
It is dangerous to put limits on wireless.

– Guglielmo Marconi, 1932.



University of Alberta

CHANNEL ESTIMATION AND TRAINING SEQUENCE DESIGN
FOR ONE-WAY AND TWO-WAY RELAY NETWORKS

by

Gongpu Wang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Communications

Department of Electrical and Computer Engineering

© Gongpu Wang
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or
sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as herein
before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any

material form whatever without the author’s prior written permission.



Dedicated to

my beloved parents, sister and wife.



Abstract

Wireless relay networking is a highly active research field. Several relay standards have been or are

being specified for next-generation mobile broadband communication systems. Channel estimates

are required by wireless nodes to perform essential tasks such as precoding, beamforming and data

detection. Thus this thesis focuses on channel estimation for amplify-and-forward (AF) one-way

relay networks (OWRNs) and two-way relay networks (TWRNs).

For orthogonal frequency-division multiplexing (OFDM) based TWRNs, joint carrier frequency

offset (CFO) and channel estimation is investigated. Two new zero-padding (ZP) and cyclic-prefix

(CP) transmission protocols are proposed. Both protocols enable an estimator based on the nulling-

based least square (NLS) algorithm and perform identically when the block length is large. A de-

tailed performance analysis is given by proving the unbiasedness of the estimator at high signal-

to-noise ratio (SNR) and by deriving the closed-form expression of the mean-square error (MSE).

Since the two protocols and corresponding NLS algorithm can only estimate the convoluted chan-

nel parameters, a superimposed training strategy is proposed to estimate all the individual channel

parameters. Specifically, three different algorithms that require different lengths of trainings are de-

signed for the initial parameter estimation and an iterative algorithm is developed to refine the initial

estimation results.

For TWRNs operating over time-varying fading environments, channel estimation and training

sequence design are investigated. A new complex exponential basis expansion model (CE-BEM) is

proposed to represent the mobile-to-mobile time-varying channel. To estimate the parameters of this

model, a novel pilot symbol-aided transmission scheme is developed such that a linear approach can

estimate the convoluted channels. More essentially, two algorithms are designed to extract the BEM

coefficients of the individual channels. The optimal training parameters are derived by minimizing

the estimation MSE.

For OWRNs operating over doubly-selective channels, estimation algorithms and training se-

quence design are investigated. The CE-BEM is utilized to approximate the doubly-selective chan-

nel. Since direct estimation of the CE-BEM coefficients requires large pilot overhead, an efficient

estimator is developed that targets only useful channel parameters that could guarantee effective data

detection. The training sequence design that can minimize the estimation MSE is also proposed.
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Chapter 1

Introduction

Wireless relay networks have been a highly active research field ever since the pioneer work [1]–

[3]. Relays can improve throughput, enhance reliability [1], and increase coverage [2]. Several relay

standards have been or are being specified for the next-generation mobile broadband communication

systems [4] such as Long Term Evolution-Advanced (LTE-A) [71] and IEEE 802.16j [72].

High data rate for users is one of the main goal of LTE-A and IEEE 802.16j. Technologies

such as orthogonal frequency-division multiplexing (OFDM) and multiple-input and multiple-output

(MIMO)1 can improve throughput but may fail at the cell edge where signal levels are lower and

interference levels are typically higher. The use of relays in LTE-A can increase the data rates

at the cell edge. The cell-edge relays will receive and decode the data and retransmit to the user

equipment (UE)/mobile station (MS) or the evolved Node B (eNB)/base station (BS). In this way

the signal quality is enhanced, and thus data transmission for remote UE or MS is enabled and

coverage extended. The gain in SNR can be from 2 to 30 dB [4]. Such a relay node is defined as

Type-I (or non-transparency) relay station (RS) in LTE-A. Another type of relay node defined in

LTE-A and IEEE 802.16j is Type-II (or transparency) RS which is located with the coverage of an

eNB/BS and has a direct link with UE/MS. Type-II RS can increase overall system capacity through

transmission to the local UEs.

Currently, two-hop relay transmission has been developed in LTE-A, and IEEE 802.16j supports

relay-based multihop communications in a cell. As well, two relay selection schemes are suggested

in LTE-A to select and pair nearby RSs and UEs [71]. The first scheme is centralized and depends

on an eNB to serve as a control node to collect required channel and location information from all

RSs and UEs. The second scheme is distributed since each RS can select an appropriate UE unit in

its neighborhood.

In the rest of this chapter, relay networks are briefly introduced. Wireless channel models and

1MIMO means the use of multiple antennas at both the transmitter and receiver.
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channel estimation techniques are reviewed. Channel estimation and training sequence design for

relay networks are discussed. Finally, thesis contribution and organization are highlighted.

1.1 OWRN

A typical relay network consists of a source node, one relay node (or several relay nodes) and a

destination node (Fig. 1.1). The transmission involves two phases. In the first phase, the source

broadcasts signals to the relay node and possibly to the destination. In the second phase, the relay

resends a version of the received signal in the first phase to the destination. The relay can be amplify-

and-forward (AF) or decode-and-forward (DF) [2]. In the AF scheme the relay simply amplifies the

received signal and then forwards to the destination. In the DF scheme the relay will decode the

received signal and regenerate and retransmit to the destination. Finally, the destination combines

the relayed signals and possibly the direct signal from the source to recover the data.

In the early relay networks [1]–[3], the data flow is considered unidirectional from the source to

the relay and then to the destination (Fig. 1.1). Such a network is referred to as the one-way relay

network (OWRN) . The other alternative is the two-way relay network (TWRN) .

Source

Relay

Destination

Fig. 1.1. A one-way relay network

1.2 TWRN

In a TWRN (Fig. 1.2), two terminals send information simultaneously to the relay, and the relay

forwards to both terminals after a “network coding”-like process [5]. By removing the self-signal

component, each terminal obtains the other terminal’s information. This two-way transmission was

firstly exploited by Shannon in his early work [6] and now has drawn much attention [11], [12], [14]

due to its improved spectral efficiency over OWRN. The overall communication rate between two
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Fig. 1.2. A two-way relay network

source terminals in a TWRN is approximately twice that achieved in a OWRN [7], making a TWRN

particularly attractive to bidirectional systems.

The capacity analysis and the achievable rate region for AF and DF based TWRN were explored

in [16], [17]. In [18], the optimal relay mapping function that minimizes the bit-error rate (BER)

was proposed. In [11], distributed space-time codes (STC)2 were designed for both AF and DF

TWRN. Moreover, the optimal beamforming at the multi-antenna relay that maximizes the capacity

of AF-based TWRN was developed in [12].

In the next section, fundamentals of wireless channels are briefly described.

1.3 Wireless Channel

1.3.1 Channel Model

The wireless channel is described by the response h(t, τ) at time t to an impulse transmitted at time

t − τ . The channel consists of several independent paths. For this multipath model, the general

expression can be written as [63]

h(τ, t) =
∑
i

ai(t)δ(τ − τi(t)), (1.1)

where ai(t) is the attenuation and τi(t) is the delay from the transmitter to the receiver on the i-th

path. An example of a wireless channel with three paths is shown in Fig. 1.3.

The general expression (1.1) is also known as a doubly-selective channel since there are several

paths and the attenuations and delays are functions of time. The following two special cases for

2STC is a method to improve the transmission reliability by sending multiple, redundant copies of a data stream on
multiple transmit antennas.
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Transmitter
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Fig. 1.3. Wireless channel model

h(t, τ) are widely used:

• time-invariant frequency-selective channel: This channel occurs when the transmitter, receiver

and the environment are all stationary so that the attenuations ai(t) and propagation delays

τi(t) do not depend on time t. However, the delays are significantly large compared to the

symbol period.

• time-varying (or time-selective) flat-fading channel: The delays τi(t) in this case are all ap-

proximately constant and small compared to the symbol period. This channel occurs when

the transmitter or the receiver is mobile and when the symbol period of the transmitted signal

significantly exceeds any of all the delays.

Since the symbol period Ts decreases when the data rate increases, the channel can be flat-fading

or frequency-selective depending on the data rate. Moreover, the delay spread is another relevant

parameter. Delay spread Td is defined as the difference in propagation delay between the longest

and shortest path,

Td = max
i,j

|τi(t)− τj(t)|. (1.2)

When Ts is much larger than Td, the channel is flat-fading. Otherwise, the channel is frequency-

selective. For example, the typical delay spread in a wireless channel in an urban area is 5µs when

the distance between transmitter and receiver is 1 km [64]. When the data rate is 1 kbps, the symbol

period is 1 ms, and the channel is flat-fading since the delay is negligible compared to the symbol

period. If the data rate increases to 1 Mbps, the symbol period Ts is 1µs. Then the channel becomes

frequency-selective due to the non-negligible delays.

Furthermore, the mobility of transmitter or receiver will induce a shift in radio frequency, which
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is referred to as the Doppler shift Ds. Coherence time Tc, a parameter related to the Doppler shift,

is defined as

Tc =
1

4Ds
. (1.3)

If the coherence time Tc is comparable to the symbol period, the channel is time-varying . On

the other hand, in time-invariant channels, the coherence time Tc is much larger than the symbol

period ( i.e., the channel remains constant). For example, if Doppler shift Ds = 50 Hz, and the

transmission data rate is 1 Mbps, then the coherence time Tc = 2.5 ms is much larger than one

symbol duration 1µs. In this case the channel is time-invariant.

The types of wireless channels are depicted in Table 1.1.

TABLE 1.1
THE TYPES OF WIRELESS CHANNELS.

Types of Channel Characteristic

Time-varying Tc << Ts

Time-invariant Tc >> Ts

Flat-fading Td << Ts

Frequency-selective Td >> Ts

1.3.2 Channel Input and Output

In terms of the wireless channel h(t, τ), the relationship between input s(t) and output y(t) is given

by

y(t) =

∫ +∞

−∞
h(t, τ)s(t− τ)dτ + w(t), (1.4)

where w(t) is an additive white Gaussian complex noise signal. The receiver is required to recover

data signal s(t) from received signal y(t); this process is called data detection.

For data detection, the receiver requires the knowledge of h(t, τ), which is referred to as chan-

nel state information (CSI). To help the receiver estimate CSI, special predefined symbols may be

transmitted in addition to data symbols. These symbols are called pilot symbols or training symbols.

Pilot symbols are utilized by the channel estimator at the receiver to obtain CSI.

In practice, channel estimation and data detection are done by using the discrete-time baseband

signals. Define the samples y(nTs) = y(n) for n = 0, 1, · · · , N − 1. The discrete-time baseband

model equivalent to (1.4) can then be obtained as

y(n) =
L∑

l=0

h(n, l)s(n− l) + w(n), (1.5)
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where h(n, l) is the sampling version of h(t, τ), i.e., h(n, l) = h(nTs, lTs), and s(n − l) is the

sampling version of s(t), i.e., s(n− l) = s((n− l)Ts), and L+ 1 is the number of multipaths and

w(n) is complex white Gaussian noise with mean zero and variance σ2
w.

1.4 Channel Estimation in Point-to-point Systems

1.4.1 Estimation of Frequency-selective Channels

For a frequency-selective time-invariant channel, since h(n, l) does not change with time index n,

i.e., h(n, l) = h(l). Therefore the model (1.5) can be simplified as

y(n) =

L∑
l=0

h(l)s(n− l) + w(n). (1.6)

Define y = [y(0), y(1), · · · , y(N−1)]T , w = [w(0), w(1), · · · , w(N−1)]T and h = [h(0), h(1), · · · , h(L)]T

where N is the block length. We can write (1.6) in the following vector form

y =Sh+w, (1.7)

where S is a N × (L + 1) circulant matrix with the first column s = [s(0), s(1), · · · , s(N − 1)]T .

Note that sequence s is the training sequence and depends on the choice of pilots and their values.

Two linear estimators are often utilized to obtain the estimate of h from the received signal y.

The first one is least square (LS). It treats h as deterministic constant and minimizes the mean square

error. The LS estimate is [66]

ĥ =(SHS)−1SHy. (1.8)

The second one is the linear minimum mean square error (LMMSE) estimator. It treats h as a

random vector and minimizes the mean square error. The LMMSE estimate is [66]

ĥ =E(h) +RhyR
−1
yy (y − E(y)), (1.9)

where Rhy denotes the covariance matrix of h and y, i.e., Rhy = E(hyH) and Ryy denotes the

auto-covariance matrix of y, i.e., Ryy = E(yyH).

The LS estimator is simpler compared with the LMMSE estimator. But it outperforms the LS

estimator in the low SNR region because it exploits the statistics of h. However, at high SNR, the LS

estimator achieves almost the same performance as the LMMSE estimator because the contribution

of the statistics of h to the estimation process is negligible at high SNR [66].
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1.4.2 Estimation of Time-varying Channels

For a time-varying flat-fading channel, the model (1.5) can be simplified as

y(n) =h(n)s(n) + w(n). (1.10)

Only CSI at a limited set of time instances can be estimated because the data symbols will be

transmitted at other time instances. To solve this problem, time-varying channels are represented

by using the Gauss-Markov model [33], which tracks channel variation through symbol-by-symbol

updating, and by using the basis expansion model (BEM) [36], which decomposes the channel into

the superposition of the time-varying basis functions weighted by time-invariant coefficients.

Using the BEM, we can approximate h(n) as

h(n) =

Q∑
q=0

hquq(n), (1.11)

where hq, q = 0, 1, · · · , Q, are the time-invariant coefficients and uq(n), q = 0, 1, · · · , Q, are the

basis function, and Q+ 1 is the number of basis functions. Candidate basis functions include com-

plex exponential (Fourier) functions [42] [36], polynomials [38], wavelet [40] and discrete prolate

spheroidal (DPS) sequences [39]. It is pointed out that DPS outperform complex exponential basis

in approximation [39]. The BEM can also represent doubly-selective channels [42].

1.4.3 Joint CFO and Channel Estimation

Suppose the carrier frequency of transmitter is f1 and that of the receiver is f2. Carrier frequency

offset (CFO) is the difference of carrier frequencies , i.e., v = f2 − f1. The CFO v may arise

due to two reasons: first, a carrier frequency mismatch exists between the transmitter and receiver

oscillators; second, a Doppler shift can arise due to the relative motion between the transmitter and

the receiver.

In some cases CFO and CSI can be estimated jointly, which is often referred to as joint CFO and

channel estimation.

With the CFO, the received signal (1.7) can be rewritten as

y = Γ(v)Sh+w, (1.12)

where Γ(v) = diag{1, ej2πv, · · · , ej2πv(N−1)}.

To perform joint estimation, the likelihood function of the parameters (h, v) is obtained as

λ(y;h, v) =
1

(πσ2
w)

N
exp

{
− 1

σ2
w

[y − Γ(v)Sh]
H
[y − Γ(v)Sh]

}
. (1.13)
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Fig. 1.4. Traditional pilots versus superimposed pilots.

Through maximizing the likelihood function (1.13), the optimal joint estimate of v and h can be

found. The details can be found in [58]. The maximum-likelihood (ML) joint estimates of CFO v

and channel h can be obtained as

v̂ =argmax
v

{yHΓ(v)S
(
SHS

)−1
SHΓH(v)y}, (1.14)

ĥ =
(
SHS

)−1
SHΓH(v̂)y. (1.15)

Computational complexity analysis of this joint estimation problem is given in [58].

1.5 Channel Estimation for Relay Networks

Although the traditional estimation methods can be readily applied to DF based relay networks,

there are significant differences between channel estimation for AF-based relay networks and that

for traditional point-to-point networks. The main difference is that overall channels from the source

node through relay node to the destination node, instead of individual channels, are to be estimated.

Flat-fading and frequency-selective fading channel estimation for OWRN was studied in [81],

[20], [86], and [87]. Flat-fading and frequency-selective channel estimation of TWRN was re-

spectively studied in [13], [14], [15], which also show that AF TWRN systems require completely

different estimation techniques than those for conventional point-to-point systems. All of the above

works assume time-invariant channels.

In [13], the flat-fading TWRN channels are considered as deterministic or stochastic. For de-

terministic channels, the nonlinear maximum-likelihood (ML)-based estimator is proposed, and for

stochastic channels, the linear maximum SNR estimator is designed. In [14], the frequency-selective

TWRN channels are considered and orthogonal frequency division multiplexing (OFDM) is chosen

for transmission. In [15], channel estimation is investigated for MIMO TWRNs.
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1.6 Superimposed Training

In general, training schemes can be classified into two categories: traditional and superimposed.

Traditional pilots are time-multiplexed with data. However, superimposed pilots are added to data

periodically and the sum is transmitted to the receiver. The difference between traditional pilots and

superimposed pilots is shown in Fig. 1.4.

The performance of conventional pilots and superimposed pilots is studied in [29], [32]. When

the total transmitted energy is constrained, superimposed pilots offer increased performance over

conventional pilots for fast fading channels [32]. However, when the amplitude for each symbol

is constrained, conventional training performs better in the high signal-to-noise ratio (SNR) region

while at low SNR, the superimposed scheme performs better [29].

Recently, superimposed pilots have been further exploited for channel estimation [24], [26]–

[28], [30], [31]. In these references two methods are applied to obtain channel estimates. The first

method uses precoding [30] to separate pilots and data into orthogonal spaces. The second method

utilizes first-order statistics [23] to cancel the zero-mean data and noise from the received signals.

It is often assumed that first-order statistics can only apply for zero-mean signals, and that the

channel estimation performance of superimposed pilots is poorer than that of pilot symbol assisted

modulation (PSAM). However, a frequency domain method is suggested for superimposed pilots

[25] to obtain CSI from signals with non-zero mean noise. Moreover, the data-dependent super-

imposed training (DDST) proposed in [24] can shorten the gap and almost achieve the same per-

formance as PSAM. In DDST, data sequence s is distorted by another sequence e so that at some

frequencies, the discrete Fourier transform (DFT) transform value of the s + e is zero, where the

periodical superimposed training p can be used for estimation (Fig. 1.5).

Superimposed pilots are proposed to estimate doubly-selective channels [26], [28], [31]. This

technique has also been extended to relay networks [21] [89]. DDST has also been explored in AF

relay networks [75] to obtain individual parameters.

1.7 Training Sequence Design

Cavers, first suggested the widely used term PSAM and proposed an analytical approach to the pilot

design [45]. Optimal training sequence design has since then received much attention.

Design criteria for optimal training sequences can be classified into two categories (Fig. 1.6): in-

formation theoretic measures or detection-estimation measures. The first includes Shannon capacity

and capacity upper or lower bounds [46]. The second includes estimation mean square error (MSE)

[57], Cramér-Rao bound (CRB)3 [56], [58], [59], or BER [48].
3CRB is a lower bound on the variance of the estimated deterministic parameter.
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Fig. 1.5. Data-dependent superimposed training.

To reach the optimality under any of these criteria, one can design the amount and types of pilots,

the power allocation between pilots and data, and the placement of the pilots for different channels

and wireless systems. Many such designs have been suggested and investigated.

1.7.1 Optimal Training Sequence Design for Point-to-point Systems

Optimization of training data, power and interval length are proposed for MIMO channels to maxi-

mize a lower bound on the information theoretic capacity in [46]. This reference finds the capacity

lower bound by transforming the channel estimation error into a noise, and shows that best train-

ing signal matrix must have orthonormal columns. Following this guideline, training optimization

is extended to time-varying MIMO channels in [51]. Also, optimal designs of training sequences

are suggested in [49] by minimizing the mean square error (MSE), and in [50] by using the cutoff

rate criterion. It is pointed out in [49] that single pilot regular periodic placement can minimize the

MMSE among all periodic trainings.

