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Abstract

Space-time coding is an effective approach to improve the reliability of data transmission

as well as the data rates over multiple-input multiple-output (MIMO) fading wireless chan-

nels. In this thesis, space-time code designs are investigated with a view to address practical

concerns such as decoding complexity and channel impairments.

We study low-decoding complexity space-time block codes (STBC), a popular subclass

of space-time codes, for quasi-static frequency-flat fading MIMO channels. Therefore,

the space-time code matrices are designed to allow the separation of transmitted symbols

into groups for decoding; we call these codes multi-group decodable STBC. A new multi-

group decodable STBC, called orthogonality-embedded space-time (OEST) codes, is then

proposed. The equivalent channel, general decoder, and maximum mutual information of

OEST codes are presented. The following contributions, based on OEST codes, are made:

• It is shown that OEST codes subsume existing orthogonal, quasi-orthogonal, and

circulant STBC. Therefore, the results of OEST codes can be readily applied to these

codes.

• New STBC, called semi-orthogonal algebraic space-time (SAST) codes, are derived

from OEST codes. SAST codes are rate-one, full-diversity, four-group decodable,

delay-optimal for even number of antennas. SAST codes nearly achieve the capacity

of multiple-input single-output channels.

• The framework of OEST codes is applied to the existing single-symbol decodable

codes, like minimum decoding complexity quasi-orthogonalSTBC (MDC-QSTBC)

and coordinate-interleaved orthogonal designs, and 4-group quasi-orthogonal STBC.

Several open problems of these codes are solved, including equivalent channel, gen-

eral decoder, symbol error rate performance analysis, and optimal signal rotations.



Additionally, MDC-QSTBC are shown to achieve full diversity using antenna selec-

tion with limited feedback.

We also consider the designs of space-time codes for MIMO systems, using orthogo-

nal frequency division multiplexing (OFDM) for frequency-selective fading channels. The

resulting codes are called space-frequency codes. The OFDMsystem performance is heav-

ily affected by inter-carrier interference, which is caused by frequency offset between the

carrier oscillators of the transmitter and receiver. We analytically quantify the performance

loss of space-frequency codes due to frequency offset. A newclass space-frequency codes,

called inter-carrier interference self-cancellation space-frequency (ISC-SF) codes, is pro-

posed to effectively mitigate the effect of frequency offset.
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Chapter 1

Introduction

1.1 MIMO Systems for Future Wireless Communications

Future wireless communication networks must accommodate alarge number of subscribers

and variety of services with different levels of predefined quality of service (QoS) [1, 2].

Currently, users select communication services, such as voice and data services, with data

rate up to 2 Mb/s via third generation (3G) land mobile communication networks [3]. Ad-

ditionally, wireless local area networks (WLAN) offer data rates up to 100 Mb/s [4]. How-

ever, the throughput of wireless networks at the access points (base stations) is expected to

grow tremendously, in the order of Gbit/s [4,5].

There are several technical challenges for reaching high data rates for future wireless

networks. First, signal fading inherent in mobile wirelesschannels limits the maximum

data rates [6]. Second, the radio spectrum available for land mobile communications is

limited [6]. Third, the transmit radio power is limited because the radio emissions need to

be controlled for health reasons and for reduction of the interference to other radio channels

of the same or different wireless systems [6]. Additionally, handheld mobile units or data

terminals have limited-capacity batteries.

These three challenges may be overcome by MIMO (multiple-input multiple-output)

technology, where multiple antennas are used atbothtransmitter and receiver [7–9]. Through-

out this thesis, the notation (M,N ) denotes a MIMO system withM transmit andN re-

ceive antennas. The capacity studies by Telatar [8, 10] and Foschini [9, 11] show that a

much higher capacity (i.e. data rates) can be extracted fromMIMO systems than from

single-input single-output (SISO) systems. Following these initial studies, various MIMO

1



systems have been proposed. For example, a popular spatial multiplexing architecture is

called BLAST (Bell laboratories layered space time) [9, 12, 13]. Depending on how the

data streams are distributed over multiple transmit antennas, one obtains V-BLAST (verti-

cal BLAST), D-BLAST (diagonal BLAST) and H-BLAST (horizontal BLAST) [14]. By

using such MIMO systems, one can overcome the capacity limitation of SISO systems

without spectral expansion or power increase.

In order to increase the reliability of data transmission against fading, space-time coding

has been proposed by exploiting the rich diversity of MIMO channels [15, 16]. A space-

time code spreads input modulation symbols across multipleantennas (space dimension)

and multiple time slots (time dimension). A space-time codedesign has been suggested

by Gueyet al. [17, 18]. However, the design criteria of Tarokhet al. [15, 16] are more

systematic and applicable for different channel models, such as Rayleigh and Rician fading

channels [16]. Thus, these designs of space-time codes exploit fading inherent in wireless

channels to improve communication reliability.

To achieve full spatial multiplexing (i.e., the number of transmit symbols per channel

use (pcu) equals to the number of transmit antennas), the number of receive antennas should

be at least equal to the number of transmit antennas [9, 12, 13]. However, in practice,

due to size and/or cost constraints, the number of antennas at the mobile handset is likely

not more than that at the base station [19]. From informationtheory and efficient signal

detection viewpoints, the maximum data rate should not exceed minimum values ofM and

N [9, 12, 20]. Thus, the non-full-rate MIMO mobile wireless systems are more prevalent.

However, with lower rates, more stringent mathematical structures can be embedded into

the space-time code matrices, helping to reduce the decoding-complexity at the receiver.

The current developments of wireless systems have been integrating MIMO into stan-

dards. For example, the IEEE 802.11n standard for WLAN applications [21–23] recom-

mends the use of multiple antennas (up to 4) at the transmitter and receiver to provide a

data rate of 100 Mbit/s or higher. The IEEE 802.16e-2005 standard [24, 25] for fixed and

mobile wireless wide-area broadband access also integratethe Alamouti space-time block

coding [26] and MIMO spatial multiplexing configurations (2, 2), (3, 2), and (4, 2). The

MIMO architectures are also studied for beyond 3G mobile wireless systems [27].

In conclusion, the applications of MIMO systems can solve the three challenges of wire-
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less communications. In the next section, we will review thedesign principle of space-time

codes. In particular, a special class of space-time codes, space-time block codes (STBC),

will be discussed in more detail.

1.2 MIMO Channel Models

We consider a MIMO system over a quasi-static Rayleigh fadingchannel [8–10,16], i.e. the

channel gains are constant during the duration of a codeword, and can vary from codeword

to codeword. The transmitter and receiver are equipped withM transmit andN receive

antennas. The channel gainhmn(m = 1, 2, ...,M ; n = 1, 2, ..., N) between the(m,n)-th

transmit-receive antenna pair is assumedCN (0, 1), which is consistent with the Rayleigh

fading assumption. This is the most common channel model used for space-time code

designs. We assume no spatial correlation at either the transmit or receive array. The

receiver, but not the transmitter, completely knows the channel gains.

The above-mentioned channel model is ideal and is only applicable when there is a

rich scattering environment around the receive antennas. There exist several more realistic

MIMO channel models to analyze the performance of space-time codes (see e.g. [28–31]).

These channel models incorporate the correlation among transmit and/or receive antenna

arrays; the channel gains may also have distributions that are different from the Rayleigh

distribution [32]. Nevertheless, the MIMO channel model with uncorrelated Rayleigh fad-

ing is the most widely used model in the literature and will beused throughout the thesis.

1.3 Space-Time Code Design Criteria

We examine the design criteria of space-time codes using thechannel model described

in Section 1.2. The block diagram of a communication system over MIMO channels is

sketched in Fig. 1.1.

The space-time encoder parses data symbols into space-timecodewordsC = [ctm] of

sizeT × M , wherectm is the symbol transmitted from antennam at timet (1 ≤ t ≤ T ).

The average energy of a codeword is constrained such that

M∑

m=1

T∑

t=1

E[|ctm|2] = T. (1.1)
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Figure 1.1: Multiple-input multiple-output (MIMO) systemmodel.

The baseband received signalytn at the receive antennan and at time slott is the

superposition of the signals transmitted fromM transmit antennas:

ytn =
√

ρ
M∑

m=1

ctmhmn + wtn (1.2)

wherewtn is independently, identically distributed (i.i.d.) additive white noise with distri-

bution∼ CN (0, 1).

The received signalsytn can be arranged in a matrixY of size T × N . Thus, the

transmit-receive signal relation can be represented compactly as

Y =
√

ρCH + W (1.3)

whereH = [hmn], W = [wtk] of sizeT ×N . The transmit power is scaled byρ so that the

average signal-to-noise ratio (SNR) at each receive antennais ρ, independent of the number

of transmit antennas.

The upper-bound of pair-wise error probability (PEP) derived by Tarokhet al. [16] is

as follows:

P (C → Ĉ) ≤
(

Γ∏

i=1

λi

)−N (ρ

4

)−ΓN

(1.4)

whereC andĈ are the transmitted and erroneous codewords,Γ is the minimum rank of

a matrix∆C (∆C = C − Ĉ) for all C 6= Ĉ, λ1, λ2, , ..., λΓ are non-zero eigenvalues of a

product matrixPC = ∆†
C∆C .
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Definition 1.1. The diversity gain or diversity orderGd and coding gainGc of a space-time

code are defined as follows:

Gd = ΓN (1.5)

Gc = min
C 6=Ĉ

(∏Γ

i=1
λi

)1/Γ

(1.6)

The space-time code design criteria can be stated as follows[16]:

• The rank criterion: The minimum rank of∆C of all pairs of distinct codewords

should be maximized. If the minimum rank of∆C is Γ , then diversity order ofΓN

is achieved.

• The determinant criterion: The coding gainGc taken over all pairs of distinct code-

words must be as large as possible.

Since therank ∆C = rankPC , if ∆C of a space-time code is of full rankM for all

pairs of distinct codewords, then so is thePC and the diversity order is maximized, i.e.

Gd = MN .

Definition 1.2. A space-time code is said to achieve full-diversity if its diversity order is

MN .

In the case of full-diversity codes, the coding gain follows

Gc = min
C 6=Ĉ

[
det(∆†

C∆C)
]1/M

. (1.7)

The diversity order tells us how fast the error rate decays with SNR on a log-log scale,

while the coding gain reflects the SNR saving to achieve the same error rate performance.

The larger the diversity order, the faster error rate reduces; and the larger the coding gain,

the better the SNR saving. We illustrate the diversity orderand coding gain of several

systems in Fig. 1.2, where the values of the error rate and SNRare in log scale. For

example, the (2, 2) MIMO system has a diversity order of 4, which is higher than the

diversity-one of the SISO system. Thus, the error rate curveof the former is steeper than

that of the latter. For the two (2, 2) systems, the better-designed system will save some

SNR compared with the worse-designed system.

Note that the coding gain is an asymptotic performance metric since it is defined for

the worst-case PEP basis and at high SNR. The actual performance of a space-time code
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Figure 1.2: Illustration of the diversity order and SNR gainof space-time systems.

depends on the whole PEP spectrum of all codewords. Simulations are therefore required

to compare the SNR gain of different space-time codes.

Instead of the above rank-determinant criteria, Hassibi and Hochwald [33] proposed an

information-theoretic criterion, whereby the mutual information between the transmitter

and the receiver is maximized. While space-time codes can be constructed for any num-

ber of transmit or receive antennas using mutual information criterion, full diversity is not

necessarily guaranteed. Moreover, while the rank-determinant approach can be applied to

design a wide range of space-time codes, the search for good codes using mutual informa-

tion criterion becomes highly complicated for a large number of antennas or large delay.

Though the upper bound on PEP is given in (1.4), the exact PEP of space-time codes

can be evaluated analytically [34–37]. Thus, the union bound on PEP can be evaluated [37].

Let Ω be the size of the codebook. The union bound on PEP is given below:

PUB =
2

Ω

Ω−1∑

i=1

Ω∑

j=i+1

P (Ci → Ĉj). (1.8)

A design criterion optimizing the union bound is proposed for several space-time codes

(e.g. in [38,39]). This approach improves the error performance of the space-time codes.

Tarokh et al. provided space-time trellis codes (STTC) and space-time block codes

(STBC) [16, 40]. There are also several types of space-time codes designed from error
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Figure 1.3: Classification of space-time codes.

control codes [41–43]. In Fig. 1.3 space-time codes are classified. In the first group

of the STBC branch, low-rate STBC with orthogonality, includes OSTBC and QSTBC

[40, 44–48]. The other existing STBC (for example, [49–54]) belong to the high-rate non-

orthogonal group. In this thesis, we focus on STBC and their design criteria based on either

rank-determinant or union bound performance.

1.4 Space-Time Block Codes

Space-time block codes, which are an important class of space-time codes, have been stud-

ied extensively recently. They are expected to play a prominent role in both third generation

and beyond wireless standards [55–57]. We consider linear STBC, in which, the space-time

code matrix is linear with respect to the data symbols and their conjugates. In the following,

we use the notation STBC to imply linear STBC where no confusionmay arise.

In the STBC encoder, a block ofK data symbols(s1, s2, ..., sK) is mapped into the

space-time code matrix of sizeT × M . The space-time code matrix has the following

general form [33,40]:

X =
K∑

k=1

(Aksk + Bks
∗
k) (1.9)

whereAk andBk, (k = 1, 2, ..., K) are (possibly complex-valued) fixed matrices of the

same sizeT × M .

7



To compare the coding efficiency of different coding schemes, including the coding

for SISO channels, the code rate of space-time codes, in symbols per channel use (pcu) is

defined as follows [16,58].

Definition 1.3. The code rate of a space-time code in symbols per channel use is the ratio

of number of data symbols transmitted in the space-time codematrix and the number of

channel usesT . Thus, the code rate is given by

R = K/T. (1.10)

For example, the Alamouti codeX =

[
s1 s2

−s∗2 s∗1

]
has a rate ofR = 1 [26].

1.4.1 Design Parameters and Fundamental Limits

There are several design parameters to be considered for STBC:

1. number of transmit antennas (M );

2. code matrix length (T ) and also the number of channel uses per code matrix;

3. number of receive antennas (N );

4. diversity gain (or diversity order ) (Gd);

5. coding gain (Gc);

6. code rate (R);

7. maximum mutual information (I).

There are some fundamental limits on the parameter designs as follows [20].

• The maximum diversity order isGd,max = MN .

• To achieve the maximum diversity order, the minimum encoding delay isTmin = M .

This limit comes from therank criterion; the rank of the matrix of orderM × T can

not be more than the minimum ofM andT . If full diversity is required, then the

necessary condition isM ≤ T .
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• The maximum code rate (Rmax = M ). With M transmit antennas, we cannot trans-

mit more thanM independent symbols in a time epoch.

Definition 1.4. A space-time code for an (M,N ) system is said to be full-rate if its code

rate is equal toM symbols pcu.

The code lengthT is proportional to the memory length and encoding/decodingdelay.

Therefore, given a diversity order, the code lengthT is subject to be minimized.

Definition 1.5. A space-time code is said to be delay-optimal if the encodingdelayT is

equal toM .

Some of these parameters can be combined for optimized code design. For example,

STBC can be designed with full-diversityGd = MN and optimal delayT = M [49–51,

59]. On the other hand, linear dispersion codes in [33] are designed to maximizeI, with

respect toM,N , andT . We next briefly review several classes of STBC designed with the

rank-determinant criteria.

1.4.2 Orthogonal and Quasi-Orthogonal STBC

The Alamouti code, one of the most well-known STBC, is designedfor two transmit anten-

nas [26]. The code is successfully integrated in 3G standards [55]. It has been generalized

as orthogonal STBC (OSTBC) by Tarokhet al. [40] using the results of orthogonal matrix

theory developed by Hurwitz and Radon [60].

Orthogonal design results in a decoupling of symbol detection, enabling minimal max-

imum likelihood detection complexity. However, orthogonal designs entail low code rates

[44, 45]; a code rate of one symbol pcu with complex constellations is available for two

transmit antennas only, and the code rate approaches 1/2 fora large number of transmit

antennas [44, 45]. The code rate may be improved by quasi-orthogonal STBC (QSTBC)

[46–48], which achieve full diversity by signal constellation rotations (see [61] and refer-

ences therein), but require joint maximum likelihood detection1 of pairs of symbols. More-

over, QSTBC also have low code rates because they are based on OSTBC.

The channel decoupling property of OSTBC implies that maximum likelihood detection

of a vector of input symbols is equivalent to solving a set of scalar detection problems, one

1We use the terms detection and decoding synonymously.
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for each input symbol; that is, the MIMO channel is decoupledinto several equivalent

SISO channels. The maximum likelihood receiver then has thelowest complexity. The

transmit-receive signals in (1.3) can be written equivalently for OSTBC [59,62] as

ȳ = ‖H‖Fsk + w̄. (1.11)

Since all the transmitted symbols experience the same Frobenious norm‖H‖F [63] of the

channel matrix, this quantity‖H‖F can be considered as the equivalent channel of OSTBC.

The decoding of QSTBC is also decoupled into the detection of groups of two symbols

[46–48]. However, it is not known what the equivalent channels of QSTBC are.

1.4.3 Non-orthogonal STBC

Alternatively, the orthogonality requirement can be sacrificed for increasing the code rate;

an example is full-diversity diagonal space-time (DST) codes [49–51]. Rate-one codes can

thus be constructed for any number of transmit antennas. Optimal DST codes yield bet-

ter coding gains compared with OSTBC for more than two transmit antennas. Moreover,

higher rate codes, namely threaded algebraic space-time (TAST) codes (up to full-rate) can

be derived from DST codes, for example, in [58]. However, DSTand TAST codes exhibit

high peak-to-average-power ratio (PAPR) and high complexity maximum likelihood de-

tection because all the transmitted symbols must be jointlydetected. PAPR can, however,

be reduced by linear TAST (LTAST) codes [20]. Rate-one LTAST codes have a circulant

structure [64] and the same PAPR as the input constellation.TAST and LTAST codes are

both delay optimal in the sense that the number of channel uses per space-time codeword

equals to the number of transmit antennas, i.e., the space-time codewords are square ma-

trices [40]. However, LTAST codes incur the same high complexity maximum likelihood

detection as TAST codes.

Using the cyclotomic number theory, the authors in [53, 54] derive the optimal coding

gain for diagonal algebraic space-time (DAST) codes and TAST codes. The high rate

STBC are also constructed using division algebras [52, 65]. These codes also have high

maximum likelihood decoding complexity as TAST codes.
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1.5 Designs of Space-Time Codes for Frequency-Selective
Fading Channels

As mentioned before, the first space-time codes proposed by Tarokhet al. [16] for coherent

systems over MIMO quasi-static flat fading channels (i.e., frequency non-selective fading)

achieve the maximum diversity orderd = MN , whereM andN are the number of transmit

and receive antennas. In frequency-selective fading channels, the maximum achievable

diversity order isd = LpMN whereLp is the number of paths of the frequency-selective

fading channel [66, 67]. The achievable diversity order of frequency-selective fading is

therefore higher than that of frequency-flat channels. Therefore, space-time code design

for MIMO frequency-selective fading channels has receivedmuch attention.

Orthogonal frequency division multiplexing (OFDM) is robust to frequency selective

fading [68–70]. OFDM converts the wideband frequency-selective channel into paral-

lel narrowband frequency-flat channels, which allow simplereceiver designs. Therefore,

OFDM is widely used in WLAN as well as wireless metropolitan area networks (WMAN)

[6, 71, 72]. It is expected that OFDM will be the technology ofchoice for future 4th-

generation (4G) wireless systems [24,57,73–75].

The simplified model of MIMO-OFDM systems employing space-time coding is illus-

tated in Fig. 1.4. Since with OFDM, the frequency-selectivechannel is converted to parallel

subchannels, the frequency diversity can be obtained only if the data are spread over multi-

ple subchannels. Therefore, when the space-time codes designed for frequency-flat fading

channels are transmitted over MIMO-OFDM, the maximum diversity orderLpMN may

not be achievable.

To achieve the full potential diversity order of frequency-selective fading channels, in

general, space-time codes can be designed in the time domain[76] or in the frequency

domain using OFDM and the resulting codes are called space-frequency codes [66], [67],

[77]. Coding for MIMO-OFDM to achieve high diversity order has received much atten-

tion after the initial papers [66] and [67]. The authors in [42] design space-frequency codes

(and also space-time codes) using algebraic theory for frequency-selective fading chan-

nels [78]. Reference [79] introduces a full-diversity full-rate space-frequency code design,

which is developed using complex field coding [80]. The authors in [81] propose a con-
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Figure 1.4: Simplified diagram of MIMO-OFDM systems.

catenation scheme with Alamouti code [82] as the inner and a trellis code as the outer.

Su et al. [83] derive space-frequency code criteria, showing an explicit relation between

the space-frequency code matrix and the characteristic parameters of frequency-selective

fading channels, such as the path delays and power delay profile. The authors in [83] in-

troduce a class of space-frequency codes formed by repetition space-time codes. They also

show that when any full diversity space-time code is used in MIMO-OFDM as a space-

frequency code, it achieves at least the diversity order that has been designed in the time

domain. Thus, many space-time codes are usable as space-frequency codes.

The design criteria of space-frequency codes are similar tothose of space-time codes

described in Section 1.3 [83]. These criteria will be revisited in Chapter VI when we

investigate the performance of space-frequency codes in the presence of inter-carrier inter-

ference.

1.6 Problem Formulation

1.6.1 Designs of STBC for flat fading MIMO channels

Since several STBC are well-known in the literature, it is worthwhile to summarize their

properties. Table 1.1 compares existing space-time code designs [OSTBC, QSTBC and

rate-one TAST/LTAST codes (or DST codes)]. By emphasizing the complexity (i.e. the

number of real or complex symbols to be jointly maximum likelihood detected), we can
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Table 1.1: Comparisons of Several STBC

Code M Gd R maximum likelihood real-symbol decoding

OSTBC 4 4N 0.75 2 symbol

QSTBC 4 4N 1 4 symbols

LTAST 4 4N 1 8 symbols

OSTBC 8 8N 0.625 2 symbol

QSTBC 8 8N 0.75 4 symbols

LTAST 8 8N 1 16 symbols

draw the following observations:

1. Low-rate OSTBC and QSTBC: Current designs of OSTBC and QSTBC havelow

(maximum likelihood) decoding complexity, but they are subject to the limitation of

rates less than 1 symbol pcu; the rate 1 symbol pcu exists for OSTBC with 2 transmit

antennas and QSTBC with 4 transmit antennas only.

2. High-complexity, full-rate STBC: Full-rate codes such as TAST codes can achieve

full-diversity, but the decoding complexity is high since all of the transmitted symbols

in a code matrix must be jointly decoded in order to achieve full diversity.

In practical mobile wireless systems, the number of antennas at the mobile units may

be smaller than that at the base stations; the maximum symbolrate in this case should be

equal to the number of receive antennas. Thus, full-rate STBCmay not be needed.

Consequently, designs of full-diversity, non-full-rate STBC with low maximum like-

lihood decoding complexity are important; the design of such STBC isone of the main

challenges in this thesis.

An important property influencing the decoding complexity is the orthogonality. In

other areas of communications, e.g. CDMA (code division multiple access), orthogonal

sequences are used to separate users’ data at the receiver [84]. In the designs of STBC, the

orthogonality among linear dispersion matrices of transmitted symbols will determine the

decoding complexity.
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1.6.2 Designs of Space-Frequency Codes for MIMO-OFDM Systems

Since the space-frequency codes use OFDM, their performance can be affected by un-

derlying impairments, such as frequency offset, phase noise and time-varying channels.

A residual frequency offset exists due to carrier synchronization mismatch and Doppler

shift [85]. Residual frequency offset destroys subcarrier orthogonality, which generates

inter-carrier interference and the bit error rate (BER) increases consequently. The effect

of such impairments on the conventional (i.e. single input single output (SISO)) OFDM

has been widely investigated. For example, in [86], BER is calculated for uncoded SISO-

OFDM systems with several modulation schemes. The authors in [87], [88] provide BER

expressions of MIMO-OFDM employing Alamouti’s scheme [82]. The authors in [89] an-

alyze the space-frequency code performance in different propagation environments, such as

Rayleigh and Rician fading channels, and with spatial correlation at the transmitter and/or

receiver. However, the impact of inter-carrier interference due to frequency offset on the

pairwise error probability (PEP) performance of general space-frequency codes have not

been investigated. Additionally, the design criteria of space-frequency codes when inter-

carrier interference exists are unknown. These problems will be addressed in this thesis.

1.7 Contributions of Thesis

The main contributions of this thesis are broadly twofold. First, we characterize the nec-

essary and sufficient conditions to obtain low-complexity STBC for frequency-flat fad-

ing channels. The low complexity is achieved by separating the transmitted symbols into

subgroups for maximum likelihood detection. The codes withsuch properties are called

multi-group decodable STBC. We propose a new multi-group decodable STBC called

orthogonality-embedded space-time (OEST) codes. Second,we analyze the performance

of space-frequency codes for MIMO-OFDM systems in the presence of frequency offset

and propose a new class of space-frequency codes to combat effectively frequency offset.

The detailed contributions are summarized in the following.

In Chapter II, the necessary and sufficient conditions for low-decoding complexity

STBC are presented. A new framework to design STBC called OEST codes is proposed.

OEST codes subsume existing STBC such as OSTBC, QSTBC, circulant STBC as spe-
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cial cases. Several properties of OEST codes will also be derived. We derive a subclass

of OEST called semi-orthogonal algebraic space-time (SAST) codes, which are identified

with many desirable features: near capacity achieving, lowdecoding complexity, and better

performance than several codes of the same rate.

Chapter III treats several open problems of QSTBC, a special class of OEST codes,

originally proposed by Tirkkonenet al. [47]. This code has been named ABBA because

of its structure. We will show how to obtain maximum likelihood single-complex symbol

decoding for ABBA code, which is the minimum decoding complexity level that can be

achieved by any non-orthogonal STBC. For ABBA codes, we also systematically solve the

open problems, including performance analysis, optimal signal rotation, capacity calcula-

tion, channel state information feedback, and antenna selection with limited feedback.

Chapter IV proposes a new encoding method so that the OEST codes even have lower

decoding complexity. SAST codes, a special case of OEST codes, are analyzed in detail.

Initially, SAST codes allow the decoding of transmitted symbols into two groups. A new

decoder is derived, enabling the decoding of the transmitted symbols into four groups and

resulting in a great complexity reduction. The exact PEP andoptimal signal transformation

of SAST codes are derived.

Chapter V extends the results developed for OEST codes to solve open issues of other

STBC, including coordinate-interleaved orthogonal designs(CIOD) [90–92] and QSTBC

with four-group decoding [93]. New decoders, performance analysis and optimal signal

designs are presented for these two codes.

Chapter VI contributes a performance analysis of space-frequency codes in the pres-

ence of frequency offset. Additionally, inter-carrier interference caused by a time-varying

channel and phase noise is also considered. More importantly, we propose a new space-

frequency coding scheme, called inter-carrier interference self-cancellation space-frequency

codes, to combat even high values of frequency offset, up to 10%.

In Chapter VII, we summarize the contributions of the dissertation. Open research

topics that can be developed from this thesis are identified.
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Chapter 2

Multi-Group Decodable Space-Time
Block Codes

Since low decoding complexity STBC are desirable for practical applications, the code

matrix structure should allow the separation of the transmitted symbols into sub-groups for

maximum likelihood decoding, resulting in multi-group decodable STBC. Here we empha-

size maximum likelihood decoding as it is a sufficient condition to realize full-diversity.

Suboptimal detectors, such as zero-forcing decision feedback equalization [94], may not

achieve full diversity. In this chapter, we first derive the necessary and sufficient conditions

so that the separation of transmitted symbols for maximum likelihood decoding is possi-

ble. Second, we propose a new class of STBC called orthogonality-embedded space-time

(OEST) codes that are multi-group decodable.

2.1 Algebraic Constraints of Multi-Group Decodable STBC

2.1.1 System Model

We use the MIMO quasi-static frequency-flat fading channel model described in Section

1.2. Other notations of STBC given in Chapter I will be utilizedin this and other chapters.

However, for the reader’s convenience, several basic equations are repeated.

