to the pdf f(x;u); then by using these

samples, find γ such that l ≥ ρ, where ρ is a relatively large probability (e.g.,

ρ = 0.1),

2. Let W ≡ 1; find an optimal v1 by using (5.27) and γ,

3. Replace u with v1, and repeat this procedure until some stop criteria are met.
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5.4.2 The CE Sign-Selection (CESS) Algorithm for PAR Re-
duction

Now consider the discrete PAR-reduction problem (5.17), where the cost function

L(s) that we want to minimize is defined in (5.18). Let s = 1 − 2d; i.e., we generate

the sign sequence s ∈ {+1,−1}N from a binary vector d ∈ {0, 1}N . Then, the cost

function is

L(d) = max
n=0,...,JN−1

∣
∣
∣
∣
∣

1√
N

N−1∑

k=0

(1 − 2dk)Xke
j2πnk

JN

∣
∣
∣
∣
∣

2

. (5.28)

Each element of d is modeled as an independent Bernoulli random variable with

the probability distribution P (dk = 1) = 1 − P (dk = 0) = pk, k = 0, ..., N − 1. The

probability distribution is

f(d;p) =
N−1∏

k=0

pdk

k (1 − pk)
1−dk . (5.29)

The CE method optimizes p = [p0, p1, ..., pN−1], which will generate a nearly optimal

solution d∗ that leads to a low PAR.

However, d∗ occurs with a very small probability. Estimating this probability by

using the Monte-Carlo method requires a large number of samples of d. Instead,

the CE method estimates a relatively large probability Pr[L(d) ≤ γ], where γ is a

relatively large threshold. Fewer samples are required to estimate this probability.

The probability vector p is updated so that most samples generated by f(d;p) satisfy

L(d) ≤ γ. The likelihood of d∗ appearing among these samples is increased. If we

iteratively let γ → 0, f(d;p) converges to an optimum pdf f(d;p∗) that generates

d∗ with a minimum number of samples, and γ converges to L(d∗). In each iteration,

p∗ can be analytically found by solving [227]

1

n

n∑

i=1

I{L(di)≤γ}∇ ln f(di;p) = 0, (5.30)

where ∇x denotes the partial derivative of x with respect to pk,

I{L(di)≤γ} =







1, L(di) ≤ γ,

0, otherwise,

and di are generated by using f(d;p).
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The partial derivative of (5.29) is given by

∂ ln f(d;p)

∂pk
=
dk
pk

− 1 − dk
1 − pk

, (5.31)

where dk is the k-th element of d. By substituting (5.31) into (5.30), the optimal pk

can be found as [227]

p
(opt)
k =

n∑

i=1

I{L(di)≤γ}dik

n∑

i=1

I{L(di)≤γ}

(5.32)

for a given γ, where dik is the k-th element of di.

Our sign-selection algorithm can thus be summarized as follows [230,231]:

Algorithm 5.1 (CESS).

1. Let p0 ≡ 1, and pk = 0.5 for k = 1, ..., N − 1. Let ρ = 0.1. Define ns = ⌈ρn⌉,
where ⌈a⌉ represents the smallest integer that is greater than or equal to a.

2. Generate n samples of di with respect to p, and calculate their PAR, i.e., L(di).

3. Sort these samples in ascending order according to L(di). Denote the obtained

PAR value sequence as [L0, ..., Ln−1].

4. Find γ as γ = Lns
, and update p by using (5.32).

5. If 0 < pk < 1 for some k, go to step 2, and repeat this procedure by using the

updated pk.

6. Otherwise, output the optimal sign sequence as1 s(opt) = 1 − 2p.

The optimization will converge to pk = 0 or 1 for all k [229]. Alternatively, we

may also stop the optimization after K iterations, and select the sample with the

lowest PAR for transmission.

Remark 5.1. The convergence can be speeded up by considering that, if pk > 1− 1/n

(or pk < 1/n), pk will be 1 (or 0) in all n samples with high probability. However,

both the numerator and the denominator in (5.32) are integers, and the denominator

1If all pk are either 1 or 0, p can generate only one sample d = p.
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is in the range2 between ns to n. Moreover, by observing the transition of pk, we can

see that most probably, pk will eventually reach 1 when pk is larger than a threshold

in some stage. Therefore, we can define a threshold pth in the range between 1/ns and

1/n or larger (e.g. 0.2 for ns = 7). In each iteration after updating p using (5.32),

we let

pk =







1, when pk > 1 − pth,

0, when pk < pth,

No change, otherwise.

Remark 5.2. We further exploit the Tabu search [217–220] to reduce the execution

time. At the last several iterations where most pk are 1 or 0, the n samples contain

many duplicated samples. Therefore, when a sample is generated, it may be with

previously generated samples. If it has been previously generated, its PAR needs not

be computed again. Because a list containing the samples of d and their PAR is also

required in (5.32), we utilize this list for comparisons. Our simulation results show

that about 15% of IFFTs can be saved.

5.4.3 Modified CE Sign-Selection Algorithm with Threshold

Now, we propose a Modified CE Sign-Selection Algorithm with Threshold (MCESST).

This algorithm stops the optimization when the PAR of an OFDM signal is reduced

to within the amplifier’s linear range. Based on the Full Adaptive CE method (FACE)

[227, 228], MCESST uses “elite” samples to adaptively adjust ρ. That is, instead of

using ρ, we define the number of “elite” samples, ne. After generating n samples d1,

..., dn and sorting the corresponding L(di) in ascending order (denoting as L1, ..., Ln),

we can find a threshold γ such that γ = Lne. Then

ρ = P (L(d) ≤ γ) ≈ ρ̂, (5.33)

where ρ̂ = ne/n. Based on the Central Limit theorem, ρ̂ is a Gaussian random

variable with mean ρ. Its variance decreases to 0 when n goes to ∞.

We can also rewrite (5.33) as

P (L(d) ≤ γ̂) ≈ ne

n
, (5.34)

2The denominator is greater than ns when duplicated low PAR samples are generated.
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where γ̂ is an estimation of γ. That is, γ̂ is a random variable with mean γ, and its

variance decreases to 0 when n goes to ∞.

ρ determines the tradeoff between PAR reduction and execution time. A large

ρ implies a large PAR reduction but a slow convergence. A small ρ leads to a fast

convergence but a small PAR reduction. Therefore, we may start with a relatively

large ρ (i.e., a small n = nmin) to obtain a large PAR reduction. The slow convergence

rate will not significantly increase the execution time because n is small. After each

iteration, we increase n by ninc until n equals a relatively large number nmax. Because

ρ decreases in each iteration with the increase of n, a fast convergence is obtained. In

each iteration, if the PAR is lower than a predefined IBO threshold A, the algorithm

is stopped. Our algorithm is summarized as follows:

Algorithm 5.2 (Modified CESS algorithm with threshold).

1. Initialize A, ne, nmin, nmax, ninc. Let n = nmin.

2. Let p0 ≡ 1, and initialize pk = 0.5, k = 0, ..., N − 1.

3. Generate n samples di with respect to p, and calculate their PAR (i.e., L(di)).

Whenever a dk leads to PAR ≤ A, then output s(opt) = 1 − 2dk, and the

algorithm ends.

4. Otherwise, sort these samples in ascending order according to L(di). Denote

the obtained PAR value sequence as [L0, ..., LN−1].

5. Find γ as γ = Lne , and update p by using (5.32).

6. If p ∈ {0, 1}N , then output s(opt) = 1 − 2p, and the algorithm ends.

7. Otherwise, if n < nmax, let n = n+ ninc, and then, go to step 3.

5.4.4 Convergence and Complexity Discussion

5.4.4.1 Convergence of Our Algorithms

The CE convergence is proved in [229]. A basic assumption of the convergence is that

the neighborhood of the optimum solution is also nearly optimum. Our optimization

problem satisfies this assumption. The neighborhood in our case is defined in terms
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of the Hamming distance. The PAR difference between the optimal sign sequence s∗

and another sign sequence s1 within Hamming distance D from s∗ can be bounded

as
∣
∣
∣max

n
|x̂(n; s∗)|2 − max

n
|x̂(n; s1)|2

∣
∣
∣ ≤ 8

N

(
D∑

i=1

|Xki
|
)2

,

where ki denote the position that s1 differs from s∗. Consequently, when N is large,

a small D always leads to near-optimal solutions.