For frequency-selective channels, optimal designs for pilots are suggested in [52]–[54]. To min-

imize CRB, pilots and data symbols with higher power should be in the middle of the transmission

packet [52]; to minimize the MSE, equispaced and equipowered pilot symbols are optimal [53]; to

maximize channel capacity of OFDM systems, training sequences should be placed periodically in

frequency [54].

For doubly-selective channels, optimal training design is discussed in [43] through maximizing

a tight lower bound of channel capacity which is proved to be equivalent with minimizing MSE of

channel estimation.
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Fig. 1.6. Design criteria for optimal training sequences

For joint CFO and channel estimation, the best training sequence that minimizes the CRB is

a pseudo-random white sequence [55], [58] when the CFO is perfectly estimated. By minimizing

the worst-case asymptotic CRB, i.e., the large sample CRB associated with the worst case channel

realization, white training sequence is proved to be optimal in [59]. One training design is suggested

in [56] that can render exact CRB of CFO independent of channels. Aiming at minimizing the MSE,

the authors in [57] design the optimal sequence in the case of correlated channel taps or Ricean

channel responses.

1.7.2 Optimal Sequence Design in OWRN and TWRN

Training sequence designs for OWRN was studied in [20], [95]. The optimal training for OWRN can

be achieved from an arbitrary sequence and a set of well designed precoding matrices for all relay

nodes [20]. Training sequence designs for TWRN have been studied in [13], [14] and [15]. Training

sequences should be orthogonal in order to minimize CRB or maximizie SNR for flat fading chan-

nels [13]. For TWRN over frequency-selective channels, certain rules for optimal training sequences

that can minimize the MSE are suggested in [14]. For MIMO flat-fading channels, optimal training

sequence are proposed to minimize the estimation MSE in [15].

1.8 Motivation

Most previous TWRN works [7]–[12] assume the availability of perfect CSI at the relay and/or

the source terminals. But CSI estimation in TWRN is a complicated issue. For instance, although

conventional estimation methods are effective for DF-based TWRN, they fail for AF-based TWRN.

The latter is more challenging because channel estimation is required not only for data detection but

also for the self-data cancellation at the two terminals.
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To the best of our knowledge, currently only a few papers [13]–[15] have treated the channel

estimation and training sequence design issues for TWRN systems. Reference [14] developed a

channel estimator and optimal training sequence for the OFDM-based TWRN. However, OFDM

systems are highly sensitive to the CFO, which will destroy subcarrier orthogonality and thus require

estimation and compensation. Any residual CFO will result in intercarrier interference and detection

errors. The development of a joint CFO and channel estimator for OFDM-based TWRN is one of the

main problems that we will address. This problem is highly challenging due to the CFO mismatch

between two source terminals as well as that between the source terminals and the relay.

Existing works [13]–[15], [68], [89], [90] on TWRN channel estimation are limited to time-

invariant channels. However, when the relay and the two sources are mobile, the relative motion

between any two nodes doubles the Doppler spread [81]. The Doppler spread will result in time-

varying channels. To our best knowledge, time-varying channel estimator for TWRN has not been

developed in the previous literature. Therefore, the development of an estimator is a main prob-

lem that we will address. Moreover, the design of optimal training sequence that minimizes the

MSE remains unknown. Our work thus will include the development of channel estimator, selec-

tion of optimization criterion, and pilot designs such as pilot types, power allocation among pilots

or between pilots and data, and placement or intervals of pilots. Furthermore, if channels are dou-

bly selective (both time-varying and frequency-selective), channel estimation and optimal training

sequence design become even greater challenge.

Moreover, to the best of our knowledge, channel estimation techniques for OWRN or TWRN

systems over doubly-selective channels have not yet been developed. Estimation of such channels

is significantly more complicated than that of the time-varying channel, especially for OWRN and

TWRN. The OWRN case is treated in this thesis, but the TWRN case is left as an open problem.

1.9 Contributions and Structure of the Thesis

This thesis proposes channel estimation algorithms and training sequence design for TWRNs. A

doubly-selective channel estimator and training sequence design are also developed for OWRNs.

The main contributions are detailed below.

Chapter 2: Joint CFO and Channel Estimation for TWRN

In this chapter, a joint CFO and channel estimator is developed for an OFDM-based TWRN. Two

new zero-padding (ZP) and cyclic-prefix (CP) transmission protocols, which maintain the carrier

orthogonality and ensure channel estimation, are proposed. We show that both protocols lead to

the same estimation problem and the nulling-based least square (NLS) algorithm developed as the

estimator. Next, a detailed performance analysis is given: the NLS estimator is shown to be unbiased

and the closed-form of MSE is derived. The simulation results show the two protocols perform well
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and achieve almost the same MSE when the block length is large.

Chapter 3: Superimposed Training Aided Estimation for TWRN

Although Chapter 2 develops a joint CFO and channel estimator for AF TWRNs, it only estimates

the convoluted channel parameters and the mixed CFO values. In this chapter, we propose a su-

perimposed training strategy so that all the individual frequency and channel parameters can be

obtained. Specifically, the relay adds a superimposed time-domain training signal to its received

signal and then transmits the combined signal to both terminals. Three different algorithms for the

initial parameter estimation are developed to adapt to different available training length. Then, an

iterative process is conducted to further improve the estimation accuracy. The CRB of the proposed

strategy is also derived for comparison. Our simulation results show that the iteration converges in

a few steps and the resultant estimation mean square errors (MSE) approaches the CRB. For the

special case when the CFO between two terminals is small, the estimation MSE is very close to the

CRB in the high SNR region, which indicates optimality.

Chapter 4: Time-Varying Channel Estimation for TWRN

Chapter 2 and 3 consider the time-invariant TWRN channel. In this chapter, research is extended

for AF-based TWRNs in time-varying channels. For this purpose, a compact representation of

time-varying channels is required. The CE-BEM is thus adapted to represent the mobile-to-mobile

time-varying channels. A novel pilot symbol-aided transmission scheme is developed to facilitate

the estimation and two algorithms are designed to extract the BEM coefficients of the individual

channels. The optimal training sequence is derived by minimizing the channel estimation MSE.

Chapter 5: Doubly-Selective Channel Estimation for OWRN

When a OWRN operates over doubly-selective channels, the required channel estimation had been

an unexplored area.

In this chapter, we choose complex exponential - basis expansion model (CE-BEM) to represent

the doubly-selective OWRN channel and the estimation problem thus aims to recover the CE-BEM

coefficients. However, we find that direct estimation of these coefficients requires significant pilot

overhead. To solve this problem, we suggest to estimate useful channel parameters that could guar-

antee effective data detection. The optimal training sequence is also developed based on minimizing

the estimation MSE.
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Chapter 2

Joint CFO and Channel Estimation

for TWRN

This chapter considers joint CFO and channel estimation for OFDM-based AF TWRNs. To facilitate

the estimation task, new ZP and CP transmission protocols, which maintain the carrier orthogonality

and ensure low estimation complexity, are proposed. Both protocols lead to the same estimator

which can be implemented by the NLS algorithm and perform identically when the block length is

large. We give a detailed performance analysis by proving the unbiasedness of the estimator at high

SNR and by deriving the closed-form expression of the MSE.

2.1 Introduction

Most previous works [7]–[12] assume the availability of perfect CSI at the relay and/or the source

terminals. But CSI estimation in TWRN is a complicated issue. Although conventional estimation

methods are effective for DF-based TWRN, they do not work for AF based TWRN. For example,

channel estimation for TWRN was studied in [13], [14] for frequency-flat and frequency-selective

environments, respectively, and these studies show that AF TWRN systems require completely dif-

ferent estimation techniques, unlike those of conventional point-to-point systems.

Moreover, frequency mismatches that cause CFO require compensation before data detection

[58]. The problem of CFO estimation in TWRN is even more difficult because one must consider the

mismatch between two source terminals as well as that between the source terminals and relays. The

estimation of CFO and channels with low complexity is, therefore, a challenging task. Moreover,

maintaining carrier orthogonality in order to facilitate data detection is critically important.
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Fig. 2.1. System configuration for a three-node TWRN.

2.2 System Model

Consider a TWRN with two source nodes T1 and T2, and one relay node R (Fig. 2.1). Each

node has only one half-duplex antenna. The baseband channel between Ti and R is denoted by

hi = [hi,0, hi,1, . . . , hi,L]
T , where L is the order of the corresponding channel.1 The elements

in hi are assumed to be independently zero-mean circularly symmetric complex Gaussian (CSCG)

random variables. The variance of the lth element in hi is denoted by σ2
i,l. Time-division-duplexing

(TDD) is used, following [10], [12]. TDD leads to reciprocal channels, i.e., the channel from R

to Ti is hi as well. When frequency division duplex (FDD) is used, the R and Ti adopt different

frequency bands for transmission, which will result in non-reciprocal channels. That is, the channel

from Ti to R is not the same with the channel from R to Ti. However, our proposed strategies may

be extended to the non-reciprocal channels and more general channels. The average transmission

powers of T1, T2, and R are denoted as P1, P2, and Pr, respectively. We further denote the oscillator

frequencies as f1, f2, and fr, respectively. Moreover, perfect time synchronization is assumed [58],

[59].

In [14], OFDM was adapted to TWRN under perfect time and frequency synchronization. These

perfect conditions ensure that circular convolution between the two frequency-selective channels

in time is equivalently converted to multiplication between two flat fading channels over different

subcarriers. However, with CFOs, inter-carrier interference (ICI) will be introduced in the frequency

domain at different nodes. The joint estimation problem then becomes more complicated if the same

OFDM based TWRN strategy is applied [14]. Even with perfect CSI, data detection is not simple.

In this chapter, we introduce two new transmission protocols for OFDM TWRN systems. Al-

though they incur redundancy, these protocols facilitate both joint estimation and data detection.

1We assume the same channel length for hi for the sake of notational simplicity. Our discussion can be straightforwardly
extended to the more general case.
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2.3 ZP-based OFDM for TWRN

2.3.1 OFDM Terminals

Without loss of generality, we omit the block index and denote one OFDM block from Ti as s̃i =

[s̃i,0, . . . , s̃i,N−1]
T , where N is the block length. The corresponding time-domain signal block is

obtained from the normalized inverse discrete Fourier transformation (IDFT) as

si = FH s̃i = [si,0, si,1, . . . , si,N−1]
T , (2.1)

where F is the normalized DFT matrix with the (p, q)-th entry given by 1√
N
e−ȷ2π(p−1)(q−1)/N . To

avoid the inter-block interference (IBI) in the first transmission phase, L zeros are padded at the end

of si. As in the traditional ZP-OFDM system [76], the power of s̃i,n, n = 0, . . . , N − 1 is N+L
N Pi,

so the average power constraint Pi is kept at Ti.

In Phase I, T1 and T2 up-convert the baseband signals by the carriers eȷ2πfit and send them to R

simultaneously. Note that the oscillator may have an initial phase, but it is omitted for brevity since

the constant phase can be absorbed into the channel effects.

2.3.2 Relay Processing

The relay R will down-convert the passband signal by e−ȷ2πfrt and the received baseband signal

can be represented as

rzp =
2∑

i=1

Γ(N+L)[fi − fr]H
(N)
zp [hi]si + nr, (2.2)

where

Γ(K)[f ] = diag{1, ej2πfTs , . . . , ej2πf(K−1)Ts} (2.3)

with Ts representing the sampling period, and

H(K)
zp [x] =



x0 . . . 0
...

. . .
...

xL
. . . x0

...
. . .

...

0 . . . xL


︸ ︷︷ ︸

K columns

(2.4)
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for any vector x = [x0, x1, . . . , xL]
T . Moreover, nr is the (N + L) × 1 noise vector, each entry

with variance σ2
n.

Then, R adds L zeros to the end of r and scales it by the factor of

αzp =

√
(N + 2L)Pr

E{∥rzp∥2}
=

√
N + 2L

N + L

Pr∑2
i=1

∑L
l=0 σ

2
i,lPi + σ2

n

(2.5)

to keep the average relay power constraint. The resultant αzprzp will be up-converted to passband

by eȷ2πfrt.

2.3.3 Signal Reformulation at Terminals

Due to symmetry, we only study T1 during the second phase. After the down-conversion of the

passband signal by e−ȷ2πf1t, the (N + 2L)× 1 signal vector is expressed as

yzp =αzpΓ
(N+2L)[fr − f1]H

(N+L)
zp [h1]rzp

=αzpΓ
(N+2L)[fr − f1]H

(N+L)
zp [h1]

(
2∑

i=1

Γ(N+L)[fi − fr]H
(N)
zp [hi]si

)
+ αzpΓ

(N+2L)[fr − f1]H
(N+L)
zp [h1]nr + n1︸ ︷︷ ︸

ne

, (2.6)

where n1 is the (N + 2L)× 1 noise vector at T1 with variance σ2
n, and ne defines the overall noise

component. The covariance of ne is computed as

Rzp = σ2
n(α

2
zpΓ

(N+2L)[fr − f1]H
(N+L)
zp [h1](H

(N+L)
zp [h1])

H(Γ(N+2L)[fr − f1])
H + I). (2.7)

In most practical communications,2 there is N ≫ L and Rzp can be approximated by its expectation

over h1:

Rzp ≈ σ2
n

(
α2
zp

L∑
l=0

σ2
h1,l

+ 1

)
︸ ︷︷ ︸

σ2
ne

I, (2.8)

where σ2
ne denotes the equivalent noise variance.

Lemma 2.1. The following two equalities hold for any Γ(·)[f ] in (2.3) and H
(·)
zp [x] in (2.4), where

(·) represents the appropriate dimensions:

H(K)
zp [x]Γ(K)[f ] = Γ(K+P )[f ]H(K)

zp

[
Γ(K)[−f ]x

]
, (2.9)

2In IEEE 802.11a standards [73], N ≥ 4L is adopted.
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and conversely

Γ(K+P )[f ]H(K)
zp [x] = H(K)

zp

[
Γ(P+1)[f ]x

]
Γ(K)[f ]. (2.10)

Proof. Proved from the straightforward computation.

Lemma 2.1 says that Γ(·)[f ] can be switched from the right (left) side of H(·)
zp [hi] to the left

(right) side by changing the dimension of Γ(·)[f ] and rotating hi. From Lemma 1, yzp can be

rewritten as

yzp =αzpH
(N+L)
zp [Γ(L+1)[fr − f1]h1]H

(N)
zp [h1] s1

+ αzpΓ
(N+2L)[f2 − f1]H

(N+L)
zp [Γ(L+1)[fr − f2]h1]H

(N)
zp [h2] s2 + ne. (2.11)

We further note that

H(N+L)
zp [x1]H

(N)
zp [x2] = H(N)

zp [x1 ⊗ x2] (2.12)

where ⊗ denotes the linear convolution between the two vectors. Hence yzp can be written as

yzp =αzpH
(N)
zp

[
(Γ(L+1)[fr − f1]h1)⊗ h1

]
︸ ︷︷ ︸

azp

s1

+ αzpΓ
(N+2L)[f2 − f1︸ ︷︷ ︸

v

]H(N)
zp

[
(Γ(L+1)[fr − f2]h1)⊗ h2

]
︸ ︷︷ ︸

bzp

s2 + ne, (2.13)

where azp, bzp are the (2L+ 1)× 1 equivalent channel vectors and v is the equivalent CFO.

Note that the same method in (2.13) can be used to find equivalent channel vectors for AF-based

TWRNs with non-reciprocal channels between Ti and R. This extension is omitted for the sake of

brevity.

2.3.4 Joint CFO and Channel Estimation

The above discussion shows that the task is to estimate azp, bzp, and v. Assuming that s1 and s2

are the training blocks, we can rewrite (2.13) as

yzp = S
(N+2L)
1 azp + Γ(N+2L)[v]S

(N+2L)
2 bzp + ne, (2.14)

where S(N+2L)
i is the (N +2L)× (2L+1) circulant matrix with the first column [αzps

T
i ,0

T
1×2L]

T .

Obviously, (2.14) is different from the conventional work [58] in that only a part of the signal

component is accompanied with the CFO matrix. Moreover, N ≥ 2L+ 3 is required to estimate all
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the unknown parameters. The detailed estimation algorithms will be presented in the next section.

2.4 CP-based OFDM for TWRN

Interestingly, CP-based OFDM must be modified in an anti-symmetric way.

2.4.1 OFDM modulation at Terminals

Each terminal Ti first obtains the time domain OFDM signal si from its frequency domain informa-

tion block s̃i via the normalized IDFT approach. We propose that Ti adds a CP of length 2L in the

front of si. Define

T(P )
cp =

 0 IP
−−−−

IN

 , (2.15)

for any P ≤ N . Then the baseband signal sent out from Ti is mathematically expressed as T(2L)
cp si,

which is up-converted to the passband signal by eȷ2πfit.

2.4.2 Relay Processing

Relay R first down-converts the passband signal by e−ȷ2πfrt, which gives a signal block of length

N + 2L. However, R removes only the first L symbols in the CP. Define the convolution matrix

H(K)
cv [x] =


xP . . . x0 . . . 0
...

. . . . . . . . .
...

0 . . . xP . . . x0


 K rows, (2.16)

for x = [x0, x1, . . . , xP ]
T . The remaining signal of length N + L is

rcp =

2∑
i=1

eȷ2π(fi−fr)LTsΓ(N+L)[fi − fr]H
(N+L)
cv [hi]T

(2L)
cp si + nr

=

2∑
i=1

eȷ2π(fi−fr)LTsΓ(N+L)[fi − fr]T
(L)
cp H(N)

cp [hi]si + nr.

where the properties

H(N+L)
cv [hi]T

(2L)
cp = T(L)

cp H(N)
cv [hi]T

(L)
cp (2.17)

H(N)
cv [hi]T

(L)
cp = H(N)

cp [hi] (2.18)

are used and H
(N)
cp [hi] is the N ×N circulant matrix with the first column [hT

i ,0
T
1×(N−L−1)]

T .
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To keep the power constraint, R scales r by a factor

αcp =

√
Pr

E{∥rcp∥2}
=

√
Pr∑2

i=1

∑L
l=0 σ

2
i,lPi + σ2

n

, (2.19)

where the property that (
T(L)

cp

)H
T(L)

cp =

IN−L 0

0 2IL

 (2.20)

is used during the computation. Relay R then up-converts the baseband signal αcprcp by eȷ2πfrt and

broadcasts it to both terminals.

2.4.3 Signal Reformulation at Terminals

After down-converting the passband signal by e−ȷ2πf1t, T1 obtains the baseband block of length

N + L and removes the first L elements; and the remaining signal is

ycp = αcpe
j2π(fr−f1)LTsΓ(N)[fr − f1]H

(N)
cv [h1]rcp

= αcpΓ
(N)[fr − f1]H

(N)
cv [h1]Γ

(N+L)[f1 − fr]T
(L)
cp H(N)

cp [h1]s1

+ αcpe
j2π(f2−f1)LTsΓ(N)[fr − f1]H

(N)
cv [h1]Γ

(N+L)[f2 − fr]T
(L)
cp H(N)

cp [h2]s2

+ αcpe
j2π(fr−f1)LTsΓ(N)[fr − f1]H

(N)
cv [h1]nr + n1︸ ︷︷ ︸

ne

(2.21)

where the notation ne is slightly abused to denote the equivalent noise here, which has the covariance

Rcp = σ2
n(α

2
cpΓ

(N)[fr − f1]H
(N)
cv [h1](H

(N)
cv [h1])

H(Γ(N)[fr − f1])
H + I). (2.22)

When N ≫ L, the following approximation can be made:

Rn ≈ σ2
n

(
α2
cp

L∑
l=0

σ2
h1,l

+ 1

)
︸ ︷︷ ︸

σ2
ne

I, (2.23)

where, with slight abuse of notations, σ2
ne is again used to denote the equivalent noise variance.