There areM transmit andN receive antennas. In the space-time encoder, the data

symbols are parsed into aT × M code matrix1 X of an space-time codeX as follows:

X =
[
ctm

]
t=1,...,T ;m=1,...,M

(2.1)

1We use the term "codeword" and "code matrix" interchangeably.
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wherectm is the symbol transmitted from antennam at timet (1 ≤ t ≤ T ). The average

energy of code matrices is constrained such that

EX = E[trace(X†X)] = E[‖X‖2
F] =

M∑

m=1

T∑

t=1

E[|ctm|2] = T (2.2)

wheretrace(X) denotes the trace of matrixX [95].

The received signalsytn of thenth antenna at timet can be arranged in a matrixY of

sizeT × N . Thus, one can represent the transmit-receive signal relation as

Y =
√

ρXH + W (2.3)

whereH = [hmn], andW = [wtn] of sizeT × N , andwtn are independently, identically

distributed (i.i.d.)CN (0, 1). The transmit power is scaled byρ so that the average signal-

to-noise ratio (SNR) at each receive antenna isρ, independent of the number of transmit

antennas. However,ρ is sometimes omitted for notational brevity.

The mapping of a block ofK data symbols(s1, s2, · · · , sK) into aT × M code matrix

can be represented in a general dispersion form [33,40] as follows:

X =
K∑

k=1

(akAk + bkBk) (2.4)

whereAk andBk, (k = 1, 2, · · · , K) areT × M complex-valued constant matrices; they

are commonly called dispersion matrices. The real and imaginary parts of the symbolsk

areak andbk.

In (2.4), there are totally2K variablesai andbi. We replace variablesai andbi (and

their dispersion matricesAk and Bk) by the same symbolic variablecl (and dispersion

matrixCl). Then (2.4) becomes

X =
L∑

l=1

clCl. (2.5)

The benefit of the expression (2.5) will be clearer when we derive the algebraic constraints

of multi-group decodable STBC. Note thatL in (2.5) is not necessarily an even number.

Denote the transmitted data vectorc =
[
c1 c2 . . . cL

]T
. The maximum likelihood

decoding of STBC is to find the solution̂c of the following metric:

ĉ = arg min
c

‖Y −√
ρXH‖2

F . (2.6)
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2.1.2 Algebraic Constraints of Multi-Group Decodable STBC

The concept of QSTBC [46–48] is to relax the orthogonality constraints of OSTBC to

achieve higher data rates. In the code matrices of QSTBC [46–48], the columns are non-

orthogonal in pairs; the maximum likelihood detection of QSTBC can be made in pairs

of symbols. To obtain a higher data rate of one symbol for any number of antennas, in

[96–100] the orthogonality is further relaxed so that the columns of code matrices can be

divided into two groups, and the columns of one group are orthogonal to the columns of

the other group. The maximum likelihood detection of transmitted symbols are decoupled

into two groups. A rule of thumb can be drawn from the STBC in [46–48, 96–100]: The

number of columns of a group (that is orthogonal to the other groups of columns) equals

the number of symbols to be jointly detected.

In fact, the orthogonality of columns of code matrices is notthe fundamental condition

to obtain multi-group decodable STBC, as we will show later. Weprovide a definition of

multi-group decodable STBC to unify the notation in this thesis as follows.

Definition 2.1. A STBC is said to beΓ -group decodable STBC if the maximum likelihood

decoding metric(2.6) can be decoupled into a linear sum ofΓ independent submetrics,

where each submetric consists of the symbols from only one group. TheΓ -group decodable

STBC is denoted byΓ -group STBC for short.

It is worthwhile to emphasize the following points from Definition 2.1:

1. The numbers of symbols in groups are not necessarily the same.

2. Since there are no restrictions on the dispersion matrices of the real or imaginary

parts of a complex symbol, they may belong to different groups. That is, the real and

imaginary parts of a complex symbol can be decoded independently. Such decoding

is possible for quadrature amplitude modulation (QAM) signals, as we will show

later.

3. There is no orthogonality constraint on the columns ofΓ -group STBC even though

there are some degree of orthogonality imposed in the code matrices of some existing

Γ -group STBC [46–48,96,97,99,100]. We will show an example ofΓ -group STBC,

in which the columns of code matrices are not orthogonal at all.
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Figure 2.1: Block diagram of MIMO systems using multi-group decodable STBC.

The block diagram of MIMO systems with multi-group STBC is illustrated in Fig. 2.1.

The data frame ofL-real symbols is encoded using multi-group STBC encoder, which

performs the multiplications and additions. At the receiver, the data symbols are separated

into groups by spatial matched filters. Each group of real symbols is maximum-likelihood

detected so that the whole data frame can be recovered. Thus,the question is how to design

the spatial matched filters to separate the data symbols. This question can be addressed by

exploiting the properties of the space-time encoder, i.e. the dispersion matrices. Thus, we

must first find the properties of the dispersion matrices of multi-group STBC.

In the most general case, we assume that there areΓ groups; each group is denoted by

Ψi(i = 1, 2, . . . , Γ ) and hasLi symbols. Thus,L =
∑Γ

i=1 Li. Let Θi be the set of indexes

of symbols in the groupΨi.

Yuen et al. [98, Theorem 1] have shown a sufficient condition for a STBC be multi-

group decodable. In fact, this condition is also the necessary condition. We will state these

results in the following theorem.

Theorem 2.2.The necessary and sufficient conditions for a STBC to beΓ -group decodable

are

C†
pCq + C†

qCp = 0 ∀p ∈ Θi,∀q ∈ Θj, i 6= j. (2.7)

Theorem 2.2 covers [92, Theorem 9] (single-symbol decodable STBC) and can be

shown similarly below.
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Proof. Let yn andhn be thenth column ofY andH, respectively. The maximum likeli-

hood metric (2.6) is rewritten as

‖Y − XH‖2
F =

N∑

n=1

‖yn − Xhn‖2
F

=
N∑

n=1

[
h†

nC†Chn − 2ℜ(y†
nChn)

]
+ ‖Y ‖2

F. (2.8)

In (2.8),‖Y ‖2
F is a constant with respect to the code matrixC, it can be therefore discarded.

The termℜ(y†
nChn) is linear in real variablesci. Thus, we just need to consider the product

C†C, which consists of cross products of variablesci:

C†C =

(
L∑

p=1

cpC
†
p

)(
L∑

q=1

cqCq

)

=
L∑

l=1

c2
l C

†
l Cl +

L∑

p,q=1,p 6=q

cpcq

(
C†

pCq + C†
qCp

)
. (2.9)

Now we show the necessary condition of Theorem 2.2. IfCi satisfies the condition

(2.7), then

C†C =
Γ∑

i=1

f(Ψi) (2.10)

where

f(Ψi) =
∑

m,n∈Θi

cmcnC
†
mCn. (2.11)

Hence, the maximum likelihood metric (2.8) can be decomposed into a linear sum ofΓ

submetrics, each submetric involves only the symbols of onegroup. Thus, to minimize the

metric in (2.8), one can minimizeΓ individual submetrics. In other words, the decoding of

L symbols can be decoupled intoΓ independent groups.

We next prove the sufficient condition. The assumption is that the maximum likelihood

decoding metric is a linear sum ofΓ independent submetrics, each submetric consists of

variables from only one group. From (2.9) we cannot decompose further the sum that

involves the cross-products of variablescp andcq. Thus, the maximum likelihood metric

is a linear sum of independent submetrics only if that (2.7) holds. That concludes the

proof.

20



Using Theorem 2.2, we can identify whether a STBC is multi-group decodable or

not. For example, let us examine a 2-by-2 circulant STBC [20, 101] with the code ma-

trix X =

[
x1 x2

x2 x1

]
. Let x1 = a1 + j b1, x2 = a2 + j b2. It is not hard to verify that the

dispersion matrices of symbols(a1, a2) and symbols(b1, b2) satisfy Theorem 2.2. Thus,

this 2 × 2 circulant STBC is a 2-group STBC; it is also a rate-one single complex-symbol

decodable STBC for 2 transmit antennas, which is similar to the Alamouti code. However,

the Alamouti code performs better than this2×2 circulant STBC since OSTBC are optimal

in terms of SNR [102] [26]. The other higher order circulant STBC can also be shown to

be 2-group STBC, but this fact is not recognized in [20,101]. Interestingly, circulant STBC

are an example of 2-group STBC, in which the columns of the code matrix are not orthog-

onal at all. In the next sections, we develop two new classes of rate-one 4-group STBC,

which have lower decoding complexity than the two-group decodable circulant STBC.

There are several existing multi-group decodable STBC, for example OSTBC [26,

40, 44], QSTBC [46–48], and circulant STBC [20, 101]. They havedifferent code con-

structions, degrees of column orthogonality, different code rates, and decoding complexity.

However, we will show that there is a mother code, called orthogonality-embedded space-

time (OEST) codes, of OSTBC, QSTBC, and circulant STBC.

The OEST code construction utilizes the generalized complex or real orthogonal de-

signs of the form
∑

(skAk + s∗kBk), whereAk andBk are the linear dispersion matrices of

an underlying OSTBC andsk are transmitted symbols, with two modifications: (1) Each

transmitted symbolsk is replaced by a circulant matrixCk, in which a block of transmitted

symbols is encoded; (2) The regular scalar-matrix product is replaced by the Kronecker

product [63, 95]. Therefore, it is of interest to review important properties of OSTBC and

circulant STBC to be used later. We will present the results ofOEST codes with generalized

complex orthogonal designs; however, these results can be easily extended to generalized

real orthogonal designs. Therefore, only the properties ofOSTBC from generalized com-

plex orthogonal designs are provided.
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2.2 Review of OSTBC and Circulant STBC

2.2.1 Orthogonal Space-Time Block Codes

Definition 2.3 (Orthogonal designs [40, 44]). A complex orthogonal designO is defined

as aR × Q rectangular matrix whose nonzero entries are±s1,±s2, · · · ,±sK or their

conjugates±s∗1,±s∗2, · · · ,±s∗K , wheres1, s2, · · · , sK are indeterminates over the complex

fieldC, such that

O†O = (|s1|2 + |s1|2 + · · · + |sK |2)IQ. (2.12)

The matrixO is also said to be a[R,Q,K] complex orthogonal design. WhenR = Q, O
is called a complex square orthogonal design.

Proposition 2.4( [44]). O is a complex orthogonal design if and only if the basis matrices

Ak andBk in (2.4)satisfy

A†
iAi + B†

i Bi = IQ, i = 1, 2, · · · , K (2.13a)

A†
iAj + B†

jBi = 0Q, 1 ≤ i < j ≤ K (2.13b)

A†
iBj + A†

jBi = 0Q, i, j = 1, 2, · · · , K. (2.13c)

To construct STBC forQ transmit antennas from orthogonal designs (OSTBC), the

orthogonal design[R,Q,K] is used, and the indeterminates are replaced by transmitted

symbols. For example, the OSTBC for 2 and 4 transmit antennas are given below:

O2 =

[
s1 s2

−s∗2 s∗1

]
, (2.14)

O4 =




s1 s2 s3 0
−s∗2 s∗1 0 −s3

−s∗3 0 s∗1 s2

0 s∗3 −s∗2 s1


 . (2.15)

The OSTBC for 2 transmit antennas is the well-known STBC proposed by Alamouti

[82]. The Alamouti code has rate-one. However, when the number of transmit antennas

increases, the code rate of OSTBC decreases. The maximal coderate of existing OSTBC

is given as follows.

Proposition 2.5 ( [44]). The maximal code rate of OSTBC forQ = 2a − 1 or Q = 2a,

wherea is any positive integer, is

RO,Q =
a + 1

2a
. (2.16)
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Thus, the rate-one OSTBC exists for 2 transmit antennas only.Furthermore, the rate

approaches 1/2 for a large number of antennas. The subscriptQ of OQ is added to highlight

that the OSTBC is designed forQ transmit antennas. Note that there are several design

criteria existing for OSTBC, such as delay-optimal codes withR = Q (or square orthogonal

designs) [59] or rate-optimal, i.e. the code rate is maximized [44].

To guarantee the transmit power constraint (2.2), a scalingfactor is required. Thus, the

OSTBC code matrix with normalized power is
√

κOQ. We can show that

κ =
1

QRO,Q

(2.17)

as follows.

Proof. The total energyEO of OSTBC code matrices is

EO = E
[
trace(O†O

]
= κQE[

K∑

k=1

|sk|2] = κKQ E[|sk|2] = κKQ.

From (2.2), one hasκKQ = T or κ = 1
QRO,Q

.

For example, the Alamouti code hasκ2 = 1/2.

The coding gain of OSTBC can be easily found to be

GO,Q =
1

QRO,Q

d2
min (2.18)

wheredmin is the minimum distance of the input constellation from which sk are chosen.

2.2.2 Linear Threaded Algebraic Space-Time Codes

The idea of employing circulant matrices [64] to build rate-one STBC has appeared in

[20, 101]. We may call such codes circulant STBC. Letu =
[
u1 u2 · · · uM

]
be the

input modulation vector ofM symbols. The code matrix of circulant STBC forM transmit

antennas is

Cr(u) =




u1 u2 · · · uM

uM u1 · · · uM−1
...

...
...

u2 u3 · · · u1


 . (2.19)

Since circulant matrices are not always full-rank, they cannot be directly applied with

typical signal constellations to design STBC with full diversity [101]. To achieve full
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diversity, modulation symbols are drawn from the same signal constellation and rotated

differently, i.e. the transmitted symbolsui are virtually drawn from different alphabets [20].

The selection of rotation angles heavily impacts the codinggain. We next briefly review

how the rotation angles are selected in [20].

Let S be the input symbol constellation with the minimum Euclidean distancedmin.

A block of M constellation symbols is arranged in a vectors = [s1, s2, · · · , sM ]T. Each

symbolsi is rotated by an angleφ(i−1)/M , whereφ is a Diophantine number [20,103]. Let

Θ = diag[ 1, φ1/M , · · · , φ(M−1)/M ], the transmitted vectoru is as

u = Θs (2.20)

The LTAST code matrices are circulants given by

T =
1√
M

Cr(u) . (2.21)

The rate of the resulting LTAST code due to this constructionis one. The upper bound of

the coding gain is as follows.

Proposition 2.6 (eq. (7), [20]). The coding gain of the rate-one LTAST codes is upper-

bounded asGC,M ≤ 1
M

d2
min.

To achieve full diversity, the Diophantine number is chosenasφ = ej α (j2 = −1).

Thus, theith symbolsi is rotated by an anglei−1
M

α. The optimal values ofφ that maximize

the coding gain are given below.

Proposition 2.7(Theorem 2, [20]). For M = 2r, r ≥ 1, the optimal coding gain of rate-one

LTAST codes, i.e.GC,M = 1
M

d2
min, can be obtained by choosing the Diophantine number

φ = j and constellationsS carved from the ring of Gaussian integers (including QAM),

and forM = 2r03r1 , r0, r1 ≥ 0 by choosingφ = e2 j π/6 and constellationsS carved from

the ring of Einstein integers (including hexagonal (HEX) constellations [104]).

[20, Theorem 1] also suggests how to selectφ for PSK constellations; however, com-

puter search is required to find theφ that maximizes the coding gain. Additionally, for

M 6= 2r or M = 2r03r1, only local maxima of the coding gain are guaranteed by computer

search. However, for a special case withM = 2, we will show that the results of ref-

erence [105] can be readily applied to find the optimal rotations for any two-dimensional

signal PSK.
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Proposition 2.8( [105]). Consider the rate-one LTAST codes forM = 2. One of the two

transmitted symbols is drawn from anM-ary PSK constellationS and the other one is

drawn fromej αS. The coding gain of LTAST is maximized if and only if the rotation angle

α is (2k+1)π
M for k = 0, 1, ...,M− 1 if M is even and(2k+1)π

M , k = 0, 1, ..., 2M− 1 if M is

odd.

We will show that OEST codes include LTAST codes as a special case. Thus, Proposi-

tion 2.8 can be verified when we present the properties of OESTcodes in the next section.

2.3 Constructions and Properties of Orthogonality-
Embedded Space-Time Codes

In this section, we develop OEST codes by deriving their mainproperties, such as the code

rate, diversity order and coding gain. Several existing codes are shown to be special cases

of OEST codes. The group decoding property is fully investigated. The orthogonality

among the group symbols implies the existence of the orthogonal (spatial) signatures of the

data vectors [32,48]; our main task will be to show these spatial signatures. We also derive

an explicit form of the equivalent channel of OEST codes, which is used later to analyze

the maximum mutual information of OEST codes.

2.3.1 Constructions of OEST Codes

To construct OEST codes form OSTBC, we replace the symbolssk in (2.4) by circulant

matrices and the scalar product by the Kronecker product. The resulting OEST codes have

higher rates than that of OSBTC and, importantly, OEST codes offer several code designs

for the same number of transmit antennas with desirable tradeoffs among rate, performance,

decoding complexity and delay. Furthermore, the new results of OEST codes shed light on

existing codes, such as QSTBC and LTAST [20, 47]. For example,the maximum mutual

information, equivalent channel and general decoder for QSTBC and LTAST are obtained

as a byproduct of the OEST results.

Let the number of transmit antennas beM = PQ, whereP andQ are positive integers,

and letAk andBk (k = 1, 2, · · · , K) be the basis matrices ofR × Q orthogonal designs.

A block of K × P input symbols are divided intoK vectorssk, each of sizeP × 1.
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We propose two constructions of OEST codes as follows:

Construction I:

D =

√
κ

P

K∑

k=1

(
Ak ⊗ Ck + Bk ⊗ C†

k

)
, (2.22)

Construction II:

D =

√
κ

P

K∑

k=1

(
Ck ⊗ Ak + C†

k ⊗ Bk

)
. (2.23)

SinceAk andBk have the same size,Ck is a square matrix, and the two matrices(Ak ⊗
Ck) and(Ck ⊗ Ak) are permutation equivalent (the same relation holds for(Bk ⊗ C†

k) and

(C†
k⊗Bk)) [95, corollary 4.3.10]. Hence, Constructions I and II are permutation equivalent.

We will, therefore, derive the properties of the OEST codes for Construction I only.

It is of interest to find the linear dispersion form (2.4) of OEST codes. Letuk =

[uk1 uk2 · · · ukP ]T (k = 1, 2, . . . , K) denote thekth input vector to the circulant space-

time encoder (2.21). We know that a circulant matrix has the following decomposition

Cr(uk) =
P∑

i=1

ukiπ
i−1 (2.24)

whereforward shift permutationmatrixπ is given by [64, p. 68]

π =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...
1 0 0 0 · · · 0


 . (2.25)

From (2.22) and (2.25), the linear dispersion form of OEST code matrix is as follows:

D =

√
κ

P

K∑

k=1

[
Ak ⊗

(
P∑

i=1

ukpπ
p−1

)
+ Bk ⊗

(
P∑

p=1

u∗
kpπ

1−p

)]

=

√
ρκ

P

K∑

k=1

P∑

p=1

[
ukp

(
Ak ⊗ πp−1

)
+ u∗

kp

(
Bk ⊗ π1−p

)]
. (2.26)

This represention will later be used to derive the group decoder.

Since several different constructions exist for OSTBC [44,59,106], in combination with

the circulant codes, we can generate several OEST codes for agiven number of transmit

antennas. Moreover, OEST codes subsume several existing STBC as we will show below.

1. OSTBC: IfP = 1, the circulant matrixCk reduces to a single symbol, and we revert

to the original construction of OSTBC codes.
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2. QSTBC: IfQ = 2, the Construction II is identical with the QSTBC codes given by

Tirkkonenet al. [47].

The QSTBC in [47] is known as ABBA codes2. This construction forM = 2Q

transmit antennas is as follows

Q =

[
A B
B A

]
(2.27)

whereA andB are two matrices of OSTBC codes designed forQ transmit an-

tennas. Hence,A andB can be represented asA =
∑K

k=1 (skAk + s∗kBk),B =
∑K

k=1

(
sk+KAk + s∗k+KBk

)
, whereAk andBk, (k = 1, 2, · · · , K) are the basis ma-

trices of OSTBC forQ transmit antennas. SubstituteA andB into (2.27), and we

have

Q =

[∑K
k=1 (skAk + s∗kBk)

∑K
k=1

(
sk+KAk + s∗k+KBk

)
∑K

k=1

(
sk+KAk + s∗k+KBk

) ∑K
k=1 (skAk + s∗kBk)

]

=
K∑

k=1

[
sk sk+K

sk+K sk

]

︸ ︷︷ ︸
Ck

⊗ Ak +
K∑

k=1

[
s∗k s∗k+K

s∗k+K s∗k

]

︸ ︷︷ ︸
C†

k

⊗Bk

=
K∑

k=1

(Ck ⊗ Ak + C†
k ⊗ Bk). (2.28)

The above expression is exactly the Construction II of OEST codes in (2.23).

Note that to achieve full diversity and optimal coding gain for QSTBC, signal rota-

tions are also required. Thus, the optimal rotations of rate-one LTAST codes with

P = 2 (see Proposition 2.7) can be applied for QSTBC with QAM and Hexconstel-

lations. Viceversa, the optimal rotations of QSTBC (see [61, 105] and references

therein) can be applied for rate-one LTAST codes; this result is provided in Proposi-

tion 2.8.

3. Rate-one LTAST codes [20]: In this case,Q = 1, A1 = I1, B1 = 01.

We will next examine the properties of OEST codes with the multi-group decoding

property being presented first.
2There are other QSTBC designed for 4 and 8 transmit antennas proposed by Jafarkhani [46]. However,

the QSTBC for 8 transmit antennas given in [46] cannot be constructed from the code designed for 4 transmit
antennas; The code for 8 antennas was designed by proper selection and arrangement of the specific OSTBCs’
designed for 4 transmit antennas. Thus, the exemplary structures of QSTBC given in [46] are not general for
an arbitrary number of transmit antennas.
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2.3.2 Properties of OEST Codes

1. Multi-Group Decoding

From the construction of OEST codes, there areK vectors embedded inK circulant

matrices. The first important property of OEST codes is theirmulti-group decodability

stated below.

Theorem 2.9.By Constructions I and II, the OEST codes areK-group decodable.

One can use the linear dispersion form (2.26) and Theorem 2.2to prove. However, we

will follow a slightly different approach so that the same proof can be used later to derive

other properties of OEST codes, such as diversity order and optimal signal transformations.

Proof. From the proof of Theorem 2.2, we need to show that ifD is a code matrix of

OEST codes, then from (2.10), the productD†D must be decomposed into a linear sum of

K submetrics, each submetric involves only the symbols of onedata vector. We have

D†D
κ/P

=
K∑

i=1

(Ai ⊗ Ci + Bi ⊗ C†
i )

† ·
K∑

j=1

(Ai ⊗ Ci + Bi ⊗ C†
i )

=
K∑

i=1

K∑

j=1

(A†
iAj) ⊗ (C†

i Cj) +
K∑

i=1

K∑

j=1

(B†
i Bj) ⊗ (CiC†

j )

︸ ︷︷ ︸
X1

+
K∑

i=1

K∑

j=1

(A†
iBj) ⊗ (C†

i C†
j )

︸ ︷︷ ︸
X2

+
K∑

i=1

K∑

j=1

(B†
i Aj) ⊗ (CiCj)

︸ ︷︷ ︸
X3

. (2.29)

Note thatCi is circulant, thenC†
i is also circulant; we can apply the commutativity of

circulant matrices to derive the three termsXi (i = 1, 2, 3) in (2.29).

X2 =
K∑

i=1

K∑

j=1

(A†
iBj) ⊗ (C†

i C†
j )

=
1

2

(
K∑

i=1

K∑

j=1

(A†
iBj) ⊗ (C†

i C†
j ) +

K∑

j=1

K∑

i=1

(A†
jBi) ⊗ (C†

jC†
i )

)

=
1

2

K∑

i=1

K∑

j=1

(A†
iBj + A†

jBi) ⊗ (C†
i C†

j ). (2.30)

28



Using the constraint (2.13c) of OSTBC, we haveA†
iBj+A†

jBi = 0Q. Therefore,X2 = 0M .

Similarly, we can show thatX3 = 0M .

To calculateX1, we first swap the indicesi, j of the second term ofX1 and exploit the

commutativity of circulant matrices to get

X1 =
K∑

i=1

K∑

j=1

(A†
iAj) ⊗ (C†

i Cj) +
K∑

i=1

K∑

j=1

(B†
i Bj) ⊗ (CiC†

j )

=
K∑

i=1

K∑

j=1

(A†
iAj + B†

jBi) ⊗ (C†
i Cj)

=
K∑

i=1

K∑

j=1,j 6=i

(A†
iAj + B†

jBi) ⊗ (C†
i Cj) +

K∑

i=1

(A†
iAi + B†

i Bi) ⊗ (C†
i Ci). (2.31)

From the orthogonality constraint (2.13b), the first term of(2.31) vanishes and from (2.13a),

A†
iAi + B†

i Bi = IQ. Thus,X1 =
∑K

i=1 IQ ⊗ (C†
i Ci) = IQ ⊗

(∑K
k=1 C†

kCk

)
. Substituting

the results in (2.30) and (2.31) into (2.29), we have

D†D =
κ

P
IQ ⊗

K∑

i=1

C†
i Ci. (2.32)

This completes the proof.

We next examine the performance of OEST codes. The diversityorder and coding gain

are the two main performance metrics for designing OEST codes (Section 1.3). Of the

primary importance, the diversity order is investigated first.

2. Diversity order

We derive the conditions so that OEST codes achieve full diversity.

Theorem 2.10.An OEST code achieves full diversity if and only if the underlying circulant

STBC has full diversity.

Proof. We first show the necessary part of Theorem 2.10. We now apply the diversity

criterion (Section 1.3) to examine the diversity order of OEST codes. For two distinct

OEST code matricesD andD̂, the matrixPD defined as

PD , (D − D̂)†(D − D̂)

=
κ

P
IQ ⊗

(
K∑

k=1

∆†
Ck

∆Ck

)
(2.33)
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where∆Ck
= Ck − Ĉk. If PD is full rank for all distinct code matricesD andD̂, then the

OEST code achieves full diversity.

SinceD 6= D̂, there exists at least one pair ofCi andĈi such thatCi 6= Ĉi or ∆†
Ci

∆Ci
is

positive definite. Then the matrix
(∑K

k=1 ∆†
Ck

∆Ck

)
is always positive definite for any pairs

of distinct code matrices. Therefore, the matrixPD is always of full rank and OEST codes

achieve full diversity. This completes the necessary part of Theorem 2.9.

To prove the sufficient part of Theorem 2.10, if the OEST code achieves full diversity,

we must show that the underlying circulant STBC must be full diversity. From (2.33), if the

worst case happens, there is only one non-zero difference matrix (Ci − Ĉi) for 1 ≤ i ≤ K.

If PD is full-rank, the matrix∆†
Ci

∆Ci
must be full rank as well; this holds for all possible

worst-case pairs of OEST code matrices. Therefore, for all possible matrices(Ci − Ĉi)

are of full rank and the circulant STBC is full diversity. The proof of the sufficient part is

completed.

3. Coding gain

When OEST achieve full diversity, the coding gain (1.6) immediately follows:

GD,M =
κ

P
min
D 6=D̂

det PD

=
κ

P
min
D 6=D̂

[
det

(
K∑

k=1

∆†
Ck

∆Ck

)]Q/M

. (2.34)

In the worst case, where there only exists one pair ofCi andĈi such thatCi 6= Ĉi, the coding

gain is

GD,M =
κ

P
min

Ci 6=Ĉi

[
det
(
∆†

Ci
∆Ci

)]1/P

= κ GC,P . (2.35)

Thus, using Proposition 2.6 and (2.16), we have the following result.

Corollary 2.11. The coding gainGD,M of OEST codes is upper bounded as

GD,M ≤ 1

QRO,Q

d2
min

P
=

d2
min

MRO,Q

. (2.36)

Thus, one can select the optimal rotation of LTAST codes to maximize the coding gain

of OEST codes as specified in Proposition 2.7 or Proposition 2.8 for P = 2 and PSK.
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4. Code Rate

From the construction of OEST codes, compared with the basisOSTBC, the number

of symbols parsed in an OEST code matrix increasesP times. However, the length of the

code matrix also increasesP times; the code rate of an OEST code forM = QP transmit

antennas is, therefore, equal to the rate of OSTBC forQ transmit antennas used to construct

this OEST code. We thus have the following results.