Let the set S = {si : si = 1 − 2di, L(di) ≤ γ}, which contains ns sign sequence

samples that lead to small PARs. Intuitively, our algorithms count the number of

1’s that appear in S to update p. Some pk in the updated p may be close to 1 (or

0). This fact implies that the signs of the corresponding subcarriers will have a large

chance to be 1 (or 0) in the next iteration. Thus, most of the samples generated

in the next iteration have a small Hamming distance to S (in the neighborhood of

S). A local optimum that has a PAR no larger than those of S is thus ensured.

The other samples at large Hamming distances from S may also have small PARs,

which ensures that escaping from a local optimum and converging towards the global

optimal solution is possible.

5.4.4.2 Complexity of Our Algorithms for Finding a Near Optimal Solu-
tion

We first analyze the complexity of our algorithms3 by calculating the number of

samples required to find a near optimal solution.

In the (i− 1)-th iteration, our algorithms estimate the probability ρ = Pr[L(d) ≤
γ] and optimize p such that, most probably, L(d) ≤ γ in the i-th iteration. The

accuracy of estimating ρ is determined by ne. Therefore, we consider the complexity

of finding a near optimal solution when ne is fixed. We assume that ne is large and ρ

is small such that the samples generated in each iteration describe p with a negligible

error.

We also assume that the optimization leads to a negligible error. Then, in the

i-th iteration, no sample with L(d) > γ will be generated. In other words, the size

of the search space at the i-th iteration, denoted as Si and S1 = 2N , is reduced to

3To find a near optimal solution, no threshold should be used in Algorithm 5.2.
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Si ≈ ρSi−1. If a near optimal solution is found in the K-th iteration, we have

Smin = SK = ρK−1S1 = ρK−12N ,

where Smin ≥ 1 is the number of the near optimal solutions. Then,

K =
log2 Smin −N

log2 ρ
+ 1.

The total number of samples generated in the optimization is nK. Our simulation

results show that n must be proportional to N in order to obtain the same PAR

distribution for different N . Therefore, the total samples required to find a near

optimal solution is of the order O(N2). An exhaustive search may search 2N−1 samples

to find the optimal solution. SLM and derandomization cannot find a near optimal

solution.

5.4.4.3 Complexity Comparison for Finding Suboptimal Solutions

We may fix the number of samples or set up a threshold (as in Algorithm 5.2) to find

suboptimal solutions with low complexity. Each sample is calculated by using FFT.

Thus, the complexity of our algorithms for finding suboptimal solutions is O(N logN)

multiplications (the same as SLM). However, our simulations show that SLM requires

more samples to obtain the same PAR as CESS obtains.

Derandomization iteratively calculates the signs as

sk = −sign

(
2JN∑

n=1

sinh

(

µ

k−1∑

r=1

sranr

)

sinh(µank)

N∏

r=k+1

cosh(µanr)

)

, (5.35)

where sign(x) is the sign of x, µ is a constant, and {ank} is the set of the real and

imaginary parts of Xke
j2π nk

JN , which are calculated and stored before calculating sk.

Computing {ank} requires O(N2) multiplications. The memory requirement for stor-

ing {ank} is 2JN2 floating-point real numbers. Computing cosh(µanr) requires O(N2)

multiplications and O(N2) hyperbolic functions. Thus, calculating
∏N

r=k+1 cosh(µanr)

requires O(N3) multiplications and O(N3) hyperbolic functions. The rest of (5.35)

requires O(N2) multiplications and O(N2) hyperbolic functions. Therefore, deran-

domization requires O(N3) multiplications and O(N3) hyperbolic functions. The

execution time of the hyperbolic functions is much higher than that of multiplica-

tions.

117



By using more memory, we may calculate and store the results of

N∏

r=k+1

cosh(µanr)

for all k before the optimization. Then, the total memory requirement is 4JN2

floating-point real numbers, but the execution time is reduced to O(N2) multiplica-

tions and O(N2) hyperbolic functions.

A greedy algorithm is proposed in [23] based on derandomization, with which the

signs are iteratively calculated as4

sk = arg min
sk∈{+1,−1}

∥
∥
∥
∥
∥

k∑

i=1

aisi

∥
∥
∥
∥
∥

p

p

,

where ai = [ani], n = 1...2JN and k = 2...N , are vectors each having 2JN items.

[23] proves that p(opt.) = log 2JN . Calculating ai requires O(N2) multiplications.

Calculating sk, k = 2...N , requires 4JN(N − 1) power-p operations5. Therefore, the

complexity of this algorithm is O(N2). Its memory requirement is 2JN2 floating-point

real numbers (to store all ai).

The Algorithm 3 in [23] iteratively calculates the signs as

sk = arg min
sk

cosh

(
k∑

i=1

aisi

)

︸ ︷︷ ︸

X

,

where k = 2...N . x = [xn] is a vector of length (2JN), and coshX is defined

as
∑2JN

n=1 cosh xn. Therefore, it requires O(N2) hyperbolic functions. Its memory

requirement is also 2JN2 floating-point real numbers.

Derandomization and the greedy algorithm also require a large number of ad-

ditions, which may be a large burden in some implementations, e.g., in using the

multiplier-accumulator [116], where the execution time of the multiplications is com-

parable to that of the additions.

The execution time of our algorithm is smaller than that of SLM and derandom-

ization. In the next subsection, we compare the PAR reduction of these algorithms

by using simulations.

4When p = ∞, this algorithm becomes a special case of [212].
5The optimal p is usually large. For example, p(opt.) ≈ 6 or 7 when N = 128 and J = 4.
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5.4.5 Numerical Results

5.4.5.1 PAR Reduction by Using CESS

We first show the amount of PAR reduction obtained by using CESS for a 128-

subcarrier, 16QAM OFDM system if large execution time is allowed. The choice of n

and ρ is critical to the system performance. A large n leads to a small PAR, while the

execution time increases accordingly. Similarly, a large ρ implies that many “good”

samples leading to L(di) ≤ γ are taken into account in each iteration. Because CESS

counts the number of 1’s in these “good” samples to approximate the PAR probability

distribution, more “good” samples imply more accurate estimation of a small PAR

but a lower convergence rate. [227] suggests that ρ = 0.01 to 0.1 and n = 3N to

5N . However, such a large n may not be practical for PAR reduction. In order to

find a good tradeoff between PAR reduction and execution time, we investigate the

relationship between PAR reduction and the averaged number of IFFTs for different

n.

Fig. 5.6 shows the averaged PAR versus the averaged number of IFFTs required

by CESS for different N and n. ρ = 0.1 is used in this simulation. In this figure, the

marks on each curve, from left to right, represent the cases of n = 8, 16, 32, 64, 128,

256, 512, 1024, and 2048, respectively. With ρ = 0.1 and n = 8, CESS is the same

as SLM because only one sample will lead to L(di) ≤ γ in each iteration. Fig. 5.6

suggests the following:

1. All curves tend to converge to the same PAR level with large n. This finding

supports the conclusion in [22] that, with optimal sign selection, the PAR can

be bounded to a constant which is independent of N .

2. The averaged number of IFFTs is increased three times when n is doubled.

3. To reach the same averaged PAR for different N , n has to be n = N/K, where

K is a constant independent of N .

4. When n ≥ 64, further increasing n will not reduce PAR much compared to the

much larger increase of execution time.

Now, let us investigate how the choice of ρ affects the averaged PAR and execution

time. Fig. 5.7 shows the averaged PAR versus the averaged number of IFFTs required
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Figure 5.6: Relationship between averaged PAR and the averaged number of IFFTs
required by CESS for different n, where N = 128 and 16QAM symbols are used.

by CESS for fixed n = 128 but different N and ρ. In this figure, the marks on each

curve, from left to right, represent the cases of ρ = 0.01, 0.02, 0.04, 0.06 , 0.08,

0.10, 0.12, 0.14, 0.16, 0.18, and 0.20, respectively. A larger ρ leads to a larger PAR

reduction. ρ = 0.1 may be a good choice for finding a nearly optimal solution. When

ρ > 0.1, the performance improvement in terms of the averaged PAR is small.