We observe that (H(N)
cv [hi])

T has the same structure as H
(N)
zp [hi] but with the elements of hi

ordered in the reverse way. Therefore, the principle of Lemma 1 can be extended to derive the

following equality:

H(N)
cv [hi]Γ

(N+L)[f ] = Γ(N)[f ]H(N)
cv [Ω(L+1)[f ]hi], (2.24)
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where

Ω(K)[f ] = diag{ej2πf(K−1)Ts , . . . , ej2πfTs , 1}. (2.25)

Hence, ycp is rewritten as

ycp = αcpH
(N)
cv [Ω(L+1)[f1 − fr]h1]T

(L)
cp H(N)

cp [h1]s1

+ αcpe
j2πvLTsΓ(N)[v]H(N)

cv [Ω(L+1)[f2 − fr]h1]T
(L)
cp H(N)

cp [h2]s2 + ne

= αcpH
(N)
cp [Ω(L+1)[f1 − fr]h1]H

(N)
cp [h1]s1

+ αcpe
j2πvLTsΓ(N)[v]H(N)

cp [Ω(L+1)[f2 − fr]h1]H
(N)
cp [h2]s2 + ne, (2.26)

where the property (2.18) is used when deriving the second equality.

We further note that

H(N)
cp [x1]H

(N)
cp [x2] = H(N)

cp [x1 ~ x2], (2.27)

where ~ denotes the N -point circular convolution between two vectors. Since N ≥ 2L + 1 is

assumed, the N -point circular convolution between hi’s coincides with the linear convolution of

their non-zero part plus N − (2L+ 1) zeros at the end. Then ycp can be expressed as

ycp = αcpH
(N)
cp [(Ω(L+1)[f1 − fr]h1)⊗ h1︸ ︷︷ ︸

acp

]s1

+ αcpe
j2πvLTsΓ(N)[v]H(N)

cp [(Ω(L+1)[f2 − fr]h1)⊗ h2︸ ︷︷ ︸
bcp

]s2 + ne, (2.28)

where acp, bcp are the (2L+ 1)× 1 equivalent channel vectors and v is the equivalent CFO.

2.4.4 Joint CFO and Channel Estimation

From previous discussion in Section 2.3.3 we know that the task is to estimate acp, bcp, and v.

Assuming that s1 and s2 are the training blocks, we can rewrite ycp as

ycp = S
(N)
1 acp + Γ(N)[v]S

(N)
2 bcp + ne, (2.29)

where S
(N)
i is the N × (2L+ 1) circulant matrix with the first column si. Moreover, N ≥ 4L+ 3

is required to estimate all the unknown parameters.
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2.5 Comparison between ZP-based and CP-based OFDM

2.5.1 Similarities

Both protocols require the same amount of the redundancy,3 that is 3L extra samples over two

phases. The transmission efficiency can be defined as N/(2N + 3L). Moreover, both the final

models (2.14) and (2.29) have the same structure. Thus, the same type of estimator can work for

both systems.

2.5.2 Differences

The OFDM block length for the ZP approach changes from N to N +L and then to N +2L, while

the final received signal blocks at the terminals are of the length N +2L. However, the CP approach

is anti-symmetric; that is, the block length changes from N +2L to N +L and then to N , while the

final received signal blocks at the terminals are of the length N . For both approaches, the number

of unknowns to be estimated is 2(2L + 1) + 1. Since ZP-based OFDM has a longer observation

interval, the related estimation is expected to be more accurate.

Table 2.1 presents a detailed comparison between the two proposed OFDM protocols.

TABLE 2.1
COMPARISON BETWEEN ZP- AND CP-OFDM MODULATED TWRN.

ZP CP

Transmitter activity add L zeros suffix add 2L cyclic prefix
Relay activity add L zeros suffix remove L prefix
Destination activity None remove L prefix
Received signal length N + 2L N
Spectrum efficiency N/(2N + 3L) N/(2N + 3L)
Required Pilot Length N ≥ 2L+ 3 N ≥ 4L+ 3

2.6 Nulling-based Least Square Estimation

Since (2.14) and (2.29) have the same structure, we will omit the superscript and the subscript,

aiming to provide a unified estimation algorithm for both OFDM protocols.

2.6.1 Joint CFO and Channel Estimation Algorithm

Since S1 is a tall matrix, a matrix J can be found such that JHS1 = 0. We propose to select J with

the orthogonal property that JHJ = I, since it has the best condition number. A simple choice of J

is the basis of the orthogonal complement space of S1.
3Note the CP of length L is always necessary and is not considered as a type of redundancy in our work.
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Left-multiplying y by JH gives

JHy = 0+ JHΓS2︸ ︷︷ ︸
G

b+ JHne︸ ︷︷ ︸
n

, (2.30)

where G and n are defined as the corresponding items. Due to the orthogonal property of J, we

know the statistics of n remain the same as that of ne if the latter is approximated as white Gaussian

noise.

The nulling-based least square (LS) estimate of b can be immediately found from (2.30) as:

b̂ = (GHG)−1GHJHy. (2.31)

The CFO is estimated from

v̂ = argmax
v

yHJG(GHG)−1GHJHy, . (2.32)

Finally, the LS estimation of channel a is obtained from

â = (SH
1 S1)

−1SH
1 (y − Γ̂S2b̂), (2.33)

where

Γ̂ = Γ̂[v̂] = diag{1, ej2πv̂Ts , ..., ej2π(M−1)v̂Ts}. (2.34)

2.6.2 Performance Analysis of Estimation Mean-Square Error.

Due to the nulling process, the estimation model (2.14) and (2.29) is more complicated than the

typical model such as in [58]. Hence, the result in [58] cannot be directly extended to our scenario.

We next will prove that LS estimator is unbiased at high SNR and derive the closed-form MSE

expressions based on the perturbation theory. Note that asymptotic analysis is commonly used in

the joint estimation problems [60].

For notation simplicity, we denote

yn =JHy, PG = G(GHG︸ ︷︷ ︸
Φ

)−1GH , (2.35)

where Φ represents the corresponding item. Let v0 and v̂0 be the true and the estimated CFO,

respectively. The LS estimator (2.32) can be written as

v̂0 = argmax
v

g(v) = argmax
v

yH
n PGyn. (2.36)
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Lemma 2.2. At high SNR, the CFO estimation error from (2.36) can be approximated by

∆v , v̂0 − v0 ≈ − ġ(v0)

E{g̈(v0)}
. (2.37)

Proof. See Appendix A.

Theorem 2.1. The MSE of the CFO estimation is

E{∆v2} =
σ2
ne

2bHĠH [I−G(GHG)−1GH ]Ġb
. (2.38)

Proof. See Appendix B.

Theorem 2.2. The channel estimation b̂ is unbiased at high SNR, and its MSE is

MSE{b} = (GHG)−1GHĠbbHĠHG(GHG)−1E{∆v2}+ σ2
ne(G

HG)−1. (2.39)

Proof. See Appendix C.

2.7 Simulation Results

In this section, we report a numerical study of the performance of our proposed joint CFO and

channel estimation strategy. A four-tap channel model with the exponential delay profile σ2
il =

e−l/10, i = 1, 2, l = 0, 1, 2, 3 is assumed. The variance of the noise is taken as σ2
n = 1. The SNR

is defined as the ratio of symbol power to the noise power, i.e., Es/N0. The normalized frequencies

f1, fr, and f2 are set as 0.95, 1 and 1.05, respectively. Thus the CFO is as large as 0.1. The MSE is

chosen as the figure of merit, defined by

MSE(v) =
1

10000

10000∑
i=1

(v̂i − v)2,

MSE(x) =
1

10000

10000∑
i=1

1

7
(x̂i − x)2,

where x represents a composite channel, such as azp or bzp in (2.13), and acp or bcp in (2.28).

10000 Monte-Carlo trials are used for the averaging. For each example, the ZP-based and CP-based

OFDM schemes are compared fairly, i.e., the same CFO, channel, noise realization and training

sequence for each Monte-Carlo run.

In the first example, N = 16 and the MSEs of the CFO estimation are plotted versus SNR

for both ZP- and CP-based OFDM TWRN (Fig. 2.2). The theoretical MSEs are also displayed in

the same figure. Fig. 2.2 reveals that for both protocols, the CFO estimation MSEs approach their
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Fig. 2.2. CFO estimation MSEs version SNR for both ZP- and CP-based OFDM modulation; N = 16.

theoretical values at high SNR. The mismatch in the low SNR region, generally known as the outlier

[79], [77], occurs because of the estimation ambiguity in several Monte-Carlo runs, which distorts

the average performance. Moreover, as discussed in Section 2.5, CFO estimation from the ZP-based

OFDM is better than that from the CP-based OFDM. The difference is observed to be 3 dB. Clearly,

the reason is the longer signal block for the ZP-based OFDM.

The channel estimation MSEs versus SNR is shown in Fig. 2.3. The estimation MSEs of bzp

and bcp approach their corresponding theoretical values much faster than those for CFO estimation

because the errors in the estimated phase have less effect on the channel estimation but a more severe

effect on the CFO estimation. Again, channel estimation of both azp and bzp is better than that of

acp and bcp and the difference is about 1.5 dB.

The first two examples show that the ZP-based TWRN produces better estimates because of

the longer observation block. Intuitively, the difference should decrease when block length N gets

larger. It is then of interest to examine how the difference changes with N . Therefore, the CFO

estimation MSEs versus the OFDM block length are plotted in Fig. 2.4 for a fixed SNR= 10 dB.
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Fig. 2.3. Channel estimation MSEs version SNR for both ZP- and CP-based OFDM modulation; N = 16.

Fig. 2.4 reveals that with larger N , the estimations from both the ZP-based and CP-based OFDM

become more accurate. Performance difference decreases as N increases and they converge for

N ≥ 48.

The channel estimation MSEs versus the OFDM block length is shown in Fig. 2.5, which sug-

gests a similar observation made from Fig. 2.4. However, the difference between the ZP-OFDM

and CP-OFDM diminishes at N = 40. Practically one may prefer to use CP-OFDM since it is

more compatible with currently adopted standards, e.g., IEEE 802.11a [73]. One important insight

gained from Fig. 2.4 and Fig. 2.5 is that the CP-OFDM will not suffer from much performance loss

compared to the ZP-based OFDM when N is large. This makes our CP-OFDM protocol a good

choice for practical standards, e.g., N = 64, 1024, 2048.

Finally, we examine the symbol decoding errors for both ZP- and CP-based OFDM protocols.

To demonstrate the difference, we choose a small value of N as 16. The symbol constellations from

both T1 and T2 are set as QPSK. The symbol-error rate (SER) versus SNR is shown in Fig. 2.6.

We also include the detection performance with perfect synchronization and channel information for
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Fig. 2.4. CFO estimation MSEs version block length for both ZP- and CP-based OFDM modulation; SNR= 10 dB.

comparison. Interestingly, ZP- and CP-based OFDM exhibit similar detection performance under

perfect synchronization and channel estimation. This phenomenon is similar to that observed in the

point-to-point OFDM systems [78]. However, with the estimated CFO and channels, we identify

a 2 dB performance gain in ZP-OFDM as compared to its CP counterpart. This gain immediately

comes from the improved estimation accuracy.

2.8 Conclusions

In this chaper, we studied joint CFO and channel estimation for TWRN over frequency-selective

channels. Our main contribution is the proposal and analysis of two OFDM transmission protocols

for TWRN, which allow low-complexity joint estimation and data detection. The performance of the

nulling-based LS estimator was studied by proving that it is unbiased at high SNR and by deriving

the closed-form expressions of the MSEs. Finally, the simulation results demonstrated the effec-

tiveness of the proposed schemes. Interestingly, although ZP-based OFDM performs better than the
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Fig. 2.5. Channel estimation MSEs version block length for both ZP- and CP-based OFDM modulation; SNR= 10 dB.

CP-based OFDM, the performance differential diminishes when the block length gets large. This

practically useful finding suggests that CP-based OFDM could be preferred due to the compatibility

with the existing OFDM standards.

28



0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

 S
E

R
 

 

 
ZP estimated channel
ZP perfect channel
CP estimated channel
CP perfect channel

Fig. 2.6. Performance SER versus SNR for both ZP- and CP-based OFDM modulation; N = 16.
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Chapter 3

Superimposed Training Aided

Estimation for TWRN

Chapter 2 develops a joint CFO and channel estimator for TWRNs. But it can only provide the con-

voluted channel parameters and the mixed CFO values. In this chapter, we propose a superimposed

training strategy to estimate the individual frequency and channel parameters. These parameters

are useful in applications such as transmit beamforming or precoding. Depending on the available

training length, we design three different algorithms for the initial parameter estimation. Then, an

iterative process is proposed to further improve the estimation accuracy. To make the study com-

plete, we also derive the estimation CRB of the proposed strategy. Our simulations show that the

iteration converges in a few steps and the resultant estimation MSE approaches CRB. For the special

case when the CFO between two terminals is small, the estimation MSE is very close to CRB in the

high SNR region and the best estimation is expected even without iterations.

3.1 System Model

Consider a classical TWRN with two terminal nodes Tj , j = 1, 2 and one relay node R (Fig. 3.1).

Each node has only one half-duplex antenna. The baseband channel from Tj to R is denoted as

hj = [hj,0, . . . , hj,L]
T , whose elements are independent with zero means and variances σ2

j,l. The

channel from R to Tj is also hj . The training block length is set as N , which may or may not

be the same as the data block length. The average powers of Tj and R are denoted as Pj and Pr,

respectively. Furthermore, we denote the carrier frequency of Tj as fj and that of R as fr. In

real applications, Doppler shifts and oscillator instabilities may result in CFOs such as f2 − f1 and

fr − fj .

The target of this work is to separately estimate CFOs and channels h1 and h2. It is important to
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achieve this goal within two transmission phases such that the training is compatible with the two-

phase data transmission and can be embedded in the data frame. To do so, we modify the OFDM

transmission scheme and introduce superimposed training at the relay node.

T1��
��

T2��
��

R��
��?

Superimposed Pilots p

- �

-�
h1 h2

f1 fr f2

Fig. 3.1. System configuration for two-way relay network.

3.2 CP-Based OFDM Protocol

3.2.1 OFDM Modulation at Terminals

Denote one OFDM block from Ti as s̃i = [s̃i,0, . . . , s̃i,N−1]
T . The corresponding time-domain

signal block is obtained from the normalized inverse discrete Fourier transformation (IDFT) as

si = FH s̃i = [si,0, si,1, . . . , si,N−1]
T , (3.1)

where F is the N×N normalized DFT matrix with the (p, q)-th entry given by 1√
N
e−ȷ2π(p−1)(q−1)/N .

To maintain the subcarrier orthogonality during the overall transmission, we propose to add the

cyclic prefix of length 2L as did in [90]. This implicitly requires N ≥ 2L which is nevertheless

satisfied by most OFDM systems [73].

3.2.2 Relay Processing

With the assumption of the perfect time synchronization, the signals from T1 and T2 arrive at R

simultaneously. The relay then down-converts the received signal by the carrier e−ȷ2πfrt. It is

important to mention that R removes only the first L symbols in each block. The resultant baseband

signal block at R is of length N + L and can be expressed as

r =
2∑

i=1

eȷ2π(fi−fr)LTsΓ(N+L)[fi − fr]T
(L)
cp H(N)

cp [hi]si + nr, (3.2)

where T
(L)
cp is defined in (2.15), Γ(K)[f ] is defined in (2.3) and HK

cv[x] is defined in (2.16).
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The relay then superimposes a time-domain training signal p over r and obtain

t = αr+ p, (3.3)

where the scaling factor α and the superimposed training should satisfy the following power con-

straint:

α2E{∥r∥2}+ ∥p∥2 = α2(N + L)
2∑

j=1

L∑
l=0

σ2
j,lPj + α2(N + L)σ2

n + ∥p∥2 ≤ (N + L)Pr. (3.4)

Note that (3.4) is a constraint on the average power because the instant channel values are unknown

before the estimation.

It can be easily shown that the range of α is
(
0,
√

Pr∑2
j=1

∑L
l=0 σ2

j,lPj+σ2
n

)
that balances the

power between the training from Tj and the superimposed training from R. Note that the training

signal p is generated from N training signals p0 and a cyclic prefix of length L. By using our

definition (2.15), the training signal can be expressed as p = T
(L)
cp p0. The pilots p0, s1 and s2 are

pre-designed at both source terminals for channel estimation.

Finally, R up-converts the resultant signal t to passband by the carrier eȷ2πfrt.

3.2.3 Signal Reformulation at Terminals

Due to symmetry, we only illustrate the process at T1. After down-converting the passband signal

by e−ȷ2πf1t, T1 obtains the baseband block of length N + L. It then removes the first L elements

and the remaining signal is written as

y = αΓ(N)[fr − f1]H
(N)
cv [h1]Γ

(N+L)[f1 − fr]T
(L)
cp H(N)

cp [h1]s1

+ αej2π(f2−f1)LTsΓ(N)[fr − f1]H
(N)
cv [h1]Γ

(N+L)[f2 − fr]T
(L)
cp H(N)

cp [h2]s2

+ ej2π(fr−f1)LTsΓ(N)[fr − f1]H
(N)
cp [h1]p0

+ αej2π(fr−f1)LTsΓ(N)[fr − f1]H
(N)
cv [h1]nr + n1︸ ︷︷ ︸

ne

. (3.5)

The equivalent Gaussian noise ne has the covariance

Rn =σ2
n

(
α2Γ(N)[fr − f1]H

(N)
cv [h1](H

(N)
cv [h1])

H(Γ(N)[fr − f1])
H + I

)
. (3.6)

Assuming N > 2L and using the properties in Section (2.4), we can further simplify y as

y = αH(N)
cp [(Ω(L+1)[f1 − fr]h1)⊗ h1]s1

+ αej2π(f2−f1)LTsΓ(N)[f2 − f1]H
(N)
cp [ (Ω(L+1)[f2 − fr]h1)⊗ h2 ]s2
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+ ej2π(fr−f1)LTsΓ(N)[fr − f1]H
(N)
cp [h1]p0 + ne. (3.7)

Define

w = fr − f1, a = (Ω(L+1)[−w]h1)⊗ h1,

v = f2 − f1, b = (Ω(L+1)[v − w]h1)⊗ h2, Γ
(K)
L [f ] = ej2πfLTsΓ(K)[f ]. (3.8)

Then (2.28) can be expressed as

y = αH(N)
cp [a]s1 + αΓ

(N)
L [v]H(N)

cp [b]s2 + Γ
(N)
L [w]H(N)

cp [h1]p0 + ne

= αS1a+ αΓ
(N)
L [v]S2b+ Γ

(N)
L [w]Ph1 + ne. (3.9)

where Sj is the N × (2L + 1) circulant matrix with the first column si, and P is the N × (L + 1)

circulant matrix with the first column p0.

3.3 Joint Estimation Algorithms

Based on the new signal model (3.9), the task is to estimate the individual channels h1 and h2 and

the CFOs v and w. We omit all redundant superscripts and subscripts for notation simplicity and

rewrite (3.9) as

y = αS1a+ αΓ[v]S2b+ Γ[w]Ph1 + ne. (3.10)

Note that the number of parameters to be estimated is 2L+4. Furthermore, a is a function of w and

h1, and b is a function of v, w,h1 and h2. Depending on the number of pilots, we can thus develop

three different estimation methods.