Corollary 2.12. The rate of an OEST code forM = PQ transmit antennas is equal to the

rate of an OSTBC forQ transmit antennas,RD,M = RO,Q, which is used to construct this

OEST code. The upper bound of the code rate forQ = 2a − 1 or Q = 2a is a+1
2a

.

5. Column orthogonality

From (2.32), the orthogonality property of OEST code matrices can be stated as follows.

Corollary 2.13. TheM = PQ columns of OEST code matrices (forM = PQ transmit

antennas) can be divided intoQ separate groups, each ofP consecutive columns, counting

from left to right. Then the columns of the same group are not orthogonal to each other, but

they are all orthogonal to the columns of the other groups.

2.3.3 A Note on the Maximal Rate of OEST Codes

The rate of OEST codes is less than or equal to 1 symbol pcu. Onemay ask whether there

is any STBC with group decoding property and with rate larger than one symbol pcu? We

provide a partial answer to this question in the following.

OEST codes are designed with a special property of circulantmatrices: IfC1 is a circu-

lant matrix, thenC†
1 is also a circulant matrix;C1 andC†

1 inherit the commutative property

of circulant matrices. Now, we consider a more general setting, a familyL of matrices with

the following properties: (1) All the matrices ofL are commutative, i.e. ifC1, C2 ∈ L, then

C1C2 = C2C1; (2) If C1 ∈ L, thenC†
1 ∈ L. Thus, the circulant structure is not imposed to

the matrices ofL. Our question is: what is the maximum rate of the STBC constructed by

parsing the data symbols into the matrices of the setL?

Let C1 ∈ L, thenC†
1 ∈ L and, therefore,C1C

†
1 = C†

1C1. Thus,L is a commutating

family of normal matrices. All the matrices ofL are simultaneously diagonalizable by

the same unitary matrix [63, Theorem 2.5.5]. The input information symbols can only
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be encoded to produce the diagonal entries of the diagonal matrix because the common

unitary matrix cannot deliver any information. Since the number of independent entries

of diagonal matrix is equal to the number of the column, the code rate is, therefore, not

more than one symbol pcu. This is similar to the design of DST codes [49]. And in fact,

rate-one circulant LTAST codes are equivalent to rate-one DST codes [20]. Thus, using

the commutating normal matrices to construct OEST codes, codes with rate larger than one

symbol pcu cannot be obtained.

Having presented the basic properties of OEST codes, we nextshow how to design an

efficient decoder so that multi-group decoding ís possible without the exponential com-

plexity of typical maximum likelihood search.

2.3.4 Decoder

In general, OEST codes can be decoded using the matrix-vector method proposed in [33],

followed by a sphere decoder [107,108]. Therefore, we next show how to efficiently decou-

ple the transmitted symbols into groups to greatly simplifysymbol detection at the receiver.

Since the OEST code rate is not more than 1 symbol pcu, it is possible to use only one

receive antenna with an efficient maximum likelihood decoder such as a sphere decoder

[108]. For the sake of clarity and simplicity, we first consider the case withN = 1 receive

antennas, and then generalize the results forN ≥ 1.

Let h = [h1 h2 · · · hM ] denote the channel gain between themth (m = 1, 2, . . . ,M)

transmit antenna and the receive antenna. LetD ∈ D be a transmitted code matrix, the

receive signal vectory is adopted from the system model (2.3) as

y =

√
ρκ

P
Dh + w . (2.37)

We can use maximum likelihood decoding. The detected code matrix D̃ is given by

D̃ = arg min
D̂∈D

‖y −
√

ρκ

P
D̂h‖2

F . (2.38)

This approach will lead to the separation of groups of symbols for detection. However, we

will present another equivalent derivation to emphasize the orthogonal property of OEST

codes. Moreover, this approach leads to an interesting representation of the equivalent

channel of OEST codes.
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Substituting the code matrixD in (2.26) to (2.37), we have

y =

√
ρκ

P

K∑

k=1

P∑

p=1

[
ukp

(
Ak ⊗ πp−1

)
h + u∗

kp

(
Bk ⊗ π1−p

)
h
]
+ w . (2.39)

Let

ekp =
(
Ak ⊗ πp−1

)
h , (2.40a)

Ek =
[
ek1 ek2 · · · ekP

]
, (2.40b)

f kp =
(
Bk ⊗ π1−p

)
h , (2.40c)

Fk =
[
fk1 fk2 · · · fkP

]
. (2.40d)

We can rewrite (2.39) as

y =

√
ρκ

P

K∑

k=1

P∑

p=1

(
ekpukp + f kpu

∗
kp

)
+ w

=

√
ρκ

P

[
E1 F1 E2 F2 · · · EK FK

]

×
[
uT

1 u
†
1 uT

2 u
†
2 · · · uT

K u
†
K

]T
+ w . (2.41)

Furthermore, the following equation is equivalent to (2.41)
[
y

y∗

]
=

√
ρκ

P

[
E1 F1 · · · EK FK

F ∗
1 E∗

1 · · · F ∗
K E∗

K

]

︸ ︷︷ ︸
W

[
uT

1 u
†
1 · · · uT

K u
†
K

]T
+

[
w

w∗

]
. (2.42)

An important property ofW is that the its columns are orthogonal and can be shown in

the following.

We have to show that the following equations hold:

[
Ek

F ∗
k

]† [
El

F ∗
l

]
= E†

kEl + F T
k F ∗

l = 0P for k 6= l, (2.43a)

[
Ek

F ∗
k

]† [
Fl

E∗
l

]
= E†

kFl + F T
k E∗

l = 0P , (2.43b)

We just provide the proof for (2.43a); (2.43b) can be shown similarly.

The following properties of the forward permutation matrixπ will be useful for our

next derivation [64, page 27].

πT = π† = π−1 = πP−1. (2.44)
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Consequently, one hasπ0 = πP = IP .

From (2.40), the size of matrixZkl = (E†
kEl + F T

k F ∗
l ) is P ×P . The element[Zkl]ij of

Zkl can be calculated from (2.40) as

[Zkl]ij = e
†
kielj + fT

kif
∗
lj

= h†(A†
k ⊗ π−i+1)(Al ⊗ πj−1)h + hT(BT

k ⊗ πi−1)(B∗
l ⊗ π−j+1)h∗

= h†[(A†
kAl) ⊗ (πj−i)]h + hT[(BT

kB∗
l ) ⊗ (πi−j)]h∗

= h†[(A†
kAl) ⊗ (πj−i)]h + h†[(B†

kBl) ⊗ (πj−i)]h = h†[(A†
kAl + B†

kBl) ⊗ (πj−i)]h

=

{
0, k 6= l;
h†(IQ ⊗ πj−i)h, k = l.

(2.45)

Thus,Zkl = 0P if k 6= l or the columns ofW are orthogonal.

Since fork = l, the matricesZkk do not depend on the value ofk; we drop the subscript

k for brevity. Hence, the entries ofZ are

zij = h†(IQ ⊗ πj−i)h. (2.46)

Let ĥq =
[
h(q−1)P+1 h(q−1)P+2 · · · h(q−1)P+P

]T
for q = 1, 2, . . . , Q. Thenh =[

ĥ
T
1 ĥ

T
2 · · · ĥ

T
Q

]T
, andzij in (2.46) can be rewritten as

zij =

Q∑

q=1

ĥ
†
qπ

j−iĥq. (2.47)

The elementzij (2.47) exhibits a strong structure ofZ. To examine further the matrix

Z, we recall another representation of circulant matrix built from an arbitrary vectorx

below [64]:

CT
r (x) =

[
π0x π−1x · · · π1−P x

]
. (2.48)

We now check for the entry(i, j) of the product matrixC†
r(x)Cr(x) using (2.48):

[C†
r(x)Cr(x)]ij = [Cr(x)C†

r(x)]ij = xTπiπ−jx∗ = x†πj−ix. (2.49)

Comparing (2.47) and (2.49), interestingly, we find an elegant representation ofZ be-

low:

Z =

Q∑

q=1

C†
r(ĥq)Cr(ĥq). (2.50)
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SinceCr(ĥq) is circulant,C†
r(ĥq) is also circulant; the product of two circulant matrices

is also circulant and the sum of circulant matrices is also circulant [64], thusZ is also a

circulant matrix.

To separate the transmitted vectoruk at the receiver, we multiply the two sides of (2.42)

with
[
E†

k F T
k

]
to get

E†
ky + F T

k y∗ = Zuk + (E†
kw + F T

k w∗
︸ ︷︷ ︸

ŵk

) . (2.51)

The covariance matrix of noiseV E[ŵkŵ
†
k] follows

V = E

[
(E†

kw + F T
k w∗)(E†

kw + F T
k w∗)†

]

= E†
k E[ww†]Ek + F T

k E[w∗wT]F ∗
k + E†

k E[wwT]F ∗
k + F T

k E[w∗w†]Ek

= E†
kEk + F †

kFk = Z. (2.52)

During the derivation of (2.52), we have used the fact that for the vectorw of circularly

complex Gaussian random variables,E[wwT] = 0M .

The noise covariance matrix is not an identity matrix, but the noise vector can be

whitened by multiplying the two sides of (2.51) with a whitening matrix Z− 1

2 . The re-

ceived signal with whitened noise is

Z− 1

2 (E†
ky + F T

k y∗)Z
1

2 uk + Z− 1

2 ŵk︸ ︷︷ ︸
w̄

(2.53)

where the elements of̄w areCN (0, 1).

From (2.53), we conclude that all of the transmitted vectorsuk experience the same

equivalent channel, i.e. the same equivalent channel gain and additive noise statistics.

Thus, all of the transmitted vectors have the same PEP.

We now generalize the result of (2.53) for the case of multiple receive antennas,N ≥ 1.

The subscriptn (n = 1, 2, . . . , N) is added to the channel gain vectorh. The channel ma-

trix H is therefore written asH =
[
h1 h2 · · · hN

]
, wherehn

[
h1n h2n · · · hMn

]T
.

When multiplying the two sides of (2.42) with
[
E†

k F T
k

]
, we actually performspa-

tial maximal ratio combining[109, 110] orspatial matched filtering[48]. The equivalent

channel in (2.50) becomes

Z =
N∑

n=1

Zn =
N∑

n=1

Q∑

q=1

C†
r(ĥq,n)Cr(ĥq,n) (2.54)
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where ĥq,n =
[
h(q−1)P+1,n h(q−1)P+2,n · · · h(q−1)P+P,n

]T
for q = 1, 2, . . . , Q, n =

1, 2, . . . , N .

Therefore, with multiple antennas and constellation rotation in (2.20), the detection

equation (2.53) is generalized for data detection with multiple receive antennas as

Z− 1

2

N∑

n=1

(E†
knyn + F T

kny
∗
n)

︸ ︷︷ ︸
ŷk

Z
1

2 uk + W = Z
1

2 Θsk + W (2.55)

whereyn is the received signal vector of thenth antenna,

Ekn =
[
ek1,n ek2,n · · · ekP,n

]
, (2.56a)

ekp,n =
(
Ak ⊗ πp−1

)
hn (2.56b)

for k = 1, 2, . . . , K; p = 1, 2, . . . , P,

Fkn =
[
fk1,n fk2,n · · · f kP,n

]
, (2.56c)

fkp,n =
(
Bk ⊗ π1−p

)
hn , (2.56d)

[Zn]ij =

Q∑

q=1

C†
r(ĥq,n)Cr(ĥq,n) for i, j = 1, 2, . . . , P , (2.56e)

andW ∼ CN (0, N); however, we do not need to divide both sides of (2.55) byN .

Notice: By similar derivation with suitable modifications, the transmitted symbols of

OEST code matrices of Construction II are also separated intogroups as (2.55). However,

the main difference is that the elements of matrixZ are

zij = h†(πj−i ⊗ IQ)h , (2.57)

which will not lead to a compact representation ofZ as in (2.54).

One can useK sphere decoders (see, e.g. [108]) running in parallel, eachis to solve

(2.55). Therefore, the decoding complexity and decoding time are greatly reduced.

The matrixZ
1

2 can be considered as the equivalent channel of OEST codes. Since

Z is a circulant matrix, using [64, Theorem 3.2.3, p. 73], we can show thatZ
1

2 is also a

circulant matrix. It means thatwhen multiple data vectors are encoded in circulant matrices

and mapped to an OEST code matrix, the data vectors can be completely decoupled at the

receiver. Each data vector is equivalently experienced thesame circulant channel matrix,

which is a superposition of multiple circulant matrices.
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In the following, as a sanity check, we verify the general detection equation (2.55) for

two special cases: OSTBC and circulant STBC [101].

Detection of OSTBC

For OSTBC,P = 1, Q = M and hence,

Ekn = ek1,n = Akhn , (2.58a)

Fkn = fk1,n = Bkhn , (2.58b)

Zn = [Zn]11 = ‖hn||2F. (2.58c)

Z =
N∑

n=1

Zn =
N∑

n=1

‖hn||2F = ‖H||2F, (2.58d)

andΘ = I1, then (2.55) becomes

‖H||−1
F

N∑

n=1

(h†
nA

†
kyn + hT

nBT
ky∗

n)

︸ ︷︷ ︸
ŷk

‖H||Fuk + ŵ . (2.59)

From (2.59), a similar detection equation for single symboluk to the metrics given in

[59,62,111] can be derived.

Detection of circulant STBC [101]

For circulant STBC,K = Q = 1, A1 = I1, B1 = 01.

From (2.48), (2.56a) and (2.56b), we haveE1,n = Cr(hn); from (2.56a) and (2.56b),

F1,n = 0P ∀n; from (2.54),Z =
∑N

n=1 C†
r(ĥn)Cr(ĥn). SubstitutingE1,n andF1,n into

(2.55), we obtain

Z− 1

2

N∑

n=1

[C†
r(hn)yn]Z

1

2 uk + W . (2.60)

Although (2.60) holds for maximum likelihood detection, itcan be easily modified for the

zero-forcing (ZF) or minimum mean square error (MMSE) receivers proposed in [101].

2.3.5 Maximum Mutual Information

Since OEST codes decompose the MIMO channels withM = PQ transmit andN receive

antennas intoK parallel equivalent MIMO channels of the same size,P × P , we can

calculate the maximum mutual information of OEST codes by taking the sum capacity of

theseK identical MIMO channels. Thus, the maximum mutual information of OEST codes
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can be calculated using the equivalent channel in (2.61) as follows [10]:

CD =
K

PR
E

{
log2 det

[
IP +

ρκ

P

N∑

n=1

Q∑

q=1

C†
r(ĥq,n)Cr(ĥq,n)

]}
(2.61)

whereR is the code length of underlying the OSTBC code. The coefficient K
PR

appears

because the maximum mutual information of OEST codes is a sumof maximum mutual

information ofK vectors averaged overT = PR channel uses.

We can use aP × P unitary discrete Fourier transform (DFT) matrix to diagonal-

ize the circulant matricesCr(ĥq,n) without changing the distribution ofCD. Let λq,n(p)

(p = 1, 2, . . . P ) be the eigenvalues ofCr(ĥqn). It is well-known that the vectors of

eigenvalues are the DFT of the channel vectorĥqn. Thus,λqn(p) are independent and

λqn(p) ∼ CN (0, P ). Let λqn(p) =
√

Pĥqn(p), thenĥqn(p) ∼ CN (0, 1).

By denotingΛqn = diag(ĥqn(1), ĥqn(2), · · · , ĥqn(P )), (2.61) becomes

CD =
RO,Q

P
E

{
log2 det

[
IP + ρκ

N∑

n=1

Q∑

q=1

(Λ†
qnΛqn)

]}

= RO,Q E

{
log2 det

[
1 +

ρ

QRO,Q

N∑

n=1

Q∑

q=1

|ĥqn(p)|2
]}

. (2.62)

In (2.62),CD is independent of the indexp; therefore, the indexp is omitted without loss

of generality. Furthermore, let̂H = [ĥqn] ∈ C
Q×N , we have

∑N
n=1

∑Q
q=1 |ĥqn|2 = ‖Ĥ||2F.

We arrive at the new expression ofCD:

CD = RO,Q E

{
log2 det

[
1 +

ρ

QRO,Q

‖Ĥ||2F
]}

= CO,Q (2.63)

whereCO,Q is the maximum mutual information of OSTBC designed forQ transmit anten-

nas [112]. Thus,the maximum mutual information of OEST codes does not dependon the

value ofP , the size of data vectors. When increasing the number of transmit antennasM ,

but keeping the basis orthogonal matrices, one obtains higher diversity but not capacity

benefit.This result also hold for QSTBC.

The results of this section is summarized in the following theorem.

Theorem 2.14.The maximum mutual information of an OEST code forM = PQ antennas

is the same as that of the OSTBC forQ antennas used to construct this OEST code.
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Figure 2.2: Channel capacity and maximum mutual informationof OEST, (4, 1) system.

The maximum mutual information of OEST codes for different parameter sets are plot-

ted in Figs. 2.2 and 2.3. For one receive antenna or the MISO channel, in Fig. 2.2, SAST

codes corresponding toQ = 2 nearly attain the channel capacity. Other configurations

suffer from remarkable capacity loss. These losses are moresignificant forN > 1 (see Fig.

2.3). This result is expected because the rates of OEST codesare not more than 1 symbol

pcu, while MIMO channels support rates ofmin(M,N).

2.3.6 Semi-Orthogonal Algebraic Space-Time Codes

We can identify a special case whereQ = 2 or the OEST constructed from the Alam-

outi code. This code has the feature that the columns of the right and the left halves are

orthogonal. Thus, we call this code semi-orthogonal algebraic space-time (SAST) code.

Additionally, there are several points that make SAST codesimportant.

1. Since the Alamouti code achieves full capacity of (2, 1) channel, hence, SAST codes

achieve significant capacity of the MISO (multiple-input single-output) channel.

2. SAST codes have rate of 1 symbol pcu, the highest rate achievable by OEST codes.

Fig. 2.4 plots the maximum mutual information of SAST and circulant STBC (or

LTAST) codes, two subclass of OEST codes having the same coderate of 1 symbol pcu,
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Figure 2.3: Channel capacity and maximum mutual informationof OEST, (4, 2) system.

together with the capacity of MISO channels forM = 2, 4, 8, 16. Fig. 2.5 illustrates the

relative channel capacity attained by the two codes. The numerical results show that for

M = 4, SAST codes attain more than 95% and up to 98% of channel capacity. For M

= 16, SAST codes achieve not less than about 92% channel capacity. This is because for

a specific high SNR, the channel capacity does not actually increase when the number of

transmit antennas increases, but the number of receive antennas is fixed [14]. Fig. 2.4 also

shows that the capacity increment of the MISO channel is negligible when the number of

transmit antennas increases from 8 to 16. Therefore, SAST codes nearly attain the capacity

of MISO channels.

The next section will present the constructions and performances of OEST codes for 4,

6 and 12 antennas.

2.4 Examples of OEST Codes

Given a value ofM , one can find the sets of all pairs{(P,Q)|P,Q ∈ N, PQ = M}. Note

that one can delete one or several columns of OEST codes forM transmit antennas to

construct OEST codes for the smaller numbers of transmit antennas.

In the following, we will present OEST codes for 4 and 6 transmit antennas using
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Figure 2.4: Maximum mutual information of SAST and LTAST codes over MISO channels.
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Figure 2.5: Capacity achievable rates of SAST and LTAST codescompared with the ca-
pacity of open-loop MISO channels.

Construction I and their performances in quasi-static flat fading channels.
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2.4.1 Code Construction Examples

Let us denote OEST codes designed for the set of parametersP,Q asDP,Q. For M = 4

transmit antennas, there are at least three variants of OESTcodes as follows.

D1,4 =
1√
3
O4 =

1√
3




u1 u2 u3 0
−u∗

2 u∗
1 0 −u3

−u∗
3 0 u∗

1 u2

0 u∗
3 −u∗

2 u1


 . (2.64a)

D2,2 =
1√
4




u1 u2 u3 u4

u2 u1 u4 u3

−u∗
3 −u∗

4 u∗
1 u∗

2

−u∗
4 −u∗

3 u∗
2 u∗

1




= S4 ≡ Q4. (2.64b)

D4,1 =
1√
4




u1 u2 u3 u4

u4 u1 u2 u3

u3 u4 u1 u2

u2 u3 u4 u1




= C4. (2.64c)

ForM = 6, there are at least 4 variants as follows.

D1,6 =
1√
4
O6 (see [44, (101)]). (2.65a)

D2,3 =

√
2

3




u1 u2 u3 u4 u5 u6

u2 u1 u4 u3 u6 u5

−u∗
3 −u∗

4 u∗
1 u∗

2 0 0
−u∗

4 −u∗
3 u∗

2 u∗
1 0 0

−u∗
5 −u∗

6 0 0 u∗
1 u∗

2

−u∗
6 −u∗

5 0 0 u∗
2 u∗

1

0 0 u∗
5 u∗

6 −u∗
3 −u∗

4

0 0 u∗
6 u∗

5 −u∗
4 −u∗

3




≡ Q6. (2.65b)

D3,2 =
1√
6




u1 u2 u3 u4 u5 u6

u3 u1 u2 u6 u4 u5

u2 u3 u1 u5 u6 u4

−u∗
4 −u∗

6 −u∗
5 u∗

1 u∗
3 u∗

2

−u∗
5 −u∗

4 −u∗
6 u∗

2 u∗
1 u∗

3

−u∗
6 −u∗

5 −u∗
4 u∗

3 u∗
2 u∗

1




= S6. (2.65c)

42



D6,1 =
1√
6




u1 u2 u3 u4 u5 u6

u6 u1 u2 u3 u4 u5

u5 u6 u1 u2 u3 u4

u4 u5 u6 u1 u2 u3

u3 u4 u5 u6 u1 u2

u2 u3 u4 u5 u6 u1




= C6. (2.65d)

To constructD2,3, we have used Construction I and the orthogonal basis matrices of OSTBC

O3 [59] by deleting the last columns of (2.64a). If ConstructionII was used, the resulting

OEST code would be equivalent to a QSTBC forM = 6 as we have shown in Section

2.3.1.

The OEST codes presented above forM = 4, 6 are equivalent to the previously known

codes since there are only a few choices for the pairs of parametersP andQ. Nevertheless,

other new OEST codes forM = 6 can be obtained by deleting some columns of the

OEST codes designed forM ≥ 8. For larger values ofM , for exampleM = 12, we have

more freedom to select the values of the pairs(P,Q): (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), and

(12, 1). We can construct several completely new OEST codes for the values of parameters

(P,Q): (3, 4) or (4, 3). The details are omitted for brevity.

The main parameters of OEST codes forM = 4, 6, 12 are summarized in Table 2.1.

The OSTBC with maximal rates in [44] are selected to constructed OEST codes.

2.4.2 Simulation Results

Comparison of OEST codes implementations

We have performed simulations to compare the performance ofdifferent implementa-

tions of OEST codes for 4, 6 and 12 transmit antennas. The input constellations are selected

so that the bit rate is 3 bits pcu. A summary of OEST codes combined with signal con-

stellations is given in Table 2.2. However, except forD1,6 (or O6) andD2,6 (or Q12) with

symbol rate of 2/3 symbol pcu, there is no constellation thatmatches the bit rate of 3 bits

pcu. Thus, 16QAM is selected, resulting in the bit rate8/3 bits pcu. Note that the minimum

Euclidean distances of 16QAM is 0.6325, and of 8QAM and 8Hex are 0.8165 and 0.9631,

respectively. The shapes of 8QAM and 8Hex [104] are sketchedin Fig. 2.6.

For M = 4, all OEST code variants have the same spectral efficiency of 3bits pcu.
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Table 2.1: Comparisons of Several OEST Codes

M OEST codes Known as Gc Rate Decoding complexity Delay

4 D1,4 O4
1
3
d2

min
3
4

1 symbol 4

4 D2,2 S4
1
4
d2

min 1 2 symbols 4

4 D4,1 T4
1
4
d2

min 1 4 symbols 4

6 D1,6 O6
1
4
d2

min
2
3

1 symbol 30

6 D2,3 new,≡ Q6
2
9
d2

min
3
4

2 symbols 8

6 D3,2 S6
1
6
d2

min 1 3 symbols 6

6 D6,1 T6
1
6
d2

min 1 6 symbols 6

12 D1,12 O12
1
7
d2

min
7
12

1 symbol 792

12 D2,6 new,≡ Q12
1
8
d2

min
8
12

2 symbols 60

12 D3,4 new 1
9
d2

min
9
12

3 symbols 12

12 D4,3 new 1
9
d2

min
9
12

4 symbols 16

12 D6,2 S12
1
12

d2
min 1 6 symbols 12

12 D12,1 T12
1
12

d2
min 1 12 symbols 12

Figure 2.6: Geometrical shapes of 8QAM and 8Hex constellations.

The optimal rotations in Proposition 2.7 can be used forS4 andT4. S4 with 8Hex (large

Euclidean distance) outperformsO4. Note that forM = 4, S4 andQ4 are equivalent; this

observation is also made in [61]. Using the same 8QAM, however, S4 code gains 1.7 dB

overT4. On the other hand, performance ofS4 with 8QAM is inferior to that ofO4, even
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Table 2.2: OEST Codes and Simulation Parameters

M Codes Modulation Coding gain Bit rate

4 D1,4 / O4 16QAM 0.1334 3

4 D2,2 / Q4 / S4 8QAM / 8Hex 0.1667 / 0.2319 3

4 D4,1 / T4 8QAM / 8Hex 0.1667 / 0.2319 3

6 D1,6 / O6 16QAM 0.1 8/3

6 D2,3 / ≡ Q6 16QAM 0.0889 3

6 D3,2 / S6 8QAM / 8Hex < 0.1111 / 0.1546 3

6 D6,1 / T6 8QAM / 8Hex 0.1111 / 0.1546 3

12 D2,6 / ≡ Q12 16QAM 0.05 8/3

12 D3,4 16QAM < 0.0445 3

12 D4,3 16QAM 0.0445 3

12 D6,2 8QAM < 0.0556 3

12 D12,1 / T12 8QAM < 0.0556 3
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(P, Q) = (4, 1), LTAST, 8QAM
(P, Q) = (1, 4), OSTBC, 16QAM
(P, Q) = (2, 2), SAST, 8QAM
(P, Q) = (2, 2), SAST, 8Hex

Figure 2.7: Performance of OEST codes with 3 bits pcu, (4, 1) system.

though its coding gain is higher.

For M = 6, with 8QAM and 6 transmit antennas, the optimal rotations for circulant

STBC are not available analytically. By computer search, the best found rotation angles
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(P, Q) = (1, 6), OSTBC, virtual rate 3bits pcu
(P, Q) = (1, 6), OSTBC, 16QAM, 8/3 bits pcu
(P, Q) = (3, 2), SAST, 8QAM, 3bits pcu
(P, Q) = (3, 2), SAST, 8Hex, 3bits pcu

Figure 2.8: Performance of four implementations of OEST codes for 6 transmit antennas
with 3 bits pcu, exceptD1,6 (orO6) with 8/3 bits pcu.

are approximatelyφ = ej π/4 for the S6 andφ = ej π/3 for T6. From Fig. 2.8,S6 also

yields better performance among the investigated OEST codes.S6 with 8QAM gains about

0.5 and 1.2 dB overT6 andO6, respectively. Moreover,S6 with 8Hex even outperforms

OSTBC, which has lower spectral efficiency.

Even though the rate ofO6 is 8/3 bits pcu, we can still compare its performance with

other codes with a rate of 3 bits pcu. Recall the fact that OSTBC convert the MIMO channel

to the scalar (SISO) channel (Section 1.4.2). Also, in the scalar channel, to obtain 1 more

bit of spectral efficiency using QAM, an additional SNR of at least 3 dB is required [113] at

high SNR. Additionally, in the space-time system, it is shownby Zheng and Tse [114] that

among OSTBC, only the Alamouti code achieve the optimal diversity-multiplexing tradeoff

for 2 transmit/1 receive MIMO system. It is also confirmed that with the Alamouti code

and QAM, to gain an additional rate of 1 bit, the SNR incrementis at least 3 dB [115]. In

our simulation, the OSTBCO6 do not achieve the optimal diversity-multiplexing tradeoff.