5.4.5.2 Performance Comparison of CESS, SLM and the Derandomiza-
tion Method

Fig. 5.8 compares the PAR reduction of CESS, SLM and derandomization [22], where

N = 128, and 16QAM symbols are used. The CESS algorithm is used with ρ = 0.1,

and the threshold pth = 0.2 is used for CESS with acceleration. At a 10−4 clip

probability, CESS with n = 30 obtains 5 dB PAR reduction, which is 0.3 dB larger

than that obtained from derandomization and 1 dB larger than that from SLM with 16

candidates. CESS with n = 64, which requires in average 973 sign sequence samples,

obtains a 5.6 dB PAR reduction, which is about 1 dB larger than that obtained from
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Figure 5.8: PAR reduction comparison of CESS, SLM and the derandomization
method, where N = 128 and 16QAM symbols are used.
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the derandomization method, and is 0.4 dB larger than that from SLM with 973

candidates. With convergence acceleration, the PAR reduction obtained by using

CESS degrades by 0.3 dB, but its execution time is 65% of CESS without acceleration.

CESS with n = 30 requires an average of 235 sign sequence samples. Generating

each sample requires a 512-point IFFT (equivalent to 3076 real multiplications6 [197]).

If we apply the condition (4.44) to exclude the small-magnitude samples, the execution

time of calculating the PAR is negligible. Thus, the overall execution time is 722860

real multiplications.

The execution time of the derandomization method can be calculated as (6JN2 −
8JN) hyperbolic functions and (11JN2−8JN) real multiplications with the help of a

lookup table of 4JN2 floating-point entries7. Therefore, the derandomization method

requires 716800 real multiplications and 389120 hyperbolic functions with the help of

a lookup table of 262144 floating-point entries to store the intermediate results used

in the optimization. Thus, the execution time of derandomization is much larger than

that of CESS with n = 30. Moreover, the memory requirement of the lookup table

used by derandomization is large.

We next compare the PAR reduction of CESS and SLM for the same execution

time. 16QAM symbols are used in this comparison. We consider two cases with

N = 128 and N = 256, respectively. We choose ρ = 0.1 for CESS with n = 8, 16, 32,

64, 128 and 256, respectively. For each case of n, we count the averaged number of

samples generated by CESS, and then use this average as the number of candidates

for SLM. Fig. 5.9 illustrates this comparison. We see that, with the same execution

time, CESS leads to a much smaller averaged PAR than that obtained by using SLM.

6A complex multiplication is counted as three real multiplications [192].
7The detailed execution time of derandomization is as follows: Calculating an,k: 3JN2 real

multiplications, µan,k: 2JN2 real multiplications, cosh(µan,k): 2JN(N − 1) hyperbolic functions,
∏

cosh(µan,k): 2JN(N − 2) real multiplications, sinh(µan,k): 2JN(N − 1) real multiplications,

sinh
(

µ
∑k−1

r=1 sranr

)

: 2JN(N − 2) hyperbolic functions, and calculating signs: 4JN(N − 1) real

multiplications.
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Figure 5.9: PAR reduction comparison of CESS and SLM for the same execution
time, where 16QAM symbols are used.

5.4.5.3 Performance of MCESST

Now, we compare MCESST and SLM for a 128-subcarrier OFDM system. 105 16QAM

OFDM blocks are simulated. Because the PAR of a typical single-carrier signal

using square-root raised-cosine pulse shaping with a roll-off factor of 0.35 is about

6–7 dB [236], we compare MCESST and SLM with three thresholds A = 6 dB, 6.5 dB

and 7 dB (relative to the average power). When applying a threshold to SLM, we

select a large candidate set containing 104 sign sequence samples, but stop the SLM

optimization whenever a candidate that leads to a PAR below the threshold is found.

The parameters for MCESST are selected as in Table 5.2 so that the PARs of virtually

all input OFDM blocks are reduced to below A. We also include in this table, out

of the 105 simulated OFDM blocks, the numbers of “bad” OFDM blocks (denoted as

“Bad Blocks”) whose PARs are larger than A after optimization, as well as the worst

PAR.

Fig. 5.10 shows the PAR reduction obtained by using MCESST and SLM with
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Table 5.2: Simulation Parameters for MCESST

A nmin nmax ninc ne Bad Blocks Worst PAR

6.0 dB 30 80 10 4 8 6.15 dB

6.5 dB 10 350 10 3 1 6.73 dB

7.0 dB 6 18 2 3 1 7.01 dB
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Figure 5.10: PAR reduction comparison of MCESST and SLM for different thresholds,
where 16QAM symbols are used.

the above settings. Both methods obtain the same PAR reduction for each threshold

used. Table 5.3 compares their execution time in terms of the averaged number of

IFFTs and shows that MCESST requires less execution time than that of SLM for

all threshold settings.

5.4.5.4 Performance Comparison of CESS, SLM and the Derandomiza-
tion Method when Using the 91-Hex Constellation

In our previous experiments, the throughput was reduced by one bit per subcarrier.

Now, we use the 91-Hex constellation [150,151] (see Section 3.3.4.2) to eliminate this
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Table 5.3: Averaged Number of IFFTs required by MCESST

A MCESST SLM Ratio (MCESST/SLM)

6.0 dB 196.51 556.01 35.34%

6.5 dB 33.76 40.46 83.44%

7.0 dB 7.84 7.97 98.37%

throughput loss, and we compare the PAR-reduction performance of CESS, SLM and

derandomization. When using the 91-Hex constellation, on average only N̄s = 27

signs are allowed to change for the PAR reduction, and the averaged search space is

reduced to S = (1 + N̄s

N
)N .

Fig. 5.11 compares CESS with SLM and derandomization [22], where N = 128.

The CESS algorithm is used with ρ = 0.1. Although only 42% of the signs are

allowed to change, the PAR-reduction performance obtained by using CESS, SLM

and derandomization is close to that in Fig. 5.8, where all the signs can be changed

for the PAR reduction. When using the 91-Hex constellation, the PARs of these

algorithms and the original OFDM signal are only a little larger than when using

16QAM.

In Fig. 5.11, CESS with n = 30 obtains a 5.3 dB PAR reduction at a 10−4 clip

probability, which is 0.6 dB larger than that obtained by using the derandomization

method. The averaged number of samples generated by CESS in this case is 176.

With the same execution time, the PAR reduction of SLM is 0.2 dB smaller than

that of CESS at a 10−4 clip probability, and is 0.4 dB smaller than that of CESS at a

10−1 clip probability. By increasing the execution time, CESS with n = 60 obtains a

5.8 dB PAR reduction, which is about 1.2 dB larger than that obtained by using the

derandomization method.

Fig. 5.12 compares the PAR reduction obtained by using CESS and SLM for the

same execution time in the 91-Hex case. As we did in the experiments in Fig. 5.9, we

consider two cases with N = 128 and N = 256, respectively. We choose ρ = 0.1 for

CESS with n = 10, 20, 30 and 40, respectively. Again, with the same execution time,

CESS leads to a much smaller averaged PAR than that obtained by using SLM.
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Figure 5.11: PAR reduction comparison of CESS, SLM and the derandomization
method with N = 128 and the 91-Hex constellation.
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Figure 5.12: PAR reduction comparison of CESS and SLM for the same execution
time with the 91-Hex constellation.
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5.4.5.5 Performance of the modified CESS with threshold when Using
the 91-Hex Constellation

Now, we compare MCESST and SLM for a 128-subcarrier OFDM system using the

91-Hex constellation. 105 OFDM blocks are simulated, and MCESST and SLM with

three thresholds A = 6 dB, 6.5 dB and 7 dB (relative to the average power) are com-

pared. The parameters for MCESST are selected as in Table 5.4 so that the PAR of

virtually all the input OFDM blocks are reduced to below A.

Table 5.4: Simulation Parameters for MCESST when 91-Hex is used

A
nmin nmax ninc ne Bad Blocks Worst PAR

6 dB 30 120 10 6 33 6.15 dB

6.5 dB 10 80 10 4 5 6.54 dB

7 dB 6 18 2 4 3 7.18 dB

With these settings, MCESST and SLM obtain the same PAR reduction for each

threshold used. We thus compare their execution time in terms of the averaged

number of IFFTs. Table 5.5 shows the execution time comparison. MCESST requires

less execution time than that of SLM for all threshold settings.