3.3.1 Estimation for Sufficiently Large N

When N ≥ 5L + 5 1, there are sufficient degrees of freedom in the training signals, and v, w, a,

b and h1 can be simply treated as individual variables. That is, the above-mentioned relationships

among the variables are ignored. Rewrite y as

y = [αS1 αΓ[v]S2 Γ[w]P]︸ ︷︷ ︸
C


a

b

h1


︸ ︷︷ ︸

d

+ne, (3.11)

1In practical OFDM systems [73], L = 16 and N can be as large as 1024, 2048.
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where C and d are defined in (3.11). From the least-squares (LS) method, the two CFO estimates

are

{v̂, ŵ} = argmax
v,w

yHC(CHC)−1CHy, (3.12)

where v̂ and ŵ can be obtained either from a two dimensional search or from the alternating pro-

jection that converts the 2-dimensional maximization into a series of 1-D maximization problems.

Details on the implementation of the alternating projection method can be found from [80]. Then

values of d is estimated as

d̂ = (CHC)−1CHy, (3.13)

where the value of C is obtained by using the estimates v̂ and ŵ.

We next explore the relationships among a, b, and h1 to improve the quality of the estimates.

From (3.8), we note that

a =H(L+1)
zp [Ω(L+1)[−w]h1]h1, (3.14)

where H
(K)
zp [x] is a tall Toeplitz matrix with the first column [xT ,oT

1×(K−1)]. The estimate of

H
(L+1)
zp [Ω(L+1)[−w]h1] can be expressed as H(L+1)

zp [Ω(L+1)[−ŵ]ĥ1].

By subtracting the estimate of the second item in (3.10) from y and by using (3.14), an improved

estimate of h1 is obtained as

ˆ̂
h1 =(αS1H

(L+1)
zp [Ω(L+1)[−ŵ]ĥ1] + Γ[w]P)†(y − αΓ[v]S2b̂). (3.15)

Similarly, from (3.8) we find that

b = H(L+1)
zp [Ω(L+1)[v − w]h1]h2. (3.16)

Thus h2 can be estimated as

ĥ2 = (H(L+1)
zp [Ω(L+1)[v̂ − ŵ]ĥ1])

†b̂. (3.17)

In summary, equations (3.12), (3.15) and (3.17) provide estimates of all the parameters. These

initial estimates can be further improved by the iterative estimator developed in Section 3.3.4.
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3.3.2 Estimation with Not-so-large N

In order to reduce the overhead, we will use fewer pilots than before. Define K1, K2, and Kr as the

frequency domain pilot index sets from T1, T2, and R, with cardinality K1, K2, and Kr respectively.

We require K1 ≥ L + 1, K2 ≥ L + 1, Kr ≥ L + 1 and K1

∪
K2

∪
Kr = {1, . . . , N}. Here, we

do not assume disjoint sets, and so K1 +K2 +Kr ≥ N . From (3.10), we know that the frequency

domain pilots are s̃j = Fsj , and p̃0 = Fp0. As will be seen later that pilots in Kr are used to

estimate h1 and those in K2 are used to estimate h2 at T1. Due to symmetry, pilots in K1 are used

to estimate h1 at T2. This gives the above requirements on cardinality.

Let us collect non-zero pilots from Tj into a Kj × 1 vector s̆j and non-zero pilots from R into a

Kr × 1 vector p̆0. Since Sj and P are columnwise circulant matrices, they can be represented as

Sj =FHdiag{s̃j}F[:,1:2L+1] = FH
[:,Kj ]

diag{s̆j}F[Kj ,1:2L+1] (3.18)

P =FHdiag{p̃0}F[:,1:L+1] = FH
[:,Kr]

diag{p̆0}F[Kr,1:L+1]. (3.19)

Define K̄1 as the complement set of K1. Multiplying both sides of (3.10) with F[K̄1,:] yields

F[K̄1,:]y =
[
αF[K̄1,:]Γ[v]F

H
[:,K2]

diag{s̆2} F[K̄1,:]Γ[w]P
]

︸ ︷︷ ︸
C1

 b̆

h1


︸ ︷︷ ︸

d1

+F[K̄1,:]ne, (3.20)

where b̆ = F[K2,1:2L+1]b is the DFT response of b on the subcarrier set K2 and C1 is an (N −

K1)× (K2 + L+ 1) matrix.

As long as N −K1 −K2 − (L+ 1) ≥ 2, namely when there is sufficient degree of freedom to

estimate the two unknown CFOs, they can be estimated as

{v̂, ŵ} = argmax
v,w

yHFH
[K̄1,:]

C1(C
H
1 C1)

−1CH
1 F[K̄1,:]y. (3.21)

Considering the range of Kj and Kr, the minimum number of N is 3L + 5, when sets are disjoint

and K1 = K2 = L+ 1, Kr = L+ 3. Then,

d̂1 =(CH
1 C1)

−1CH
1 F[K̄1,:]y. (3.22)

By definition

b̆ = F[K2,1:2L+1]H
(L+1)
zp [Ω(L+1)[v − w]h1]h2. (3.23)
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Then, h2 can be estimated as

ĥ2 = (F[K2,1:2L+1]H
(L+1)
zp [Ω(L+1)[v − w]h1])

†b̆. (3.24)

3.3.3 Joint Estimation with Minimum Training Length: A Special Case

In practical applications, the relay terminal is often a simple device while the two source termi-

nals may employ high-precision synchronization circuits. Thus, it is reasonable to expect the CFO

between the two source terminals to be negligible. In this case, v ≈ 0 or v << 1/N , i.e., one sub-

carrier spacing. This is also true at the CFO tracking stage when the frequency difference between

two terminals are quite small. By taking advantage of the negligible CFO between the two source

terminals, parameter estimation is achieved with the minimum training length N = 2L+3, i.e., the

same number of the unknowns variables.

Let us choose the same frequency pilot sets for T1 and T2, i.e., K1 = K2. Left multiplying the

received signal y by F[K̄1,:] gives

F[K̄1,:]y =αF[K̄1,:]Γ[v]F
H
[:,K2]︸ ︷︷ ︸

≈0

diag{s̆2}F[Ki,1:2L+1]b+ F[K̄1,:]Γ[w]P︸ ︷︷ ︸
C2

h1 + F[K̄1,:]ne, (3.25)

where C2 is an (N −K1)× (L+ 1) matrix, and the first term is negligible because v ≈ 0. As long

as (N −K1 − L− 1) ≥ 1, the CFO between the relay and the first source terminal can be obtained

as

ŵ = argmax
w

yHFH
[K̄1,:]

C2(C
H
2 C2)

−1CH
2 F[K̄1,:]y, (3.26)

and

ĥ1 = C†
2F[K̄1,:]y. (3.27)

Since a can be estimated from ŵ and ĥ1, then h2 can be estimated as

ĥ2 = C†
3(y − αS1â− Γ[ŵ]Pĥ1), (3.28)

where C3 = αS2H
(L+1)
zp [Ω(L+1)[v̂ − ŵ]ĥ1].

The estimates given by (3.26), (3.27) and (3.28) need not be improved by iterations because they

already achieve CRB under high SNR conditions.
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3.3.4 Iterative Algorithm to Improve the Performance

With the initial estimates of all the parameters, an iterative approach can be applied to improve the

estimation accuracy. Re-denote the initial estimate as v{0}, w{0},a{0},b{0},h
{0}
1 ,h

{0}
2 , respec-

tively, with the superscript representing the number of the iterations. We will estimate v{1}, w{1}

simultaneously from the ML estimation process as

[v{1}, w{1}] = argmin
v,w

(y − αS1a
{0} − αΓ[v]S2b

{0} − Γ[w]Ph
{0}
1 )HR−1

n

×(y − αS1a
{0} − αΓ[v]S2b

{0} − Γ[w]Ph
{0}
1 ), (3.29)

where R−1
n is always obtained by using the newest estimates of w and h1 in (3.6) expressed as

Rn =σ2
n

(
α2Γ(N)[w{0}]H(N)

cv [h
{0}
1 ](H(N)

cv [h
{0}
1 ])H(Γ(N)[w{0}])H + I

)
. (3.30)

Then we can obtain h
{1}
2 and h

{1}
1 from

h
{1}
2 = argmin

h2

(y − αS1a
{0} − Γ[w{1}]Ph

{0}
1 − αΓ[v{1}]S2H

{1}
12 h2)

HR−1
n

×(y − αS1a
{0} − Γ[w{1}]Ph

{0}
1 − αΓ[v{1}]S2H

{1}
12 h2), (3.31)

and

h
{1}
1 = argmin

h1

(y −Mh1h1)
HR−1

n (y −Mh1h1), (3.32)

where Mh1 = αS1H
{0}
11 + αΓ[v{1}]S2H

(L+1)
zp [h

{1}
2 ]ΩL+1[v{1} − w{1}] + Γ[w{1}]P, H{1}

12 =

H
(L+1)
zp [Ω(L+1)[v{1} − w{1}]h

{0}
1 ] and H

{0}
11 = H

(L+1)
zp [Ω(L+1)[−w{1}]h

{0}
1 ].

The interactive processing could gain the improvement from the fact that the initial estimation

does not fully exploit the correlation between a, b, and h1.

3.3.5 Comparison

A comparison between the adapted CP-OFDM (Section 2.4) and superimposed pilot aided CP-

OFDM is given in the following table.

TABLE 3.1
COMPARISON BETWEEN ADAPTED CP-OFDM AND SUPERIMPOSED PILOT AIDED CP-OFDM.

Minimum Pilot Length Estimated Parameters

adapted CP-OFDM 4L+ 3 a, b and v
superimposed pilot 3L+ 5 h1, h2, a, b, v and w
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3.4 Cramér-Rao Bound

In this section, we derive the CRB that defines the theoretical bound of the estimation accuracy. The

CRB is an important tool to study the performance of the estimation algorithms.

Define

µ , αS1a+ αΓ[v]S2b+ Γ[w]Ph1, (3.33)

η , [v, w,ℜ{h1}T ,ℑ{h1}T ,ℜ{h2}T ,ℑ{h2}T ]T . (3.34)

According to [66], the (i, j)th entry of the Fisher Information Matrix (FIM) can be calculated as

[F]i,j = 2ℜ
[
∂µH

∂ηi
R−1

n

∂µ

∂ηj

]
+ tr

[
R−1

n

∂Rn

∂ηi
R−1

n

∂Rn

∂ηj

]
. (3.35)

After some tedious simplifications, we derive

∂µ

∂v
=jαD1Γ[v]S2b+ jΓ[v]S2H

(L+1)
zp [h2]D0Ω

(L+1)[v − w]h1, (3.36)

∂µ

∂w
=αS1H

(L+1)
zp [h1](−jD0)Ω

(L+1)[−w]h1

+ αΓ[v]S2H
(L+1)
zp [h2](−jD0)Ω

(L+1)[v − w]h1 + jD1Γ[w]Ph1, (3.37)

∂µ

∂ℜ{h1}T
=αS1H

(L+1)
zp [Ω(L+1)[−w]h1] + αS1H

(L+1)
zp [h1]Ω

(L+1)[−w]

+ αΓ[v]S2H
(L+1)
zp [h2]Ω

(L+1)[v − w] + Γ[w]P, (3.38)

∂µ

∂ℜ{h2}T
=αΓ[v]S2H

(L+1)
zp [Ω(L+1)[v − w]h1], (3.39)

∂Rn

∂w
=σ2

n

(
jα2DNΓ(N)[w]H(N)

cv [h1](H
(N)
cv [h1])

HΓ(N)[−w]

− jα2Γ(N)[w]H(N)
cv [h1](H

(N)
cv [h1])

HDNΓ(N)[−w]
)

(3.40)

∂Rn

∂ℜ{h1i}T
=σ2

nα
2Γ(N)[w]H(N)

cv [e1i](H
(N)
cv [h1])

HΓ(N)[−w] (3.41)

∂Rn

∂ℜ{h2i}T
=
∂Rn

∂v
= 0N×N , (3.42)

where

D0 =2πTsdiag{L, (L− 1), . . . , 1, 0}, (3.43)

D1 =2πTsdiag{L, . . . , (L+N − 1)}, (3.44)

DN =2πTsdiag{0, 1, . . . , (N − 1)}, (3.45)

and ei is a (L+ 1)× 1 vector whose ith element equals 1 and others 0.
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The CRB of η is then obtained by inverting the FIM F. Since
v

w

h1

h2

 =


1, 0, 0T , 0T , 0T , 0T

0, 1, 0T , 0T , 0T , 0T

0, 0, IL+1, jIL+1, 0 · IL+1, 0 · IL+1

0, 0, 0 · IL+1, 0 · IL+1, IL+1, jIL+1


︸ ︷︷ ︸

Ξ

×η, (3.46)

the CRB of v, w,h1, and h2 can be expressed as

CRB =Ξ · F−1 ·ΞH . (3.47)

3.5 Simulation Results

The performance of the proposed three estimation algorithms along with the iterative estimator is

investigated. A four-tap model for both h1 and h2 is assumed, and each tap is assumed complex

Gaussian with unit variance as did in [14]. The variance of the noise is taken as σ2
n = 1. The

normalized frequencies f1, fr, and f2 are set as 0.94, 1 and 1.06, respectively. The MSE is chosen

as the figure of merit, defined by

MSE(v) =
1

10000

10000∑
i=1

(v̂i − v)2,

MSE(w) =
1

10000

10000∑
i=1

(ŵi − w)2,

MSE(x) =
1

10000

10000∑
i=1

1

4
(x̂i − x)2,

where x represents h1 or h2, and 10000 is the number of the Monte-Carlo trials used for average. In

all the following simulations, α is set as half the maximum value, that is, α = 0.5
√

Pr∑2
j=1

∑L
l=0 σ2

j,lPj+σ2
n

.

3.5.1 Sufficiently Large N

In this case, we chose N = 24, which is greater than 5L + 5 = 20. The received signal y at T1 is

generated according to (3.5). Initial CFO and channel estimates are obtained from y through (3.12)

and (3.13). The estimate ĥ1 of h1 is updated as (3.15). Finally, the iterative estimator in Section

3.3.4 is applied and is found to converge in three iterations.

The MSEs and CRBs of CFO estimation as a function of SNR are shown in Fig. 3.2. The

iterative algorithm improves the estimation accuracy significantly. Specifically, the improvement of

w, which is the CFO between R and T1, is much more significant than that of v, the CFO between
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Fig. 3.2. CFO estimation MSE versus SNR: N = 24

T2 and T1. The reason is due to the fact that the received signals contain more information about w

than that about v. In (3.9), all components of y contain information about w while only the second

term of y does so of v.

The channel estimation MSEs and CRBs versus SNR are shown in Fig. 3.3. It is observed that

the gaps between the MSE and the CRB are smaller compared to those in the CFO estimation. The

reason is that phase errors have less effect on the channel estimation than on the CFO estimation.

Similarly to CFO estimation, iteration improves the estimation accuracy, and h1 improves more than

h2 since most components of y contain the information of h1.

3.5.2 Not-so-large N

Next we choose N = 3L + 5 = 14 and K1 = 4,K2 = 4,Kr = 6. The initial CFO and channel

estimates are obtained from (3.21), (3.22) and (3.24). The estimates are iteratively updated. We find

that ten iterations reach convergence. The MSEs and CRBs versus SNRs for both CFO and channel

estimation are displayed in Fig. 3.4 and Fig. 3.5, respectively.
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Fig. 3.3. Channel estimation MSE versus SNR: N = 24

Since smaller training length is applied and the average symbol power is kept the same, the

performance here is a little worse than that in Fig. 3.2 and Fig. 3.3. It is observed that in the high

SNR region, the MSEs approach CRBs after ten iterations. The iterative estimator improves the

estimation of h1 for all SNRs while, for h2, it only works at the high SNR region. Conversely,

the iterative estimator degrades the estimation of h2 at low SNRs. A possible reason is as follows.

Since only the second item of y in (3.9) contains h2 and and iterations require reconstruction of a

from the initial estimate ŵ and ĥ1, the ambiguity of ĥ2 increased at the low SNR region from errors

of all factors. However, in the case of large training length, e.g., N = 24, a is directly estimated,

which avoids the error propagation from erroneous ŵ and ĥ1. Therefore similar phenomenon is not

observed in Fig. 3.3.

From Fig. 3.2 to Fig. 3.5, one key conclusion is that there is room for new algorithms to improve

the performance, due to the gap between MSEs and CRBs. This open question is an interesting topic

for the future research.
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Fig. 3.4. CFO estimation MSE versus SNR: N = 14

3.5.3 Minimum N : A Special Case

In the last example, we set f2 as 0.95 and 0.9401, such that the CFO between the two terminals are

v = 0.01 and v = 0.0001, respectively. The minimum training length is chosen as N = 2L + 3 =

9. The CFO and channel estimation results can be obtained from (3.26), (3.27), and (3.28). As

mentioned before, these cases do not require iterations because v is nearly zero. The estimation

MSEs of w and channels, as well as their corresponding CRBs are shown in Fig. 3.6 and Fig. 3.7,

respectively.

These figures show that the estimation accuracy is quite close to CRB. The reason is that the

interference due to the pilots is negligible in this case as the CFO between the two source terminals

is negligible. For v = 0.01, a relatively larger value, there exists an error floor for both CFO and

channel estimation at the high SNR region. When v is as small as 0.0001, the best estimation

performance can be achieved since the MSE attaches the CRB.
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Fig. 3.5. Channel estimation MSE versus SNR: N = 14

3.6 Conclusions

In this chapter, superimposed pilot based CFO and channel estimation was investigated for CP-

OFDM modulated TWRN. Three direct estimation algorithms as well as the iteration algorithm to

improve the performance were developed. We also derived the analytical CRBs as the benchmark for

the designed algorithms. With superimposed training, all the individual parameters can be estimated

at all three nodes. From the simulations, it is found that although the iterative estimator improves

the performance but gaps remain between the MSE and CRB, indicating room for further improving

the performance.
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Chapter 4

Time-Varying Channel Estimation

for TWRN

In this chapter, channel estimation and training sequence design are considered for AF-based TWRNs

in a time-varying channel. A new CE-BEM is proposed to represent mobile-to-mobile time-varying

channels. To estimate such channels, a novel pilot symbol-aided transmission scheme is developed

such that a linear approach can estimate the BEM coefficients of the convoluted channels. More

essentially, two algorithms are designed to extract the BEM coefficients of the individual channels.

The optimal training parameters, including the number of the pilot symbols, the placement of the

pilot symbols, and the power allocation to the pilot symbols, are derived by minimizing the channel

estimation MSE. The selections of the system parameters are thoroughly discussed in order to guide

practical system design.

4.1 Introduction

Existing works [13], [14], [89], [90] about channel estimation in TWRN only consider the time-

invariant environments. However, a TWRN is more susceptible to a time-varying channel because

the relay and the two sources can all be mobile and the relative motion between any two nodes

may double the Doppler spread [81]. This fact places additional demands on the estimation of time-

varying channels, which are usually tracked by using periodic training signals, also known as PSAM

[45]. To the best of our knowledge, time-varying channel estimation in TWRNs has not yet been

reported. The need for such techniques motivates our current work.

Time-varying channels are typically represented in two ways: by using the Gauss-Markov model

[33], which tracks channel variation through symbol-by-symbol updating, and by using the BEM

[36], which decomposes the channel into the superposition of the time-varying basis functions
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Fig. 4.1. A two-way relay network over time-varying flat-fading channels.

weighted by time-invariant coefficients. Using the Gauss-Markov channel model for a flat-fading

time-varying channel, the channel estimation methods [49] and [83] minimize the MSE and max-

imize the data throughput criteria, respectively. The optimal training design for doubly-selective

channels based on the BEM [43], [61], [62] adopted the same criteria. The equivalence between

these two criteria was pointed out in [43].

To our best knowledge, currently no paper has compared the performance between the BEM and

the Gauss-Markov model. Generally, the Gauss-Markov model requires sequential time-domain

processing. Whereas the BEM is suitable for generating a block of channel samples [94]. For this

reason, the BEM is chosen to develop our estimation algorithms.