Therefore, more than 3 dB is expected to gain 1 bit of data rate. To reach the rate of 3 bits

pcu from the current rate of 8/3 bits pcu, one needs to increase the data rate by 1/3 bit pcu,

which requires more than 1 dB of SNR. In Fig 2.8, we plot anotherthe BER curve ofO6

with a virtual rate of 3 bits pcu by shifting the a part of BER curve of O6 (starting from
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SNR = 10 dB) to the right by 1 dB. With this virtual rate,O6 perform slightly better than

QSTBCQ6. This result is different from the case of 4 transmit antennas, where OSTBC is

inferior to QSTBC. The virtual rate concept may not provide a precise comparison for the

codes with similar performance. However, it helps to close the gap of rate mismatch for

asymptotic comparisons.

The performances of five variants of OEST codes for 12 transmit antennas are illus-

trated in Fig. 2.9. The OSTBCO12 is not presented due to this code entails a long delay

of 792 channel uses [106]. For QSTBCQ12 with rate of 8/3 bits pcu, the virtual rate con-

cept is again applied enabling the reasonable performance comparison. With 12 transmit

antennas, exceptD4,3 andD12,1 (or LTAST codeT12), the other three variants of OEST

codesD6,2 (or SAST codeS12), D3,4, andD2,6 (or QSTBCQ12 with virtual rate of 3 bits

pcu) clearly show a performance-complexity tradeoff: the higher decoding complexity, the

better performance. The decoding complexity ofD4,3 is slightly higher than that ofD3,4

(see Table I), but the latter yields a small SNR gain of 0.1 dB over the former. The LTAST

codeT12 has highest decoding complexity, but BER is inferior to the other codes at low

and medium SNR. Only when SNR > 18 dB, the LTAST code performs slightly better than

D3,4, D4,3, andD2,6; but its performance is still about 0.6 dB worse than that of the SAST

code.

Comparison of SAST codes and other codes

In this section, we compare the performance of SAST codes andother STBC of rate-

one symbol pcu or less. Unless otherwise stated, the BER curves are obtained by maximum

likelihood detection.

Fig. 2.10 plots the BER of SAST and LTAST codes for a MISO channel with 4 transmit

antennas system using 4-, 16- and 64-QAM (with spectral efficiencies 2, 4 and 6 bits pcu

accordingly). The SNR gain of SAST codes over LTAST codes is substantial. For example,

the SNR gain is about 1.3, 2, 2.5 dB for 2, 4, 6 bits pcu, respectively. The gains increase

with the spectral efficiency.

Similar gains can be observed for a higher number of transmitantennas. Fig. 2.11

compares the BER of SAST and LTAST codes for MISO channel with 8transmit antennas.

Again, SAST codes outperform LTAST codes. The SNR gain is 0.7and 1.3 dB with 2 and

6 bits pcu, respectively.
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(P, Q) = (6, 2), SAST, 8QAM, 3 bits pcu

Figure 2.9: Performance of OEST codes with 3 bits pcu, exceptD2,6 (orQ12) with 8/3 bits
pcu, (12, 1) system.

While our theoretical analysis is carried out for even numbers of transmit antennas,

SAST codes for an odd number of transmit antennas can be obtained by deleting one col-

umn of SAST codewords (or switching off one transmit antenna) and by setting the channel

gain associated with the switched-off antenna to zero at thedecoder.

Fig. 2.12 illustrates the performance of SAST codes and space-time linear constellation

precoding (ST-LCP) codes [51] with the same 2 bits pcu (4-QAM). ST-LCP codes, in fact,

are equivalent to DAST codes proposed in [49]; by using discrete Fourier transform (DFT),

one can convert LTAST codes to DAST codes (see [20]). The slopes of the BER curves

of SAST and ST-LCP codes are almost parallel, indicating thatthe former achieve full

diversity. Furthermore, notable gains of 1 and 1.5 dB over ST-LCP codes are obtained for

M = 3 andM = 5, respectively. Thus, SAST codes perform better compared with LTAST

codes for any number of transmit antennas.

Fig. 2.13 compares performance of SAST, ST-LCP and linear dispersion codes [33] for

spectral efficiency 2 and 6 bits pcu (4- and 64-QAM, respectively) and withM = 3, N = 1.

Fig. 2.13 shows that SAST codes perform better than ST-LCP codes for all bit rates. SAST

codes also perform better than the linear dispersion code with the same delayT = 4 at

high SNR. With 2 and 6 bits pcu, SAST codes gain about 0.4 and 0.7dB over the linear

48



10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

M = 4, N = 1

B
E

R

SNR [dB]

LTAST
SAST

4−QAM 16−QAM 64−QAM

Figure 2.10: Performances of SAST and LTAST codes, (4, 1) system.
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Figure 2.11: Performances of SAST and LTAST codes, (8, 1) system.

dispersion codes at a BER of10−4. With higher delay designT = 6 and for 2 bits pcu,

SAST codes perform the same as the linear dispersion codes atlow SNR, but outperform

them at high SNR. SAST codes improve over the linear dispersion codes because the design

criterion of the linear dispersion codes aims at maximizingthe mutual information, which
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Figure 2.12: Performances of SAST and ST-LCP codes with 4-QAM, M = 3, 5, N = 1.

may not extract full diversity. Therefore, the performanceof the linear dispersion codes is

worse than that of SAST codes at high SNR. Note that the decoding complexity of linear

dispersion codes is always higher than that of SAST codes.

We have investigated the error-rate performance of SAST codes. The results show

that SAST codes outperform LTAST, ST-LCP/DAST, QSTBC, and linear dispersion codes.

Since the performance of OSTBC is inferior to these codes [33,49, 51, 61], SAST codes

also outperform OSTBC codes.

Since suboptimal detectors may sometimes be employed to reduce the detection com-

plexity, we examine the performance of LTAST and SAST codes with 16-QAM, using the

V-BLAST optimal nulling and cancellation receiver or the optimal zero-forcing decision

feedback equalization (ZF-DFE) receiver [94]. Fig. 2.14 depicts the performance of the

two codes with the ZF-DFE receiver. The BER of SAST codes withM = 2 (Alamouti

code) andM = 4, 8 using sphere decoder, and uncoded BER over single Rayleigh fading

channel are also presented for comparison. By comparing the slopes of BER curves, we

conclude that with the V-BLAST ZF-DFE receiver, SAST codes achieve a diversity order

of 2, while the diversity order of LTAST codes is only 1; moreover, SAST codes have

smaller BER than that of LTAST codes. With the ZF-DFE receiver, LTAST codes produce
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Figure 2.13: Performances of SAST, ST-LCP and linear dispersion codes with 4- and 64-
QAM, (3, 1) system.

a marginal gain compared with uncoded data transmitted oversingle Rayleigh fading chan-

nel (M = N = 1) case. On the other hand, SAST codes withM = 4 and 8 gain about

1-dB and 2.9-dB, respectively, over the Alamouti code. With the ZF-DFE receiver, SAST

codes do not achieve full diversity, but still deliver a notable coding gain.

The diversity orders of SAST codes and LTAST codes using ZF-DFE can be intuitively

explained by checking back (2.54). With one receive antenna, the elements on the main di-

agonal of the equivalent channel of SAST codes are the sum of two squares of two channel

amplitudes, while the elements on the main diagonal of the equivalent channel of LTAST

codes are a square of a channel gain. Thus using the ZF decoder, the diversity orders of

SAST codes and LTAST codes are two and one, respectively. TheDFE helps to improve

the error rate (coding gain) but not diversity order.

From the simulation results, we conclude that SAST codes always perform better than

LTAST codes (see also [100]), even thought this two special cases of OEST codes have

the same coding gains. The reason is that the distance spectrum of SAST codes is im-

proved compared with LTAST codes. This fact can be verified bycounting the number of

codewords with minimal coding gain.
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Figure 2.14: Performances of SAST and LTAST codes using V-BLAST optimal nulling
and cancellation (or ZF-DFE for short) receiver for 16-QAM,M = 4, 8, N = 1.

2.4.3 Decoding Complexity

Since SAST codes offer better performance than several STBC, it is of interest to inves-

tigate their arithmetic complexity. We thus compare the complexity of SAST codes and

LTAST codes, which have the same rate-one, for 8 transmit antennas. The two codes are

decoded by a sphere decoder with Fincke-Pohst enumerating method [116] [108], written

in Matlab Release 13. Note that the decoding of SAST codes is todecode two data vectors,

each with 4 complex symbols; while with LTAST code, we need todecode only one data

vector of 8 complex symbols. Therefore, we have to verify whether the total number of

arithmetic operations to decode two length-4 data vectors of SAST codes is less than that

of the decoding of one length-8 data vector of LTAST codes.

We differentiate "hard" operations, including multiplication, division and square, and

simple addition. The results for a (8, 1) system with 16-QAM are plotted in Fig. 2.15.

Clearly, the decoding complexity of LTAST codes higher than SAST codes 27 times at 14

dB (low SNR), 16.3 times at 20 dB (medium SNR) and 3.1 times at 30 dB (high SNR).

Thus much arithmetic computation savings can be obtained byusing 2-group SAST codes

compared with 1-group LTAST codes. This is a good evidence tohighlight the efficiency

of multi-group STBC in complexity reduction.
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Figure 2.15: Comparison the arithmetic complexity of SAST codes and LTAST codes for
(8, 1) system using 16-QAM.

2.5 Summary

We have derived the necessary and sufficient conditions for multi-group decodable STBC.

Based on these conditions, we have presented a new general class of space-time codes

called OEST codes. Their full-diversity and optimal codinggain are achieved by rotat-

ing the input constellations. The blocks of transmitted symbols in the OEST codewords

can be maximum-likelihood decoded separately at the receiver without any interference

from other blocks. This is a highly desirable decoding-complexity-reduction property for

practical systems. The OEST framework sheds new light on thepreviously known STBC,

including OSTBC, QSTBC, and rate-one LTAST codes. Furthermore,a new class of rate-

one STBC, namely semi-orthogonal space-time codes, is identified. For a given number

of transmit antennas, OEST code variants can be derived withflexible tradoffs among rate,

performance, and decoding complexity.

In the next two chapters, we will develop two STBC from OEST, which are the exten-

sions of QSTBC and SAST codes, with even lower decoding complexity. More sophisti-

cated encoding will be designed to utilize the lower decoding complexity compared with

the original codes.
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Chapter 3

Minimum Decoding Complexity
Space-Time Block Codes

In Section 2.3.1 of the previous chapter, we have shown that ABBA codes, proposed by

Tirkkonen, Boariu, and Hottinen [47], are a special case of Construction II of OEST codes

(see (2.23)). Even though the two constructions of OEST codes are permutation equiva-

lent, the equivalent channels of the two constructions are different (see (2.54) and (2.57)).

We have derived the equivalent channel of Construction I of OEST codes, but omitted the

details of Construction II. In this chapter, we derive the equivalent channel of ABBA codes,

which is a special case of OEST Construction II. Many further important results can be de-

veloped based on the equivalent channels of ABBA codes. For example, the original ABBA

codes allow pair-wise complex-symbol decoding complexity. However, ABBA codes also

allow single-complex symbol decoding, the feature which was known to associate with

only OSTBC.

3.1 Existing Results and Open Issues of ABBA Codes

ABBA codes [47], a class of QSTBC, have been proposed to increasethe code rate of

OSTBC [40, 44]. Since ABBA QSTBC have low complexity pair-wise complex-symbol

decoding and perform better than OSTBC [61], they have been widely studied for various

applications such as coherent and non-coherent MIMO communications, beamforming,

precoding, and others (see, e.g., [19,117–119]).

Recently, Yuenet al. [120] have shown that the ABBA codes also enable pair-wise

real-symbol decoding, which is theminimum decoding complexity(MDC) achievable by
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non-orthogonal STBC; they call such codes MDC codes. Thus, while their code rate is

higher than that of OSTBC, their decoding complexity is equal to single complex symbol

decoding. In the following, we reserve the term "ABBA" for the QSTBC proposed by

Tirkkonenet al. [47] with pair-wise complex-symbol decoding [61] and the term "MDC-

ABBA" for the ABBA codes with pair-wise real-symbol decoding [120].

Single complex symbol decoding for ABBA codes is possible using phase feedback

schemes. Specifically, these schemes are tailored for ABBA codes with 4 [121, 122], 6

[123], and 8 antennas [124]. However, these methods may be unnecessary since the ABBA

codes are already single-symbol decodable.

To design MDC-ABBA codes with full-diversity, conventional quadrature amplitude

modulation (QAM) or phase-shift keying (PSK) signals need to be transformed [120,125].

Yuenet al. [120] and Wanget al. [125] employ the coding gain metric [16] to derive the

optimal signal transformations1 for QAM and 8PSK. Their analytical results are reported

for QAM only. However, maximizing the coding gain is, in fact, to minimize the worst-case

codeword PEP; this provides no guarantee for minimizing thesymbol error rate (SER). In

general, finding the optimal signal transformations for QAM, PSK, and other constellation

with good minimum Euclidean distance, such as lattice of equilateral triangular (TRI) (also

called hexagonal (HEX)) or amplitude PSK (APSK) [104, 126] in terms of minimal SER,

is still an open problem.

Furthermore, despite extensive research, a general decoding method for ABBA codes

for arbitrary numbers of transmit and receive antennas is not available. One reason for this

gap is that the equivalent channel for ABBA codes is not known in the most general case.

Several decoders for ABBA codes have been proposed, but only for some specific cases,

for example with 4 or 6 antennas in [127–129].

In this chapter, we will systematically solve the fundemental open problems of ABBA

QSTBC. They include the general decoder and optimal signal transformations in the mini-

mal SER sense. We first derive general decoders of ABBA codes and apply these decoders

for the signal transformations proposed by Yuenet al. [120] and Wanget al. [125]. The

exact symbol pair-wise error probability (PEP) and union bound on the SER are derived.

1By using the term "transformation", we imply that the transformation matrix is not necessarily orthogo-
nal. On the other hand, the term "rotation" is used only whenever the transformation matrix is orthogonal.

55



The union bound can be used to precisely predict the performance of MDC-ABBA codes

and, moreover, to optimize the signal transformations for any constellation. Furthermore,

for the constellations with inphase-quadrature power-imbalance, such as rectangular QAM

(QAM-R), we propose a new method combining signal rotation and power allocation. Our

new signal transformations for QAM-R perform better and have lower encoding/decoding

complexities than that proposed in [125]. Since antenna selection is an effective method

to improve the performance of space-time codes, as well as tosimplify the structure of

transmitter/receiver, we investigate the performance of MDC-ABBA codes with transmit

and receive antenna selection. We show that MDC-ABBA codes achieve full diversity in

the systems with antenna selection and with limited feedback [130].

3.2 Decoding of ABBA QSTBC Codes

We briefly review the construction of ABBA codes. LetAk andBk (k = 1, 2, · · · , K)

be thet × m basis matrices of an OSTBCOm. Two blocks of data, each ofK symbols,

are mapped into two code matricesA andB of Om asA =
∑K

k=1 (skAk + s∗kBk),B =
∑K

k=1

(
sk+KAk + s∗k+KBk

)
.

The ABBA code matrices forM = 2m transmit antennas are constructed fromOm as

QM =

[
A B
B A

]
, or

QM =
K∑

k=1

[
sk sk+K

sk+K sk

]

︸ ︷︷ ︸
Ck

⊗ Ak +
K∑

k=1

[
s∗k s∗k+K

s∗k+K s∗k

]

︸ ︷︷ ︸
C†

k

⊗Bk

=
K∑

k=1

(Ck ⊗ Ak + C†
k ⊗ Bk). (3.1)

The above expression have been shown in (2.28). Letπ =

[
0 1
1 0

]
, thenπ = π−1, π2 =

I2, and

Ck = (skπ
0 + sk+Kπ). (3.2)

For example, the code matrix of the MDC-ABBA code for 4 transmitantennas built

56



from the Alamouti code [26] is given below:

Q4 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
s3 s4 s1 s2

−s∗4 s∗3 −s∗2 s∗1


 .

We next derive the equivalent channel of ABBA and MDC-ABBA codes, which is

similar to the steps of deriving the equivalent channel of Construction I of OEST codes. The

number of receive antennaN = 1 is considered first and then the results are generalized

for multiple receive antennas.

Let h = [h1 h2 · · · hM ]T denote the channel vector withhi ∼ CN (0, 1). Let Q ∈ QM

be a transmitted code matrix, the receive signal vector isy =
√

ρκ
2

Qh + w, wherew is

noise vector with independently, identically distributed(i.i.d.) entries∼ CN (0, 1); ρ is the

average receive signal-to-noise ratio (SNR).

From (3.1) and (3.2), the received signal vector can be expressed as

y =

√
ρκ

2

K∑

k=1

2∑

i=1

[(
πi−1 ⊗ Ak

)
hsk+(i−1)K +

(
π1−i ⊗ Bk

)
hs∗k+(i−1)K

]
+ w . (3.3)

Let eki = (πi−1 ⊗ Ak) h, Ek =
[
ek1 ek2

]
,fki = (π1−i ⊗ Bk) h, Fk =

[
f k1 fk2

]
,

andsk =
[
sk sk+K

]T
, (3.3) can be rewritten as

y =

√
ρκ

2

[
E1 F1 E2 F2 · · · EK FK

]
×
[
sT

1 s
†
1 sT

2 s
†
2 · · · sT

K s
†
K

]T
+ w .

(3.4)

We now use a trick in [111] to decode OSTBC for our next derivation. The following

equation is equivalent to (3.4):
[
y

y∗

]
=

√
ρκ

2

[
E1 F1 · · · EK FK

F ∗
1 E∗

1 · · · F ∗
K E∗

K

]

︸ ︷︷ ︸
W

×
[
sT

1 s
†
1 · · · sT

K s
†
K

]T
+

[
w

w∗

]
. (3.5)

We can show that the columns of matrixW are orthogonal. To do this, we need to show

that the following equations hold:

[
Ek

F ∗
k

]† [
El

F ∗
l

]
= E†

kEl + F T
k F ∗

l = 02 for k 6= l, (3.6a)

[
Ek

F ∗
k

]† [
Fl

E∗
l

]
= E†

kFl + F T
k E∗

l = 02 ∀k, l. (3.6b)
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We just provide the proof for (3.6a); (3.6b) can be shown similarly. Let Zkl = (E†
kEl +

F T
k F ∗

l ), its element can be calculated as

[Zkl]ij = e
†
kielj + fT

kif
∗
lj

= h†[(πj−i) ⊗ (A†
kAl)]h + hT[(πi−j) ⊗ (BT

kB∗
l )]h

∗

= h†[(πj−i) ⊗ (A†
kAl + B†

kBl)]h

=

{
0, k 6= l;
h†(πj−i ⊗ Im)h, k = l.

(3.7)

Thus,Zkl = 02 if k 6= l. Since fork = l, the matricesZkk = Z ∀k, where the entries ofZ

arezij = h†(πj−i ⊗ Im)h. In particular,z1,1 = z2,2 = ‖h‖2
F, z1,2 = z2,1 =

∑m
i=1(hih

∗
i+m +

h∗
i hi+m). Therefore,Z is also a circulant real matrix and can be represented as

Z =
m∑

i=1

H†
i Hi (3.8)

whereHi =

[
hi hi+m

hi+m hi

]
. To separate the transmitted vectorsk(k = 1, 2, . . . K) at the

receiver, we can multiply the two sides of (3.5) with
[
E†

k F T
k

]
to get

E†
ky + F T

k y∗ =

√
ρκ

2
Zsk + (E†

kw + F T
k w∗) . (3.9)

Thus,
[
E†

k F T
k

]
plays the role of the spatial signature of the data vectorsk.

We now generalize the result of (3.9) for the case of multiplereceive antennas,N ≥ 1.

The subscriptn (n = 1, 2, . . . , N) is added to the channel gain vectorh. The channel ma-

trix H is therefore written asH =
[
h1 h2 · · · hN

]
, wherehn =

[
h1n h2n · · · hMn

]T
.

We can show that the matrixZ in (3.8) becomes

Z =
N∑

j=1

m∑

i=1

H†
i,jHi,j (3.10)

whereHi,j =

[
hi,j hi+m,j

hi+m,j hi,j

]
. Therefore, (3.9) is generalized for multiple receive anten-

nas as follows:

N∑

n=1

(E†
knyn + F T

kny
∗
n)

︸ ︷︷ ︸
ŷk

=

√
ρκ

2
Zsk +

N∑

n=1

(E†
knwn + F T

knw
∗
n)

︸ ︷︷ ︸
ŵk

(3.11)
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whereyn is the received signal vector of thenth antenna,

Ekn =
[
ek1,n ek2,n

]
, for k = 1, 2, . . . , K, (3.12a)

eki,n =
(
Ak ⊗ πi−1

)
hn, for i = 1, 2, (3.12b)

Fkn =
[
fk1,n f k2,n

]
, (3.12c)

fki,n =
(
Bk ⊗ π1−i

)
hn. (3.12d)

The noise vector̂wk is colored with covariance matrixV = E[ŵkŵ
†
k] = Z 6= IM . Let

Ĥ = Z
1

2 . This color noise can be whitened by a whitening matrixĤ−1 = Z− 1

2 .

SinceZ is real, we can rewrite (3.11) by decoupling the real and imaginary parts of the

two sides of (3.11) as
[
ℜ(ŷk)
ℑ(ŷk)

]

︸ ︷︷ ︸
ȳk

=

√
ρκ

2

[
Z 02

02 Z

]

︸ ︷︷ ︸eH [
ℜ(sk)
ℑ(sk)

]
+

[
ℜ(ŵk)
ℑ(ŵk)

]

︸ ︷︷ ︸
w̄k

. (3.13)

Thus, the real and imaginary parts of the transmitted vectorsk can be separately de-

tected. Including the noise whitening matrix̂H−1, the general equivalent transmit/receive

signal relation of MDC-ABBA codes are:

Ĥ−1ℜ(ŷk) =

√
ρκ

2
Ĥℜ(sk) + Ĥ−1ℜ(ŵk), (3.14a)

Ĥ−1ℑ(ŷk) =

√
ρκ

2
Ĥℑ(sk) + Ĥ−1ℑ(ŵk). (3.14b)

In (3.14),Ĥ is theequivalent channelof MDC-ABBA codes. We have some important

properties ofĤ as follows.

Lemma 3.1. The equivalent channel matrix of ABBA codes and its inversion are real and

circulant.

Proof. SinceZ is a 2 × 2 normal circulant matrix, its two eigenvaluesλ1 and λ2 are

non-negative;Z can be diagonalized by a2 × 2 (real) Fourier transform matrixF2 =

1√
2

[
1 1
1 −1

]
asZ = F †

2 diag(λ1, λ2)F2. If Ĥ2 = Z, thenĤ = F †
2 diag(

√
λ1,

√
λ2)F2.

Thus,Ĥ is real. One can also verify that̂H is a circulant matrix. The matrix̂H−1 can be

similarly shown to be a real and circulant matrix. The proof is completed.
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Note that, in general, the equivalent channel of Construction II of OEST codes is not

circulant. However, with the special case of ABBA QSTBC, the equivalent channel is also

circulant.

The detection of vectorsℜ(sk) and ℑ(sk) in (3.14) involves only 2 real symbols.

Therefore, maximum likelihood detection of MDC-ABBA codes becomes single complex-

symbol decoding, a feature previously known to be possessedby OSTBC only.

In order to achieve full-diversity, optimal signal transformations are required before

transmission and these are derived for MDC-ABBA codes. We firstanalyze the encoding

and decoding of existing signal transformations proposed by (1) Yuen, Guan, and Tjhung

(YGT) [120] and (2) Wang, Wang, and Xia (WWX) [125]. Note that the coding gain metric

[16] is used to optimize signal transformation in [120, 125], which may not be optimal in

terms of minimal SER.

3.3 Analyzing the Existing Signal Transformations

Let the input symbols bedk = ak + j bk, dk+K = ak+K + j bk+K , (k = 1, 2, . . . , K); they

are drawn from a unit average energy constellationS, for example QAM, PSK. Letsk =

pk + j qk, sk+K = pk+K + j qk+K be the transmitted symbols. We can jointly transform the

real input symbolsak, bk, ak+K andbk+K by a real transformationR to generate transmitted

symbolspk, qk, pk+K , andqk+K as

[
ℜ(sk)

T ℑ(sk)
T
]T

=
[
pk pk+K qk qk+K

]T

= R
[
ak bk ak+K bk+K

]T
︸ ︷︷ ︸

ĉk

. (3.15)

1. Signal rotation proposed by Yuen et al.[120]:

In [120], the transmitted symbols are generated as follows:

ℜ(sk) =
[
pk pk+K

]T
= R

[
ak bk

]T
, (3.16a)

ℑ(sk) =
[
qk qk+K

]T
= R

[
ak+K bk+K

]T
(3.16b)

whereR is a unitary matrix,

R =

[
cos(α) sin(α)
sin(α) − cos(α)

]
. (3.17)

60



and optimal angle, in terms of coding gain [16], for QAM isα = 1
2
arctan(1

2
) = 13.2825◦.

Thus, the signal rotationR is of the form

R =

[
R 02

02 R

]
. (3.18)

2. Signal transformation proposed by Wang et al.[125]:

Wang et al. [125] present a general format of signal transformations and show that

there are three cases that can be used to achieve pair-wise real-symbol decoding. However,

these three cases are permutation-equivalent. We thus consider only the first case with the

following signal transformation:

[
pk qk pk+K qk+K

]T
= RW ĉk (3.19)

where

RW =

[
U1 U2

U1R1 U2R2

]
, (3.20)

andU1, U2, R1, R2 are2 × 2 real matrices,R2
1 = I2, R

2
2 = I2.

However, the symbol mapping in [125] is slightly different from (3.15): thepk+K and

qk are permuted compared with the arrangement in (3.15) such that

[
ℜ(sk)

T ℑ(sk)
T
]T

=
[
pk pk+K qk qk+K

]T

= π
[
pk qk pk+K qk+K

]T
= πRW︸ ︷︷ ︸bRW

ĉk (3.21)

where

π =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (3.22)

SubstitutingR̂W into (3.13), we have

ȳk =

√
ρκ

2
H̃R̂W ĉk + w̄k. (3.23)

The matrixH̃R̂W in (3.23) is not block-diagonal; thus, pair-wise real-symbol decoding

seems to be impossible. However, by multiplying to sides of (3.23) with R̂T
W , we again

obtain another block diagonal matrix̂RT
W H̃R̂W .
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We first can show that the productπTH̃π =

[
z1 I2 z2 I2

z2 I2 z1 I2

]
. Then,

H̄ = R̂T
W H̃R̂W = RT

W πTH̃πRW =

[
X1 02

02 X2

]
(3.24)

where

X1 = z1U
T
1 U1 + z2R

T
1U

T
1 U1 + z2U

T
1 U1R1 + z1R

T
1U

T
1 U1R1,

X2 = z1U
T
2 U2 + z2R

T
2U

T
2 U2 + z2U

T
2 U2R2 + z1R

T
2U

T
2 U2R2.

where,z1 andz2 are the elements ofZ such thatZ =

[
z1 z2

z2 z1

]
.

Now, multiplying both sides of (3.23), one gets:

R̂W ȳk =

√
ρκ

2

[
X1 02

02 X2

]
ck + R̂W w̄k. (3.25)

The noise vector̂RW w̄k can be shown to have covariance matrixH̄. Thus, we can use

the noise whitening matrix̄H− 1

2 . Eq. (3.25) becomes
[
X

− 1

2

1 02

02 X
− 1

2

2

]
R̂W ȳk =

√
ρκ

2

[
X

1

2

1 02

02 X
1

2

2

]
ck + H̄− 1

2 w̄k. (3.26)

Let R̂W ȳk = [y̌T
k,1 y̌T

k,2]
T, wherey̌T

k,1 and y̌T
k,2 are 2 × 1 real vectors,H̄− 1

2 w̄k =

[w̌T
k,1 w̌T

k,2]
T, wherew̌T

k,1 andw̌T
k,2 are2 × 1 vectors with i.i.d. real Gaussian elements,

(3.26) is equivalent to

X
− 1

2

1 y̌k,1 =

√
ρκ

2
X

1

2

1 ck + w̌k,1 , (3.27a)

X
− 1

2

2 y̌k,2 =

√
ρκ

2
X

1

2

2 ck+K + w̌k,2. (3.27b)

The maximum likelihood detection equations for MDC-ABBA codes with signal transfor-

mation from [125] are

ĉk = arg min
ck

(
ρκcT

kX1ck − 2

√
ρκ

2
cT

ky̌k,1)

)
, (3.28a)

ĉk+K = arg min
ck+K

(
ρκcT

k+KX2ck+K − 2

√
ρκ

2
cT

k+Ky̌k,2

)
. (3.28b)

Thus, the decoding of MDC-ABBA codes with WWX-transformation reduces to pair-wise

real-symbol decoding.