Table 5.5: Averaged Number of Samples Required by MCESST and SLM when 91-
Hex is used

A MCESST SLM Ratio (MCESST/SLM)

6 dB 186.94 563.93 33.15%

6.5 dB 32.15 40.66 79.07%

7 dB 7.84 7.97 98.62%
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5.5 Clipping Guided Sign-Selection Algorithm for

PAR Reduction

Although the optimal solution of (5.9) gives a low PAR, finding a nearly optimal solu-

tion may be computationally costly. In this section, we propose two CGS algorithms

that obtain better suboptimal solutions (i.e., larger PAR reduction) of the discrete

optimization problem with less execution time. These algorithms use a new clipper

device to obtain the clipping noise from the time-domain OFDM signal, and then

flip the signs of those subcarriers with high levels of clipping noise. These algorithms

establish a connection between the discrete optimization problem and the clipping

noise.

In developing these algorithms, a number of clipper models were tested. For

example, we found that the conventional soft limiter [32] does not provide a sufficient

performance. We thus introduce a new clipper model that requires less execution

time and obtains a larger PAR reduction than those of the soft limiter. The difference

between the new clipper and the soft limiter is that the clipping noise generated by

the new clipper contains the entire samples of large peaks higher than a predefined

threshold while that generated by the soft limiter contains only fragments of these

large peaks.

We develop criteria for choosing the number of signs that should be flipped and for

choosing which subcarrier signs should be flipped. Using these two criteria, we derive

two sign-selection-based PAR-reduction algorithms that can handle both unitary and

non-unitary signal constellations. Although a direct comparison between PTS and

SLM and our CGS algorithm is not possible (as PTS and SLM use much less side

information), CGS gains about 1–2 dB over these two methods for a 256-subcarrier

system. A fair comparison by fixing the amount of side information is possible among

CGS, derandomization and tone reservation. In this case, for a 256-subcarrier system,

CGS outperforms these two methods by about 1 dB.

5.5.1 Problem Formulation

In order to derive our algorithms, we must rewrite (5.7) as

X̂ = X− C, (5.36)
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where C = [α0X0, ..., αN−1XN−1] is the peak-canceling vector, and

αk =

{

0, sk = 1,

2, sk = −1.

The discrete-time transmit signal in (5.8) may now be expressed as

x̂n = IDFT[X̂] = xn − cn

= xn −
1√
N

N−1∑

k=0

αkXke
j2π nk

JN ,
(5.37)

in which cn can be viewed as a peak-canceling signal. Only negative signs (sk =

−1) contribute to cn. In the next section, we propose two suboptimal sign-selection

algorithms, which utilize the strength of clipping noise on each subcarrier to find the

signs that should be negative.

5.5.2 Clipping-Noise Guided Sign-Selection Algorithms

The OFDM system with CGS is shown in Fig. 5.13. The input bitstream is first

mapped to data symbols Xk by using a signal constellation (or multiple constellations

if bit-loading is employed). Each block of N data symbols (called an OFDM block) is

fed into an IDFT block to generate the signal xn. The CGS block finds the optimal

time-domain OFDM signal x̂
(opt)
n with the lowest PAR. With the CP appended to

x̂
(opt)
n , the time-domain OFDM signal is modulated to the carrier frequency, amplified

by the HPA, and transmitted through the antenna.
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Figure 5.13: OFDM system with clipping-noise guided sign-selection.

The CGS block is expanded in Fig. 5.14, and the IDFT block is also included

to facilitate the execution time calculation discussed later. In each iteration, the

new clipper process samples xn and outputs the clipping noise fn. The DFT of the

clipping noise Fk, k = 0, ..., N − 1, are used to calculate an index set of negative

signs, S = {k : αk = 2}, that may reduce the peaks of xn below threshold A. A
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candidate OFDM block is thus generated and is used as the input of the next iteration.

After L iterations, the candidate OFDM block with the smallest PAR is selected for

transmission.
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Figure 5.14: Clipping-noise guided sign-selection algorithm.

The proposed CGS algorithms are based on the new clipper model. Given a

predefined threshold A, the clipping noise in this case is

fn =

{

xn, |xn| ≥ A,

0, |xn| < A.
(5.38)

This clipper is different from the conventional soft limiter that generates the clipping

noise as [32]

fn =

{

xn −Aejφn , |xn| > A,

0, |xn| ≤ A,
(5.39)

where φn is the phase of xn. While both the clipper models generate the clipping

noise when xn’s have large peaks, the new model (5.38) contains the entire samples

of large peaks higher than A, whereas the soft limiter (5.39) contains only fragments

of the samples which exceed A. Although both models can work with our proposed
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algorithms, the new model results in less execution time. Moreover, the simulations

show that the new model leads to a larger PAR reduction for non-unitary constellation

input than that obtained by using the soft limiter.

In this section, we first develop two criteria for selecting signs by using the clipping

noise. We propose the clipping-noise-guided sign-selection algorithm for unitary con-

stellations (e.g., PSK), where |Xk| ≡ 1, and extend it to non-unitary constellations

(e.g., QAM).

5.5.2.1 Sign-Selection Criteria

Recall that only the subcarriers with the negative signs contribute to the peak-

canceling signal. Finding the index set of negative signs S requires two criteria in-

volving the determination of the number of negative signs (which is the size of S) and

the selection of the elements of S. Using the relationship between the peak-canceled

samples and the original samples (5.37), we have

|x̂n| ≥ |xn| −
2√
N

∑

k∈S
|Xk| .

Thus, a necessary condition for limiting |x̂n| to smaller than A is that S must satisfy

2√
N

∑

k∈S
|Xk| ≥ |xn|max − A. (5.40)

On the other hand, because

|x̂n| ≤ |xn| +
2√
N

∑

k∈S
|Xk| ,

a larger size of S increases the chance of obtaining a “bad” candidate OFDM block

with a large PAR. Therefore, our algorithm determines the size of S as follows:

Criterion 5.1 (Size of S). The S that may limit |x̂n| to no larger than A must have

the minimum size and satisfy (5.40).

Selecting the elements of S depends on the clipping noise spectrum

Fk =
1√
N

JN−1∑

n=0

fne
−j2π nk

JN , k = 0, ..., N − 1, (5.41)
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where the clipping noise fn is given in (5.38). Projecting Fk to Xk, we have

F̂k = DkXk, k = 0, ..., N − 1,

where

Dk = R

[
FkX

∗
k

|Xk|2
]

, (5.42)

and R [x] represents the real part of x, and (·)∗ represents the complex conjugate.

A peak-canceling signal may be obtained by taking the IDFT of F̂k as

f̂n =
1√
N

N−1∑

k=0

F̂ke
j2π nk

JN =
1√
N

N−1∑

k=0

DkXke
j2π nk

JN . (5.43)

If a large peak of fn, or equivalently xn, occurs at n0, then, f̂n also has a large peak

at n0 with the same direction of fn0. Moreover, due to peak regrowth [19], usually
∣
∣
∣f̂n0

∣
∣
∣ < |fn0 |. Therefore, f̂n may be scaled by the optimum factor β(opt) > 0 to further

reduce the peaks of xn. The modified discrete samples of the OFDM signal is

x̄n = xn − β(opt)f̂n = xn −
1√
N

N−1∑

k=0

β(opt)DkXke
j2π nk

JN . (5.44)

The comparison of (5.37) and (5.44) suggests that αk can be obtained by rounding

some β(opt)Dk to 2 and rounding others to 0. The resulting modified discrete samples

x̂n may have larger peaks than A. However, by minimizing the rounding error, the

peaks of x̂n may still be lower than |xn|max. The mean squared rounding error is

upper-bounded as

ε = E
{
|x̂n − x̄n|2

}

=
1

JN

∑

n

∣
∣
∣
∣
∣

1√
N

∑

k∈S

(
2Xk − β(opt)DkXk

)
ej2π

nk
JN

+
1√
N

∑

k/∈S
β(opt)DkXke

j2π nk
JN

∣
∣
∣
∣
∣

2

≤ 1

N

(
∑

k∈S

∣
∣(2 − β(opt)Dk)Xk

∣
∣+
∑

k/∈S

∣
∣β(opt)DkXk

∣
∣

)2

.