In this chapter, we address the problem of channel estimation and training design for time-

varying TWRN channels. We adopt the CE-BEM [42], which represents the time-varying channels

by a finite set of parameters and Fourier bases. To handle the special features of the TWRN, we

propose a new data frame structure, which enables the periodic reception of pilot symbols at the

source nodes. The conventional TWRN transmission structure [13], [14] is a special case of our

proposed structure. To reduce the estimation complexity, the interval between the pilot sending

and pilot receiving is fixed, and the resultant BEM coefficients of the cascaded channels can be

estimated linearly. The optimal training parameters, including the number of pilot symbols, the

placement of pilot symbols, and the power of pilots symbols, are derived by minimizing the channel

MSE criterion. Two algorithms are then designed to recover the BEM coefficients of individual

channel coefficients. An iterative method is also used to refine the estimates. We also provide a

thorough discussion of the system parameter selection and reveal many interesting results. Finally,

simulation results are provided to corroborate our studies.

4.2 System Model

Consider a TWRN with two source nodes T1, T2 and one relay node R (Fig.4.1). Each node has only

one half-duplex antenna. The baseband channel from Ti, i = 1, 2 to R is assumed to be time-varying

flat-fading and is denoted by hi(n), where n is the discrete time index. Moreover, the channels are

modeled as wide-sense stationary (WSS) zero mean complex Gaussian (ZMCG) random processes

with variances σ2
hi

. The channel from R to Ti is also denoted as hi(n). Perfect synchronization is

assumed as in [90], [36], [42].
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4.2.1 Time-varying Relay Channels

The channel statistics in a relay network depend on the mobility of the three nodes, i.e., the fixed

nodes or the moving nodes [81]. Denote fd1, fd2 and fdr as the maximum Doppler shifts due to

the motion of T1, T2, and R, respectively. The discrete autocorrelation functions of hi(n)’s can be

represented as [44]

Rhi(m) = E{hi(n+m)h∗
i (n)} = σ2

hi
J0(2πfdimTs)J0(2πfdrmTs), i = 1, 2 (4.1)

where J0(·) is the zero-th order Bessel function of the first kind, and Ts is the symbol sampling

time. The correlation function in (4.1) has been widely adopted to describe the mobile-to-mobile

link, e.g., [81], [44]. If one node is fixed, i.e., if the corresponding Doppler shift is zero, then (4.1)

reduces to the well-known Jakes model [63]. Meanwhile, (4.1) reveals that the power spectra of

h1(n) and h2(n) span over the bandwidths f1 = fd1 + fdr and f2 = fd2 + fdr, respectively, which

indicates an increased Doppler effect for the mobile-to-mobile transmission.

The parsimonious finite-parameter BEM [36] can be applied to approximate the two time-

varying channels, respectively, so that during any time interval of NTs, hi(n)’s can be modeled

by

h1(n) =

Q1∑
q=0

λqw1(q), h2(n) =

Q2∑
q=0

µqw2(q), 0 ≤ n ≤ N − 1, (4.2)

where λq’s and µq’s are the BEM coefficients that remain invariant within one interval of NTs

but will change in the next interval, while wi(q)’s are the bases that capture the time variation and

will remain the same for any interval. The number of the bases Qi is a function of the channel

bandwidth fi and the interval length NTs. Specific choices for {wi(q)}Qi

q=0 include the polynomial

[38], wavelet [40], discrete prolate spheroid sequence [39], and Fourier bases [43]. In this chaper,

we choose the CE-BEM [42], a specific form of Fourier bases. Then (4.2) can be explicitly written

as

h1(n) =

Q1∑
q=0

λqe
j2π(q−Q1/2)n/N , 0 ≤ n ≤ N − 1, (4.3a)

h2(n) =

Q2∑
q=0

µqe
j2π(q−Q2/2)n/N , 0 ≤ n ≤ N − 1. (4.3b)

The CE-BEM (4.3) can be viewed as the Fourier series of the time-varying channels, and the number

of bases Qi should be at least 2⌈fiNTs⌉ in order to provide sufficient degrees of freedom [43],

[42]. To simplify the notation as well as the discussion, we assume f1 = f2 = fd and Q1 =

Q2 = Q. Nonetheless, the extension to the general case is straightforward. We further denote
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Fig. 4.2. Approximating the mobile-to-mobile channels with CE-BEM.

ωq = 2π(q −Q/2)/N and define

λ = [λ0, λ1, . . . , λQ]
T , µ = [µ0, µ1, . . . , µQ]

T

for subsequent use.

A brief example is given in Fig. 4.2, where the system parameters are taken as fd1 = fd2 =

fdr = 40 Hz, Ts = 1 ms, and N = 40. Fig. 4.2 reveals that the larger the Q is, the better

the approximation will be. As pointed out in [43], [42], Q must be at least 2⌈fdTsN⌉ = 4 in

order to keep the shape of the envelope, i.e., with the sufficient degrees of freedom. However, for

Q = 2 the ambiguous estimation appears due to the lack of sufficient sampling degrees of freedom.

Nonetheless, one can always use a larger Q for a better approximation.

4.2.2 Transmission Strategy

To enable the use of PSAM in our TWRN, we propose a new transmission strategy over one interval

NTs, as depicted in Fig. 4.3. Let Dt and Tt be the time index sets for the transmitted information

symbols and the pilot symbols from Ti, i = 1, 2, respectively. Moreover, let Dr and Tr be the time

index sets for the received information symbols and pilot symbols at Ti, respectively. These four

sets are disjoint with the property that Dt

∪
Tt
∪

Dr

∪
Tr = {0, 1, . . . , N − 1}. Let us define the

cardinality of the sets as |Dt| = |Dr| = D and |Tt| = |Tr| = T . Then, N = 2(D + T ) is an even

49



information symbol pilot symbol

Ti R

N

Fig. 4.3. Proposed transmission strategy for two-way relay network with time-varying channel.

integer.

We assume that the relay node R forwards its received symbols on time slot g(n) to both Ti on

time slot n; i.e.,

Dt

∪
Tt =

{
g(n)|n ∈ Dr

∪
Tr
}
. (4.4)

By defining the one-to-one mapping function g(n), we implicitly allow for the symbols’ order to be

changed when R forwards them back to Ti. Hence, it is also possible to optimize g(n) according

to different criteria, i.e., data detection MSE, bit-error-rate (BER), throughput, and others. 1 A

detailed discussion is beyond the scope of this chapter and will be left to future research. Note that

0 ≤ g(n) < n is required because R can only forward a symbol after receiving it. Interestingly, the

conventional data transmission in a TWRN [13], [14] [90] becomes a special case of our proposed

scheme if g(n) = n−N/2 is selected.

A special yet important case involves evenly dividing NTs intervals into several sub-blocks, as

shown in Fig. 4.4. This case corresponds to setting g(n) = n − M , where M divides N/2, and

will be separately discussed later. The decision on whether to adopt the general scheme (Fig. 4.3)

or the sub-block-based scheme (Fig. 4.4) depends on the synchronization requirement in practical

scenarios and other design issues.

Denote the symbols sent from Ti as si(n), n ∈ Dt

∪
Tt, of which the average power for the

information symbols is Pi; i.e., E{|si(n)|2} = Pi, ∀n ∈ Dt, while the total training power2 is Pi,t;

i.e.,
∑
n∈Tt

|si(n)|2 = Pi,t. With perfect synchronization, R receives

r(n) = h1(n)s1(n) + h2(n)s2(n) + wr(n), n ∈ Dt

∪
Tt, (4.5)

where wr(n) is the circularly symmetric complex Gaussian (CSCG) noise with the variance σ2
r . If

1The dual problem of optimally re-ordering the subcarrier indices in a frequency-selective environment has been studied
in [19].

2We should not consider the average power constraints for training because otherwise, the training length is trivially
preferred to be as large as possible.
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Fig. 4.4. Sub-block based transmission strategy.

the average transmit power of R is Pr, then r(n) will be scaled by

α(n) =


√

Pr

σ2
h1

P1+σ2
h2

P2+σ2
r

n ∈ Dr√
Pr

σ2
h1

P1,t/T+σ2
h2

P2,t/T+σ2
r

n ∈ Tr
(4.6)

before it is forwarded to Ti’s to keep the power constraint.

More practical considerations should include the processing delay at R as well as the path-delay

between T1 and T2. These considerations require only slightly changing the channel from hi(n) to

hi(n+∆n), and the remaining discussion holds the same.

4.2.3 On Channel Estimation

Due to symmetry, we present only the estimation procedure at T1, and the received signal is

y(n) =α(n)h1(n)r(g(n)) + w1(n)

=α(n)h1(n)h1(g(n))︸ ︷︷ ︸
b1(n)

s1(g(n)) + α(n)h1(n)h2(g(n))︸ ︷︷ ︸
b2(n)

s2(g(n))

+ α(n)h1(n)wr(g(n)) + w1(n)︸ ︷︷ ︸
w(n)

, n ∈ Dr

∪
Tr,

(4.7)

where w1(n) is the CSCG noise at T1 with variance σ2
1 ; w(n) denotes the overall noise; and bi(n),

i = 1, 2 can be treated as the equivalent time-varying channel of Ti → R → T1. Obviously, if

bi(n)’s are known at T1, the self-signal component s1(g(n)) can be subtracted from y(n) in order

to detect the desired information s2(g(n)).
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To gain more insight into the time-varying channels, we apply (4.3) and rewrite bi(n)’s as

b1(n) =

Q∑
p=0

Q∑
q=0

λpλqe
j(ωpn+ωqg(n)), b2(n) =

Q∑
p=0

Q∑
q=0

λpµqe
j(ωpn+ωqg(n)), n ∈ Dr

∪
Tr.

(4.8)

The new expression (4.8) indicates that in order to obtain bi(n), 0 ≤ n ≤ N − 1, one needs to

know either 2(Q + 1) parameters λp, µp, p = 0, . . . , Q or 2(Q + 1)2 parameters λpλq , λpµq ,

p, q = 0, . . . , Q. For a general mapping function g(n), the former approach requires a non-linear

search, while the latter approach, though could be implemented from linear approach, possesses

large redundancy in the number of estimated variables.

To facilitate the channel estimation, we propose to use

g(n) = n−M, (4.9)

for n ∈ Tr, while g(n) for information transmission n ∈ Dr could still be designed from a certain

optimization criterion. The condition (4.9) says that R retransmits each received pilot symbol with

a delay of M -symbol interval, and this interval is common for all pilot symbols.

With (4.9), the received pilot symbols at T1 can be further expressed as

y(n) =α

2Q∑
m=0

( m∑
q=0

λm−qλqe
−jωqM

︸ ︷︷ ︸
x1(m)

)
ejθmns1(n−M)

+ α

2Q∑
m=0

( m∑
q=0

λm−qµqe
−jωqM

︸ ︷︷ ︸
x2(m)

)
ejθmns2(n−M) + w(n), n ∈ Tr, (4.10)

where θm = 2π(m−Q)/N , xi(m) are defined as the corresponding items, and the index n in α(n)

is omitted for brevity. When deriving (4.10), we use the property that ωp+ωq = ωp′ +ωq′ whenever

p + q = p′ + q′. If the sub-block transmission in Fig. 4.4 is applied, then (4.10) is also applicable

for the received information symbols n ∈ Dr.

Interestingly, we may treat xi(m)’s as the equivalent BEM coefficients with 2Q + 1 carriers

ejθmn for the equivalent time-varying channel bi(n), n ∈ Tr. The equivalent BEM sequence x1(m)

is the convolution between the original BEM λp and e−jωqMλq , while x2(m) is the convolution

between λp and e−jωpMµq .

Define

xi = [xi(0), xi(1), . . . , xi(2Q)]T , Γ = diag{e−jω0M , e−jω1M , e−jωQM}
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and define Λ as the (2Q+1)× (Q+1) Toeplitz matrix with the first column [λT ,01×Q]
T . We can

explicitly express the convolutions as

x1 = λ⊗ (Γλ) = ΛΓλ, and x2 = λ⊗ (Γµ) = ΛΓµ. (4.11)

Based on (4.10), we may estimate the equivalent BEM coefficient xi(m) (with 4Q+2 unknowns)

and recover the original BEM λq , µq (with 2Q + 2 unknowns). Then, the equivalent time-varying

channels bi(n), n ∈ Dr can be obtained from (4.8).

4.3 Channel Estimation and Training Sequence Design

Let us specify the indices in Tr as n0 < n1 . . . < nT−1, and define

yt =[y(n0), y(n1), . . . , y(nT−1)]
T , wt =[w(n0), w(n1), . . . , w(nT−1)]

T ,

ti =[si(n0 −M), si(n1 −M), . . . , si(nT−1 −M)]T , Ti =diag{ti}, i = 1, 2,

where ti contains all the pilot symbols from Ti. For notational simplicity, the m-th entry of ti is

also denoted by ti(m), m = 0, . . . , T − 1.

With the aid of (4.10), we can express yt in matrix form as

yt = αT1Ax1 + αT2Ax2 +wt, (4.12)

where A is the T × (2Q+ 1) matrix

A =


ejθ0n0 ejθ1n0 . . . ejθ2Qn0

ejθ0n1 ejθ1n1 . . . ejθ2Qn1

...
... . . .

...

ejθ0nT−1 ejθ1nT−1 . . . ejθ2QnT−1

 . (4.13)

4.3.1 Channel Estimation Algorithm

When T ≥ 4Q + 2, there are sufficient observations to estimate all the unknown xi(m)’s. In this

case, one could choose a linear estimator, e.g., the least square (LS) or the linear minimum mean

square error (LMMSE) estimator. For example in [42], [61], [62], the authors assumed that the

knowledge of the statistics of the BEM coefficients were available in order to derive the LMMSE

estimator. Moreover, a closed-form training design requires the assumption that the BEM coeffi-

cients are uncorrelated among themselves [42], [61], [62]. Although the same assumption can be

invoked here, we would rather choose the LS estimator in order to embrace more practical scenarios
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where the statistics of the BEM coefficients are not available. This choice is further justified because

the LS estimator performs similarly to the LMMSE estimator at a relatively high signal-to-noise ratio

(SNR).

Let us define

T = [T1A,T2A], x = [xT
1 ,x

T
2 ]

T .

The LS estimator of x is expressed as

x̂ =
1

α
T†y =

1

α
(THT)−1THy, (4.14)

with the error covariance matrix given by

W = T†


σ2
r |h1(n0)|2 + σ2

1

α2 . . . 0
...

. . .
...

0 . . . σ2
r |h1(nT−1)|2 + σ2

1

α2

 (T†)H . (4.15)

4.3.2 Optimal Training Design

The channel estimation MSE is defined as tr(W) and is related to the instant CSI. In this case, we

propose to minimize the average MSE (AMSE), which is defined as

AMSE = Eh{tr(W)} =

(
σ2
h1
σ2
r +

σ2
1

α2

)
tr((THT)−1), (4.16)

where the property J0(0) = 1 is used. We further partition (THT)−1 as

(THT)−1 =

AHTH
1 T1A AHTH

1 T2A

AHTH
2 T1A AHTH

2 T2A

−1

. (4.17)

The optimal training design amounts to selecting the number of the pilot symbols, their place-

ment, and the power allocation for each pilot by minimizing the AMSE. The optimization problem

is then formulated as

(P1): min
t1,t2,Tr

(
σ2
h1
σ2
r +

σ2
1

α2

)
tr((THT)−1) (4.18)

s.t.
T−1∑
m=0

|ti(m)|2 ≤ Pi,t, i = 1, 2.
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Since α is related only to T , we can first solve, for a given T , the following problem:

(P2): min
t1,t2,

ni:0≤i≤T

tr((THT)−1) (4.19)

s.t.
T−1∑
m=0

|ti(m)|2 ≤ Pi,t, i = 1, 2.

From [66], we know that

tr((THT)−1) ≥
4Q+1∑
i=0

1

[THT]i,i
=

2∑
i=1

2Q+ 1∑T−1
m=0 |ti(m)|2

, (4.20)

where [THT]i,i is the ith diagonal elements of THT, and the equality holds when THT is a

diagonal matrix. However, this inequality does not directly show that the diagonal must hold for the

optimal THT. Let us first formulate a new optimization problem:

(P3): min
t1,t2

2∑
i=1

2Q+ 1∑T−1
m=0 |ti(m)|2

(4.21)

s.t.
T−1∑
m=0

|ti(m)|2 ≤ Pi,t, i = 1, 2.

Obviously, the optimal objective of (P3) serves as a lower bound for (P2). Since (P3) is a simple

convex optimization, any training sequence satisfying
∑T−1

m=0 |ti(m)|2 = Pi,t is optimal. Hence, if

we can find ti’s that satisfy the equality constraints and make THT diagonal, then these ti’s must

also be the optimal solutions for problem (P2). In other words, the sufficient conditions for the

optimal solutions to (P2) are

AHTH
i TiA = Pi,tI2Q+1, i = 1, 2, (4.22a)

AHTH
1 T2A = 02Q+1. (4.22b)

Observing the Vandermonde structure of A and the structure of θm, we know that if the pilot symbols

are equi-powered and equi-spaced over {0, . . . , N − 1}, then (4.22a) is satisfied; i.e.,

C1) : |ti(m)|2 = Pi,t/T, ∀m = 0, 1, . . . , T − 1, i = 1, 2,

C2) : nm = mL+ l0, ∀l0 ∈ [M,L− 1], and L = N/T is an integer,

where we include the consideration that n0 ≥ M in C2).3 Combined with C1) and C2), the following

3n0 = l0 denotes the index of the first symbol sent by R. From the adopted g(n), n0 = l0 ≥ M is required.
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condition can guarantee (4.22b):

T−1∑
m=0

t∗2(m)t1(m)e−jθunme−jθvnm = 0, ∀u, v = 0, 1, · · · , 2Q

which can be simplified as

C3) :
T−1∑
m=0

t∗2(m)t1(m)ej2πmk/T = 0, ∀k = −2Q,−2Q+ 1, . . . , 2Q.

One example of pilot sequences that satisfy conditions C1)–C3) is

t1 =

√
P1,t

T
[+1,+1,+1, . . . ,+1,+1]T , (4.23a)

t2 =

√
P2,t

T
[1, ej2πv/T , . . . , ej2π(T−1)v/T ]T , ∀v = 2Q+ 1, . . . , T − 2Q− 1. (4.23b)

The minimum tr((THT)−1) is then (2Q+1) (1/P1,t + 1/P2,t) and does not depend on T . Hence,

the optimal value of T should be independently obtained from

T = argmin
T

(
σ2
h1
σ2
r +

σ2
1

α2

)
= argmax

T

Pr

σ2
h1
P1,t/T + σ2

h2
P2,t/T + σ2

r

. (4.24)

The objective function (4.24) is an increasing function of T , so the optimal T should be made as

large as possible. Note that this result is different from the conventional training design in point-to-

point systems, where the channel estimation MSE is related only to the total training power but not

to the training length.

However, increasing T would reduce the efficiency of the data transmission and, consequently,

the system throughput. Besides, the constant σ2
h1
σ2
r will dominate the summation from

(
σ2
h1
σ2
r +

σ2
1

α2

)
when T is greater than a certain threshold. Therefore, increasing T beyond a certain value cannot

improve the channel estimation MSE, but the throughput will be linearly decreased. A more mean-

ingful design of T can be obtained by maximizing the transmission throughput criterion [42], [61],

[62]. In this chapter we focus only on introducing the new channel estimation strategy in TWRN,

and we simply consider achieving the minimum amount of training as our optimization goal.