We have some comparisons on the signal transformations by Yuenet al.[120] and Wang

et al. [125] as follows.

62



• Encoding complexity: The4× 4 transformationRW of Wanget al. [125] has higher

encoding complexity compared with the2 × 2 rotationR of Yuenet al. [120].

• Decoding complexity: However, the multiplication of̂RW andȳk in (3.25) slightly

increase the complexity, compare with the decoding of MDC-ABBA codes with

YGT-rotation.

• Performance: For square QAM (QAM-S), the transformation in[125, Theorem 2]

provides no SNR gain compared with the rotation proposed by Yuenet al.[120]. The

transformation in [125, Theorem 3] performs better with rectangular QAM (QAM-R)

at the cost of higher encoding/decoding complexities.

3.4 Optimal Signal Transformations

We will only consider the signal rotation of Yuenet al. [120] for deriving the exact sym-

bol PEP because their rotation is mathematically convenient. More important, we will

show that by combining power allocation and signal rotationfor inphase-quadrature power-

unbalanced constellations like QAM-R, we can achieve not only better performance but

also less complexity than by using the transformation in [125, Theorem 3].

3.4.1 Exact Symbol Pair-Wise Error Probability

From (3.15) and (3.16), we can rewrite (3.14) as

Ĥ−1ℜ(ŷk) =

√
ρκ

2
ĤR

[
ak bk

]T
+ ℜ(ŵk), (3.29a)

Ĥ−1ℑ(ŷk) =

√
ρκ

2
ĤR

[
ak+K bk+K

]T
+ ℑ(ŵk). (3.29b)

SinceĤ−1ℜ(ŵk) andĤ−1ℑ(ŵk) are real random Gaussian vectors with i.i.d. entries

(zero-mean and varianceN0 = 1/2), the information vectors
[
ak bk

]T
and

[
ak+K bk+K

]T

(k = 1, 2, . . . , K) experience the same channels; they are subject to the same error proba-

bility. We thus can consider the error probability of one of the two vectors only; the sub-

script of symbols can be omitted for brevity. Furthermore, the pair-wise error probability

of each vector is also the symbol PEP.
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Consider two distinct symbolsd = a + j b and d̂ = â + j b̂. Let δ1 = a − â, δ2 =

b − b̂, ∆ = [δ1 δ2]
T, the conditional symbol PEP ofd and d̂ can be expressed by the

GaussianQ-function as [32]

P (d → d̂|Ĥ) = Q



√

ρκ|ĤR∆|2
4N0


 . (3.30)

We have shown that̂H is a2 × 2 real circulant matrix in Lemma 3.1. Hence,Ĥ†Ĥ =

ĤĤ = Ĥ2 = Z, whereZ is given in (3.10). We can use eigenvalue decomposition

for Hi,j so thatHi,j = F †
2Λi,jF2, whereΛi,j = diag(λi,j,1, λi,j,2) and [λi,j,1 λi,j,2]

T =

F2[hi,j hi+M/2,j]
T. Sincehi,j andhi+M/2,j are i.i.d.∼ CN (0, 1), so are theλi,j,1 andλi,j,2.

Thus,

Z =
N∑

j=1

M/2∑

i=1

F2 diag(|λi,j,1|2, |λi,j,2|2)F2. (3.31)

Let x , |ĤR∆|2 = (R∆)†Ĥ†Ĥ(R∆), one has

x =
N∑

j=1

M/2∑

i=1

[
(F2R∆)† diag(|λi,j,1|2, |λi,j,2|2)(F2R∆)

]

=
N∑

j=1

M/2∑

i=1

[
β2

1 |λi,j,1|2 + β2
2 |λi,j,2|2

]
(3.32)

where[β1 β2]
T = F2R∆, andβ1 andβ2 are real.

We can apply the Craig’s formula [131] to derive the conditional symbol PEP in (3.30).

P (d → d̂|Ĥ) = Q

(√
ρκx

2

)
=

1

π

∫ π/2

0

exp

( −ρκx

4 sin2 θ

)
dθ

=
1

π

∫ π/2

0

N∏

j=1

M/2∏

i=1

exp

(
−ρκ (β2

1 |λi,j,1|2 + β2
2 |λi,j,2|2)

4 sin2 θ

)
dθ. (3.33)

Sinceλi,j,1 andλi,j,2 are i.i.d∼ CN (0, 1), we can apply a method based on the mo-

ment generation function (MGF) [132,133] to obtain the unconditional symbol PEP in the

following:

P (d → d̂) =
1

π

∫ π/2

0

[(
1 +

ρκβ2
1

4 sin2 θ

)(
1 +

ρκβ2
2

4 sin2 θ

)]−MN/2

︸ ︷︷ ︸
G(x)

dθ. (3.34)
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We can further derive another closed form of symbol PEP to avoid integral operation.

Let x = sin2 θ, ǫ1 = 4
ρκβ2

1

, ǫ2 = 4
ρκβ2

2

, andL̂ = MN/2. Using the partial fraction for the

equation inside the integral (3.34), one has

G(x) =
1

(1 + x/ǫ1)
bL(1 + x/ǫ2)

bL = (ǫ1ǫ2)
bLbL−1∑

i=0

ui

(x + ǫ1)m−i
+

bL−1∑

k=0

vk

(x + ǫ2)m−k




(3.35)

where

ui =
(−1)iL̂(L̂ + 1) . . . (L̂ + i − 1)

i!(ǫ2 − ǫ1)
bL+i

, (3.36a)

vk =
(−1)kL̂(L̂ + 1) . . . (L̂ + k − 1)

k!(ǫ1 − ǫ2)
bL+k

. (3.36b)

SubstitutingG(x), ui, vk into (3.34) and after algebraic manipulations, we get

P (d → d̂)

= (ǫ1ǫ2)
bLbL−1∑

i=0

ui

ǫ
bL−i
1

1

π

∫ π/2

0

dθ

(1 + 1
ǫ1

sin2 θ)bL−i
+

bL−1∑

i=0

vi

ǫ
bL−i
2

1

π

∫ π/2

0

dθ

(1 + 1
ǫ2

sin2 θ)bL−i


 .

(3.37)

Since1
π

∫ π/2

0
dθ

(1+ 1

ǫ1
sin2 θ)bL−i

(and also1
π

∫ π/2

0
dθ

(1+ 1

ǫ2
sin2 θ)bL−i

) is the symbol PEP of a maximal

ratio combining (MRC) system with(L̂ − i) receive antennas [32], we obtain

M1,i =:
1

π

∫ π/2

0

dθ

(1 + 1
ǫ1

sin2 θ)bL−i
=

(
1 − η1

2

)bL−i bL−i−1∑

l=0

(
L̂ − i − 1 + l

l

)(
1 + η1

2

)l

,

(3.38a)

M2,i =:
1

π

∫ π/2

0

dθ

(1 + 1
ǫ2

sin2 θ)bL−i
=

(
1 − η2

2

)bL−i bL−i−1∑

l=0

(
L̂ − i − 1 + l

l

)(
1 + η2

2

)l

.

(3.38b)

whereη1 =
√

1/(1 + ǫ1), η2 =
√

1/(1 + ǫ2).

The symbol PEP of MDC-ABBA codes can be found below.

P (d → d̂) =

bL−1∑

i=0

(
uiǫ

i
1ǫ

bL
2M1,i + viǫ

bL
1 ǫi

2M2,i

)
. (3.39)
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Figure 3.1: Union bound on SER compared with simulated SER ofQAM signals, (4, 1)
system.

3.4.2 Optimal Signal Rotations Based on Tight SER Union Bound

Assume thatdi anddj, i, j = 1, . . . , Ω, are signals drawn from a constellationS of size

Ω. Using the symbol PEP expression (3.34), we compute the union bound on SER of

MDC-ABBA codes with constellationS as

Pu(S) =
2

Ω

Ω−1∑

i=1

Ω∑

j=i+1

P (di → dj). (3.40)

The SER union bound of square QAM (QAM-S) with signal rotation in (3.17) and

α = 13.2825◦ are plotted in Fig. 3.1. The geometrical shape of 8QAM-S (andalso other

8-ary constellations) can be found in Fig. 3.2. The bit mapping is designed such that the

average number of different bits of neighbor symbols is minimized.

The union bound is only about 0.1 dB apart from the simulated SER when SER<

10−2. Therefore, the SER union bound can be used to predict the SERperformance of

MDC-ABBA codes accurately. Furthermore, this bound can be used to optimize the signal

rotationR.

We run a computer search to find the optimal rotation in terms of minimizing the SER

union bound for popular constellations. During the search,the incremental step size of

rotation angle is0.001◦. The optimal angle is searched in the range[0◦, 45◦], because ifα
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Figure 3.2: Geometrical shapes of 8-ary constellations.

is an optimal angle, the following angles are also optimal−α, 90◦±α, 180◦±α, 270◦±α.

The SNR is chosen such that the SER of corresponding optimal rotation angle is about

10−8. At such low SER, the optimal rotation angles also yield full-diversity MDC-ABBA

codes. The results are summarized for the optimal angle in the range[0◦, 45◦] in Table 3.1.

The SER union bounds of several 4-, 8- and 16-ary constellations are illustrated in

Fig. 3.3. Compared with QAM, TRI performs quite well when they are used for fading

channels [104, 126], and for OSTBC and ABBA codes [61, 105]. Theconstellations with

larger minimum Euclidean distance tend to perform better. However, this conclusion may

not be valid for MDC-ABBA codes. For example, 8TRI-b has the bestminimum Euclidean

distance among 8-ary constellations, but its performance is worse than 8QAM.
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Table 3.1: Optimal Rotation Angles of Popular Constellations

Signal Optimalα Signal Optimalα

4QAM 14.382◦ 8QAM-S 12.268◦

4TRI 31.155◦ 8QAM-R 13.166◦

8PSK 5.915◦, 39.085◦ 8QAM-SR 31.964◦

8APSK 33.472◦ 16PSK 24.883◦, 42.617◦

8TRI-a 30.284◦ 16TRI 0◦

8TRI-b 0◦ 16QAM-S 13.195◦

We also compare the frame error rate2 (FER) of MDC-ABBA codes with the new opti-

mal signal rotation and existing transformations for square-rotated 8QAM (8QAM-SR) in

Fig. 3.4. Our new optimal signal rotation gains remarkable SNR at high SNR compared

with the signal rotation in [120] and performs slightly better than the signal transformation

in [125], however, with lower encoding/decoding complexities.

Note that in Fig. 3.4, while ABBA codes (with pair-wise complex-symbol decoding)

have a better FER compared with MDC-ABBA codes, the BER of the former is inferior to

that of the latter. Gray-bit mapping may not be optimal for ABBA codes with 8QAM-SR.

The new optimal rotation angles for QAM (square or rectangular) constellations are

very close to the proposed angleα = 13.2825◦ by minimizing codeword PEP [120].

Therefore, the SNR gains in these cases are negligible compared to the results of [120]

and [125, Theorem 2]. We will next present a new approach, which is applicable to find the

optimal rotation angle for QAM-R so that the MDC-ABBA codes perform better but have

lower encoding/decoding complexity than that proposed in [125, Theorem 3].

3.5 Optimal Signal Rotations with Power Allocations

For QAM-R, for example 8QAM-R in Fig. 3.3, the average powers of the real and imag-

inary parts of the signal points are different. We may changethe power allocation of the

real and imaginary parts of QAM-R signals to a get better overall SER.

2Since a frame or vector of symbol data is mapped into a codeword, the term "frame error rate" bears the
meaning of "codeword error rate".
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Figure 3.3: SER union bound of 4-, 8-, 16-ary constellations, (4, 1) system.
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Figure 3.4: Performances of ABBA codes and MDC-ABBA codes using8QAM-SR, (4, 1)
system.

In particular, the real and imaginary parts of QAM-R signalsare scaled by constants

µ1 andµ2, respectively, before they are rotated. For example, letS be a constellation with

signal setS = {d | d = a + j b, a, b ∈ R}, the new constellation with new power allocation

is S̄ = {d̄ | d̄ = µ1a + j µ2b; a, b ∈ R}. The average energy of the constellation is kept
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Table 3.2: Optimal Power Allocation and Signal Rotation for QAM-R

Constellation µ1 µ2 Optimalα

8QAM-R 0.9055 1.3784 0◦

32QAM-R 0.8972 1.3487 1.954◦
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Figure 3.5: Performance of MDC-ABBA codes with new optimal power allocation and
existing signal transformations for QAM-R, (4, 1) system.

unchanged. Scalarsµ1 andµ2 are called power loading coefficients. For example, the

8QAM-R with signal points{(±3 ± j,±1 ± j)/
√

48} has a constraint equation for power

loading coefficientsµ1 andµ2 as5µ2
1 + µ2

2 = 6. We ran an exhaustive computer search

to find the best power loading coefficients and rotation anglefor 8- and 32QAM-R. The

results are given in Table 3.2.

The FER of MDC-ABBA codes with our new power loading scheme for QAM-R is

compared with the existing signal transformations in Fig. 3.5. Our proposed scheme per-

forms better compared with the signal rotation method of Yuen-Guan-Tjhung and also per-

forms slightly better than the signal transformation method of Wang-Wang-Xia with lower

encoding/decoding complexities.

We can apply the power allocation method for other constellations, such as 8TRI-b and

16TRI. With such power scaling, the square or equilateral triangle of lattices are actually

70



distorted, which reduces the minimum Euclidean distance ofthe constellations. Therefore,

we again confirm that, in contrast with OSTBC, maximization of the minimum Euclidean

distance is not essential for MDC-ABBA codes.

3.6 MDC-ABBA Codes with Antenna Selection

When a low-rate feedback channel exist between receiver and transmitter, several feedback

schemes have been proposed for OSTBC. Among these schemes, transmit/receive antenna

selection is simple, yet provides significant SNR gain compared with the open-loop OS-

TBC [130,134–136]. We will therefore investigate the performance of MDC-ABBA codes

with transmit/receive antenna selection and compare MDC-ABBA codes with OSTBC with

antenna selection. The transmit (or receive) antennas are selected so that the Frobenius

norm of the channel is maximized.

From (3.32), let̄β1 = min(|β1|, |β2|), β̄2 = max(|β1|, |β2|), we have

x ≥
N∑

j=1

M/2∑

i=1

[
β̄2

1

(
|λi,j,1|2 + |λi,j,2|2

)]
,

x ≤
N∑

j=1

M/2∑

i=1

[
β̄2

2

(
|λi,j,1|2 + |λi,j,2|2

)]
.

Since[λi,j,1 λi,j,2]
T = F2[hi,j hi+M/2,j]

T, we get

|λi,j,1|2 + |λi,j,2|2 = |hi,j|2 + |hi+M/2,j|2. (3.41)

Therefore,

β̄2
1‖H ‖2 ≤ x ≤ β̄2

2‖H‖2. (3.42)

Actually, Ĥ is dependent onH. We thus rewrite the upper and lower bounds of condi-

tional symbol PEP as

Q

(√
ρκβ̄2

2‖H ‖2
F

2

)
≤ P (d → d̂|H) ≤ Q

(√
ρκβ̄2

1‖H ‖2
F

2

)
. (3.43)

If both β̄1 and β̄2 are nonzero for all distinct pairs of symbols, the lower and upper

bounds of symbol PEP of MDC-QSTBC in (3.43) are simply a symbol PEP of some OS-

TBC transmitted over the same channelH with different SNR scales. Therefore, as long
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asβ̄1 andβ̄2 are nonzero, the symbol PEP of MDC-ABBA codes is bounded by two full-

diversity symbol PEP curves. Hence, MDC-ABBA codes must achieve full diversity. From

(3.34), if β̄1 and β̄2 are nonzero for all distinct pairs of symbols, the MDC-ABBA codes

are full diversity; this condition also holds for the signaltransformations using the rank-

determinant criteria with codeword PEP [16,120].

In the case of transmit antenna selection, onlyM out ofMt available transmit antennas

are used. The effective channel of MDC-ABBA codes with transmit antenna selection is

H̄, which consists ofM columns with the largest Frobenius norm of the matrixH. In

this case, the matrixH in (3.43) is replaced bȳH. It is similar to the case of OSTBC with

transmit antenna selection [130]. Since OSTBC achieve full diversity with transmit antenna

selection, MDC-ABBA codes also achieve full diversity with transmit antenna selection.

More importantly, full diversity can be obtained with limited feedback [130]. The con-

cept of antenna selection with limited feedback can be explained as follows. With full

information feedback, choosingM out of Mt transmit antennas requiresb =
⌈
log2

(
Mt

M

)⌉

bits and the number of feedback bitsb may be large. In some scenarios, it is required to

keepb small. Therefore, instead of picking one group ofM antennas from the set of
(

Mt

M

)

possible choices, theM antennas are selected from the set with smaller cardinality; thus,

the number of feedback bits is reduced. This method is calledlimited feedback. Obviously,

the selectedM antennas may not be optimal with limited feedback, but the bandwidth of

feedback channel can be set small and also the time to send thefeedback would be shorter.

It is shown that OSTBC can achieve full diversity with limitedfeedback [130]. Therefore,

MDC-ABBA codes also achieve full diversity with limited feedback.

The similar explanation can be given with receive antenna selection [134]. Therefore,

with transmit antenna selection and receive antenna selection, MDC-ABBA codes always

achieve full diversity with full or limited feedback.

3.7 Simulation Results

Simulation results are next presented using the new decoders for ABBA and MDC-ABBA

codes to compare their performances. The diversity order ofMDC-ABBA codes with

antenna selection is also verified. All signal constellations use Gray-bit mapping.
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Figure 3.6: Performances of MDC-ABBA codes compared with ABBA codes and OSTBC,
(4, 1) system.

3.7.1 Performance of MDC-ABBA, OSTBC, and ABBB Codes

The performances of ABBA and MDC-ABBA codes for an open loop 4 Tx/1 Rx antenna

system are compared in Fig. 3.6. Performance of OSTBC rate 3/4symbol pcu [44] with

16QAM (3 bits pcu) is also plotted in Fig. 3.6. While the performance of MDC-ABBA

codes with 4- and 16QAM closely approach to that of ABBA codes,the former outperforms

the latter with 8QAM-S with signal points. Therefore, the Gray-bit mapping may be not

the optimal bit mapping for ABBA codes. With another 8QAM-R, MDC-ABBA code also

performs better than the ABBA code but slightly worse than OSTBC. The MDC-ABBA

code with 8QAM-S gains 0.5 dB over OSTBC with the same spectralefficiency of 3 bits

pcu.

3.7.2 Performance of MDC-ABBA Codes with Antenna Selection

1. Diversity order of MDC-ABBA codes with transmit antenna selection and limited

feedback

We examine the diversity order of MDC-ABBA codes with transmitantenna selection

using limited feedback. One can chooseM = 3 out ofMt = 4 available transmit antennas.

Full complexity systems requireb =
⌈
log2

(
4
3

)⌉
= 2 bits to be sent back from the receiver

73



10 12 14 16 18 20 22 24 26
10

−5

10
−4

10
−3

10
−2

10
−1

B
E

R

SNR [dB]

MDC−ABBA, open loop
(4 choose 3) TAS, MDC−ABBA, 1−bit feedback
(4 choose 3) TAS, MDC−ABBA, 2−bit feedback
(4 choose 3) TAS, ideal rate−one OSTBC

Figure 3.7: Performances of MDC-ABBA codes with limited and full feedback, choose
M = 3 transmit antennas fromMt = 4 antennas, and 1 receive antenna, 16QAM.

to the transmitter. In the limited feedback system, there are only 2 possible choices to

choose 3 out of 4 antennas. Thus only 1-bit feedback is needed. In Fig 3.7, performances

of MDC-ABBA codes with full and limited feedback schemes are compared forN = 1 and

using 16QAM. There is a loss of 0.5 dB when using 1-bit feedback compared with optimal

transmit antenna selection (2-bit feedback). However, the1-bit limited feedback scheme

still improves 0.9 dB over the performance of the open-loop MDC-ABBA code. Perfor-

mances of the two feedback schemes are compared with that of the ideal rate-one OSTBC

with transmit antenna selection, which serves as the lower bound on the performance of

the MDC-ABBA code with transmit antenna selection. The performance gap between the

limited feedback MDC-ABBA code and the lower bound is about 0.8dB.

2. Comparing MDC-ABBA and OSTBC with antenna selection

Performances of an MDC-ABBA code designed for 3 transmit antennas with transmit

antenna selection is presented in Fig. 3.8. The number of available antennasMt = 4

and 1 receive antenna. Compared with the open loop case, the MDC-ABBA code with

transmit antenna selection and 16QAM gains about 1.2 dB. Especially, the performance

of
(
4
3

)
transmit antenna selection is slightly better than that of an ideal imaginative rate-

one OSTBC using the same 16QAM. Note that the performance of anideal hypothetical
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Figure 3.8: Performances of MDC-ABBA codes and OSTBC designed for M = 3 with
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Figure 3.9: Performances of MDC codes with transmit antennas selection, 16QAM (4 bits
pcu), number of available antennasMt = 6, number of active antennasM = 2, 3, 4, and 1
receive antenna.

rate-one OSTBC is also the performance limit of ABBA-QSTBC withphase feedback

schemes [122–124]. Compared with OSTBC for the same spectral efficiency of 3 bits pcu

and transmit antenna selection, MDC-ABBA code gains 0.8 dB.
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Figure 3.10: Performances of MDC codes compared with the Alamouti code when feed-
back is delayed, 16QAM (4 bits pcu), number of available antennasMt = 6, number of
active antennasM = 2, 4, and 1 receive antenna.

In Fig. 3.9, we compare the performances of MDC-ABBA codes for 3and 4 transmit

antennas with that of the Alamouti code. All these STBC are considered with transmit an-

tenna selection, where the available transmit antennasMt = 6 and 1 receive antenna, and

all codes have rates of 1 symbol pcu and use 16QAM. The Alamouti code performs signif-

icantly better than MDC-ABBA codes. However, this excellent improvement is obtained

with a perfect assumption: there is no feedback delay. In case of delayed feedback, the

transmitter has the outdated channel state information. Weprovide the simulation results

with correlation covariance coefficient of the actual and outdated channel gainsr = 0.9

and 0.7 in Fig. 3.10. The advantage of the Alamouti code over MDC-ABBA codes with

transmit antenna selection vanishes quickly whenr = 0.7; the Alamouti code performs

worse than MDC-ABBA codes when SNR > 17.5 dB.

3.8 Summary

In this chapter, we have applied the framework of OEST codes to thoroughly analyze

ABBA QSTBC. We have derived the general decoder of ABBA codes, to allow either pair-

wise or single complex symbol decoding. Existing signal transformations were adapted for
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the newly proposed decoder of MDC-ABBA codes. A tight union bound on the SER was

presented and used to optimize the signal rotations for MDC-ABBA codes with various

signal constellations. We have also proposed a new method combining the optimal power

allocation and signal rotation to find the best signal transformation for inphase-quadrature

power-imbalanced constellations such as rectangular QAM.Our new signal transforma-

tions perform better than the existing ones and also have lower encoding/decoding com-

plexities. The MDC-ABBA codes have been shown to achieve full diversity with antenna

selection and with full or limited feedback. Although our analysis is restricted to the ABBA

codes, it can be also extended for other QSTBC in [46, 48] and coordinate interleaved or-

thogonal designs (CIOD) [92].
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Chapter 4

Four-Group Decodable SAST Codes

In Chapter 2, ABBA QSTBC, as a special case of OEST codes, isK-group decodable. In

Chapter 3, we show that by a new encoding method, ABBA codes are actually 2K-group

decodable. The single-symbol decoding capability of ABBA codes is obtained because

their equivalent channel is a real matrix. In general, the equivalent channels of OEST

codes are complex matrices, which make the decoding complexity reduction difficult or

impossible. In this chapter, we will solve this problem by proposing a more sophisticated

encoding method for OEST codes by exploiting the circulant property of the equivalent

channel to obtain lower decoding complexity OEST codes. Hence, OEST codes are2K-

group decodable in general.

Among subclasses of OEST codes, SAST codes have several distinguishing properties

such as near-capacity performance, rate-one for any numberof transmit antennas, and bet-

ter performance than several existing codes. Therefore, wewill present the new encoding

method to obtain lower decoding complexity for SAST codes. Recall that SAST codes are

constructed from the Alamouti code withK = 2. Thus, the new encoding method will

make SAST codes 4-group decodable.

4.1 General Encoder of2K-Group OEST Codes

Recall that in Section 2.3, before mapping a data vector (ofP symbols) into a circulant

matrix, each element (data symbol) of the data vector is rotated separately by a specific

angle to make the OEST codes full diversity. We now consider ajoint rotation of all the

data symbols, i.e. to rotate the data vectors by a special matrix, namely inverse discrete
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Fourier transform(IDFT) F † [64]. Let x be the data vector, the rotated vector is

s = F †x. (4.1)

We consider the simple case of circulant STBC. The data vector is first rotated as in

(4.1), and then mapped to a circulant STBC. Our question is how many groups of symbols

can be separated at the receiver for maximum likelihood detection? To answer this question,

we need to examine the dispersion matrices of the circulant STBC with respect to Theorem

2.2. Letxi = ai + j bi (i = 1, . . . , P ), andF † =
[
fik

]
=
[
f 1 f 2 . . . fP

]
(fik =

1√
P
ej 2π(i−1)(k−1)), we have

C(s) =




s1 s2 . . . sP

sP s1 . . . sP−1
...

...
. ..

...
s2 s3 . . . s1




=
P∑

k=1

akAk +
P∑

k=1

bkBk (4.2)

where

Ak =
P∑

i=1

fikπ
i−1 = C(f k), (4.3)

Bk = j

P∑

i=1

fikπ
i−1 = j C(fk). (4.4)

Let Λk be the vector containing the eigenvalues ofAk. SinceAk is circulant, the

eigenvalues ofAk can be found by taking the unnormalized DFT offk [64]. Therefore,

Λk =
√

PFfk =
[
0 . . . 0

√
P 0 . . . 0

]T
and the only nonzero eigenvalue appears

at thek position.

Now we consider two different dispersion matricesAi andAj of two real symbolsai

andaj, respectively, and one has

A†
iAj + A†

jAi = F † diag(Λ†
i ) diag(Λj)F + F † diag(Λ†

j) diag(Λi)F = 0 . (4.5)

Thus, according to Theorem 2.2, the real symbolsai andaj can be separated at the receiver.

Similarly, we can show that real symbolsai andbj can be separated as well. It means that all
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the real symbols can be decoupled for maximum likelihood detection or we obtain single-

real symbol decoding complexity. This result is beyond our expectation since we just try to

get two-group decoding for circulant STBC.

However, since the dispersion matricesAk andBk have only one nonzero eigenvalue,

these dispersion matrices are of rank one; one cannot obtainfull diversity circulant STBC.

On the other hand, each circulant matrixAk has only one nonzero eigenvalue atkth po-

sition. Therefore, ifĀ is a linear combination ofP circulant matricesAk, k = 1, . . . , P ,

Ā will have P nonzero eigenvalues or̄A is full rank. This means one more time the real

symbolsai (or bi) must be spread out over the new dispersion matrices, which are the linear

combination ofP dispersion matricesAk, k = 1, . . . , P (or Bk, k = 1, . . . , P ).

We summarize the above results as follows.

• With signal rotation (4.1), circulant STBC are single real-symbol decodable. How-

ever, the diversity order is only 1.

• To achieve full diversity, the data vector must be rotated byanother rotation matrix

R before applying the rotation (4.1). Thus, the compound rotation matrix is in the

formF †R. With this two rotating stages, the circulant STBC is two-group decodable.

Consequently, the productC(s)†C(s) can be written as the sum of two terms, each

contains the symbols from one group only.