(5.45)

The upper-bound of ε is determined by the term inside (·)2. Then, we have

Criterion 5.2 (Elements of S). Define the maximum rounding error as

ε
max

=
∑

k∈S

∣
∣(2 − β(opt)Dk)Xk

∣
∣+
∑

k/∈S

∣
∣β(opt)DkXk

∣
∣. (5.46)

Then, S must be generated by rounding β(opt)Dk to 2 or 0 such that ε
max

is minimized.
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5.5.2.2 The Clipping-Noise Guided Sign-Selection Algorithm for Unitary
Modulations

By substituting |Xk| ≡ 1 into (5.40), the size of S can be calculated as

I =

⌈√
N(|xn|max − A)

2

⌉

. (5.47)

where ⌈x⌉ represents the smallest integer greater than x. In unitary modulations,

minimizing εmax involves Dk only.

Theorem 5.1. For unitary modulations, ε
max

is minimized if Dk ≥ Dm for all k ∈ S
and m /∈ S.

Proof. By substituting |Xk| ≡ 1 into (5.46),

εmax =
∑

k∈S

∣
∣2 − β(opt)Dk

∣
∣+
∑

k/∈S

∣
∣β(opt)Dk

∣
∣.

Let S = {k1, k2, ..., kI} where Dk ≥ Dm for any k ∈ S and m /∈ S. Without loss of

generality, let S ′ = {k1, ..., kI−1, m}, m /∈ S. Then,

εmax − ε′max =
∣
∣2 − β(opt)DkI

∣
∣+
∣
∣β(opt)Dm

∣
∣

−
∣
∣2 − β(opt)Dm

∣
∣−
∣
∣β(opt)DkI

∣
∣ ,

where εmax and ε′max are the maximum rounding errors associated with S and S ′,

respectively. By discussing the signs of β(opt)DkI
, β(opt)Dm, (2 − β(opt)DkI

) and (2 −
β(opt)Dm), we have εmax − ε′max ≤ 0. Because m /∈ S is arbitrary, Theorem 5.1 is

proved.

Note that β(opt) is irrelevant to the decision about S in the minimization of εmax

in unitary modulations. In other words, we may substitute β(opt) with an arbitrary

positive number without making a wrong decision about S. However, in non-unitary

modulations, we must find β(opt) before we properly choose S. We will discuss this

process in the next subsection.

Also, εmax − ε′max = 0 when β(opt)DkI
≥ β(opt)Dm ≥ 2 or Dm ≤ DkI

≤ 0. Thus,

we are free to include8 any k to S if β(opt)Dk ≥ 2 and to exclude any m from S if

Dm ≤ 0.

8We do not exploit this freedom in Algorithm 5.3 because we do not calculate β(opt).
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We must round the largest I samples of Dk to 2 and round others to 0. Our

algorithm is then summarized as follows [237]:

Algorithm 5.3 (Clipping-Noise Guided Sign-Selection for Unitary Constellations).

Initialization:

1. Choose a magnitude threshold A, and the number of iterations L.

Runtime:

1. For each X, calculate xn by using (5.2). Note that J ≥ 4 is required. Let

η = |xn|max.

2. If η > A, let the iteration number l = 1 and go to Step 3; otherwise, transmit

xn and terminate.

3. Set the index set of negative signs empty S = ∅; calculate fn by using (5.38).

4. Calculate Dk by using (5.42). If all Dk ≤ 0, go to Step 8.

5. Otherwise, calculate I by using (5.47); generate S by rounding the largest I

samples of Dk to 2 and rounding other Dk to 0.

6. Calculate X̂ and x̂n by using (5.36) and (5.37), respectively. If |x̂n|max < η, let

η = |x̂n|max, and store x̂n as x̂
(opt)
n .

7. If l = L go to Step 8; otherwise, increase l by one, let X = X̂ and xn = x̂n, and

go to Step 3.

8. Transmit x̂
(opt)
n .

The execution time of this algorithm may be upper bounded as two FFTs per

iteration. The detailed complexity analysis is given in the next subsection.

5.5.2.3 The Clipping-Noise Guided Sign-Selection Algorithm for Non-
Unitary Modulations

Without loss of generality, we set E
{
|Xk|2

}
= 1. Let d̄ = E {|Xk|}. The size of S

can be calculated from (5.40) as

I =

⌈√
N(|xn|max − A)

2d̄

⌉

. (5.48)
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For square M-ary QAM constellations, we have

d̄ =
4

M

√

6

M − 1

√
M/2
∑

m=1

√
M/2
∑

n=1

√

(m− 0.5)2 + (n− 0.5)2. (5.49)

In non-unitary modulations, minimizing εmax requires a knowledge of β(opt). By

using the adaptive-scaling algorithm [103], β(opt) can be found as

β(opt) =
R

[
∑

n∈Sp
fnf̂

∗
n

]

∑

n∈Sp
|f̂n|2

, (5.50)

where Sp = {n : n ∈ S1, |xn| > |xn−1|, and |xn| ≥ |xn+1|} is the index set of the

peaks of fn.

Because |Xk| is not a constant, the minimization of εmax for non-unitary mod-

ulations depends on both β(opt)Dk and |Xk|. To illustrate the relationship between

β(opt)Dk, |Xk| and εmax, we consider the following example:

Example 5.1. Suppose we have chosen I − 1 elements of S, and the last element will

be selected from β(opt)D0 and β(opt)D1 ,where β(opt)D0 = 1.1 and β(opt)D1 = 1.04.

Case I: Xk are 4QAM symbols.

Because D0 > D1, εmax is minimized when α0 = 2 and α1 = 0.

Case II: Xk are 16QAM symbols, and X0 = 0.5 + 0.5j, X1 = 1.5 + 1.5j.

It is easy to verify that εmax = 2.84 if α0 = 2 and α1 = 0. However, εmax = 2.81

when α0 = 0 and α1 = 2. Thus, the optimum sign-selection is α0 = 0 and α1 = 2

although D0 > D1.

In general, we have the following theorem for minimizing εmax in non-unitary

cases.

Theorem 5.2. In each iteration, let S have the size I that is calculated in (5.48).

Define

Tk =
∣
∣(2 − β(opt)Dk)Xk

∣
∣−
∣
∣β(opt)DkXk

∣
∣ . (5.51)

Then, for non-unitary modulations, ε
max

is minimized if

Tk ≤ Tm for all k ∈ S and m /∈ S. (5.52)
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Proof. Suppose S satisfies (5.52). Let S = S1 ∪ S2 and S1 ∩ S2 = ∅. We may form

another set S ′ by replacing S2 with S3 where S3 ∩S = ∅. Because S and S ′ have the

same size, S2 and S3 also have the same size. In the following, we show that S leads

to a smaller maximum rounding error than S ′.

Let S4 contain the indices that are not in S1, S2 and S3; i.e.,

4⋃

i=1

Si = N ,

where N = [0, ..., N − 1] is the OFDM index set, and

Si ∩ Sk = ∅, for any i 6= k.

The maximum rounding error caused by S is then given by

εmax =
∑

k∈S1∪S2

∣
∣(2 − β(opt)Dk)Xk

∣
∣+

∑

k∈S3∪S4

∣
∣β(opt)DkXk

∣
∣,

and the maximum rounding error caused by S ′ is

ε′max =
∑

k∈S1∪S3

∣
∣(2 − β(opt)Dk)Xk

∣
∣+

∑

k∈S2∪S4

∣
∣β(opt)DkXk

∣
∣.

Therefore, we have

εmax − ε′max =
∑

k∈S2

∣
∣(2 − β(opt)Dk)Xk

∣
∣+

∑

k∈S3

∣
∣β(opt)DkXk

∣
∣

−
∑

k∈S3

∣
∣(2 − β(opt)Dk)Xk

∣
∣−

∑

k∈S2

∣
∣β(opt)DkXk

∣
∣

=
∑

k∈S2

(∣
∣(2 − β(opt)Dk)Xk

∣
∣−
∣
∣β(opt)Dk)Xk

∣
∣
)

−
∑

k∈S3

(∣
∣(2 − β(opt)Dk)Xk

∣
∣−
∣
∣β(opt)DkXk

∣
∣
)

=
∑

k∈S2

Tk −
∑

k∈S3

Tk ≤ 0.

Because S2 and S3 are arbitrarily selected, S minimizes the maximum rounding error.