The selection of the minimum possible T depends on many factors and will be discussed in the

next subsection. When T = 4Q+ 2 is allowed, the optimal pilot schemes become more specific:

t1 =

√
P1,t

4Q+ 2
[+1,+1,+1,+1, . . . ,+1,+1]T ,

t2 =

√
P2,t

4Q+ 2
[+1,−1,+1,−1, . . . ,+1,−1]T ,
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and the corresponding minimum AMSE is

AMSE =

(
(2Q+ 1)σ2

h1
σ2
r +

(
σ2
h1
P1,t + σ2

h2
P2,t + 2σ2

r(2Q+ 1)
)
σ2
1

2Pr

)(
1

P1,t
+

1

P2,t

)
.

(4.25)

Importantly, it can be verified that the designed optimal pilot sequences for channel estimation

at T1 are also optimal at T2. Hence, simultaneous optimal channel estimation can be achieved at

both source nodes.

4.3.3 Parameter Selection

Observing C2), we know the following: (i) The pilot spacing L should at least be M + 1; (ii) To

transmit non-zero information symbols in one NTs interval, we need D = LT−2T
2 ≥ 1, so the

spacing L should be at least 3;4 (iii) Since N must be even, either T or L should be an even integer.

The above discussion suggests the guidelines for choosing T , i.e., select the smallest integer that

is greater than or equal to 4Q+ 2, divides N , and satisfies N/T ≥ 3.

Since T ≥ 4Q+2 pilot symbols are needed to provide sufficient observations, and since Q ≥ 1

for a time-varying channel, the TWRN requires that pilot symbols to be transmitted back-and-forth

at least 6 times. Therefore, the conventional two-way frame transmission structure [9], [8], [14],

i.e., sending and receiving the continuous data sequence only once, obviously does not work in

time-varying channels. We thus re-emphasize the novelty of the proposed PSAM scheme in Fig.

4.3.

For the sub-block based frame structure in Fig. 4.4, the receiving equi-spaced pilot at Ti is

possible only if each sub-block contains only one pilot symbol at the same position of each sub-

block.

4.3.4 Doppler Shift and Transmission Efficiency

From N = LT ≥ L(4Q+ 2) and Q ≥ 2⌈fdNTs⌉, a successful channel estimation requires

N − 2L

8LN
≥ fdTs. (4.26)

To cope with more Doppler shift, the left-hand side (LHS) of (4.26) should be as large as possible.

From L ≥ 3, there is

N − 2L

8LN
≤ N − 6

24N
<

1

24
. (4.27)

4This conclusion is also seen from the fact that if L = 2, then the only choice for M is 1, in which case Ti alternatively
transmits and receives pilot symbols while no information can be sent.
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Then the proposed strategy can handle the time-varying channels with

fdTs <
1

24
= 0.0416. (4.28)

This normalized Doppler shift, fortunately, lies in the acceptable range of most studies [43], [83],

[62].

Moreover, the training requirement 4Q + 2 ≤ T = N/L ≤ N/3 implies that the transmission

efficiency has the range

η =
N/2− T

N/2
≤ 1− 16fdTs −

4

N
< 1− 16fdTs, (4.29)

and

η ≥ N/2−N/3

N/2
= 1/3. (4.30)

Therefore, the higher the fdTs is, the less the transmission efficiency will be. This result is intuitively

satisfying.

4.4 Recovering the Original BEM Coefficients

After estimating xi’s, i = 1, 2, we need to obtain the original BEM coefficients λq and µq in order

to build the time-varying channel bi(n), n ∈ Dr. This is the key difference of TWRN from OWRN,

as pointed out in [13], [14]. Retrieving λq and µq from xi generally requires solving multivariate

nonlinear equations. In the following, we propose two simple methods and describe them under a

noise-free scenario.

4.4.1 Time-Domain Approach

Because of the structure of x1(m), a straightforward way is to estimate λq sequentially. Specifically,

we first estimate λ0 from

λ0 =Is
(
x1(0)e

jω0M
)1/2

, (4.31)

where Is = ±1 denotes the sign uncertainty. By choosing any of the positive or negative signs in

(4.31), λ1 can be computed from

λ1 =
x1(1)

λ0e−jω0M + λ0e−jω1M
. (4.32)
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We then sequentially compute λq from x1(q) with the previous estimates of λ0, . . . , λq−1. The

detailed steps are straightforward and are omitted here.

The above process uses only the first Q + 1 entries in x1 and cannot provide satisfactory pre-

cision. Nevertheless, with this initial estimation, we can apply the gradient decent process [67] to

improve the estimation accuracy. The objective is to minimize the distance between x and ΛΓλ;

i.e., ζ = ∥x−ΛΓλ∥2. Then, λ can be updated according to

λ(i+1) = λ(i) − ϵ
∂ζ

∂λ∗

∣∣∣∣
λ=λ(i)

, (4.33)

where ϵ is the step size. See Appendix D for a brief illustration of the gradient decent method with

complex variables. The partial differential in (4.33) can be explicitly expressed as

∂ζ

∂λ∗ = −(ΛΓ+Ω)H(x−ΛΓλ), (4.34)

where Ω is a (2Q+ 1)× (Q+ 1) Toeplitz matrix with the first column [(Γλ)T ,01×Q]
T .

Once λ is obtained, µ can be found from

µ = ΓHΛ†x2. (4.35)

Note that there exists a simultaneous sign ambiguity (SSA) in the estimated results due to step

(4.31); i.e., either {λ,µ} or {−λ,−µ} is found. Nonetheless, the SSA does not affect the data

detection when we reconstruct bi(n)’s. A similar observation is also made in [13], [14].

4.4.2 Frequency-Domain Approach

Let λ̃ be the Z-point discrete Fourier transform (DFT) of λ with Z ≥ Q + 1, whose mth entry is

defined as

λ̃m =

Q∑
q=0

λqe
−j2πqm/Z , m = 0, . . . , Z − 1. (4.36)

On the other side, the mth element of the Z-point DFT of Γλ is

ξm =

Q∑
q=0

λqe
−j2π

(q−Q/2)M
N e−j2πqm/Z = ej

πQM
N

Q∑
q=0

λqe
−j

2πq(ZM
N

+m)

Z . (4.37)

If R , ZM
N is an integer, then (4.37) becomes ej

πQM
N λ̃⟨m+R⟩Z , where ⟨·⟩Z denotes the modulo-Z

operation. Then the mth element of the Z-point DFT of x1(m) is

x̃1(m) = ξmλ̃m = ej
πQM

N λ̃mλ̃⟨m+R⟩Z . (4.38)
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Our target is to retrieve Z unknown λ̃m’s, m = 0, 1, . . . , Z − 1 from Z equations

λ̃mλ̃⟨m+R⟩Z = x̃1(m)e−j πQM
N , cm, ∀m = 0, . . . , Z − 1, (4.39)

where cm is defined as the corresponding constant.

Theorem 4.1. If Z is odd and is co-prime with R, then λ̃m’s can be found from (4.39) as

λ̃m =

(∏Z−1
i=0 ci

)1/2
∏Z−3

2
i=0 c⟨m+(2i+1)R⟩Z

, ∀m = 0, . . . , Z − 1, (4.40)

with only a SSA.

Proof. See Appendix E.

Note that the selection of R and Z is very important in implementing the frequency-domain

approach. Let N ′/M ′ = N/M be the simplest form of the fraction; i.e., N ′ and M ′ are co-prime.

The following ways to select Z are proposed:

• If N ′ is odd and is greater than Q+ 1, then we can choose Z = N ′ and R = M ′.

• Otherwise, pick any integer κ such that κN ′ ≥ Q (κ can be 1 to account for the case when

N ′ is greater than Q+ 1 but is even):

– If κN ′ is even, then we choose R = κM ′ and Z = κN ′ + 1, namely, Z = RN/M + 1.

This choice will guarantee that Z is odd and is co-prime with R, while the consequence

is that

ξm = ej
πQM

N

Q∑
q=0

λqe
−j

2πq(R+m)
Z e−j

2πq M
N

Z ≈ λ̃⟨m+R⟩Z . (4.41)

Note that, a similar approximation has been used in many multi-carrier systems when

the channel frequency response on the adjacent carriers is assumed to be the same [84].

Our approximation is more accurate since the distortion phase of each summand is only
2πqM

N

Z < 2πq
Z . Moreover, we can always choose a large enough Z such that the approxi-

mation becomes sufficiently accurate.

– If κN ′ is odd, then we choose R = κM ′ and Z = κN ′ + 2, namely, Z = RN/M + 2.

This choice will guarantee that Z is odd and is co-prime with R. A similar approxima-

tion on ξm applies.

After obtaining λ̃, we can find λ from the first Q + 1 elements of the Z-point inverse Fourier

transform (IDFT) of λ̃. Since the frequency-domain approach fully utilizes all the information,
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Fig. 4.5. Channel estimation MSEs versus SNR for x.

the initial estimates of λq’s are expected more accurate than those from the time-domain approach.

However in the low SNR region, (4.40) is susceptible to error enhancement due to the products in

both the denominator and numerator, as will be seen in our later simulations.

The same iteration (4.33) can be then applied to improve the accuracy of λ. Finally, µ can be

found from (4.35).

4.5 Simulation Results

In order to evaluate the inherent performance of our algorithms, the time-varying channels are gen-

erated directly from the BEM model (4.3). The same approach has been adopted in many papers

when testing the performance of channel estimation [39], [85]. However, the real channel generated

from (4.1) will be applied for data detection [83], [43], [42].

4.5.1 Channel Estimation and Training Design

The parameters for channel estimation are taken as Q = 4, N = 352, M = 8, and T = 22. A total

of 10000 Monte-Carlo trials are used for averaging. Optimal training is compared with two types

of random training. In the first one, all pilots are equi-powered but randomly spaced. In the second

one, the pilot power levels are random, but the pilots are uniformly spaced.
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Estimation of the Equivalent BEM Coefficients

The estimation MSEs of the equivalent channel x = [xT
1 ,x

T
2 ]

T from the three different types of

training are shown in Fig. 4.5. The theoretical MSE is also displayed for comparison. Clearly, the

designed optimal training sequence given in (4.23) achieves the best performance, with the MSE

being close to the theoretical one.

Recovery of the Original BEM coefficients– Time-domain Approach

In this example, the coefficients λ are extracted from the estimated x̂1. The MSEs versus the SNR

for the initial estimate as well as those after several iterations are shown in Fig. 4.6, which reveals

that the initial estimate is effective in the sense that the MSE curve linearly decreases with the

increase of the SNR. Moreover, the iterations can significantly improve the estimation accuracy

since the initial estimation utilizes only part of the observations in x1. After the tenth iteration, the

improvement is negligible.

Recovery of the Original BEM Coefficients– Frequency-domain Approach

Next we choose the frequency-domain approach to recover the coefficients λ. From (2.10), we

take R = 1, 2, 5, respectively, and Z = RN/M + 1 is 45, 89, 221, respectively. The estimation

MSEs versus the SNR for the initial estimation as well as those from the 10-th iteration are shown in
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Fig. 4.7. Channel estimation MSEs versus SNR for λ: frequency-domain approach.

Fig. 4.7. The iteration in this case marginally improves the estimation accuracy because the initial

frequency-domain estimate fully explores x1. Moreover, the choice of a different R does not affect

the performance significantly. As mentioned previously, the performance of the frequency-domain

approach degrades at a relatively low SNR, say, 8 dB in Fig. 4.7, due to the error enhancement.

Comparing the Time- and the Frequency-domain Approaches

It is then of interest to compare the performances of the two different approaches in recovering λ.

To make this comparison clear, we present the results in a new figure, and apply fifty iterations

for both methods. As Fig. 4.8 indicates, the initial frequency-domain estimation outperforms the

time-domain results at the high SNR region, even if the latter apply iterations. Nonetheless, the

performance gap is quite small. At a relatively low SNR, say SNR= 8 dB, the time-domain approach

gives a better performance.

Estimation of µ

After obtaining λ, µ can be estimated through (4.35). The corresponding MSEs versus the SNR

from both time and frequency-domain approaches are shown in Fig. 4.9. It is seen that the estimated

µ contains a larger error than the estimated λ in Fig. 4.8. This difference is expected since µ is

obtained through the estimated λ so that the errors in λ propagate to the estimates of µ.
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Fig. 4.8. Comparison between the time- and the frequency-domain approaches.

4.5.2 Data Detection

For data detection, the channel is generated by using the more realistic model (4.1). The bit error

rate (BER) is the figure of merit. The system parameters shown in Fig. 4.2 are taken. We first apply

the channel estimation method to find the BEM coefficients and to reconstruct the time-varying

channels bi(n). Then, the self-signal component is canceled before the data detection. The error

due to non-perfect removal of the self-signal will also affect the system performance. The time-

and the frequency-domain approaches are used to estimate λ and µ. The BERs versus the SNR for

different numbers of Q, and the BER under perfect channel knowledge are displayed in Fig. 4.10.

Clearly, the proposed methods yield effective data detection. At high SNRs, the frequency-domain

method yields better BER performance than the time-domain method since the former can provide

better estimation results. An error floor is observed in the high SNR region due to the mismatch

between the BEM model and the real channels. Obviously, the place where the floor begins could

be improved by increasing the number of Qs.

4.6 Conclusions

In this chaper, we studied the problem of channel estimation for time-varying TWRN channels.

A new PSAM scheme was designed, and the channel estimation was related to a finite number of

variables by using CE-BEM. The LS estimator for the convolved BEM coefficients was derived
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Fig. 4.9. Channel estimation MSEs versus SNR for µ.

along with the optimal training sequences. Time-domain and frequency-domain algorithms were

then developed to recover the individual BEM coefficients from the convolved ones. The selection

of the system parameters to guide the practical design was fully discussed. The simulation results

clearly demonstrated the effectiveness of the proposed algorithms and corroborated the studies.
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Chapter 5

Doubly-Selective Channel Estimation

for OWRN

In this chaper, doubly-selective channel estimation is considered for AF-based OWRN. The time-

varying channel is modeled by the CE-BEM, as was done in Chapter 4. Since direct estimation

of these coefficients requires significant pilot overhead, we develop an efficient estimator that only

targets a set of useful channel parameters that could guarantee effective data detection. The training

sequence design that can minimize the channel estimation MSE is also proposed.

5.1 Introduction

Assuming block fading scenarios, several channel estimation schemes were proposed for relay net-

work with one or multiple-relay nodes. For example, [81] and [20] studied the channel estimation

for relay networks and pointed out that there exist many differences in channel estimation between

the AF-based relay networks and the traditional point-to-point networks. Shortly later, channel esti-

mation under frequency-selective environment were developed in [86], [87].

However, in many practical cases the source node, the relay node and the destination node can

be mobile. The relative motion between any two nodes will cause Doppler shift and thus make the

channel time-varying [63]. Therefore, the relay network is expected to operate over doubly-selective

channels. To our best knowledge, estimation techniques for such cases have not yet been developed.

This motivates our current work.

As in Chapter 4, the CE-BEM is used to model the time-varying channel. The data frame

structure is designed to adapt to the transmission in doubly-selective channels and to facilitate both

channel estimation and data detection. We first develop and an estimator that targets the combined

channel parameters and then propose a detection algorithm. The training sequence that can minimize
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Fig. 5.1. System model for AF relay network over doubly-selective channel.
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Fig. 5.2. Structure of one transmission block.

the channel estimation mean-square error is also found.

5.2 System model

Consider an AF relay network with one source node S, one relay node R and one destination node D

(Fig. 5.1). Let h(i; l) denote the doubly-selective channel between the source node S and the relay

node R, g(i; l) denote the doubly-selective channel between the relay node R and the destination

node D. There may exists a switching time at the relay node R, which results in a delay ∆ in the

second retransmission phase. However, our model can be well adapted by setting g(i + ∆; l) =

g(i0; l) where i0 is the new starting point for the following CE-BEM approximation. Without loss

of generality, we assume that the channel length of both h(i; l) and g(i : l) as L+ 1, and each tap is

modeled as a zero mean complex Gaussian random process with power σ2
h,l (or σ2

g,l).

We propose a new transmission scheme as shown in Fig. 5.2. Each transmission block that

contains N symbols is divided into P subblocks. Assume the kth subblock contains Nk symbols,

of which Nsk symbols are data and are represented by sk, while Nbk symbols are pilots and are

represented by bk. The total number of data symbols is Ns =
∑P

k=1 Nsk and the total number of

pilots is Np =
∑P

k=1 Nbk . With such a structure, we can represent the whole block as a vector

x = [sT1 ,b
T
1 , · · · , sTP ,bT

P ]. (5.1)
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During the first phase, the relay node R receives

r(i) =
L∑

l=0

h(i; l)x(i− l) + w1(i), (5.2)

where w1(i) is the additive complex white Gaussian noise with mean zero and variance σ2
w1

, i.e.,

w1 ∼ CN (0, σ2
w1

). During the second phase, the relay note R amplifies r(i) with a constant factor

α and then re-transmit it to the destination node D. The signal obtained by D is

y(i) =
L∑

l=0

g(i; l)αr(i− l) + w2(i) (5.3)

=α
L∑

l=0

g(i; l)

(
L∑

l=0

h(i; l)x(i− l)

)
+ α

L∑
l=0

g(i; l)w1(i− l) + w2(i)︸ ︷︷ ︸
w(i)

, (5.4)

where w1(i) is the additive complex white Gaussian noise with mean zero and variance σ2
w1

, i.e.,

w1(i) ∼ C(0, σ2
w1

) and w(i) means the combined noise. Here, we consider α as a constant. Suppose

the average power of the source node is P1, i.e., E{|xi(n)|2} = P1 and the average power of the

relay node is Pr. The amplifier factor α can be chosen as

α =

√√√√√ Pr

P1

L∑
l=0

σ2
h,l + σ2

w1

. (5.5)

5.3 Doubly-Selective Channel in OWRN

It is shown in [81], [82] that for relay networks, the channel statistics depend on the mobility of the

three nodes. Denote fds, fdd and fdr as the maximum Doppler shifts due to the motion of S, D and

R respectively. The discrete autocorrelation functions for the lth tap of h(i; l) can be represented as

[44], [82]

Rh,l(m) = σ2
h,lE(h(n+m; l)h∗(n; l)) = σ2

h,lJ0(2πfdsmTs)J0(2πfdrmTs), (5.6)

Rg,l(m) = σ2
g,lE(g(n+m; l)g∗(n; l)) = σ2

g,lJ0(2πfdrmTs)J0(2πfddmTs). (5.7)

where J0(·) is the zero-th order Bessel function of the first kind, and Ts is the symbol sampling

duration. If one node is fixed, i.e., corresponding Doppler shift becomes zero, then (5.6) and (5.7)

reduce to the well-known Jakes model [63].

In fact, (5.6) and (5.7) reveal that the power spectra of h(i; l) and g(i; l) span over the bandwidth

fd1 = fds + fdr and fd2 = fdr + fdd respectively. According to the analysis of CE-BEM in [36],
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[42], we can express the doubly-selective channel as

h(i; l) =

Q1∑
q=0

hq(l)e
ȷ2π(q−Q1/2)i/N , (5.8)

g(i; l) =

Q2∑
q=0

gq(l)e
ȷ2π(q−Q2/2)i/N , (5.9)

where 0 ≤ i ≤ N − 1, 0 ≤ l ≤ L, Qm(m = 1, 2) , 2⌈fdmNTs⌉ is the number of basis. The CE-

BEM coefficients hq(l) and gq(l) are assumed as zero-mean, complex Gaussian random variables

with variance σ2
h,q,l and σ2

g,q,l respectively [36], [42], [43].