We now consider the general construction of OEST codes, where the circulant matrices

are embedded. If the matrices of two-group circulant STBC aresubstituted to (2.29), we

get2K terms. Hence, OEST codes are actually2K-group decodable and full-diversity is

achievable. We state the main result of this section in the following theorem.

Theorem 4.1. Using the signal rotation of the formF †R, OEST codes are2K-group de-

codable and full diversity can be achieved.

To appreciate the advantages of 4-group SAST codes, we will compare the main pa-

rameters of SAST codes and other low-complexity STBC, including OSTBC, QSTBC,

MDC-QSTBC, and codes from coordinate-interleaved orthogonaldesigns (CIOD) [92],

for 6 and 8 transmit antennas in Table 4.1. Clearly, the new 4-group SAST codes offer sev-

eral distinct advantages, such as higher code rate, lower decoding complexity, and lower
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Table 4.1: Comparison of Several Low-Complexity STBC for 6 and 8Antennas

Codes Γ Maximal rate Delay Real symbol decoding

OSTBC [44,137] 2K or K 2/3 (5/8)a 30 (56) 1 or 2 (1 or 2)

CIOD [92] K 6/7 (4/5) 14 (50) 2 (2)

MDC-ABBA [120] K 3/4 (3/4) 8 (8) 2 (2)

QSTBC [47] K/2 3/4 (3/4) 8 (8) 4 (4)

2-group QSTBC [96] 2 1 (1) 8 (8) 8 (8)

SAST 2 1 (1) 6 (8) 6 (8)

4-group QSTBC [93] 4 1 (1) 8 (8) 4 (4)

4-group SAST(new) 4 1 (1) 6 (8) 3 (4)

aThe numbers in the parentheses indicate the codes’ parameters for 8 antennas.

encoding/decoding delay. The 4-group SAST codes also have lower PAPR than that of

OSTBC, QSTBC, MDC-QSTBC, and CIOD codes because there are no zeros in the code

matrices. Moreover, from extensive simulation results, our 4-group SAST codes also yield

significant SNR gains compared with the existing codes.

In the next section, we will present the decoding of OEST codes with two steps. The

first step is to separateK transmitted vectors of data symbols, as solved in Chapter 2. The

second step will decompose the real and imaginary parts of each data vector for maximum

likelihood detection. As mentioned earlier, we will illustrate these two decoding steps for

the representative SAST codes.

4.2 Decoder for 4-Group SAST Codes

To obtain 4-group decodable SAST codes, we need two steps. The first step is to decouple

the transmitted symbols into two group. The second step willseparate each group into two

smaller groups. The first step has been solved in Section 2.3.4 of Chapter 2. Nevertheless,

for the case of SAST codes, we can develop an alternative approach to design the decoder,

which is more computationally efficient by reducing intermediate deriving steps.

We first review the construction of SAST codes introduced in Section 2.3.6. The SAST

code matrix is constructed forM = 2P transmit antennas using circulant blocks. Two data
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vectorss1 =
[
s1 s2 . . . sP

]T
ands2 =

[
sP+1 sP+2 . . . s2P

]T
are used to generate

two circulant matrices:

C(s1) =




s1 s2 . . . sP

sP s1 . . . sP−1
...

...
. . .

...
s2 s3 . . . s1


 , C(s2) =




sP+1 sP+2 . . . s2P

s2P sP+1 . . . s2P−1
...

...
. ..

...
sP+2 sP+3 . . . sP+1


 . (4.6)

The SAST code matrix is constructed fromC(s1) andC(s2)as

S =

[
C(s1) C(s2)

−C†(s2) C†(s1)

]
. (4.7)

For example, the SAST code for 6 transmit antennas is

S6 =




u1 u2 u3 u4 u5 u6

u3 u1 u2 u6 u4 u5

u2 u3 u1 u5 u6 u4

−u∗
4 −u∗

6 −u∗
5 u∗

1 u∗
3 u∗

2

−u∗
5 −u∗

4 −u∗
6 u∗

2 u∗
1 u∗

3

−u∗
6 −u∗

5 −u∗
4 u∗

3 u∗
2 u∗

1




. (4.8)

We introduce another type of circulant matrix called left ciculant, denoted byCL(x),

where theith row is obtained by circular shifts (i − 1) times to the left the row vectorx.

CL(x) =




x1 x2 . . . xP

x2 x3 . . . x1
...

...
.. .

...
xP x1 . . . xP−1


 . (4.9)

Let us define a permutationΠ on an arbitrary matrixX such that, the(P − i+2)th row

is permuted with theith row for i = 2, 3, ...,
⌈

P
2

⌉
, where⌈(·)⌉ is the ceiling function. One

can verify that

Π(CL(x)) = C(x) . (4.10)

This useful operator will be used for our next derivation.

Let y =
[
yT

1 yT
2

]T
, y1 =

[
y1 y2 . . . yP

]T
, y2 =

[
yP+1 yP+2 . . . yM

]T
, h =

[
hT

1 hT
2

]T
, h1 =

[
h1 h2 . . . hP

]T
, h2 =

[
hP+1 hP+2 . . . h2P

]T
, w =

[
wT

1 wT
2

]T
,

w1 =
[
w1 w2 . . . wP

]T
, w2 =

[
wP+1 wP+2 . . . w2P

]T
.

We can write the transmit-receive signal relation as
[
y1

y2

]
=

√
ρ

M

[
C(s1) C(s2)

−C†(s2) C†(s1)

] [
h1

h2

]
+

[
w1

w2

]
. (4.11)

82



Applying permutationΠ in (4.10) for the column matrixy1, we obtain [100]:
[
ȳ1

ȳ2

]
,

[
Π(y1)
y∗

2

]
=

√
ρ

M

[
H1 H2

H†
2 −H†

1

]

︸ ︷︷ ︸
H

[
s1

s2

]
+

[
w̄1

w̄2

]
(4.12)

whereH1 = C(h1), H2 = C(h2), w̄1 = Π(w1), w̄2 = w∗
2. The elements of̄w1 andw̄2

have the same statistics,CN (0, 1), as elements ofw1 andw2.

We now multiplyH† with the both sides of (4.12). Let̂H = H†
1H1 + H†

2H2, we get
[
ŷ1

ŷ2

]
= H†

[
ȳ1

ȳ2

]
=

√
ρ

M

[
Ĥ 0P

0P Ĥ

] [
s1

s2

]
+ H†

[
w̄1

w̄2

]

=

√
ρ

M

[
Ĥ 0P

0P Ĥ

] [
s1

s2

]
+

[
ŵ1

ŵ2

]

︸ ︷︷ ︸
ŵ

. (4.13)

The covariance matrix of the additive noise vectorŵ is

E[ww†] =

[
Ĥ 0P

0P Ĥ

]
. (4.14)

Therefore, noise vectorŝw1 andŵs are uncorrelated and have the same covariance matrix

Ĥ. Thus,s1 ands2 can be decoded separately usingŷi = Ĥsi + ŵi, i = 1, 2. The noise

vectorsŵ1 andŵs can be whiten by the same whitening matrixĤ−1/2
. The equivalent

equations for transmit-receive signals are

Ĥ−1/2
ŷi =

√
ρ

M
Ĥ1/2

si + Ĥ−1/2
ŵi, i = 1, 2. (4.15)

At this point, the decoding of SAST codes becomes the detection of 2 group of complex

symbolssi (i = 1, 2). Our next step is to separate the real and imaginary parts of vectors

si by exploiting the properties of̂H.

Recall thatĤ = H†
1H1 + H†

2H2, and bothH1 andH2 are circulant. Hence,̂H is also

circulant [64]. LetΛi =
[
λi,1 λi,2 . . . λi,P

]
be theP eigenvalues ofHi (i = 1, 2). We

can diagonalizedHi by Fourier transform matrix asHi = F † Λi F . Thus,

Ĥ = F †(Λ†
1Λ1 + Λ†

2Λ2)F . (4.16)

Let Λ†
1Λ1 + Λ†

2Λ2 = Λ, thenΛ has non-negative entries in the main diagonal and

Ĥ1/2
= F †Λ1/2 F , (4.17a)

Ĥ−1/2
= F †Λ−1/2 F . (4.17b)
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We havesi is pre-multiplied (or rotated) by a matrixF †. Substitutingsi by F † si and

multiplying both sides of (4.15) withF , one obtains

Λ−1/2 F ŷi =

√
ρ

M
F Ĥ1/2F †si + Λ−1/2 F ŵi

=

√
ρ

M
Λ1/2si + Λ−1/2 F ŵi︸ ︷︷ ︸

w̌i

. (4.18)

SinceΛ1/2 has real elements (in the main diagonal), the real and imaginary parts ofsi

now can be separated for detection.

Λ−1/2ℜ(F ŷi) =

√
ρ

M
Λ1/2ℜ(si) + ℜ(w̌i), (4.19a)

Λ−1/2ℑ(F ŷi) =

√
ρ

M
Λ1/2ℑ(si) + ℑ(w̌i). (4.19b)

Using (4.19), one can use a sphere decoder to detect the transmitted symbols. Theequiva-

lent channelof 4-group SAST codes isΛ1/2.

We thus have derived the general decoder for 4-group SAST codes. The role of the

IDFT rotation matrixF † is to diagonalize the channel, facilitating the lower decoding com-

plexity for SAST codes. We next analyze the performance of the 4-group SAST codes.

4.3 Performance Analysis

Note that the eigenvalues ofP × P matricesH1 andH2 can be found easily using un-

normalized Fourier transformation of the channel vectorsh1 andh2 [64]. Therefore, the

eigenvalues ofH1 andH2 have distribution∼ CN (0, P ).

We introduce a real orthogonal transformationR to the data vectorsℜ(si) andℑ(si)

(i = 1, 2) to make 4-group SAST codes full diversity. Thus, the actual signal rotation of

4-group SAST codes isF †R.

Since the PEP of vectorsℜ(si) andℑ(si) (i = 1, 2) are the same, we just calculate the

PEP of the vectorℜ(s1). Let d = ℜ(s1) =
[
a1 a2 . . . aP

]T
.

The PEP of the paird andd̄ can be expressed by the Gaussian tail function as [32]

P (d → d̄|Ĥ) = Q



√

ρ

8

|Λ1/2Rδ|2
4N0


 (4.20)
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whereN0 = 1/2 is the variance of the elements of the white noise vectorℜ(w̌1) in (4.19a),

δ = d − d̄. SubstitutingΛ = Λ†
1Λ1 + Λ†

2Λ2, one has

P (d → d̄|Ĥ) = Q




√√√√ρ
[
δTRT(Λ†

1Λ1 + Λ†
2Λ2)Rδ

]

16




= Q




√
ρ(
∑2

i=1

∑P
j=1 β2

j |λi,j|2)
16


 (4.21)

whereβ = Rδ.

We now use the Craig’s formula [131] to derive the conditionalPEP in (4.20).

P (d → d̄|Ĥ) = Q




√
ρ(
∑2

i=1

∑P
j=1 β2

j |λi,j|2)
16




=
1

π

∫ π/2

0

exp

(
−ρ(

∑2
i=1

∑P
j=1 β2

j |λi,j|2)
32 sin2 α

)
dα. (4.22)

We can apply a method based on the moment generating function(MGF) [132,133] to

obtain the unconditional PEP in the following:

P (d → d̄) =
1

π

∫ π/2

0

[
P∏

i=1

(
1 +

ρβ2
i

8 sin2 α

)]−2

dα. (4.23)

Since there are four vectors to be decoded in each code matrix, the codeword PEP is

therefore equal to 4 times the PEP given in (4.23).

Assume thatβi 6= 0 ∀i = 1, 2, . . . , P . One can find the upper bound on PEP of 4-group

SAST codes at high SNR as follows.

P (d → d̄) ≈
(

26mρ−2P

π

∫ π/2

0

(sin α)16dα

)
P∏

i=1

β−4
i

=
23Mρ−M

217

16!

8!8!

M/2∏

i=1

β−4
i . (4.24)

The asymptotic bound in (4.24) shows an important property of the 4-group SAST

codes at high SNR: The PEP is heavily dependent on the product distance
∏4

i=1 βi (see,

e.g. [138]). The exponent of SNR in (4.24) is−M . This indicates that the maximum
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diversity order of 4-group QSTBC is 8 and it is achievable if the product distance is non-

zero for all possible data vectors. Furthermore, at high SNR,the asymptotic bound becomes

very tight to the exact PEP. Therefore, the larger the product distance, the lower FER can be

obtained. Thus, we can optimize the rotation byR so that the minimum product distance

dp,min = min
∀di,dj

4∏

k=1

|βk| (4.25)

is non-zero and maximized.

For QAM signals, the symbolsai and bi are in the set{±1,±3,±5, . . . }, the best-

known rotations for QAM that maximizes the minimum product distance are provided

in [139,140]; they are denoted byRBOV .

In [139, 140], the rotated lattice points are generated byx = dRBOV , whered ∈ Z
n

andRBOV is of sizen × n. In this representation,x andd are row vectors, while we use

column vector notation in our paper. Thus, the rotation matricesRBOV given in [139,140]

will be transposed. For the 3 and 4-dimensional lattices, the rotation matrices are given

below.

RBOV,3 =



−0.3279852776 −0.7369762291 −0.5910090485
−0.5910090485 −0.3279852776 0.7369762291
−0.7369762291 0.5910090485 −0.3279852776


 , (4.26)

RBOV,4 =




−0.3663925121 −0.2264430248 −0.4744647080 −0.7677000246
−0.7677000238 −0.4744647078 0.2264430248 0.3663925106

0.4230815704 −0.6845603618 −0.5049593144 0.3120820189
0.3120820187 −0.5049593142 0.6845603618 −0.4230815707


 .

(4.27)

Note that in the construction of 4-group SAST codes, the datavectorssi (i = 1, 2) with

proper size are rotated to generate the vectorsui asui = F †Rsi.

4.4 Simulation Results

4.4.1 Union Bound on FER

It is of interest to investigate the union bound on FER of 4-group SAST codes using the

exact PEP in (4.23). The union bound and simulated FER of a 4-group SAST code for 6

antennas is plotted in Fig. 4.1. The bound is only about 0.1 dBfrom the simulated FER

when FER <10−2. Therefore, instead of optimizing the worst-case PEP, the union bound

can be optimized to obtain lower FER.
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Figure 4.1: Union bound on FER of 4-group SAST codes for (6, 1)system.

4.4.2 Performance of 4-Group SAST Codes

The performance of 4-group SAST codes will be compared with OSTBC, MDC-QSTBC

[120], QSTBC [47, 61], DAST [49], 4-group QSTBC [93], and SAST codes. The per-

formance of CIOD codes [92] is not compared because of two reasons: (1) We could not

find suitable constellations for maximal-rate CIOD codes [92] so that CIOD codes have the

same bit rates with our newly developed codes; (2) Since the minimal-delay CIOD codes

have the same code rate and performance as that of MDC-QSTBC [92, 125], it is enough

to compare the performance of our codes with that of MDC-QSTBC.

Since 4-group SAST for 4 transmit antennas is equivalent to MDC-ABBA, we thus

present the results for 5, 6, and 8 transmit antennas. The number of receive antennas is one

in all simulations.

1. Performance 4-group SAST codes for 6 transmit antennas

Since the rate of OSTBC for 6 transmit antennas is2/3 symbol pcu [44], we use 8QAM

to produce a data rate of 2 bits pcu and compare performances of OSTBC and our new

codes in Fig. 4.3. The rate of 4-group QSTBC and 4-group SAST codes is one. We thus

use 4QAM to obtain 2 bits pcu. Two columns (4 and 8) of 4-group QSTBC for 8 transmit

antennas is deleted to create the code for 6 transmit antennas. With spectral efficiency
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Figure 4.2: Geometrical shapes of 8QAM-R(de,min = 0.8165) and 8QAM-S(de,min =
0.9058).
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Figure 4.3: Comparing performances of 4-group SAST codes with several STBC for (6, 1)
system, 2 and 4 bits pcu.

of 2 bits pcu, 4-group SAST codes gains 0.8 and 1.6 dB over OSTBCwith 8QAM-S and

8QAM-R, respectively, while the decoding complexity slightly increases (joint decoding of

3 real symbols). Performance of 4-group SAST codes is slightly inferior to that of 4-group

QSTBC (0.2 dB). Note that the decoding complexity of 4-group QSTBC (joint detection

of 4 real symbols) is higher than that of 4-group SAST codes (joint detection of 3 real

symbols).

In Fig. 4.4, performances of 4-group QSTBC, 4-group SAST codeswith 3 bits pcu

are presented. With this spectral efficiency, only QSTBC and MDC-QSTBC with rate
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Figure 4.4: Comparing performances of 4-group SAST codes with MDC-QSTBC, QSTBC,
and 4-group QSTBC for (6, 1) system, 3 bits pcu.

of 3/4 symbol pcu (using 16QAM) are compared. For 6 transmit antennas, the 4-group

SAST codes have 4 groups, each has 3 real symbols. 4-group SAST code yields 0.3 dB

improvement over MDC-QSTBC (two real symbol decoding) and performs the same as

QSTBC (four real symbol decoding). The 4-group QSTBC using 8QAM-R gains 0.5 dB

over 4-group SAST codes at the cost of higher complexity (4-real symbol decoding versus

3-real symbol decoding).

2. Performance 4-group SAST codes for 8 transmit antennas

Performance of 4-group SAST codes are compared with 4-groupQSTBC, SAST and

DAST codes for 3 and 4 bits spectral efficiency in Fig. 4.5. 4-group SAST codes perform

the same as 4-group QSTBC and the two codes have the same decoding complexity (4

real-symbol decoding). However, the two codes gain 0.8 dB over DAST code, which has

much higher decoding complexity. The 4-group SAST code is about 0.5 dB worse than

SAST codes at high SNR, but keep in mind that the decoding of this SAST code required

joint detection of 8 real symbols (see Table 4.1).

For the data rate of 3 bits pcu, 4-group SAST code is also superior to MDC-QSTBC and

QSTBC. Our code yields 0.8 and 1 dB gains over MDC-QSTBC and QSTBC, respectively.

3. Performance 4-group SAST codes for 5 transmit antennas
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Figure 4.5: Comparing performances of 4-group SAST codes with several STBC for (8, 1)
system, 3 and 4 bits pcu.
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Figure 4.6: Comparing performances of 4-group SAST and 4-group QSTBC for (5, 1)
system.

We compare the performances of 4-group QSTBC and 4-group SASTcodes in Fig.

4.6. The 4-group QSTBC for 5 transmit antennas is obtained by deleting three columns

(4, 7, and 8) of the 4-group QSTBC for 8 transmit antennas. Similarly, the 4-group SAST

code for 5 transmit antennas is also created by deleting one column of the SAST code for
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6 transmit antennas. Therefore, 4-group SAST code is more delay-efficient and have lower

decoding complexity than 4-group QSTBC. With these advantages, 4-group SAST codes

incur 0.2 dB loss compared with 4-group QSTBC at high SNR.

4.5 Summary

We have presented a new encoding method so that OEST codes are2K-group decodable.

The complexity reduction is significant because the number of symbols in each group is

reduced by half compared withK-group OEST codes. As a typical example, we obtained

4-group SAST codes from 2-group SAST codes. Extensive simulation results show that

4-group SAST codes perform better than several existing low-complexity STBC, such as

OSTBC, MDC-QSTBC, and QSTBC codes. Additionally, 4-group SAST codes have low

encoding/decoding delay. Since there are no zeros in SAST code matrices, SAST codes

have better PAPR than that of OSTBC. These advantages make 4-group SAST codes suit-

able for MISO systems, where transmit diversity is one of theavailable resources to im-

prove the error performance of wireless links.
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Chapter 5

Extensions of OEST Framework

In previous chapters, we have derived the multi-group decoding property of OEST codes

in general and examined in detail MDC-ABBA and SAST codes, two subclasses of OEST

codes. A rigorous approach to decouple the data vectors is touse their orthogonal spatial

signatures at the receiver. In this chapter, this approach is extended to investigate other two

existing STBC. The first code, called coordinate interleaved orthogonal designs (CIOD), is

proposed by Khan and Rajan. Similar to MDC-ABBA codes, CIOD codesare also single-

symbol decodable. The second code, 4-group QSTBC, is similar to 4-group SAST codes.

However, SAST codes are more delay-efficient than 4-group QSTBC.

5.1 Coordinate Interleaved Orthogonal Designs

5.1.1 Introduction

While OSTBC have minimal decoding complexity, their code rates are low for more than

2 transmit antennas (see Section 1.4.2). To improve the coderate of OSTBC and maintain

low decoding complexity, some alternative code designs have been introduced recently.

They are (1) minimum decoding complexity (MDC) QSTBC [120,141] and (2) STBC us-

ing coordinate interleaved orthogonal designs (CIOD) [90–92]. These two codes are single

(complex) symbol decodable. In Chapter 3, we have studied MDC-ABBA codes, which

are similar to MDC-QSTBC. The maximal code rates of OSTBC, MDC-QSTBC(and also

MDC-ABBA codes), and CIOD codes are summarized in Table 5.1 for the number of trans-

mit antennasM = 2, . . . , 8. Clearly, CIOD codes offer equal or higher rates than the other

codes. This advantage motivates the study of CIOD codes here.
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Table 5.1: Code Rates of Single-Symbol Decodable STBC

Codes M = 2 M = 3, 4 M = 5, 6 M = 7, 8

OSTBC 1 3/4 2/3 5/8

MDC-QSTBC 1 3/4 3/4

CIOD 1 6/7 4/5

While OSTBC achieve full diversity for any constellation, CIODcodes may not achieve

full-diversity with the conventional constellations, such as QAM or PSK. To achieve full

diversity, modulation symbols may need to be rotated by an angleα [90–92]. Proper choice

of the rotation angleα will maximize the code diversity gain and also minimize the error

performance. The authors in [92] use the coding gain parameter [16] to derive the optimal

α for QAM. However, maximizing the coding gain amounts to minimizing the worst-case

codeword pair-wise error probability (CPEP), which provides no guarantee for minimiza-

tion of the symbol error rate (SER). Moreover, references [90–92] did not derive optimal

signal rotations for QAM, PSK, and other constellations with good minimum Euclidean

distance, such as lattice of equilateral triangular (TRI) (also called hexagonal (HEX)) or

amplitude PSK (APSK) [104] in terms of minimal SER.

In this chapter, we will extend the method, which has been used to analyze MDC-

ABBA codes to solve several open issues of CIOD codes. First, wederive equivalent

channelrepresentations. Anew maximum likelihood decoderis also presented in a simple

form. A closed form symbol pair-wise error probability(SPEP) is derived. Hence, the

union boundon the symbol error rate (SER) can be easily evaluated. For allthe tested

cases, the union bound is within 0.1 dB of the simulated SER. Therefore, this bound can be

used toaccurately analyze the performanceof CIOD codes as well as tooptimize the signal

rotation for any constellation with an arbitrary geometrical shape.Similar to MDC-ABBA

codes, we present a design of signal transformation for signals with unbalanced powers of

real and imaginary parts such as rectangular QAM (QAM-R). Thenew method combines

signal rotation and power (re)allocation yielding better performance than the existing ones

in [92,125] for QAM-R.
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5.1.2 Construction of CIOD Codes

The CIOD code forM transmit antennas is constructed from two OSTBC components,

OM1
andOM2

, whereM = M1 + M2 [90–92]. The size of code matrices ofOM1
andOM2

areT1 × M1 andT2 × M2, respectively; there areK1 andK2 complex symbols embedded

in OM1
andOM2

, respectively. Additionally, the matricesOM1
andOM2

are scaled by

constantsκ1 andκ2 to satisfy the power constraint (2.2).

Let K̄ be the least common multiple (lcm) of K1 andK2, n1 = K̄/K1, n2 = K̄/K2,

T̄1 = n1T1, T̄2 = n2T2. A block of K = 2K̄ data (information) symbolssi = ai + j bi

(j2 = −1), i = 1, 2, . . . , K is mapped to the intermediate symbolsxk (k = 1, 2, . . . , K) as

follows:

xk =

{
ak + j bk+K̄ , k = 1, 2, . . . , K̄;
ak + j bk−K̄ , k = K̄ + 1, K̄ + 2, . . . , K.

(5.1)

By this encoding rule, the coordinates of the symbolss1, s2, . . . , sK̄ are interleaved with

the coordinates of the symbolss1+K̄ , s2+K̄ , . . . , s2K̄ . Now we constructn1 OSTBC code

matricesOM1,i (i = 1, 2, . . . , n1) andn2 OSTBC code matricesOM2,j (j = 1, 2, . . . , n2)

and arrange them in the intermediate matricesC1 andC2 as

C1 =




OM1,1(x1, x2, . . . , xK1
)

OM1,2(xK1+1, xK1+2, . . . , x2K1
)

...
OM1,n1

(x(n1−1)K1+1, x(n1−1)K1+2, . . . , xK̄)


 ,

C2 =




OM2,1(xK̄+1, xK̄+2, . . . , xK̄+K2
)

OM2,2(xK̄+K2+1, xK̄+K2+2, . . . , xK̄+2K2
)

...
OM2,n2

(xK̄+(n2−1)K2+1, xK̄+(n2−1)K2+2, . . . , x2K̄)


 .

Hence, the size ofC1 andC2 areT̄1 × M1 andT̄2 × M2, respectively.

The CIOD code matrix is formulated by

C =

[√
κ1 C1 0T̄1×M2

0T̄2×M1

√
κ2 C2

]
. (5.2)

Thus, the size of the CIOD code matrices areT ×M , whereT = T̄1 + T̄2 = n1T1 + n2T2,

M = M1 + M2.

For example, here is a CIOD code for 4 transmit antennas, usingthe 2-by-2 Alamouti

code. In this construction,M1 = M2 = 2, K1 = K2 = 2, T1 = T2 = 2. Therefore, the
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CIOD code is

C4 =




a1 + j b3 a2 + j b4 0 0
−a2 + j b4 a1 − j b3 0 0

0 0 a3 + j b1 a4 + j b2

0 0 −a4 + j b2 a3 − j b1


 . (5.3)

In this CIOD example, the real and imaginary parts are separately transmitted overM1

andM2 antennas, i.e.,a1 appears on the first two antennas only. Thus, full diversity gain

cannot be achieved. The solution is to rotate the real and imaginary parts of the input

symbols and then to map the rotated symbols to CIOD code matrices. This ensures that the

real and imaginary parts of the input symbols are spread overall transmit antennas, leading

to full symbol-wise diversity [19].

Nevertheless, not all signal rotations will result in the best error-rate performance. Khan

and Rajan [92] use the coding gain [16] to minimize the worst-case PEP of code matrices,

which may not be optimal for the overall code performance. Incontrast, we investigate

the performance of CIOD codes by deriving a tight union bound on SER. As a preliminary

step, we derive a new simplified transmit-receive signal relation of CIOD codes, in which

the equivalent channel can be shown explicitly.

5.1.3 Equivalent Channels and Maximum Likelihood Decoder

Since the mapping rule of the real and imaginary parts of symbols sk are known, one

can write explicitly the dispersion matrices of these symbols. For notational convenience,

we reserveA and B for the dispersion matrices of OSTBC and useE and F for the

dispersion matrices of CIOD codes; there areK = 2K̄ pairs of such matricesEk, Fk

(i = 1, 2, . . . , K). Additionally, we writeAi(OMj
) or Bi(OMj

) to denote the dispersion

matrices of OSTBCOMj
(j = 1, 2).

The matricesEk andFk can be explicitly written though they are quite lengthy. For

example, the dispersion matrices of symbols1 are:

E1 =




A1(OM1
) 0T1×M2

0(n1−1)T1×M1
0(n1−1)T1×M2

0T2×M1
0T2×M2

0(n2−1)T2×M1
0(n2−1)T2×M2


 , (5.4a)
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F1 =




0T1×M1
0T1×M2

0(n1−1)T1×M1
0(n1−1)T1×M2

0T2×M1
B1(OM2

)
0(n2−1)T2×M1

0(n2−1)T2×M2


 . (5.4b)

We can write the CIOD codes using the dispersion form (2.4) asC =
∑K

k=1 (akEk + bkFk),

note thatK = 2K̄ andK̄ = lcm{K1, K2}.