Our algorithm for non-unitary modulations can be modified from Algorithm 5.3

as follows [237] (the omitted parts are the same as those in Algorithm 5.3).
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Algorithm 5.4 (Clipping Guided Sign-Selection for Non-Unitary Modulations).

• • •

5. Find S as follows:

5-a. Calculate I, β(opt) and Tk by using (5.48), (5.50) and (5.51), respectively.

5-b. Find the smallest I samples of Tk, and denote them as Tk1 , ..., TkI
; set

αi = 2 for i = k1, ..., kI , and set other αi to 0.

• • •

Because calculating β(opt) involves an FFT (for calculating f̂n), the execution time

of this algorithm is upper-bounded as three FFTs per iteration.

Remark 5.3 (Adaptively calculating the size of S). We may directly use (5.40) to find

the size of S. That is, in each iteration, we start from an empty set S = ∅ and flip

the signs one-by-one. The condition in (5.40) is tested every time a sign is flipped.

When (5.40) is satisfied, we generate the X̂ and go to the next iteration.

The size of S now depends on the choice of its elements. Therefore, the condition

of Theorem 5.2 is not satisfied. Although in this case, (5.52) does not ensure the

minimization of εmax, the resulting εmax is still small. Moreover, an adaptive size of

S more precisely meets Criterion 5.1. Thus, adaptively calculating the size of S will

not degrade the PAR-reduction performance. In fact, our simulations show that the

PAR-reduction performance is improved by using an adaptive size of S.

Remark 5.4 (Simplification). The execution time of Algorithm 5.4 can be simplified

to two FFTs per iteration by using the mean of β(opt), which is calculated at the

initialization stage [16], and is used for all OFDM blocks.

Unless A is small, the clipping noise consists of a series of pulses [19]. In [19], we

have proved that, if the clipping noise contains only one dominant pulse, the peak of

f̂n is proportional to that of fn:
∣
∣
∣f̂n

∣
∣
∣
max

= γ |fn|max ,

where γ is the constant of proportionality, whose value depends on the OFDM band-

width and the clipping level. The mean of γ is

γ̄ =
2
√

2√
3π

1

A/σ
,
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where 2σ2 is the average power of the OFDM signals. Because β(opt)f̂n must be close

to fn at the positions of most peaks of fn, we may estimate the mean of β(opt) as

β̄ =
1

γ̄
=

√
3πA

2
√

2σ
. (5.53)

Remark 5.5 (Choice of A). As with other clipping-based PAR-reduction algorithms,

the choice of A relies mainly on experiments. In general, A should be small if a

large PAR reduction is required, and A should be relatively large if fast execution is

desired.

Remark 5.6 (Further Discussion). Our algorithm is effective for large N and for

OFDM symbols with a large PAR. This finding can be intuitively explained as follows:

1. Because SLM with a small number of candidates can effectively reduce the PAR,

when N is large, a large number of sign sequences must exist that can effectively

reduce the PAR. Consequently, the sign sequence obtained from rounding the

clipping noise has a high probability of belonging to these sign sequences.

2. The PAR-reduction performance of our algorithms is determined mainly by the

errors in estimating the size of S and in rounding β(opt)Dk to 2 or 0. In the

next section, we will see that using the average size of S leads to smaller PAR

reduction than using the adaptive size of S, while using β(opt) or β̄ gives virtually

the same PAR reduction. Therefore, the accuracy of estimating the size of S
plays a more important role in our algorithm than in the minimization of the

rounding error.

a) Effect of the error of estimating the size of S.

If such an estimation error occurs, we either have rounded too manyDk’s to

2 or rounded too many Dk’s to 0. In either case, the maximum degradation

of peak reduction is

εd =
∑

k∈Se

2 |Xk|√
N

,

where Se is the difference between the S we are using and the optimum S.

Thus, Se is small when N is large.

b) Effect of the error of rounding β(opt)Dk to 2 or 0.

138



Ideally, a peak canceling signal is a series of pulses, which cancels the

large peaks in the OFDM signal without introducing any new peaks or

increasing any small peaks. Such an ideal signal does not exist because of

the spectrum constraints on the peak canceling signals.

In our algorithms, the rounding error adds new peaks to the OFDM signal.

In OFDM signals with small PARs, most peaks have comparable magni-

tudes. Thus, the new peaks introduced by the rounding error may easily

fall on some existing peaks of the OFDM signal. Little PAR reduction can

be obtained.

On the other hand, in OFDM signals with large PARs, because the number

of large peaks is small [103], the chance that the new peaks introduced by

the rounding error fall on the large peaks of the OFDM signal is also small.

Thus, the large PAR can be effectively reduced.

5.5.3 Complexity Analysis

We analyze the complexity of Algorithm 5.3. The complexity of Algorithm 5.4 and

its simplification can be analyzed similarly.

The complexity of our algorithm9 is determined by mainly (5.37) and (5.41), where

an IDFT and a DFT, respectively, are used. The complexity of the other calculations

involved in our algorithm is O(N) and is independent of J . Therefore, the complexity

of our algorithm is O(N logN). However, because the inputs of the IDFT/DFT in

(5.37) and (5.41) are sparse, their execution time is much smaller than the length-

(JN) IFFT/FFT.

In Eq. (5.41), the averaged number of nonzero samples in fn can be calculated

as [103]

N̄f = JNe−A
2/(2σ2),

where 2σ2 = 1 is the mean power of the OFDM signal. N̄f/N is usually small; e.g.,

N̄f/N ≈ 32% for A = 4 dB and J = 4. Because most samples of fn are 0, the

execution time of (5.41) is much lower than that of a length-(JN) FFT.

9Here, the Runtime Step 1 is excluded because it is required in all OFDM systems whether or
not PAR-reduction techniques are involved.
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Eq. (5.37) also involves a small-size S. The average size of S can be calculated as

E {I} =

∫ ∞

A

I(r)p(r)dr,

where I(r) is the size of S for r = |xn|max,

I(r) =

⌈√
N(r − A)

2d̄

⌉

,

and d̄ = E {|Xk|}. By using the approximated PAR cumulative distribution function

(CDF) [36],

Pr(max |xn| < r) ≈ (1 − e−r
2

)αN ,

where α is empirically obtained as 2.8, the probability density function (pdf) of PAR

can be found as

p(r) = 2αNre−r
2

(1 − e−r
2

)αN−1.

Then,

E {I} =

∫ ∞

A

⌈√
N(r − A)

2d̄

⌉

p(r)dr.

When N = 256 and A = 4 dB, E {I} ≈ 8.1 for 4QAM and E {I} ≈ 8.6 for 16QAM,

where the simulated results are 7.9 and 8.4, respectively. If the adaptive size of S is

used, E {I} will be a little larger. For example, for N = 256, A = 4 dB and 16QAM

symbol input, the mean of the adaptive size of S obtained by simulation is 12.6. In

any case, the execution time of (5.37) is much less than that of a length-(JN) IFFT.

To simplify the execution time comparison, we loosely upper bound the execution

time of Algorithm 5.3 as two FFTs per iteration. With similar analysis, we can show

that the execution time upper-bounds of Algorithm 5.4 and its simplification are three

and two FFTs per iteration, respectively.

5.5.4 Simulation Results

In this section, we compare the CGS algorithm with SLM, PTS, derandomization,

and tone reservation techniques for a 256-subcarrier OFDM system with unit-energy

64QAM. Four times oversampling (J = 4) is used in optimization and eight times

oversampling (J = 8) is used in calculating the PAR after an optimal sign sequence

is selected. For CGS, the average β(opt), β̄, and the adaptively calculated size of S
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are used (see Remarks 5.3 and 5.4). The adaptive scaling algorithm [103] with eight

iterations is used for tone reservation, where randomly-selected 1/6 subcarriers are

reserved for PAR reduction. Thus, the amount of redundancy is the same in tone

reservation and CGS. The execution time of the tone reservation is the same as that

of CGS with eight iterations.

Fig. 5.15 compares the PAR reduction of these algorithms in terms of the PAR

complementary cumulative distribution function (CCDF) F (ξ0) = Pr[ξ > ξ0]. The

PAR reduction of the tone reservation is about 0.1 dB larger than that of CGS with

eight iterations at F (ξ0) = 10−3, and is the same at F (ξ0) = 10−4 (about 5.9 dB).