To simplify the notation as well as the following discussion, we assume fd1 = fd2 = fd and

Q1 = Q2 = Q. We further denote wq = 2π(q −Q/2)/N and define

hq =[hq(0), hq(1), · · · , hq(L)]
T , (5.10)

gq =[gq(0), gq(1), · · · , gq(L)]T , q ∈ [0, Q]. (5.11)

Next we apply CE-BEM (5.8) and (5.9) in (5.4) for channel estimation and data detection. Our

tasks are: (i) estimate the parameters such as the channel coefficients hq and gq so that the channel

h(i; l) and g(i; l) can be recovered for each time index i ∈ [0, N − 1], or the combined param-

eters that will enable successful data detection as did in [20], [90]; (ii) find the optimal training

sequence that can minimize the channel estimation error; (iii) recover the data sk, k ∈ [1, P ] from

the estimated channel.

5.4 Estimation, Detection and Traning Sequence Design

Let us construct N×1 vectors r, y, and construct N×N matrices H, G from g(i; l) in the following

way:

r = [r(0), r(1), · · · , r(N − 1)]T , (5.12)

y = [y(0), y(1), · · · , y(N − 1)]T , (5.13)

Hi,j = h(i; i− j), Gi,j = g(i; i− j), (5.14)

for i, j = 1, 2, · · · , N . We can write (5.2) and (5.4) as

r =Hx+w1, (5.15)

y =αGr+w2 = αGHx+w, (5.16)
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Fig. 5.3. Partition of the matrix H into Hs, Hb, and Hb̄ that are shown in dashed line on the right side of the figure.

where wi = [wi(0), wi(1), · · · , wi(N − 1)]T , i = 1, 2 and w = [w(0), w(1), · · · , w(N − 1)]T .

To clearly see the problem of channel estimation and facilitate our analysis, we perform the

following channel partition as our first step.

5.4.1 Channel Partition

Following the channel partition method in [43], we can split the channel matrix H into three ma-

trices, namely, Hs, Hb, and Hb̄, which are shown in Fig. 5.3. Similarly, the channel Hk, the kth

(1 ≤ k ≤ P ) part of H corresponding to the kth sub-block input of [sk,bk], can also be partitioned

into three matrices Hs
k, Hb

k and Hb̄
k (Fig. 5.4). After separation of these channels, we derive two

input-output relationships at the relay node

rs =Hss+Hb̄b̄+ws
1, (5.17)

rb =Hbb+wb
1, (5.18)

where rs = [(rs1)
T , · · · , (rsP )T ]T , rb = [(rs1)

T , · · · , (rsP )T ]T , b̄ contains the first L and the last L

entries of bk for all 1 ≤ k ≤ P , and ws
1 and wb

1 denote the corresponding noise vectors.

Repeat the partition process for the channel G and Gk. That is, split G into Gs, Gb̄ and Gb

(Fig. 5.5), while split Gk, the kth component of G, into Gs
k, Gb̄

k and Gb
k (Fig. 5.6). We obtain two

input-output relationships at the destination node

ys =αGsrs + αGb̄rb̄ +ws
2, (5.19)
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yb =αGbrb +wb
2, (5.20)

where ys = [(ys
1)

T , · · · , (ys
P )

T ]T , yb = [(yb
1)

T , · · · , (yb
P )

T ]T , rb̄ contains the first L and the last

L entries of rbk for all 1 ≤ K ≤ P , ws
2 and wb

2 denote the corresponding noise vectors.

Combining (5.18) and (5.20) yields

yb =αGbHbb+ αGbw
b
1 +wb

2︸ ︷︷ ︸
wb

. (5.21)

where wb is defined as the corresponding item.

It can be readily checked that (5.21) is equivalent to

yb =


yb
1

...

yb
P

 =


αGb

1H
b
1b1

...

αGb
PH

b
PbP

+wb. (5.22)

Note that in (5.22) Hb
k is an (Nbk−L)×Nbk matrix and Gb

k is an (Nbk−2L)×(Nbk−L) matrix.

Thus, to perform channel estimation, the training length for kth sub-block should be Nbk ≥ 2L+ 1
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5.4.2 Estimation Algorithm

Let us define Λ(wq)
M = diag{1, eȷwq , · · · , eȷwq(M−1)}. For any (L+1)×1 vector a = [a0, a1, · · · , aL]T ,

define an M × (M + L) Toeplitz matrix as

T
(a)
M+L =


aL · · · a0 · · · 0
...

. . . . . . . . .
...

0 · · · aL · · · a0


︸ ︷︷ ︸

M+Lcolumns

. (5.23)

We provide the following two Lemmas.

Lemma 5.1.

T
(a)
M+LΛ

(wq)
M+L = Λ

(wq)
M T

(µa)
M+L, (5.24)

where µa = [a0e
ȷwqL, a1e

ȷwq(L−1), · · · , aL].

Proof. Proved from straight calculations.

Lemma 5.2. For two vectors ai = [ai,0, ai,1, · · · , ai,L]T , i = 1, 2, there is

T
(a1)
M+LT

(a2)
M+2L =T

(a1⊗a2)
M+2L , (5.25)

where ⊗ denotes linear convolution.
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Proof. Proved from straight calculations.

According to these definitions and (5.8), we obtain

H =

Q∑
q=0

Λ
(wq)
N Φq, (5.26)

Hb
k =

Q∑
q=0

e
ȷwq(Nsk

+L+
k−1∑
i=1

Ni)
Λ

(wq)
Nbk

−LT
(hq)
Nbk

, (5.27)

where Φq is a lower triangular Toeplitz matrix with the first column [hq(0), · · · , hq(L), 0, · · · , 0]T

and T
(hq)
Nbk

is (Nbk − L)×Nbk Toeplitz matrix as defined in (5.23).

Similarly, based on (5.9) we can obtain

G =

Q∑
q=0

Λ
(wq)
N Ωq, (5.28)

Gb
k =

Q∑
q=0

e
ȷwq(Nsk

+2L+
k−1∑
i=1

Ni)
Λ

(wq)
Nbk

−2LT
(gq)
Nbk

−L, , (5.29)

where Ωq is a lower triangular Toeplitz matrix with the first column [gq(0), · · · , gq(L), 0, · · · , 0]T ,

and T
(gq)
Nbk

−L is an (Nbk − 2L)× (Nbk − L) Toeplitz matrix as defined in (5.23).

Combining (5.27) and (5.29) gives

Gb
kH

b
k =

Q∑
m=0

e
ȷwm(Nsk

+2L+
k−1∑
i=1

Ni)
Λ

(wm)
Nbk

−2LT
(gm)
Nbk

−L

Q∑
n=0

e
ȷwn(Nsk

+L+
k−1∑
i=1

Ni)
Λ

(wn)
Nbk

−LT
(hn)
Nbk

=

Q∑
m=0

Q∑
n=0

θm,n,k Λ
(wm)
Nbk

−2LT
(gm)
Nbk

−LΛ
(wn)
Nbk

−LT
(hn)
Nbk︸ ︷︷ ︸

Ξm,n,k

(5.30)
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where

θm,n,k =e
ȷwm(Nsk

+2L+
k−1∑
i=1

Ni)+jwn(Nsk
+L+

k−1∑
i=1

Ni)
, (5.31)

and Ξm,n,k is defined as the corresponding item. Using Lemma 5.1 and Lemma 5.2, Ξm,n,k can be

simplified as

Ξm,n,k =Λ
(wm)
Nbk

−2LΛ
(wn)
Nbk

−2LT
(µgm

)

Nbk
−LT

(hn)
Nbk

(5.32)

=Λ
(wm+wn)
Nbk

−2L T
(λm,n)
Nbk

, (5.33)

where

µgm =[gm(0)eȷwnL, gm(1)eȷwn(L−1), · · · , gm(L)]T , (5.34)

λm,n =µgm ⊗ hn. (5.35)

Since T
(λm,n)
Nbk

is a Toeplitz matrix, we obtain

Gb
kH

b
kbk =

Q∑
m=0

Q∑
n=0

θm,n,kΛ
(wm+wn)
Nbk

−2L T
(λm,n)
Nbk

bk

=

Q∑
m=0

Q∑
n=0

θm,n,kΛ
(wm+wn)
Nbk

−2L B
(bk)
Nbk

λm,n, (5.36)

where B
(bk)
Nbk

is defined as

B
(bk)
Nbk

=


bk(2L), · · · , bk(0)

bk(2L+ 1), · · · , bk(1)
...

...
...

bk(Nbk − 1), · · · , bk(Nbk − 2L− 1)

 . (5.37)

Unfortunately, it remains challenging to estimate λm,n from (5.36). A direct way to estimate

all λm,n requires Nb to be no less than 2PL + (Q + 1)2(2L + 1), which is too large and the

transmission efficiency will be reduced. To solve this problem, we choose to estimate other type of

channel information that requires smaller training length but at the same time ensures effective data

detection.

Let us introduce two variables ζq,k and ϖq defined as

ϖq =wm + wn = eȷ2π(q−Q)/N , m, n ∈ [0, Q], q ∈ [0, 2Q], (5.38)
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ζq,k =e
ȷϖq(Nsk

+2L+
k−1∑
i=1

Ni)
, k ∈ [1, P ]. (5.39)

It can be readily checked that θm,n,k = ζm+n,ke
−jwnL. Then we can combine those items that

satisfy m+ n = q in (5.36) and obtain

Gb
kH

b
kbk =

2Q∑
q=0

ζq,kΛ
(ϖq)
Nbk

−2LB
(bk)
Nbk

ηq, (5.40)

where

ηq =
∑

m+n=q

e−jwnLλm,n. (5.41)

Now define

η =[ηT
0 ,η

T
1 , · · · ,ηT

2Q]
T , (5.42)

as the parameters to be estimated. Substituting (5.40) into (5.22) provides a simple model

yb =αΨbη +wb, (5.43)

where Ψb is defined as

Ψb =


ζ0,1Λ

(ϖ0)
Nb1

−2LB
(b1)
Nb1

, · · · , ζ2Q,1Λ
(ϖ2Q)
Nb1

−2LB
(b1)
Nb1

...
...

...

ζ0,PΛ
(ϖ0)
NbP

−2LB
(bP )
NbP

, · · · , ζ2Q,PΛ
(ϖ2Q)
NbP

−2LB
(bP )
NbP

 , (5.44)

Instead of estimating the coefficients hq and gq , we could estimate another parameter η from

η̂ =
1

α

(
ΨH

b Ψb

)−1

ΨH
b yb. (5.45)

Moreover, η̂q can be directly obtained from η̂ for each q ∈ [0, 2Q].

5.4.3 Data Detection

Substituting (5.17) into (5.19) yields

ys =αGsHss+ αGsHb̄b̄+ αGsw
s
1 + αGb̄rb̄ +ws

2. (5.46)
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Note that rb̄ in (5.46) can be further decomposed as

rb̄ = Hb̆b̆+wb̄
1, (5.47)

where Hb̆ contains the first L and the last L rows of every Hb
k, b̆ contains the first 2L and the last

2L entries of every bk, 1 ≤ K ≤ P and wb̄
1 denotes the corresponding noise. Then (5.46) can be

written as

ys =αGsHss+ αGsHb̄b̄+ αGb̄Hb̆b̆+ws, (5.48)

where the combined noise vector ws = αGsw
s
1 + αGb̄w

b̄
1 +ws

2 .

Lemma 5.3. Among all training choices that lead to identical covariance matrix of the channel

estimation error, if the training length Nbk is greater than 4L+ 1 and if the training has the first 2L

and the last 2L entries equal to zero, then the interference to the data detection is minimized.

Proof. See Appendix F.

Following Lemma 5.3, we can simplify (5.48) as

ys =αGsHss+ws, (5.49)

which is equivalent to

ys =


ys
1

...

ys
P

 =


αGs

1H
s
1s1

...

αGs
PH

s
1sP

+ws. (5.50)

Define U
(hq)
M is a Toeplitz matrix generated by the vector hq in the following way:

U
(hq)
M =



hq(0), · · · , 0
...

. . .
...

hq(L),
. . . , hq(0)

...
. . .

...

0 · · · hq(L)


︸ ︷︷ ︸

Mcolumns

. (5.51)

We have the following lemmas.
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Lemma 5.4.

U
(hq)
M Λ

(wq)
M =e−jwqLΛ

(wq)
M+LU

(µhq
)

M , (5.52)

where µhq
= [hq(0)e

ȷwqL, hq(1)e
ȷwq(L−1), · · · , hq(L)]

T .

Proof. Proved from straight calculation.

Lemma 5.5.

U
(gq)
M+LU

(hq)
M = U

(gq∗hq)
M (5.53)

Proof. Proved from straight calculation.

Then according to (5.8) and (5.9), we obtain

Gs
k =

Q∑
q=0

e
ȷwq

k−1∑
i=1

Ni

Λ
(wq)
Nsk

+2LU
(gq)
Nsk

+L, (5.54)

Hs
k =

Q∑
q=0

e
ȷwq

k−1∑
i=1

Ni

Λ
(wq)
Nsk

+LU
(hq)
Nsk

. (5.55)

Next it can be found

Gs
kH

s
k =

Q∑
m=0

Q∑
n=0

ϕm,n,kΛ
(wm)
Nsk

+2LU
(gm)
Nsk

+LΛ
(wn)
Nsk

+LU
(hn)
Nsk

(5.56)

where ϕm,n,k = e
j(wm+wn)

k−1∑
i=1

Ni

. Using Lemma 5.4 and Lemma 5.5, it can be derived that

U
(gm)
Nsk

+LΛ
(wn)
Nsk

+LU
(hn)
Nsk

=e−ȷwnLΛ
(wn)
Nsk

+2LU
(µgm

)

Nsk
+LU

(hn)
Nsk

(5.57)

=e−ȷwnLΛ
(wn)
Nsk

+2LU
(λm,n)
Nsk

, (5.58)

where µgm and λm,n are defined in (5.34) and (5.35) respectively. Substituting (5.58) into (5.56),

we can obtain

Gs
kH

s
k =

Q∑
m=0

Q∑
n=0

ϕm,n,ke
−ȷwnLΛ

(wm+wn)
Nsk

+2L U
(λm,n)
Nsk

=

2Q∑
q=0

e
ȷϖq

k−1∑
i=1

Ni

Λ
(ϖq)
Nsk

+2LU
(ηq)

Nsk
. (5.59)

Clearly, given the estimates of ηq, Gs
kH

s
k can be reconstructed from (5.59). Hence, the data sk can

be detected with the reconstructed channel information Gs
kH

s
k.
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5.4.4 Training Sequence Design

The estimation error of η can be expressed as

e =η̂ − η =
(
ΨH

b Ψb

)−1

ΨH
b wb. (5.60)

The correlation matrix of wb can be found from (5.29) as

Rwb
=E

(
wbw

H
b

)
=

(
σ2
w2

Q∑
q=0

L∑
l=0

|gq(l)|2 + σ2
w1

)
INb−2PL. (5.61)

Thus the mean square error of e is

σ2
e =tr

(
E(eeH)

)
= Cetr

(
ΨH

b Ψb

)−1

(5.62)

where Ce =

(
σ2
w2

Q∑
q=0

L∑
l=0

|gq(l)|2 + σ2
w1

)
/α2.

According to [88, Appendix A], we know that σ2
e in (5.62) is lower bounded as follows:

Cetr
(
ΨH

b Ψb

)−1

≥
∑
m

Ce

[ΨH
b Ψb]m,m

, (5.63)

where the equality holds if and only if (ΨH
b Ψb) is a diagonal matrix. We then need to design the

training sequence that can diagonalize (ΨH
b Ψb).

Based on the definition of Ψb (5.44), the optimal training sequence that can minimize the σ2
e

requires the following conditions to be satisfied:

P∑
k=1

(
B

(bk)
Nbk

)H
B

(bk)
Nbk

=PbI2L+1, (5.64)

P∑
k=1

(
B

(bk)
Nbk

)H
Λ

(−ϖq1 )

Nbk
−2Lζ

H
q1,kζq2,kΛ

(ϖq2 )

Nbk
−2LB

(bk)
Nbk

=02L+1, ∀q1 ̸= q2, q1, q2 ∈ [0, 2Q] (5.65)

where Pb is the power allocated to the training sequence.

Let us first focus on (5.64). Observing the structure of B(bk)
Nbk

, we know that (5.64) can be fulfilled

if the following conditions are satisfied:

(C1): Nbk = 4L+ 1, ∀k ∈ [1, P ], (5.66)

(C2): bk =
√

Pb/P [0, · · · , 0, 1, 0, · · · , 0]T . (5.67)
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With conditions (C1) and (C2), we can further simplify (5.65) as

Pb

P

P∑
k=1

Λ
(−ϖq1 )

2L+1 ζHq1,kζq2,kΛ
(ϖq2 )

2L+1

=
Pb

P

P∑
k=1

e
ȷ 2π

N (q2−q1)(Nsk
+2L+

k−1∑
i=1

Ni)
Λ

(ϖq2−ϖq1 )

2L+1

=02L+1, ∀q1 ̸= q2, q1, q2 ∈ [0, 2Q]. (5.68)

It can be readily checked that the sufficient conditions to achieve (5.68) is

(C3): N = P (Nsk + 4L+ 1), Nsk =Ns/P, ∀k ∈ [1, P ]. (5.69)

Conditions (C1), (C2) and (C3) imply that the equal-spaced and equal-powered training se-

quence. This coincides with the optimal training sequence design in the traditional point-to-point

channel [43].

5.4.5 Block Parameters

The estimator requires Nb ≥ 2PL + (2Q + 1)(2L + 1) and the optimal training design requires

Nb = P (4L + 1) to minimize the mean-square channel estimation error. Thus we know that P ≥

(2Q+ 1) and N ≥ (Nsk + 4L+ 1)(2Q+ 1).

Suppose a 3-tap channel and Nsk = 4L+ 1 = 9, we can obtain

2Q+ 1 = 4⌈fdTsN⌉+ 1 ≤ N/18. (5.70)

It can be found

fdTs ≤
1

72
+

1

4N
≈ 0.0139 +

1

4N
. (5.71)

Using the following parameters:

• carrier frequency fc = 900 MHz and thus the wavelength λ = 1/3 m;

• data rate 20 kbps and thus the symbol period Ts = 50µs;

Since the maximum Doppler shift fd is V/λ, we can find the mobile speed V ≤ 66 m/s, which can

satisfy most application requirements.
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Fig. 5.7. Channel MSE versus the SNR.

5.5 Simulation Results

In order to evaluate the inherent performance of our algorithms, the doubly-selective channels are

generated directly from the CE-BEM (5.8) and (5.9). The same approach has been adopted in many

other papers when testing the performance of channel estimation [39], [43]. However, the real

channel will be also applied for data detection.

We assume that carrier frequency fc = 900 MHz, one symbol period Ts = 50µs and the

maximum mobility speed is 90 km/hour. Thus we know that the maximum Doppler shift is fd = 75

Hz and fdTs = 3.75 × 10−3. Suppose one block contains 360 symbols, i.e., N = 360. Then

Q = 2⌈NfdTs⌉ = 4. We also assume that both doubly-selective channels h(i; l) and g(i; l) has

3 taps, i.e., L = 2. Thus we know that P ≥ (2Q + 1) = 9 and Nb ≥ P (4L + 1) = 81. The

variance of each tap for channel h(i; l) is σ2
h,l =

∑Q
q=0 σ

2
h,q,l = e−l/10 and that for channel g(i; l)

is σ2
g,l =

∑Q
q=0 σ

2
g,q,l = e−l/10. The variance of the noise is taken as σ2

w1
= σ2

w2
= 1. The SNR is

defined as the ratio of symbol power to the noise power, i.e., Es/N0. BPSK constellation is utilized

for both training and data symbols. 1000 Monte-Carlo trials are used for the averaging.