To simplify our analysis, we first consider the number of receive antennas isN = 1 and

generalize forN > 1 later. The following derivation is similar to the steps to derive the

decoder and equivalent channels of MDC-ABBA codes in Section 3.2.

Let the channel vector beh =
[
h1 h2 . . . hM

]T
, the receive vector be

y =
[
y1 y2 . . . hT

]T
, the data vectord =

[
a1 b2 a2 b2 . . . aK bK

]T
, the ad-

ditive noise vector bew =
[
w1 w2 . . . wT

]T
. Let C be a CIOD code matrix, the

transmit-receive signals in (2.3) becomes

y =
√

ρCh + w

=
√

ρ

K∑

k=1

(akEkh + bkFkh) + w

=
√

ρ
[
E1h F1h E2h F2h . . . EKh FKh

]
d + w. (5.5)

In (5.4), the scalarsκ1 andκ2 are not included for brevity. We can rewrite (5.5) equivalently

as
[
y

y∗

]
=

√
ρ

[
E1h F1h . . . EKh FKh

E∗
1h

∗ F ∗
1 h∗ . . . E∗

Kh∗ F ∗
Kh∗

]
d +

[
w

w∗

]
. (5.6)

Let H̄k =

[
Ekh Fkh

E∗
kh

∗ F ∗
k h∗

]
for k = 1, 2, . . . , K, it follows

H̄†
kH̄k = diag

(
ĥ1, ĥ2

)
, Ĥ1, for 1 ≤ k ≤ K̄, (5.7a)

H̄†
kH̄k = diag

(
ĥ2, ĥ1

)
, Ĥ2, for K̄ < k ≤ K, (5.7b)

H̄†
kH̄l = 02×2, for k 6= l. (5.7c)

whereĥ1 = 2
∑M1

i=1 |hi|2, ĥ2 = 2
∑M2

i=1 |hi|2.
Thus, if the two sides of (5.6) are multiplied bȳH†

k, one gets

H̄†
k

[
y

y∗

]

︸ ︷︷ ︸
ȳk

=
√

ρĤp

[
ak

bk

]

︸︷︷︸
dk

+ H̄†
k

[
w

w∗

]

︸ ︷︷ ︸
w̄k

. (5.8)
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wherep = 1 if 1 ≤ k ≤ K̄ andp = 2 if K̄ < k ≤ K.

The matrixH̄†
k plays the role of the spatial signature of the data vectordk. Since the

data vectorsdk can be completely decoupled, (5.8) can be used for maximum likelihood

detection. However, since the noise vectorw̄k is colored with covariance matrix̂Hp, it

needs to be whitened by a whitening matrixĤ−1/2

p . After this whitening step, (5.8) becomes

Ĥ−1/2

p ȳk =
√

ρĤ1/2

p dk + Ĥ−1/2

p w̄k. (5.9)

We can conclude that the matricesH1 = Ĥ1/2

1 andH2 = Ĥ1/2

2 are theequivalent

channelsof CIOD codes.

The maximum likelihood solution of (5.9) is

d̂k = arg min
dk

(ρdT
kĤpdk − 2

√
ρℜ(ȳT

k)dk). (5.10)

The result in (5.10) can be generalized for multiple receiveantennas. To this end, we in-

clude the scalarsκ1 andκ2 for completeness. We can show thatĥ1 = 2κ1

∑N
j=1

∑M1

i=1 |hi,j|2,

ĥ2 = 2κ2

∑N
j=1

∑M2

i=1 |hi,j|2, ȳk =
∑N

j=1 H̄†
k,n

[
yn

y∗
n

]
, whereyn is the receive vector ofnth

antenna,̄Hk,n =

[
Ekhn Fkhn

E∗
kh

∗
n F ∗

k h∗
n

]
, hn is thenth column of the channel matrixH.

From (5.8), the decoding of the real symbolsak andbk can be decoupled. However,

since the symbolsak andbk are not transmitted overM channels, full diversity cannot be

achievable. Hence, we need to spread out these symbols overM channels by applying a

real unitary rotationRp as

Rp =

[
cos(αp) sin(αp)
sin(αp) − cos(αp)

]
, (p = 1, 2),

to the data vectorsdk [92,125]. Including the rotation matrix to (5.9) and (5.10), we have

Ĥ−1/2

p ȳk =
√

ρĤ1/2

p Rpdk + Ĥ−1/2

p w̄k, (5.11)

and

d̂k = arg min
dk

(ρdT
kR

T
pĤpRpdk − 2

√
ρℜ(ȳT

k)Rpdk). (5.12)

Some interesting facts can be drawn from the newly proposed decoder of CIOD codes.

First, akin to the decoding metric of OSTBC, the decoding metric (5.12) of CIOD codes
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does not involve the dispersion matrices [62]. This fact reduces the decoding complexity

compared with the one proposed in [92, eq. (84)], where the dispersion matrices of symbols

are required. Second, with OSTBC, the MIMO channel is decoupled into single-input

single-output (SISO) channels and the equivalent channel gain is the Frobenius norm of the

MIMO channel. On the other hand, similar to the MDC-ABBA codes,the MIMO channel

becomes2 × 2 diagonal channels with CIOD codes; the two entries of the diagonal are

simply Frobenius norms of the firstM1 and the otherM2 columns of the MIMO channel

matrix, where respectively, the real and imaginary parts ofthe rotated signal are transmitted

on.

In the next section, we will investigate the performance of CIOD codes with different

types of constellations by exploiting this special structure of the equivalent channels.

5.1.4 Union bound on SER and Optimal Signal Designs

We first consider the data vectorsdk = [ak bk]
T for 1 ≤ k ≤ K̄. These data vectors are sent

over the same equivalent channelĤ1/2

1 and, therefore, they have the same error probability;

we thus drop the subindexk for short. Letd = [a b]T andd̂ = [â b̂]T be the transmitted and

the erroneous detected vectors, letδ1 = a − â, δ2 = b − b̂, ∆ = [δ1 δ2]
T. From (5.11), the

SPEP of the symbol pairdk andd̂k can be expressed by the Gaussian tail function as [32]

P (d → d̂|Ĥ1) = Q



√

ρ|Ĥ1R1∆|2
4N0


 (5.13)

whereN0 = 1/2 is the variance of the real part of the elements of the white noise vector

Ĥ−1/2

p w̄ in (5.11). Let
[
β1

β2

]
= R1∆ =

[
cos(α1) sin(α1)
sin(α1) − cos(α1)

] [
δ1

δ2

]
. (5.14)

Using the Craig’s formula [131] to derive the conditional SPEP in (5.13), one has

P (d → d̂|Ĥ1) = Q

(√
ρ(β2

1h1 + β2
2h2)

2

)

=
1

π

∫ π/2

0

exp

(−ρ(β2
1h1 + β2

2h2)

4 sin2 θ

)
dθ

=
1

π

∫ π/2

0

N∏

j=1

[
M1∏

i=1

exp

(
−ρκ1β

2
1 |hi,j|2

4 sin2 θ

) M2∏

i=1

exp

(
−ρκ2β

2
2 |hi,j|2

4 sin2 θ

)]
dθ.

(5.15)
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We can apply a method based on the moment generating function(MGF) [132,133] to

obtain the unconditional SPEP in the following:

P1(d → d̂) =
1

π

∫ π/2

0

(
1 +

ρκ1β
2
1

4 sin2 θ

)−M1N (
1 +

ρκ2β
2
2

4 sin2 θ

)−M2N

dθ. (5.16)

The exact SPEP of CIOD codes is quite similar to that of MDC-ABBA codes in (3.34).

The difference is that the exponents of the term involvingβ1 andβ2 areM1N andM2N ,

respectively, while the exponents of the term involvingβ1 andβ2 are the sameMN/2 with

MDC-ABBA codes. Note thatM = M1 + M2. We can further simplify (5.16) to avoid

integration as we have done for MDC-ABBA codes. However, more details are omitted for

purposes of brevity.

The SPEP in (5.16) is given for symbolssk sent over the equivalent channelH1. For

the symbolssk (K̄ < k ≤ K) transmitted over the equivalent channelH2, the SPEP can

be found similarly:

P2(d → d̂) =
1

π

∫ π/2

0

(
1 +

ρκ2β̄
2
1

4 sin2 θ

)−M2N (
1 +

ρκ1β̄
2
2

4 sin2 θ

)−M1N

dθ (5.17)

where
[
β̄1

β̄2

]
=

[
cos(α2) sin(α2)
sin(α2) − cos(α2)

] [
δ1

δ2

]
. (5.18)

Assume thatdi, dj, dm, dn, (i, j,m, n = 1, 2, . . . , Ω), are signals drawn from a con-

stellationS of sizeΩ. From the SPEP expression (5.15) and (5.17), we can find the union

bound on SER of CIOD codes with constellationS as

Pu(S) = Pu,1(S) + Pu,2(S) (5.19)

where

Pu,1(S) =
1

Ω

Ω−1∑

i=1

Ω∑

j=i+1

P (di → dj), (5.20)

Pu,2(S) =
1

Ω

Ω−1∑

m=1

Ω∑

n=i+1

P (dm → dn). (5.21)

For a fixed SNR, the union boundPu(S) depends on the constellationS and the rotation

anglesα1 andα2. Thus, one can find the optimal values ofα1 andα2 to minimize the union
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Figure 5.1: Comparison of the simulated SER and the union bound of a rate-one CIOD
code for (4, 1) system andM1 = 2,M2 = 2.

bound on SER. Note thatα1 andα2 can be optimized separately. We can run a computer

search to find the optimal values ofα1 andα2.

The run time for searching optimal values ofα1 and α2 of a given constellation is

only few minutes. However, we can further reduce the searching time by considering the

following observation. In practice,S is usually symmetric via either horizontal or vertical

axis of the Cartesian coordinate system. We can assume thatS is symmetric via the vertical

axis. IfS is symmetric via the horizontal axis, we can always rotate the whole constellation

an angle ofπ/2 to make it symmetric via the vertical axis.

Assume thatα2 = π/2 − α1. For each pair of symbols(di, dj) =
(
[ai, bi]

T, [aj, bj]
T
)
,

we can find one and only one pair(dm, dn) =
(
[ai, −bi]

T, [aj, −bj]
T
)

so thatP1(di →
dj) = P2(dm → dn). Therefore,Pu,1(S) = Pu,2(S); and ifαopt is the optimal value ofα1,

thenπ/2 − αopt is optimal forα2. Hence, we just write the value ofα1 and imply that the

value ofα2 = π/2 − α1.

The union bound on SER is plotted in Fig. 5.1 for a CIOD code forM = 4 transmit

antennas(M1,M2) = (2, 2). For the three examined constellations (4QAM, 8QAM-R, and

16QAM), andα1 = 31.7175◦ [92], the union bound becomes tight when SER< 10−1 and

is less than 0.1 dB apart from the simulated SER at high SNR. Similar results can be found
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Figure 5.2: Comparison of the union bound and simulated SER ofa CIOD code with rate
of 6/7 symbol pcu for (6, 1) system andM1 = 2,M2 = 4.

for the case withM = 6, M1 = 2,M2 = 4 in Fig. 5.2; the union bound even converges

with the simulated SER.

5.1.5 Numerical Examples

Since the union bound is very tight for SER <10−2, it can be used to optimize the values of

rotation anglesα1 andα1. The new optimal signal rotations for the popular constellations

based on minimizing the SER union bound are summarized in Table 5.2. Only the optimal

valuesαopt of α1 are listed, the optimal values ofα2 = π/2−αopt. The geometrical shapes

of 8-ary constellations are sketched in Fig. 5.3. The best 8TRI in terms of minimum

Euclidean distance (carved from the lattice of equilateraltriangular) is selected [104].

Note that in Table 5.2, theαopt varies with the number of antennasM1 andM2.

It is shown that CIOD codes perform better that OSTBC in [92]. Wethus just com-

pare the SER union bounds of CIOD code with new optimal signal designs in Fig. 5.4 for

(M1,M2) = (2, 4). Obviously, QAM signals yield the best performance compared with

other constellations of the same size. On the other hand, TRI constellations have the best

minimum Euclidean distance; however, their performance isinferior to that of QAM sig-

nals. This observation is also confirmed in Fig. 5.4, where the SER of CIOD codes for
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Table 5.2: Optimal Rotation Angles of Popular Constellations

Signal (2, 1) (2, 2) (2, 3) (2, 4) (3, 3)

4QAM 28.939◦ 30.417◦ 29.698◦ 29.003◦ 30.778◦

4TRI 20.142◦ 13.883◦ 71.739◦ 68.687◦ 75.836◦

8PSK 37.690◦ 39.216◦ 38.808◦ 38.534◦ 39.857◦

8APSK 10.316◦ 11.528◦ 11.181◦ 11.000◦ 12.015◦

8TRI 20.309◦ 45.000◦ 11.061◦ 9.430◦ 45.000◦

8QAM-R 33.037◦ 31.834◦ 29.658◦ 28.626◦ 31.737◦

8QAM-SR 12.234◦ 13.036◦ 12.925◦ 12.701◦ 13.173◦

16PSK 3.485◦ 2.570◦ 2.832◦ 2.964◦ 2.200◦

16TRI 19.236◦ 45.000◦ 47.116◦ 70.690◦ 45.000◦

16QAM 31.436◦ 31.677◦ 31.557◦ 31.462◦ 31.704◦

Figure 5.3: Geometrical shapes of 8-ary constellations.

(M1,M2) = (3, 3) with various constellations is sketched.

Our newly proposed rotation angles are only slightly different from the optimal rota-

tion angles for QAM in terms of coding gain derived in [92]. Therefore, the performance
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Figure 5.4: SER union bound a CIOD code with rate of 6/7 symbol pcu for (6, 1) system
andM1 = 2,M2 = 4.
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Figure 5.5: SER union bound a CIOD code with rate of 3/4 symbol pcu for (6, 1) system
andM1 = 3,M2 = 3.

improvement is marginal, but note that [92] does not cover constellations other than QAM.

Nevertheless, the exact PEP derivation is a useful tool to accurately analyze the perfor-

mance of different constellations with signal rotations.

Note that we have used unitary rotations for the above analysis. This approach produces
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good performance for signal constellations with even powerof the real and imaginary parts.

For the signal with bias powers of the real and imaginary parts, such as QAM-R, the non-

unitary rotations may perform better. This approach works well for MDC-ABBA codes (see

Section 3.5). In the next following, we will apply this method presented for MDC-ABBA

codes to design the non-unitary rotation for CIOD codes with QAM-R by combining power

allocation and signal rotation.

5.1.6 Optimal Signal Rotation with Power Allocation

For QAM-R, e.g. 8QAM-R in Fig. 5.3, the average powers of the real and imaginary

parts of the signal points are different. We may change the power allocation to the real and

imaginary parts of QAM-R signals to get better overall SER.

To change the power allocation, the real and imaginary of QAM-R signals are first

multiplied by constantsσ1 andσ2, respectively, then they are rotated by unitary matrix

R1, R2. For example, letS be a constellation with signal setS = {d | d = a+j b, a, b ∈ R},

the new constellation with new power allocation isS̄ = {d̄ | d̄ = σ1a + j σ2b; a, b ∈ R}.

The average energy of the constellationS̄ is kept the same as that ofS, i.e. unitary. For

example, the 8QAM-R with signal points{(±3± j,±1± j)/
√

48} has constraint equation

for coefficientsσ1 andσ2 as5σ2
1 + σ2

2 = 6. Hence, if the value ofσ1 is given, the value of

σ2 is known explicitly.

We still use (5.15) to calculate the union bound on SER of CIOD codes with signal

rotation and power re-allocation; (5.16) can be rewritten to include the effects of power

re-allocation as
[
β1

β2

]
=

[
cos(α1) sin(α1)
sin(α1) − cos(α1)

] [
σ1 0
0 σ2

]

︸ ︷︷ ︸
R̄1

[
δ1

δ2

]
. (5.22)

The total effect of signal rotation and power re-allocationis the non-unitary signal trans-

form R̄1. Now the minimization of the union bound is based on two variables: σ1 (or σ2)

andα1. We run exhaustive computer search to find the optimal valuesof σ1 andα1. In fact,

there is only single value ofσ1 so that the union bound is minimized; this value ofσ1 is

the global solution of the union bound minimization. The optimal values ofσ1 andα1 for

8QAM-R and 32QAM-R are provided in Table 5.3.
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Table 5.3: Optimal Power Allocation and Signal Rotation for QAM-R

Constellation σ1 σ2 αopt

8QAM-R 0.9055 1.3784 45.0◦

32QAM-R 0.8972 1.3487 43.0◦
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Figure 5.6: BER and union bound on SER of the rate-one CIOD code with rectangular
8QAM and 32QAM for (4, 1) system andM1 = 2,M2 = 2.

In Fig. 5.6, we compare the union bounds on SER of 8QAM-R and 32QAM-R using

signal rotation of Khan-Rajan withα1 = 31.7175◦ [92], signal transformation of Wang-

Wang-Xia [125, Theorem 6], and our new signal transformation for CIOD codes withM =

4 (M1 = 2,M2 = 2), N = 1. At SER =10−6, our new signal transformation yields 0.2 dB

and 0.4 dB gains compared with the signal designs of Wang-Wang-Xia and Khan-Rajan,

respectively. The BER of 8QAM-R also confirms the improvementof our newly proposed

transformation over the existing ones.

The success of the new signal design arises because the powers of the real and imag-

inary parts of QAM-R are significantly different. We found that for other constellations

with more balanced powers of the real and imaginary parts, even though the new signal

design method can improve the performance, the improvementis marginal.

To this point, we have extended the methodology, which has been used for MDC-ABBA
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codes, to analyze CIOD codes. CIOD codes are single-symbol decodable. The main ad-

vantage of CIOD codes is the higher code rate compared with MDC-ABBA codes and

OSTBC. Various open issues of CIOD codes have been addressed, including the equivalent

channels, new maximum likelihood decoding method, performance analysis and optimal

signal designs.

The next section will treat another class of STBC with 4-groupdecoding called 4-group

QSTBC proposed by Yuen, Guan, and Tjhung [93]. We also follow the steps that help us in

analyzing several low-complexity STBC. The key problem is howto derive the equivalent

channel of 4-group QSTBC.

5.2 4-Group Quasi-Orthogonal STBC

5.2.1 Code Construction

The 4-group QSTBC is developed from MDC-QSTBC [120]. The real and imaginary parts

of a complex symbol can be mapped to the same group. We thus usethe general form of

STBC in (2.4):X =
∑K

k=1 (akAk + bkBk) to study 4-group QSTBC; hence, Theorem 2.2

can be restated as follows.

Lemma 5.1.The necessary and sufficient conditions for a STBC in (2.4) becomesΓ -group

decodable are

A†
pAq + A†

pAq = 0, (5.23a)

B†
pBq + B†

pBq = 0, (5.23b)

A†
pBq + B†

pAq = 0 . (5.23c)

∀p ∈ Θi,∀q ∈ Θj, 1 ≤ i 6= j ≤ Γ .

The sufficient condition so that a STBC is four-group decodable is found in [93].

Theorem 5.2( [93]). Given a 4-group STBC forM transmit antennas with code lengthT

andK sets of dispersion matrices(Ak, Bk; 1 ≤ k ≤ K), A 4-group STBC with code length

2T for 2M transmit antennas, which consists of2K sets of dispersion matrices denoted as
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(Āi, B̄i), 1 ≤ i ≤ 2K, can be constructed using the following mapping rules:

Ā2k−1 =

[
Ak 0

0 Ak

]
, Ā2k =

[
Bk 0

0 Bk

]
, B̄2k−1 =

[
0 Ak

Ak 0

]
, B̄2k =

[
0 Bk

Bk 0

]
.

(5.24)

The recursive construction of 4-group STBC specified in Theorem 5.2 suggests that

we can start with the MDC-QSTBC for 4 transmit antennas proposed in [120] to construct

4-group STBC for 8, 16 transmit antennas and so on, because MDC-QSTBC is one of

the STBC satisfying Lemma 5.1; the resulting STBC is thus called 4-group QSTBC. For

practical interest, we will illustrate the encoding process of 4-group QSTBC for 8 transmit

antennas from the MDC-QSTBC for 4 transmit antennas [120] in the following.

Note that MDC-QSTBC in [120] is actually equivalent to the ABBA codes [47, 125].

We can write the code matrix of MDC-QSTBC for 4 transmit antennas as

F4 =




a1 + j a3 a2 + j a4 b1 + j b3 b2 + j b4

−a2 + j a4 a1 − j a3 −b2 + j b4 b1 − j b3

b1 + j b3 b2 + j b4 a1 + j a3 a2 + j a4

−b2 + j b4 b1 − j b3 −a2 + j a4 a1 − j a3


 =




x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3

x3 x4 x1 x2

−x∗
4 x∗

3 −x∗
2 x∗

1


 .

(5.25)

wherej2 = −1, the intermediate variablesx1 = a1 + j a3, x2 = a2 + j a4, x3 = b1 + j b3, and

x4 = b2 + j b4 are used to highlight the ABBA structure of MDC-QSTBC codes [47,120].

The four transmitted symbolssi = ai + j bi, (i = 1, . . . , 4) in the code matrixF4 can be

separated at the receiver for maximum likelihood detection. We now build the code matrix

of 4-group QSTBC for 8 transmit antennas fromF4 using mapping rules in (5.24) below:

F8 =




a1 + j a5 a3 + j a7 a2 + j a6 a4 + j a8 . . .
−a3 + j a7 a1 − j a5 −a4 + j a8 a2 − j a6 . . .

a2 + j a6 a4 + j a8 a1 + j a5 a3 + j a7 . . .
−a4 + j a8 a2 − j a6 −a3 + j a7 a1 − j a5 . . .

b1 + j b5 b3 + j b7 b2 + j b6 b4 + j b8 . . .
−b3 + j b7 b1 − j b5 −b4 + j b8 b2 − j b6 . . .

b2 + j b6 b4 + j b8 b1 + j b5 b3 + j b7 . . .
−b4 + j b8 b2 − j b6 −b3 + j b7 b1 − j b5 . . .

. . . b1 + j b5 b3 + j b7 b2 + j b6 b4 + j b8

. . . −b3 + j b7 b1 − j b5 −b4 + j b8 b2 − j b6

. . . b2 + j b6 b4 + j b8 b1 + j b5 b3 + j b7

. . . −b4 + j b8 b2 − j b6 −b3 + j b7 b1 − j b5

. . . a1 + j a5 a3 + j a7 a2 + j a6 a4 + j a8

. . . −a3 + j a7 a1 − j a5 −a4 + j a8 a2 − j a6

. . . a2 + j a6 a4 + j a8 a1 + j a5 a3 + j a7

. . . −a4 + j a8 a2 − j a6 −a3 + j a7 a1 − j a5




. (5.26)
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The code rate of 4-group QSTBC for 8 transmit antennas is one symbol pcu. In general,

by construction, the rate of 4-group QSTBC for2M transmit antennas is the same at the

rate of MDC-QSTBC forM transmit antennas. Since the maximal rate of MDC-QSTBC

is one symbol pcu [120], the maximal rate of 4-group QSTBC is also one symbol pcu and

it is achievable for any number of transmit antennas. Since 4-group QSBTC is constructed

for 2m transmit antennas, if the number of transmit antennas isM < 2m, then(2m − M)

columns of the code matrix for2m transmit antennas can be deleted to obtain the code

for M antennas. The resulting codes can be shown to achieve full-diversity [16, 96] if the

mother code for2m antennas is full-diversity.

5.2.2 Decoding

We know that the symbolss1, s2, s3, s4 of F4 can be separately detected. Therefore, from

Theorem 5.2, the 4 groups of 8 symbols ofF8 can be detected independently. These 4

groups are(s1, s2), (s3, s4), (s5, s6), and(s7, s8). We will present the decoding of 4-group

QSTBC for 8 transmit antennas in details.

The decoding of 4-group QSTBCF8 requires maximum likelihood search over 4 real-

symbols [93]. It is desirable to alleviate this high complexity of maximum likelihood search

by using a sphere decoder [107, 108]. To do so, we will derive an equivalent code and the

equivalent channel ofF8.

The equivalent code ofF8 is obtained by column permutations for the code matrix of

F8 in (5.26): the order of columns is changed to (1, 3, 5, 7, 2, 4, 6, 8). This order of

permutations is also applied for the rows ofF8. Let x1 = a1 + j a5, x2 = a2 + j a6, x3 =

b1 + j b5, x4 = b2 + j b6, x5 = a3 + j a7, x6 = a4 + j a8, x7 = b3 + j b7, x8 = b4 + j b8 be the

intermediate variables, we obtain a permutation-equivalent code ofF8 below

D =

[
D1 D2

−D∗
2 D∗

1

]
(5.27)

where

D1 =




x1 x2 x3 x4

x2 x1 x4 x3

x3 x4 x1 x2

x4 x3 x2 x1


 , D2 =




x5 x6 x7 x8

x6 x5 x8 x7

x7 x8 x5 x6

x8 x7 x6 x5


 . (5.28)
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The sub-matricesD1 andD2 have a special form calledblock-circulant matrix with circu-

lant blocks[64].

We next show how to decode the codeD. For the sake of simplicity, we consider a

single receive antenna. The generalization for multiple receive antennas is straightforward.

Assume that the transmit symbols are drawn from a constellation with unit average

power. The transmit-receive signal model in (2.3) for the case of STBCD follows

y =

√
ρ

8
Dh + w. (5.29)

Let x =
[
x1 x2 . . . x8

]T
, ŷ =

[
y1 . . . y4 y∗

5 . . . y∗
8

]T
,

ŵ =
[
w1 . . . w4 w∗

5 . . . w∗
8

]T
, and

H1 =




h1 h2 h3 h4

h2 h1 h4 h3

h3 h4 h1 h2

h4 h3 h2 h1


 , H2 =




h5 h6 h7 h8

h6 h5 h8 h7

h7 h8 h5 h6

h8 h7 h6 h5


 . (5.30)

We have an equivalent expression of (5.29) as

ŷ =

√
ρ

8

[
H1 H2

H∗
2 −H∗

1

]

︸ ︷︷ ︸
H̄

x + ŵ. (5.31)

Note thatH1 andH2 are block-circulant matrices with circulant-blocks [64].Thus,

they are commutative and so doH∗
1 andH∗

2. We can multiply both sides of (5.31) with̄H†

to get

H̄†
ŷ︸︷︷︸

ȳ

=

√
ρ

8

[
H∗

1 H1 +H∗
2 H2 0

0 H∗
1 H1 +H∗

2 H2

]
x + H̄†

ŵ︸ ︷︷ ︸
w̄

. (5.32)

It is not hard to show that the noise elements of vectorw̄ are correlated with covariance

matrix H̄†H̄. Thus, this noise vector can be whitened by multiplying bothsides of (5.32)

with the matrix(H̄†H̄)−1/2. Let Ĥ = H∗
1 H1 +H∗

2 H2, (5.32) after the noise whitening step

is equivalent to the following equations

Ĥ−1/2
ȳ1 =

√
ρ
8Ĥ

1/2
x1 + w̄1, (5.33a)

Ĥ−1/2
ȳ2 =

√
ρ
8Ĥ

1/2
x2 + w̄2 (5.33b)

whereȳ1 =
[
ȳ1 ȳ2 ȳ3 ȳ4

]T
, ȳ2 =

[
ȳ5 ȳ6 ȳ7 ȳ8

]T
, x1 =

[
x1 x2 x3 x4

]T
, x2 =

[
x5 x6 x7 x8

]T
. The noise vectors̄w1 = Ĥ−1/2 [

z̄1 z̄2 z̄3 z̄4

]T
,

w̄2 = Ĥ−1/2 [
z̄5 z̄6 z̄7 z̄8

]T
are uncorrelated and have elements∼ CN (0, 1).

109



At this point, the decoding of the 8 transmitted symbols in the code matrixD can be

readily decoupled into 2 independent groups. However, since the code is a 4-group STBC,

we can further decompose them into 4 groups in the following.