However, tone reservation leads to a 0.42 dB average power increase, which translates

into a BER increase, while CGS does not change the average power.
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Figure 5.15: PAR reduction comparison of CGS with β̄ and adaptive size of S, SLM,
PTS, derandomization and tone reservation, where N = 256, and 64QAM symbol
input is used.

At F (ξ0) = 10−4, the PAR reduction of CGS with eight iterations is about 2.1 dB

larger than that of SLM with 16 candidates, 1.4 dB larger than that of PTS with eight

randomly partitioned subgroups, and 0.9 dB larger than that of the derandomization
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algorithm. In this experiment, both SLM and CGS require 16 FFTs per OFDM

block. PTS must test 27 = 128 combinations.

CGS with one iteration obtains a 3.2 dB PAR reduction, which is about 0.3 dB

larger than that of SLM with four candidates. In this experiment, CGS and SLM

require two and four FFTs per OFDM block, respectively.

Table 5.6 lists the averaged running time of these algorithms obtained on a Pen-

tium IV 3.40G computer using Matlab R14 Service Pack 2. The time used by CGS

with eight iterations is only 89% of that of SLM with 16 candidates, 9.4% of that of

PTS with eight subgroups, and 1.4% of that of the derandomization algorithm.

Table 5.6: Averaged running time of CGS, SLM, PTS and the derandomization
algorithm, where N = 256, and 64QAM symbol input is used.

Averaged Computation Time
(millisecond)

CGS, A = 4 dB, L = 8 4.9

SLM, K = 16 5.5

PTS, G = 8 52.1

Derandomization 362.0

We now compare SLM, PTS, derandomization, and CGS by observing the Power

Spectrum Density (PSD) of the output of the OFDM transmitter, where the peak-

reduced OFDM signal is passed through a Solid State Power Amplifier (SSPA) [1],

y(t) =
|x(t)|

(

1 +

( |x(t)|
C

)2p
) 1

2p

ejφ(t),

where x(t) = |x(t)|ejφ(t) is the input, and y(t) is the output of SSPA. Usually, p = 3

for practical SSPA. In our simulations, we choose C = 6 dB. Fig. 5.16 shows the

result. CGS with eight iterations leads to only −40 dB out-of-band radiation, which

is 1 dB lower than that of derandomization, 8 dB lower than that of PTS with eight

subgroups, 9 dB lower than that of SLM with 16 candidates, and 12 dB lower than

that without using any PAR-reduction techniques, respectively.

Fig. 5.17 compares Algorithm 5.4 with different configurations including β̄ + aver-

age size of S, β̄ + adaptive size of S, β(opt) + average size of S, and β(opt) + adaptive
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Figure 5.16: Power spectrum density of SLM, PTS, derandomization and CGS, where
N = 256, and 64QAM symbol input is used.

size of S. 256 subcarriers and 16QAM symbols are used. Using the adaptive size of

S leads to larger PAR reduction than using the average size of S. On the other hand,

using β(opt) leads to virtually the same PAR reduction as using β̄. The execution

time is three FFTs per iteration when β(opt) is used while the execution time is two

FFTs per iteration when β̄ is used.

Fig. 5.18 compares Algorithm 5.4 with eight iterations but different clipping level

A. 256 subcarriers and 16QAM symbols are used, and the CGS configuration is β̄ +

adaptive size of S. A = 4 dB leads to the largest PAR reduction. Other choices of

A lead to performance degradation. However, the largest performance degradation is

only about 0.9 dB. Therefore, our algorithm is not overly sensitive to the choice of A.

Fig. 5.19 compares CGS with β̄ + adaptive size of S and SLM for OFDM systems

with different numbers of subcarriers, where the other parameters are same. When

the number of subcarriers doubles, the PAR reduction of both algorithms decreases

by about 0.4 dB.
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Figure 5.17: PAR reduction comparison of different configurations of CGS, where
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N = 256, and 16QAM symbol input is used.
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5.6 Conclusions

In this chapter, we proposed an adaptive mapping scheme for the sign-selection PAR-

reduction technique to eliminate side information. We also proposed several algo-

rithms (based on using a stochastic search or the clipping noise as a guide) to solve

the associated discrete optimization problem of the sign-selection technique. The com-

plexity analysis and simulation confirmed the complexity advantages of the proposed

algorithms compared to the selective mapping and the derandomization algorithms.

145



Chapter 6

Coding Technique

We generalize the Rudin-Shapiro sequences [24–26] and study their availability for

combining the multiple signal representation techniques to further reduce the PAR.

6.1 Rudin-Shapiro Sequence for MPSK Symbols

The ordinary Rudin-Shapiro sequence is used only for BPSK. However, this sequence

can be easily extended to encode n MPSK symbols:

pi+1(z) = pi(z) + z2i

ejφiqi(z), (6.1)

qi+1(z) = pi(z) − z2i

ejφiqi(z), (6.2)

where p0(z) = q0(z) = 1, and φi are MPSK symbols. The PAR of pn(z) or qn(z) is

no larger than 2.

pn(z) and qn(z) can be written in matrix form in accordance with

pn(z) = zejpn,

qn(z) = zejqn,
(6.3)

where z =
[

1 z · · · zN−1

]

, ejpn =
[

ejp0 ejp1 · · · ejpN−1

]T

, N = 2n is the se-

quence length, and pn, qn are the corresponding MPSK phase vectors. By defining

the input symbol vector u =
[

φ0 · · · φn−1

]

, the encoding from u to pn and qn can

be written as

pn = uG + r(p)
n , (6.4)

qn = uG + r(q)
n , (6.5)
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where G is the n×N generating matrix, and r
(p)
n and r

(q)
n are the corresponding phase

compensation vectors with

r
(p)
0 = r

(q)
0 =

[

0
]

, (6.6)

r(p)
n =

[

r
(p)
n−1 r

(q)
n−1,

]

, (6.7)

r(q)
n =

[

r
(p)
n−1 r

(q)
n−1,

]

. (6.8)

Here, a represents the element-wise π’s complementary (i.e., for each element of a,

0 = π and π = 0). The generation matrix G can be constructed such that its i-th

row Gi∗ has the form

Gi∗ =
[

ĝi ĝi · · ·
]

︸ ︷︷ ︸

2n−i+1 items

, i = 1, ..., n, (6.9)

ĝi =
[

01×2i−1 11×2i−1

]

, (6.10)

where 01×2i−1 and 11×2i−1 represent the length 2i−1 all 0 and all 1 row vectors, respec-

tively. Like the coding rate of the original Rudin-Shapiro sequence, the coding rate

is

R =
n

N
=

n

2n
. (6.11)

6.2 Further Generalization of Rudin-Shapiro Se-

quence

A further generalization of the Rudin-Shapiro Sequence can be obtained by extending

p0(z) and q0(z) to length-m polynomials with each containing m− 1 PSK symbols in

accordance with

p0(z) = 1 + zejφ0 + z2ejφ1 + · · · + zm−1ejφm−2 , (6.12)

q0(z) = 1 + zejφm−1 + z2ejφm + · · ·+ zm−1ejφ2m−3 , (6.13)

where m ≥ 1, and ejφk , 0, when k < 0 (i.e. p0(z) = q0(z) = 1 when m = 1).

Correspondingly, the recursive generation functions are

pi+1(z) = pi(z) + z2imejφi+2m−2qi(z), (6.14)

qi+1(z) = pi(z) − z2imejφi+2m−2qi(z). (6.15)
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We then find

PAR(pn(z)) =
1

N
max
z

|pn(z)|2 ≤ 2m. (6.16)

The coding rate of this generalized Rudin-Shapiro sequence is

R =
n+ 2m− 2

2nm
. (6.17)

The generation matrix G can be constructed recursively in accordance with

G =







[

Gn−1 Gn−1

01×(2n−1m) 11×(2n−1m)

]

, N > 1,

[

G
(p)
0 G

(q)
0

01×m 11×m

]

, N = 1.

(6.18)

where

G
(p)
0 =




0(m−1)×1 I(m−1)

0(m−1)×1 0(m−1)×(m−1)



 , (6.19)

G
(q)
0 =




0(m−1)×1 0(m−1)×(m−1)

0(m−1)×1 I(m−1)



 , (6.20)

with I(m−1) representing (m− 1)-by-(m− 1) identity matrix.