First we set the total number of trainings Nb = 120 and use three types of training: equi-powered

and equi-spaced (our optimal design) ; equi-powered but with random length; equi-spaced but with

random power. For performance comparison, the total power for each types of trainings is the same.
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For each type of training, we find the MSE of our specially defined channel η. The estimation

MSEs for each type are plotted versus SNR in Fig. 5.7. The lower bound of σ2
e (5.63) is also plotted

for comparison. It can be seen that the equi-spaced equi-powered traning achieves the minimum

estimation MSE among all the three trainings and its MSE almost approaches the lower bound in

(5.63).

Next we use the estimated channel η̂ to perform data detection. Define the BER as the ratio of

number of successfully decoded data symbols over Ns the number of transmitted data symbols. The

BER versus SNR is plotted in Fig. 5.8. The BER curve in the case of perfectly known channel η is

also plotted for comparison. It can be seen that our detection method works well and at high SNR

our BER curve approaches that of the ideal case when the channel is perfectly known at the receiver.

We also examine the performance of the proposed estimation and detection methods for real

channels. That is, the channel samples are generated according to (5.6) and (5.7). We choose three

different number of bases Q as 4, 6, and 8 respectively, and hence the corresponding number of data

symbols Ns is 279, 243, and 207. The BER versus SNR is plotted in Fig. 5.9. For comparison, the

BER curve under perfect channel knowledge at the receiver is also displayed. Clearly, the proposed

methods yield effective data detection. An error floor is observed in the high SNR region due to

the mismatch between the BEM model and the real channels. Obviously, the place where the floor

begins could be improved by increasing the number of Qs.
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In the last example, we choose three different number of subblocks P as 2Q + 1, 2Q + 2 and

2Q+4 respectively, and the space left for data transmission is Nsk = N−P (4L+1) = 279, 270 and

252 correspondingly. Define the transmission efficiency as the ratio of the number of successfully

decoded data symbols over total number of symbols, i.e., Ns × BER/N . We run the simulation

process as SNR ranges from -10 dB to 30 dB. The transmission efficiency at different SNR for each

P is plotted in Fig. 5.10. It is shown that when the number of subblocks P equals 2Q + 1, the

best transmission efficiency is achieved at all SNR. It can be explained that when P increases by

one unit, the data loss will be 4L + 1, which can not be compensated even if channel estimation

performance can be improved by larger P .

5.6 Conclusions

In this chapter, doubly-selective channel estimation was considered for AF-based relay networks.

Based on the CE-BEM, we designed an efficient method to estimate the channel coefficients and

detect data symbols. The optimal training sequence that can minimize the estimation MSE was also

derived. Finally, extensive numerical results are provided to corroborate the proposed studies.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has developed new estimators and training sequence design for AF relay networks. The

main contributions are given in Chapter 2 to 5.

Chapter 2 developed a joint CFO and channel estimator for OFDM-based AF TWRNs. To

facilitate the estimation, two new ZP and CP transmission protocols were proposed. These protocols

also maintain the carrier orthogonality. Both protocols lead to the same joint CFO and channel

estimator, which was implemented by using the NLS algorithm. The performance of the estimator

was analyzed in detail by proving its unbiasedness at high SNRs and by deriving the closed-form

expression of its MSE.

Chapter 3 focused on estimating individual frequency and channel parameters since the method

in Chapter 2 can only obtain convoluted channel parameters and the mixed CFO values. Three

different algorithms were designed for the initial parameter estimation and an iterative algorithm

to refine the initial estimation results. Simulations demonstrated the accuracy of the theoretical

analysis. It was found that for the special case when the CFO between two terminals is small, the

estimation MSE is very close to CRB in the high SNR region, and the estimates are good even

without iterations.

Chapter 4 investigated the time-varying channel estimation and training sequence design for

TWRNs. The CE-BEM was adapted to represent the TWRN time-varying channels. A new multi-

round training scheme was suggested. Channel estimator was developed and two algorithms were

suggested to recover the CE-BEM coefficients. The optimal training parameters, including the num-

ber of the pilot symbols, the placement of the pilot symbols, and the power allocation to the pilot

symbols, were derived by minimizing the channel estimation MSE. It was shown that traditional

one-round training scheme [14], [90] for TWRN is not optimal in the sense of minimizing the chan-
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nel estimation MSE.

Chapter 5 considered the doubly-selective channel estimation and training sequence design for

OWRNs. The CE-BEM was again used to represent the time-varying channel. An efficient was

proposed to estimate the channel and the optimal training sequence was derived that can minimize

the MSE. Finally numerical examples were provided to corroborate the proposed studies.

6.2 Future Work

As mentioned in Chapter 1, a main challenge is to develop a doubly-selective channel estimator

for TWRNs. This estimation problem is highly complicated and the CE-BEM used in this the-

sis for time-varying channels may not be accurate enough to represent doubly-selective channels.

A potential solution is the DPS-BEM because it needs fewer basis functions to achieve the same

MSE as that of CE-BEM. Developing the corresponding estimator and deriving the optimal training

sequence will be a challenging research topic.

Moreover, it will be good to derive a MSE lower bound of the BEM approximation of an arbitrary

time-varying channel. Such a bound will open up many problems. For example, if such a bound

exists, how does one find the BEM which achieves performance close to the bound? For another

instance, for the mobile-to-mobile channel in OWRN and TWRN [82], how does one find the BEM

with the best performance and then develop channel estimation and data detection algorithms?

Our training sequence designs in OWRN and TWRN are based on minimizing the MSE. Optimal

training sequence designs by other criteria, such as maximizing the lower bound of capacity or

minimizing BER or maximizing SNR, are also worth studying. In [46], the capacity lower bound

in the presence of channel estimation error is derived for the conventional point-to-point systems

and then training sequence design is proposed by maximizing the lower bound. For TWRNs, the

capacity lower bounds with channel estimation error remain unknown when the channel is either

frequency-selective, time-varying or doubly-selective. Deriving capacity bounds for these three

types of channels and designing training sequences are thus challenging problems.

In Chapter 4, to enable channel estimation, the relay forwards the received symbols with a delay

but without changing the order of these symbols. In fact, the relay may reorder these symbols in

order to minimize the BER or maximize the SNR. The design of an optimal mapping function is

also a good choice for future work.

Furthermore, note that all of our work [41], [74], [91] about estimation of time-varying channels

or doubly-selective channels for TWRNs and OWRNs are based on BEMs. However, the AR model

is an alternative to approximate the time-varying channel [47]. When an AR model is chosen to

represent the channel, Kalman filter is often utilized to estimate and track the channel [66], [92].

The reference [93] investigated the application of an AR model and Kalman filter for conventional
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point-to-point systems. For OWRNs and TWRNs, however, the use of the AR model and Kalman

filter to estimate the channel remains unexplored. The optimal training sequence design for such a

scenario is also an open issue.

The comparison between the BEM and the AR model in approximating the time-varying chan-

nels is also a problem worth investigating. Which model can best approximate the channel, espe-

cially the OWRN channel and the TWRN channel? Is there a lower bound for approximation MSE?

Clearly, this area remains largely unexplored.

Moreover, the optimal training sequence design for joint CFO and channel estimation for TWRNs

is another challenging problem. The theoretical MSE derived in Chapter 2 may be chosen as the op-

timization criterion. Other criteria, such as minimizing CRB or maximizing SNR, may also be good

choices and worth investigating.

Multiple-way relay networks (MWRNs) [96] is an extension of TWRNs. In a MWRN, multiple

terminals want to exchange their independent information packets with the help of a relay. Channel

estimation techniques for MWRN are an entirely open research area currently.
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Appendix A

Proof of Lemma 2.2

From [77], we know that

∆v ≈ −
∂g(v)
∂v |v=v0

∂2g(v)
∂v2 |v=v0

= − ġ(v0)

g̈(v0)
. (A-1)

The first order derivative of G can be calculated as

Ġ =
∂G

∂v
= jJHDΓS2. (A-2)

Applying the equality

∂Φ−1

∂v
= −Φ−1 ∂Φ

∂v
Φ−1 = −Φ−1(ĠHG+GHĠ)Φ−1, (A-3)

we get

ġ(v) =yH
n ṖGyn = yH

n ĠΦ−1GHyn︸ ︷︷ ︸
M1

+yH
n GΦ−1ĠHyn︸ ︷︷ ︸

M2

− (yH
n GΦ−1ĠHGΦ−1GHyn + yH

n GΦ−1GHĠΦ−1GHyn)︸ ︷︷ ︸
M3

. (A-4)

It can be found that

E(M1(v0)) =jE[(Gb+ n)
H
JHDΓS2Φ

−1GH(Gb+ n)]

= jE[bHGHJHDΓS2b] + jE[nHJHDΓS2Φ
−1GHn] (A-5)

E(M2(v0)) =− jE[bHSH
2 DΓHJGb]− jE[nHGΦ−1SH

2 DΓHJn] (A-6)

E(M3(v0)) =E[bH(−jS2DΓHJG+ jGHJHDΓS2)b]

+ E[nHGΦ−1(−jS2DΓHJG+ jGHJHDΓS2)Φ
−1GHn]. (A-7)
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Combining (A-5), (A-6), (A-7) and (A-4), we get

E[ġ(v0)] =jE[nH(I−GΦ−1GH)JHDΓS2Φ
−1GHn]

− jE[nHGΦ−1SH
2 DΓHJ(I−GΦ−1GH)n]

=−2σ2
neℑ

{
tr
(
GH(I−GΦ−1GH)JHDΓS2Φ

−1
)}

= 0.︸ ︷︷ ︸
0

(A-8)

In order to get g̈(v0), we need to compute the first-order derivative of M1, M2, and M3 as

Ṁ1 =yH
n G̈Φ−1GHyn − yH

n ĠΦ−1Φ̇Φ−1GHyn + yH
n ĠΦ−1ĠHyn (A-9)

Ṁ2 =yH
n ĠΦ−1ĠHyn − yH

n GΦ−1Φ̇Φ−1ĠHyn + yH
n GΦ−1G̈Hyn (A-10)

Ṁ3 =yH
n ĠΦ−1Φ̇Φ−1GHyn − yH

n GΦ−1Φ̇Φ−1Φ̇Φ−1GHyn (A-11)

+yH
n GΦ−1Φ̈Φ−1GHyn − yH

n GΦ−1Φ̇Φ−1Φ̇Φ−1GHyn + yH
n ĠΦ−1ΦΦ−1ĠHyn.

Thus we obtain

g̈(v0) =Ṁ1 + Ṁ2 − Ṁ3 − Ṁ4

=yH
n G̈Φ−1GHyn + yH

n GΦ−1G̈Hyn + 2yH
n ĠΦ−1ĠHyn

− 2yH
n ĠΦ−1Φ̇Φ−1GHyn − 2yH

n GΦ−1Φ̇Φ−1ĠHyn

− yH
n GΦ−1Φ̈Φ−1GHyn + 2yH

n GΦ−1Φ̇Φ−1Φ̇Φ−1GHyn

=bHGHG̈b+ nHG̈Φ−1GHn+ bHG̈GHb+ nHGΦ−1G̈Hn

+ 2bHGHĠΦ−1ĠHGb+ 2nHĠΦ−1ĠHn− 2bHGHĠΦ−1Φ̇b− bHΦ̈b

− 2nHĠΦ−1Φ̇Φ−1GHn− 2bHΦ̇Φ−1ĠHGb− 2nHGΦ−1Φ̇Φ−1ĠHn

− nHGΦ−1Φ̈Φ−1GHn+ 2bHΦ̇Φ−1Φ̇b+ 2nHGΦ−1Φ̇Φ−1Φ̇Φ−1GHn (A-12)

After some tedious simplification, it can be obtained that

E[g̈(v0)] = 2bHĠH(GΦ−1GH − I)Ġb, (A-13)

and g̈(v0) can be written as

g̈(v0) = E{g̈(v0)}+O2(n) +O2(n
2), (A-14)

where O2(n) and O2(n
2) represent the linear and quadrature functions of n in g̈(v0), whose explicit

forms are omitted for the sake of brevity.

98



Similarly, ġ(v0) can be expressed as

ġ(v0) = O1(n) +O1(n
2), (A-15)

where O1(n) and O1(n
2) represent the linear and quadrature functions of n existing in ġ(v0). Sub-

stituting (A-15) and (A-14) into (A-1) gives

∆v ≈− O1(n) +O1(n
2)

E{g̈(v0)}+O2(n) +O2(n2)
≈ −O1(n) +O1(n

2)

E{g̈(v0)}
= − ġ(v0)

E{g̈(v0)}
. (A-16)

99



Appendix B

Proof of Theorem 2.1

According to Lemma (2.2), the MSE of the CFO estimation is

E{∆v2} =
E{ġ(v0)2}
E{g̈(v0)}2

. (B-1)

The numerator can be computed as

E[ġ(v)2] =E[yH
n ṖGyny

H
n ṖGyn] = E[yH

n ṖG(nn
H +GbbHGH)ṖGyn]

=σ2
neE[nHṖGṖGn] + σ2

neE[bHGHṖGṖGGb]

+ E[nHṖGGbbHGHṖGn] + E[bHGHṖGGbbHGHṖGGb], (B-2)

where

ṖG = ĠΦ−1GH +GΦ−1ĠH −GΦ−1Φ̇Φ−1GH . (B-3)

At high SNR, the first term in (B-2) can be neglected, and the last term is 0 because

GHṖGG = 0. (B-4)

Moreover, the second and the third term are the same. After some tedious computation, we obtain

GHṖGṖGG = ĠH [I−GΦ−1GH ]Ġ. (B-5)

Therefore, (B-2) can be rewritten as

E[ġ(v)2] = 2σ2
neb

HĠH [I−GΦ−1GH ]Ġb. (B-6)
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Substituting (A-13) and (B-6) into (B-1), we proved Theorem (2.1).
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Appendix C

Proof of Theorem 2.2

From (2.31), we know

b̂ = (ĜHĜ)−1ĜHJHy = (ĜHĜ)−1ĜH(Gb+ n), (C-1)

where Ĝ = JH Γ̂S2, and Γ̂ is defined in (2.34).

From Taylor’s expansion, we know

ejmv̂0 = ejmv0 + jmejmv0∆v −m2ejmv0∆v2 + ... (C-2)

Then, (2.34) can be expressed as

Γ̂ = Γ+ jDΓ∆v −D2Γ∆v2 + ... (C-3)

At high SNR, the higher order statistics can be omitted, and Ĝ can be rewritten as

Ĝ ≈ JH(Γ+ jDΓ∆v)S2 = G+ Ġ∆v. (C-4)

Substituting (C-4) into (C-1), we obtain that

b̂ = b− (ĜHĜ)−1ĜHĠ∆vb+ (ĜHĜ)−1ĜHn. (C-5)

At high SNR, using the approximation (I +∆X)−1 ≈ I −∆X for a positive semi-definite matrix

[65] and omitting the higher order statistics, we obtain

(ĜHĜ)−1 ≈ (GHG)−1 −Φ−1Φ̇Φ−1∆v. (C-6)
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Then we can rewrite (C-5) as

b̂ ≈ b− (GHG)−1GHĠ∆vb+ (ĜHĜ)−1ĜHn. (C-7)

Therefore,

E{∆b} =E{b̂− b} = E{−(GHG)−1GHĠ∆vb+ (ĜHĜ)−1ĜHn} = 0, (C-8)

E{∆b∆bH} =E{(b̂− b)(b̂− b)H}

=E{(GHG)−1GHĠbbHĠHG(GHG)−1(∆v)2}+ σ2
neE{(ĜHĜ)−1}. (C-9)

Using (C-6), we can rewrite (C-9) as

E{∆b∆bH} =(GHG)−1GHĠbbHĠHG(GHG)−1E{∆v2}+ σ2
ne(G

HG)−1 (C-10)

103



Appendix D

Gradient Decent Method with

Complex Variables

Let us define a new 2(Q+ 1)× 1 real vector ρ = [ℜ{λ}T ,ℑ{λ}T ]T . The gradient decent method

to update ρ can be directly obtained as [67]

ρ(i+1) = ρ(i) − ϵ′
∂ζ

∂ρ

∣∣∣∣
ρ=ρ(i)

, (D-1)

or equivalently, ℜ{λ}(i+1)

ℑ{λ}(i+1)

 =

ℜ{λ}(i)
ℑ{λ}(i)

− ϵ′

 ∂ζ
∂ℜ{λ}

∂ζ
∂ℑ{λ}

∣∣∣∣∣∣
λ=λ(i)

. (D-2)

There is

λ(i+1) =ℜ{λ}(i+1) + jℑ{λ}(i+1)

=ℜ{λ}(i) + jℑ{λ}(i)︸ ︷︷ ︸
λ(i)

−ϵ′
(

∂ζ

∂ℜ{λ}
+ j

∂ζ

∂ℑ{λ}

)
︸ ︷︷ ︸

2 ∂ζ
∂λ∗

∣∣∣∣
λ=λ(i)

, (D-3)

where the definition of the complex derivative [67] is used. Setting ϵ = 2ϵ′ yields (4.33).
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Appendix E

Proof of Theorem 4.1

Let us first prove the following lemma:

Lemma E.1. If Z and R are co-prime, then the index set I = {⟨m+ uR⟩Z}Z−1
u=0 is the same as the

universal set {0, . . . , Z − 1}, or equivalently,

⟨m+ uR⟩Z ̸= ⟨m+ vR⟩Z , for 0 ≤ u < v ≤ Z − 1. (E-1)

Proof. Let us first assume the contrary holds; i.e.,

⟨m+ uR⟩Z = ⟨m+ vR⟩Z , ∃u < v. (E-2)

Then we know

(v − u)R = kZ (E-3)

for some integer k ̸= 0. Since Z and R are co-prime, their least common multiple must be ZR.

However in (E-3), (v − u) < Z, so the equality (E-3) cannot hold. By the contradiction, we prove

Lemma E.1.

Define a new variable

c =

(
Z−1∏
i=0

ci

)1/2

= Is

Z−1∏
i=0

λ̃i. (E-4)

When Z is odd, the denominator in (4.40) can be expanded as

Z−3
2∏

i=0

c⟨m+(2i+1)R⟩Z =

Z−3
2∏

i=0

λ̃⟨m+(2i+1)R⟩Z λ̃⟨m+(2i+2)R⟩Z =

Z−1∏
i=1

λ̃⟨m+iR⟩Z =

Z−1∏
i=0
i ̸=m

λ̃i, (E-5)
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where Lemma 1 is applied in the last equality.

Dividing (E-4) by (E-5) proves Theorem 1, where Is serves as SSA for all λ̃m.
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Appendix F

Proof of Lemma 5.3

The interference during the data detection can be expressed as

v =α∆(GsHs)s+ws + α∆(GsHb̄)b̄+ α∆(Gb̄Hb̆)b̆, (F-1)

where ∆(·) denotes the estimation error of the inside item. The correlation function of the interfer-

ence v is given by

Rv =α2PsE(∆(GsHs)∆(GsHs)
H) + E(wsw

H
s )

+ α2E(∆(GsHb̄)b̄b̄
H∆(GsHb̄)

H) + α2E(∆(Gb̄Hb̆)b̆b̆
H∆(Gb̄Hb̆)

H), (F-2)

where Ps is the power allocated to the data sequence. We need to find the training scheme that can

minimize the trace of Rv .

Suppose there are two training schemes with identical E((η − η̂)(η − η̂)H). Thus the first and

the second item in (F-2) is the same for both training schemes. If the training scheme has the first

2L and the last 2L entries equal to zero, the third and fourth item in (F-2) will become zero; if the

training scheme does not has such condition, then it cannot null these two semi-definite items.
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