The PAR of the generalized Rudin-Shapiro sequence is determined by only its

initial sequence. Suppose the PAR of p0(z) and q0(z) is upbounded by PAR0; then,

PARpn
≤ 2PAR0. Therefore, by reducing the PAR of p0 and q0, the PAR of pn can

also be reduced.

6.3 Simulation Results

Fig. 6.1 shows the PAR CCDF of the generalized Rudin-Shapiro sequences, where the

length of the coded sequences is N = 128. Different lengths of the initial sequences

are simulated. The PAR is upbounded by 2m. A larger m gives a larger coding rate,

but leads to a larger PAR. When m is large (m = 32), the PAR CCDF is close to

that of the uncoded OFDM sequences. On the other hand, if the optimal signs of the

initial sequences are used, the PAR of the generalized Rudin-Shapiro sequence can

be significantly reduced. For example, when m = 8, and the signs of initial sequences

are not optimized, the PAR is about 10.5 dB at PAR CCDF of 10−4. However, when

optimal signs are used for the initial sequences, the PAR is reduced to only 6.8 dB.
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Figure 6.1: PAR CCDF of the generalized Rudin-Shapiro sequence for different m.

6.4 Conclusions

In this chapter, we generalized the Rudin-Shapiro sequences. Constructed from an

initial PSK sequence, the generalized sequence increases the coding rate at the cost

of an increased PAR. By optimizing the signs of the initial sequence, the PAR of the

generalized sequence can be further reduced.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we analyzed the PAR of OFDM systems and the amplitude clipping of

OFDM signals with large peaks. Several PAR-reduction algorithms were proposed in

Chapters 4 to 6.

Chapter 4 analyzed the clipping noise by approximating it as a series of parabolic

pulses. Both the case in which the clipping noise consists of a single pulse and the

case of multiple pulses have been discussed. Our analysis explained the peak regrowth

and the constant clipping noise power spectrum over the whole OFDM band. We

also established the roughly proportional relationship between the clipping noise at

the end of several clipping and filtering iterations, and that generated in the first

iteration. The constant of proportionality was estimated by using the level-crossing

theory [15, 16].

In Chapter 4, a constant-scaling algorithm and an adaptive-scaling algorithm were

proposed to reduce the PAR under the tone-reservation constraints. These algorithms

scale the filtered first-iteration clipping noise by a constant or adaptively-calculated

factor to compensate for peaks above the threshold. Analysis and simulation results

showed that our proposed algorithms achieved a larger PAR reduction and lower

complexity than the active-set algorithm. We also proposed a fast method to calculate

the PAR and to find the clipping noise. This method can also be used in other PAR-

reduction techniques such as SLM and PTS.

Chapter 5 focused on reducing the PAR by using the sign-selection technique. We

first proposed an adaptive mapping scheme to eliminate the need for side information
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at the receiver. Then, several algorithms were proposed to solve the discrete opti-

mization problem associated with the sign-selection technique. The modified PTS

algorithm first applied an initial sign sequences to the OFDM block, and then par-

titioned the OFDM block into subblocks and optimized the sign of each subblock

to minimize the PAR. The recursive partial sequence algorithm also partitioned the

OFDM block into subblocks. A suboptimal sign sequence was found by first min-

imizing the PAR of each subblock by optimizing the signs of the data symbols in

this subblock, and then iteratively optimizing the sign of each subblock. The CESS

algorithm used the CE method to solve the discrete optimization problem. The CGS

algorithm used the clipping noise to guide the sign optimization. These algorithms

offer a flexible tradeoff between PAR reduction and execution time, and obtain a

larger PAR reduction than that obtained by existing techniques.

In Chapter 6, we generalized the Rudin-Shapiro sequences [24–26]. Constructed

from an initial PSK sequence, the generalized sequence increased the coding rate at

the cost of an increased PAR. By optimizing the signs of the initial sequence, the

PAR of the generalized sequence can be further reduced.

7.2 Future Work

The search for fast algorithms to achieve large PAR reduction for OFDM systems still

faces many challenges. Future research could be carried out on the following topics:

• The PAR distribution of the peak reduced OFDM signal for the low clipping

threshold.

In this thesis, we have derived the proportionality between the total clipping

noise and the clipping noise generated in the first iteration. The PAR distribu-

tion of the peak reduced OFDM signal can then be derived for iterative clipping

and filtering. However, when the clipping threshold is relatively low, the pro-

portionality is biased by the interactions of the neighboring clipping pulses.

Therefore, calculating the PAR distribution of the peak reduced OFDM signal

is complicated. Future research on this topic would facilitate the evaluation and

comparison of different clipping-based algorithms, and would help to develop

new PAR-reduction algorithms to find the optimal solution.
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• The optimal clipping threshold for clipping-based PAR-reduction algorithms.

Hitherto, the optimal clipping threshold for clipping-based PAR-reduction algo-

rithms have been determined by simulation. Our research in this thesis showed

that the optimal clipping threshold is closely related to the strength of the

time-domain sidelobes of the reserved tones. In other words, if the number of

reserved tones is small and/or the reserved tones are consecutive (i.e., large

sidelobes), the optimal clipping threshold should be large. If a large number

of reserved tones are randomly selected, the clipping threshold should be low.

A theoretical study of the optimal clipping threshold may need to identify the

PAR distribution of the peak reduced OFDM signal.

• Power increase in tone-reservation and ACE.

A side effect of tone-reservation and ACE is that the average power is increased

after PAR reduction. Although such a power increase is small, it should still

be minimized while reducing the PAR. We observed in Section 4.4 that the

active-set algorithm gives rise to the smallest average power increase among

the algorithms we compared. However, the PAR reduction of the active-set

algorithm is inferior to that of the adaptive-scaling algorithm. Future research

may combine the active-set and adaptive-scaling algorithms to minimize both

the PAR and the average power increase.

• Low complexity algorithm for evaluating the PAR without IFFT.

All sign-selection algorithms must calculate the time-domain samples and eval-

uate the PAR of a large number of sign-sequence candidates. In this thesis, we

proposed a fast algorithm to calculate the PAR without computing the mag-

nitudes of all the time-domain samples. However, calculating the time-domain

samples of a sign sequence still requires an IFFT. This requirement is costly

because of the need to calculate a large number of candidates. A low com-

plexity algorithm for evaluating the PAR without IFFT would allow us to use

more sign-sequence candidates to find a larger PAR reduction. Such an al-

gorithm would also facilitate the use of clipping-based algorithms because they

also require FFT/IFFT to compute the clipping noise in the time and frequency
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domains.

• Fast CESS algorithms.

The CESS algorithm proposed in this thesis still requires a large number of

sign-sequence candidates to obtain a large PAR reduction, because a relatively

large number of candidates are required in each iteration to ensure a small

variance in estimating the PAR distribution. Future research may find a bet-

ter probability-estimation algorithm that estimates the PAR distribution with

acceptable variance by using a small number of candidates. Moreover, a deter-

ministic version of CESS may outperforms the stochastic one proposed in this

thesis.

• The relationship between the clipping noise and the optimal signs.

Section 5.5 showed that the suboptimal signs for the sign-selection technique

may be found by using the clipping noise. However, the relationship between the

clipping noise and the optimal signs still requires further study. In this thesis,

the suboptimal signs were found by rounding the magnitude of the clipping

noise in the frequency domain to 0 or 2, and by minimizing the upper bound

of the rounding error. A more accurate estimation of the rounding error may

lead to faster convergence. Also, the rounding error is not directly related to

the PAR. Thus, a more appropriate criterion needs to be derived to obtain a

larger PAR reduction.

• Low PAR codes with a high coding rate and PAR reduction for MIMO OFDM

systems.

• Peak reduction criteria using a more appropriate measure than the PAR.

The purpose of peak reduction is to minimize the inband distortion and out-of-

band radiation caused by the nonlinearity of HPA. A small PAR does not always

imply a small inband distortion and out-of-band radiation. Peak-reduction cri-

teria using other measures have also been studied based on simulations [238–

240]. [239] observed that, when nonlinear amplification is allowed to some ex-

tent, the distribution of the envelope, rather than that of the PAR, is a more rele-
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vant measure. A theoretical analysis and comparison of different peak-reduction

criteria would help to develop more efficient peak-reduction algorithms.
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