Denote the2 × 2 (real) Fourier transform matrix byF2 = 1√
2

[
1 1
1 −1

]
. The block-

circulant matricesH1 andH2 can be diagonalized by a (real) unitary matrixT = F2 ⊗F2

[64, Theorem 5.8.2, p. 185]. Note thatT † = T , therefore,H1 = TΛ1T andH2 =

TΛ2T , whereΛ1 andΛ2 are diagonal matrices, with eigenvalues ofH1 andH2 in the main

diagonal, respectively. Thus,

Ĥ = T (Λ†
1Λ1 + Λ†

2Λ2)T, (5.34)

and alsoĤ1/2
= T (Λ†

1Λ1 + Λ†
2Λ2)

1/2T .

SinceĤ1/2
is a real matrix, (5.33) becomes

Ĥ−1/2ℜ(ȳi) =

√
ρ

8
Ĥ1/2ℜ(xi) + ℜ(w̄i), i = 1, 2, (5.35a)

Ĥ−1/2ℑ(ȳi) =

√
ρ

8
Ĥ1/2ℑ(xi) + ℑ(w̄i), i = 1, 2. (5.35b)

Note thatℜ(x1) =
[
a1 a2 b1 b2

]T
:= d1, i.e. ℜ(x1) is dependent on the complex

symbolss1 ands2 only. Similarly,ℜ(x2),ℑ(x1), andℑ(x2) depend on(s3, s4), (s5, s6),

and(s7, s8), respectively.

From (5.35), the decoding of 8 transmitted complex symbols of STBC D reduces to

the decoding of 4 groups, each with 4 real (or two complex) symbols. The maximum-

likelihood solution of, for example, vectorℜ(x1), which consists of symbolss1 ands2,

is:

d̄1 = arg min
d1

[√
ρ

8
dT

1Ĥd1 − 2dT
1ℜ(ȳ1)

]
. (5.36)

Nevertheless, we can use a sphere decoder [108] to reduce thecomplexity of the maxi-

mum likelihood search (5.36). The matrix̂H1/2
can be considered as theequivalent channel

of the 4-group QSTBCD.

5.2.3 Performance Analysis

In (5.35), the four data vectors experience the same equivalent channel and the additive

noise vectors have the same statistic; the PEP of the four vectors are the same. We only
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need to consider the PEP of vectorsd1 = ℜ(x1) =
[
a1 a2 b1 b2

]T
. For notational

simplicity, the subindex1 of d1 is dropped.

Additionally, we can introduce redundancy on the signal space by using a4 × 4 real

unitary rotationR to the data vector
[
a1 a2 b1 b2

]T
[138]. Thus, the data vectord =

R
[
a1 a2 b1 b2

]T
. To keep the transmit power unchanged, the rotation matrix is assumed

orthogonal, i.e.RTR = I [63].

From (5.35a), the PEP of the paird andd̄ can be expressed by the Gaussian tail function

as [32]

P (d → d̄|Ĥ) = Q




√
ρ

8

|Ĥ1/2
Rδ|2

4N0


 (5.37)

whereN0 = 1/2 is the variance of the elements of the white noise vectorℜ(w1) in (5.35a),

δ = d − d̄. From (5.34), one has

P (d → d̄|Ĥ) = Q




√√√√ρ
[
δTRTT T(Λ†

1Λ1 + Λ†
2Λ2)TRδ

]

16


 . (5.38)

Let β = TRδ. Remember thatΛ1 is a diagonal matrix with eigenvalues ofH1 on the

main diagonal. Letλi,j (i = 1, 2; j = 1, 2, 3, 4) be the eigenvalues ofHi. ThenΛi =

diag (λi,1, λi,2, λi,3, λi,4).

P (d → d̄|Ĥ) = Q




√
ρ(
∑2

i=1

∑4
j=1 β2

j |λi,j|2)
16


 . (5.39)

To derive a closed form of (5.38), we need to evaluate the distribution of λi,j. The

eigenvectors ofH1 is the columns of the matrixT = 1
2F2 ⊗ F2. Thus, the eigenvalues of

H1 can be found to be

[
λ1,1 λ1,2 λ1,3 λ1,4

]T
= (F2 ⊗F2)

[
h1 h2 h3 h4

]T
. (5.40)

Sincehj (j = 1, . . . , 4) have distribution∼ CN (0, 1), thus,λ1,j (j = 1, . . . , 4) have

distribution∼ CN (0, 4) and so doλ2,j.
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We now use the Craig’s formular [131] to derive the conditional PEP in (5.39).

P (d → d̄|Ĥ) = Q




√
ρ(
∑2

i=1

∑4
j=1 β2

j |λi,j|2)
16




=
1

π

∫ π/2

0

exp

(
−ρ(

∑2
i=1

∑4
j=1 β2

j |λi,j|2)
32 sin2 α

)
dα. (5.41)

We can apply a method based on the moment generating function(MGF) [132,133] to

obtain the unconditional PEP in the following:

P (d → d̄) =
1

π

∫ π/2

0

[
4∏

i=1

(
1 +

ρβ2
i

8 sin2 α

)]−2

dα. (5.42)

Since there are four vectors to be decoded in each code matrix, the codeword PEP is

therefore bounded by 4 times the PEP given in (5.42). Assume that there areσ possible

vectorsd, the union bound on the frame error rate (FER) is

Pu = 4 × 2

σ

σ−1∑

i=1

σ∑

j=i+1

P (di → dj). (5.43)

We now examine the tightness of the union bound (5.43) compared with the simulated

FER. Recall that the signal rotationR plays an important role on the decoding performance

of 4-group QSTBC. In [93], the symbolss1, s3, s5, s7 are rotated by and angleγ1, and the

other symbols are rotated by an angleγ2. This type of complex signal rotations is equivalent

to the real signal rotation, denoted byRY GT , below.

RY GT =




cos γ1 sin γ1 0 0
sin γ1 − cos γ1 0 0

0 0 cos γ2 sin γ2

0 0 sin γ2 − cos γ2


 . (5.44)

For this class of rotation matrices and 4QAM, the valuesγ1 = 7◦ andγ2 = 23◦ maximize

the coding gain [16]. In Fig. 5.7, the FER of STBCD with the best-found rotation of

the form in (5.44) is plotted for 16QAM. The union bound becomes tight at FER< 10−2.

Since a similar result was obtained with 4QAM, we omit the FERcurve of 4QAM.

The tight union bound at medium and high SNR suggests that this bound can be used to

optimize the signal rotationR. In the most general case, the4× 4 orthogonal matrixR has

no less than4 independent entries. Therefore, an exhaustive search becomes impractical.

To overcome this problem, we propose two search strategies with complexity reduction

in the following.
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Figure 5.7: FER and union bound of 4-group QSTBC for (8, 1) system using the signal
rotation in [93].

St1 Reducing number of independent variables of the rotation matrix R.

One class of the4 × 4 real orthogonal matrix is given below:

R =




o1 o2 o3 o4

−o2 o1 −o4 o3

−o3 o4 o1 −o2

−o4 −o3 o2 o1


 (5.45)

where
∑4

i=1 o2
i = 1 and entriesoi are real. Because of this normalization, there are

only 3 independent variables out of 4 variables.

Another class of4 × 4 orthogonal matrix is given in (5.44). This class has only two

variables, we therefore would not expect further performance gain over the orthogo-

nal family in (5.45).

St2 OptimizingR based on the asymptotic bound at high SNR. Ifβi 6= 0∀i = 1, 2, 3, 4,

then1 +
ρβ2

i

8 sin2 α
≈ ρβ2

i

8 sin2 α
at high SNR, the approximation of the exact PEP in (5.42)

is

P (d → d̄) ≈
(

224ρ−8

π

∫ π/2

0

(sin α)16dα

)
4∏

i=1

|βi|−4 =
27ρ−816!

8!8!

4∏

i=1

|βi|−4

(5.46)
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Using the asymptotic bound, the searching time is reduced tremendously, because no

integration is required. We can also use the rotation given in (5.45) for the computer search.

The values ofoi (i = 1, 2, 3) are in the range(−1, 1) and the increment is0.005.

Similar to 4-group SAST codes, the asymptotic bound in (5.46) so that the PEP of

4-group QSTBC is heavily dependent on the product distance
∏4

i=1 βi (see, e.g. [138]).

Recall thatβ = TR(d− d̄); we can consider the product matrixTR is a combined rotation

matrix for data vectord.

The exponent of SNR in (5.46) is -8. This indicates that the maximum diversity order

of 4-group QSTBC is 8 and it is achievable if the product distance is non-zero for all

possible data vectors. Furthermore, at high SNR, the asymptotic bound becomes very tight

to the union bound and, therefore, very tight to the FER. Therefore, the larger the product

distance, the lower FER can be obtained. This observation isvery similar to the diversity-

coding gain concept due to Tarokhet al. [16]. Thus, we can optimize the rotation byR so

that the minimum product distance

dp,min = min
∀di,dj

4∏

k=1

|βk|, whereβ =
[
TR(di − dj)

]
(5.47)

is non-zero and maximized.

Note that the searches for the best rotation matrixR based on the union bound (5.43)

and the worst-case PEP (5.47) can be run independently. In addition, one can use the

coding gain metric [16] to search for the matrixR [93]. The rotation matrix minimizing

the union bound of FER should yield the lowest FER compared with the best rotation

found by optimizing the worst-case PEP and coding gain. However, we have used the

rotation matrices in (5.44) and (5.45) with a few independent variables to reduce the search

complexity, the results may not as good as the case with the best rotation matrix in terms

of optimizing the worst-case PEP.

If the complex signals are drawn from QAM, the (real) elements of d are in the set

{±1,±3,±5, . . .}. The best known rotations for QAM in terms of maximizing the mini-

mum product distance are provided in [139,140,142]; the rotation matrix for 4-dimensional

vector is given in (4.27).

The FER and BER of 4-group QSTBC with 16QAM, using signal rotation in (4.27) and

the best rotation in (5.44) (in terms of coding gain), are compared in Fig. 5.8. Clearly, the
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Figure 5.8: FER and BER of 4-group QSTBC with newly proposed rotation for (8, 1)
system.

rotation in (5.44) performs better at high SNR.

We have compared performances of 4-group QSTBC with signal rotation in (4.27) and

with the best rotations of the form (5.45) in terms of minimizing the union bound (5.43)

and asymptotic bound (5.46). The rotation in (4.27) also yields the best performance. Thus,

from now on, we use the rotation given in (4.27) for 4-group QSTBC.

Another application of the union bound on PEP is to compare the performance of 4-

group QSTBC with different types of constellations. For example, we investigate the per-

formance of 4-group QSTBC with 8QAM-R and 8QAM-S (see Fig. 4.2). The FER of

4-group QSTBC with these two constellations are also compared in Fig. 5.9. The union

bounds for 8-ary constellations are very tight to the simulated FER when FER< 10−2.

We observe an SNR gain of 0.9 dB by using 8QAM-S instead of 8QAM-R. However, this

improvement comes at the cost of complexity; we can use the sphere decoder to decode

transmitted symbols from 8QAM-R, while maximum likelihood search must be used to

decode signals from 8QAM-S.
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Figure 5.9: The union bound on FER of 4-group QSTBC using 8QAM-R and 8QAM-S
rotated by the newly proposed rotation, (8, 1) system.

5.2.4 Summary

In this chapter, we have analyzed single-symbol decoding CIOD codes and 4-group QSTBC

by applying the methods developed for OEST codes. The equivalent channels and new de-

coders of the two codes were derived. Optimal signal designshave been presented, based

on the exact PEP and union bound. These results show that our approach for OEST codes

is powerful for analyzing the performance of the existing STBC.

In the next chapter, design and performance of space-time codes in frequency selective

fading channel are considered for MIMO-OFDM.
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Chapter 6

Intercarrier Interference
Self-Cancellation Space-Frequency
Codes for MIMO-OFDM

In this chapter, the design of space-time codes in frequency-selective fading is considered.

Since OFDM is robust against frequency-selective fading, it is used in current wireless

systems and is under investigation for the future MIMO systems. In frequency-selective

channels, the frequency diversity can be exploited so that the total diversity order becomes

Lp times higher than that of a frequency-flat fading channel, whereLp is the channel order.

This full spatial-frequency diversity can be extracted by combining OFDM with MIMO,

and encoding the data symbols along the spatial and frequency dimensions. The resulting

codes are called space-frequency codes. Since the performance of OFDM is sensitive to

the intercarrier interference, which is caused by frequency offset, phase-noise, and time-

varying channel, we will investigate the performance of space-frequency codes in the pres-

ence of intercarrier interference. Furthermore, a new encoding method will be proposed to

effectively improve the performance of space-frequency codes when intercarrier interfer-

ence is severe.

6.1 Introduction

The previous chapters focused on the low-decoding complexity STBC for flat-fading MIMO

channels. In practice, because of the multipath propagation, the mobile wireless chan-

nels are frequency-selective. An OFDM front-end can be usedto combat the frequency-
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selective channels because OFDM converts the wideband frequency-selective channel into

parallel frequency-flat channels. In order to exploit the frequency diversity, coding is per-

formed across the subchannels or in the frequency dimension. Therefore, signal design for

MIMO-OFDM can be regarded as space-frequency coding. Sincethe subchannels have

different amplitudes and phases, the quasi-static assumption in space-time coding is no

longer valid for space-frequency coding and low-complexity space-frequency code design

is more difficult.

In OFDM systems, there are several inherent factors that could severely degrade the

error rate performance of any space-frequency coding schemes. They are frequency offset,

phase noise, fast time varying channels, to name a few. A residual frequency offset exists

due to carrier synchronization mismatch and Doppler shift [85]. Residual frequency offset

destroys subcarrier orthogonality, which generates inter-carrier interference and the BER

increases consequently. The effect of such impairments on the conventional SISO (single

input single output) OFDM has been widely investigated. Forexample, in [86], BER is

calculated for uncoded SISO-OFDM systems with several modulation schemes. Several

works have been done for MIMO-OFDM. The authors in [87], [88]provide BER expres-

sions of MIMO-OFDM employing Alamouti’s scheme [82]. The authors in [89] analyze

the space-frequency code performance in different propagation settings, such as Rayleigh

and Rician fading channels, and with spatial correlation at the transmitter and/or receiver.

However, the impact of inter-carrier interference due to frequency offset on the pairwise

error probability (PEP) performance of general space-frequency codes and whether the

existing space-frequency code design criteria should be modified when inter-carrier inter-

ference exists have not been investigated. This important question will be addressed in this

chapter.

We will analytically show that the conventional space-frequency code design criteria

hold even with frequency offset. The performance loss is negligible if the normalized fre-

quency offset is small. This loss, however, increases rapidly with the increasing normalized

frequency offset and with SNR. When the normalized frequency offset is large, the domi-

nance of inter-carrier interference noise power prevents the typical rapid decay of PEP with

SNR and the PEP performance hits a floor.

Since inter-carrier interference can severely degrade theperformance of OFDM, sev-
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eral inter-carrier interference suppression methods are available (see [143], [144], [145]

and references therein). For SISO-OFDM, the authors in [146], [147] propose an inter-

carrier interference self-cancellation coding (or polynomial cancellation coding) method

to mitigate inter-carrier interference (caused by frequency offset) effectively. By analyz-

ing [146], [147] and [83], we derive anewclass of space-frequency codes, named inter-

carrier interference self-cancellation space-frequency(ISC-SF) codes, that provide a sat-

isfactory trade-off among error correction ability, inter-carrier interference reduction and

spectral efficiency. ISC-SF codes not only achieve the same diversity order (at least2MN )

and coding gains as the corresponding space-frequency codes derived in [83] but also no-

tably improve the performance of space-frequency codes with frequency offset. Although

our primarily focus is the performance of ISC-SF codes with frequency offset, we demon-

strate that ISC-SF codes also perform well when inter-carrier interference is caused by

phase noise and time-varying channels. Due to the similar nature of inter-carrier interfer-

ence caused by frequency offset, phase noise and time varying channels, we present the

simulation results for frequency offset only.

6.2 MIMO-OFDM System Model

Consider a MIMO-OFDM system withM transmit andN receive antennas as illustrated

in Fig. 1.4. The number of subcarriers in the OFDM modulatorsis K. TheLp−path quasi-

static Rayleigh fading channel model is assumed for the link between transmit antennam

(m = 1, ...,M ) and receive antennan (n = 1, ..., N ). The channel impulse response in the

time domain is [6]

hm,n(t, τ) =

Lp−1∑

l=0

αm,n(t, l)δ(τ − τl) (6.1)

whereτl is the channel delay of thelth path (l = 0, ..., Lp−1) andδ(.) denotes Dirac’s delta

function. The coefficientsαm,n(t, l)’s are complex channel gains of thelth path between

transmit antennam and receive antennan. They are modeled as zero-mean complex Gaus-

sian random variables (GRV’s) with varianceE

[
|αm,n(l)|2

]
= δ2

l . We assume the MIMO

channel is spatially uncorrelated and remains constant forat least one OFDM symbol du-

ration, but can vary randomly from symbol to symbol. Thus, the coefficientsαm,n(t, l)

are independent variables and the time indext can be omitted. Without loss of generality,
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the total power ofLp-path channels is normalized, so that
∑Lp−1

l=0 δ2
l = 1. The frequency

response of the channel between the transmit antennam and the receive antennan at sub-

carrierk is

Hm,n(k) =

Lp−1∑

l=0

αm,n(l) e−j2πk∆fτl , j =
√
−1 (6.2)

where∆f = 1/Ts is the subcarrier spacing andTs is the OFDM symbol duration.

The transmitted symbols are distributed overM transmit antennas andK subcarriers of

each OFDM modulator. Letcm(k) be thekth subcarrier being sent from transmit antenna

m in one OFDM symbol duration. In the frequency domain, the transmitted symbols over

M antennas can be represented in the matrix form as follows.

C =




c1(0) c2(0) ... cM(0)
c1(1) c2(1) ... cM(1)

. . . .
c1(K − 1) c2(K − 1) ... cM(K − 1)


 . (6.3)

Before transmitting, theK symbols of each column in (6.3) are modulated by inverse

discrete Fourier transform (IDFT) and cyclic prefix (CP) symbols are appended [148]. At

the receiver side, the CP symbols are discarded to remove inter-block interference. The re-

mainingK symbols are DFT demodulated to recover transmitted symbolsin the frequency

domain. Assume that received subcarriers are perfectly sampled and let the received signal

at the receive antennan beyn(k)

yn(k) =
M∑

m=1

cm(k)Hm,n(k) + wn(k) , k = 0, ..., K − 1, (6.4)

wherewn(k)’s are independent and identically distributed (i.i.d) noise samples, which are

modeled as zero-mean complex GRV’s. The transmit power fromeach antenna is normal-

ized to 1, resulting a noise variance per dimension ofM/(2ρ) whereρ is the average SNR

at each receive antenna.

The input-output relation of MIMO-OFDM systems can be described in several matrix

forms. We adopt the approach in [83] to derive the PEP of space-frequency codes. For the

zero frequency offset case, the received signal in (6.4) is presented in the vector form as

Y = DH + W (6.5)
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whereY is the received signal vector that concatenates received signals ofN receive an-

tennas as

Y = [ y1(0) ... y1(K − 1) y2(0) ... y2(K − 1) yN(0) ... yN(K − 1) ]T , (6.6)

and the channel vectorH is of sizeKMN × 1 is given by

H =
[

HT
1,1 ... HT

M,1 HT
1,2 ... HT

M,2 ... HT
1,N ... HT

M,N

]T
(6.7)

where

Hm,n =
[

Hm,n(0) Hm,n(1) ... Hm,n(K − 1)
]T

. (6.8)

The noise vectorW is represented similarly to the received vectorY as

W = [ w1(0) ... w1(K − 1) w2(0) ... w2(K − 1) wN(0) ... wN(K − 1) ]T .

(6.9)

The data matrixD sizeKM × KMN represents the transmitted data in (6.3):

D =




D1 D2 . . . DM 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 D1 D2 . . . DM . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 0 . . . D1 D2 . . . DM


 . (6.10)

Each matrixDm consists of coded symbols transmitted from antennam

Dm = diag [cm(0), cm(1), ..., cm(K − 1)] . (6.11)

6.3 Model of MIMO-OFDM with Frequency Offset

We now extend the MIMO-OFDM system given in (6.5) for the non-zero frequency offset

case. To subsume the frequency offset in (6.5), we first review the model of SISO systems

with frequency offset that was described in [149].

There is always a frequency offsetδf at the sampling points of received signal in fre-

quency domain [149], [148]. In the SISO-OFDM system, the normalized frequency offset

ε is defined byε = δf/∆f . The normalized frequency offset is the same for all subcarriers

of one OFDM symbol, but may vary from symbol to symbol. In the SISO systems, the

receivedkth subcarrier is expressed as follows:

y(k) = S(0)H(k)c(k)︸ ︷︷ ︸
desired signal

+
K−1∑

p=0

∑

p 6=k

S(p − k)H(p)c(p)

︸ ︷︷ ︸
ICI

+w(k) (6.12)
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Let I(k) denotes inter-carrier interference from the other subcarriers to the receivedkth

subcarrier:

I(k) =
K−1∑

p=0

∑

p 6=k

S(p − k)H(p)c(p) . (6.13)

CoefficientsS(k) in (6.13) are expressed as:

S(k) =
sin [π (k + ε)]

K sin
[

π
K

(k + ε)
] exp

[
jπ

(
1 − 1

K

)
(k + ε)

]
. (6.14)

The coefficientS(0) in (6.12) can be derived by substitutingk = 0 in (6.14) to be

S(0) =
sin (πε)

K sin
(

π
K

ε
) exp

[
jπ

(
1 − 1

K

)
ε

]
. (6.15)

Eqs. (6.12) and (6.15) show that due to the frequency offset,the amplitude of the

desired subcarrier is attenuated and its phase is rotated. Furthermore, the inter-carrier in-

terference from the other subcarriers can be considered as an additional noise. Hence, the

SNR of the received signal is reduced.

We now generalize (6.12) for MIMO-OFDM systems and allow fordistinct frequency

offset’s among different transmit/receive antennas pairs. Let the normalized frequency

offset of the transmission link from transmit antennam and receive antennan beεm,n. For

MIMO systems, the inter-carrier interference termIn(k) at subcarrierk of each receive

antennan is the superposition ofM inter-carrier interference termsIm,n(k) caused by

transmitted signals from transmit antennasm as

In(k) =
M∑

m=1

Im,n(k) (6.16)

where

Im,n(k) =
K−1∑

p=0

∑

p 6=k

cm(p)Hm,n(p)Sm,n(p − k) (6.17)

and

Sm,n(k) =
sin [π (k + εm,n)]

K sin
[

π
K

(k + εm,n)
] exp

[
jπ

(
1 − 1

K

)
(k + εm,n)

]
(6.18)

Sm,n(0) =
sin (πεm,n)

K sin
(

π
K

εm,n

) exp

[
jπ

(
1 − 1

K

)
εm,n

]
. (6.19)

Eq. (6.12) becomes:

yn(k) =
M∑

m=1

cm(k)Hm,n(k) Sm,n(0) + In(k) + wn(k) . (6.20)
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Note thatSm,n(0) is a constant with respect to subcarrier indexk. Hence, in (6.20) we

can groupHm,n(k) andSm,n(0) as:

H̃m,n(k) = Sm,n(0)Hm,n(k) .

The equivalent form of (6.8) is

H̃m,n =
[
H̃m,n(0) H̃m,n(1)... H̃m,n(K − 1)

]T
. (6.21)

MatricesH̃m,n are arranged into the matrix̃H, which has exactly the same structure

with the matrixH given in (6.7), but the matrix̃H accounts for the presence of frequency

offset.

The equivalent noise at each received subcarrier is a sum of the inter-carrier interference

noise and complex Gaussian thermal noise terms as

z̃n(k) = In(k) + wn(k) . (6.22)

The MIMO-OFDM model with frequency offset is now written as

Y = DH̃ + W̃ (6.23)

whereY is the received vector and the matrixD consists of transmitted symbols. They are

described in (6.6) and (6.10) accordingly and rewritten in (6.23) without modification.

The matrix representations (6.5) and (6.23) are suitable for deriving the PEP perfor-

mance of space-frequency codes. In the next section, the PEPupper bound of space-

frequency codes without frequency offset based on (6.5) will be given. It is an asymptotic

bound [150] and is tighter than the Chernoff bound [16] at highSNR. In the presence of

frequency offset, the equivalent representation (6.23) will be used to derive the PEP perfor-

mance (Section IV).

6.4 Design Criteria of Space-Frequency Codes

In the space-frequency encoding process, the source data istwo-dimensionally encoded

across the space (over multiple antennas) and frequency (over the subcarriers of OFDM

symbols). A space-frequency codeword may occupy several OFDM symbols [77], [81]
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or one OFDM symbol [67], [42], [83]. The maximal diversity order can be achieved by

coding over the subcarriers of only one OFDM symbol [67], [83], whereas in [77], [81] the

maximal diversity order is gained by coding over multiple OFDM symbols. That obviously

causes higher coding and decoding delay. We adopt the approach in [83] for our analysis.

In the following, we summarize the results of [83].

The input data symbols are divided intob-symbol source words and are parsed into

blocks and mapped to space-frequency codewords as represented in (6.3). At the receiver,

the maximum likelihood (ML) decoder selects a codewordE if its metricMe is minimum:

Me =
K−1∑

k=0

N∑

n=1

∣∣∣∣∣yn(k) −
M∑

m=1

cm (k) Hm,n (k)

∣∣∣∣∣

2

. (6.24)

Assume perfect channel state information (CSI) is availableat the receiver but not at

the transmitter and perfect symbol timing. The PEP for a transmitted codewordC and

erroneously decoded codewordE in a frequency-selective fading fading channel is upper

bounded as [83]:

P (C → E) ≤
(

2ΓN − 1
ΓN

)( Γ∏

i=1

λi

)−N

ρ−ΓN (6.25)

whereΓ is the rank of the matrixQ which is defined as

Q , ∆ ◦ R (6.26)

and where◦ denotes Hadamard product [63] andλi(i = 1, ..., Γ ) are non-zero eigenvalues

of Q. The matrices∆ andR are as follows:

∆ = (C − E) (C − E)† , (6.27)

R = Rm,n = E

[
Hm,nH

†
m,n

]
= V diag

(
δ2
0, δ

2
1, ..., δ

2
Lp−1

)
V † (6.28)

where

V =




1 1 . . . 1
vτ0 vτ1 . . . vτLp−1

...
...

...
...

v(K−1)τ0 v(K−1)τ1 . . . v(K−1)τLp−1


 (6.29)

andv = e−j2π∆f .

From (6.25), the space-frequency code design criteria can be stated as follows.
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• Diversity criterion: The minimum rank ofQ over all pairs of distinct codewords

should be as large as possible.

• Product criterion: The minimum value of the product
Γ∏

i=1

λi over all pairs of distinct

codewords should be also maximized.

From (6.25), the diversity order of space-frequency codes isΓN , maximum achievable

diversity order is equal tomin(LpMN, KN).

6.5 Performance of Space-Frequency Codes with
Frequency Offset

We continue the analysis with the two assumptions below:

• AS1: Residual normalized frequency offset’sεm,n are independent of the channel

coefficients.

• AS2: The inter-carrier interference termsIm,n(k) in (6.16) and (6.17) are indepen-

dent.

The coherent receiver first estimates the channel coefficients. Then the phase shift

caused by frequency offset is compensated [149]. Thus, the residual frequency offset is

somehow dependent on the channel estimation method. The AS1is given to simplify our

analysis. In practice, transmit data over multiple antennas are encoded. There may be a

degree of correlation among the transmitted data streams and consequently, the inter-carrier

interference noise termsIm,n(k) could be also correlated with respect to the subscriptm.

With AS2, all the inter-carrier interference noise at the receive antennas will have the same

variance and zero mean. AS2 will be made clearer during the derivation below. Therefore,

the ML detection in the presence of AWGN noise given in (6.24) holds.

To investigate the PEP of space-frequency codes with frequency offset using formula

(6.25), the channel coefficients̃Hm,n(k) in (6.21) should be complex GRVs. This require-

ment can be met ifSm,n(0) is deterministic or normalized frequency offset is not a random

variable (Case 1). In general case,εm,n can be assumed to be i.i.d random variables in

the range[E1, E2], their values can be changed from OFDM symbol to symbol (Case 2).
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However, the performance of space-frequency codes with fixed values of frequency offset

is of greater interest since it provides a closer look at the performance of space-frequency

codes at specific frequency offset values.

For analytical tractability, we further have the third assumption:

• AS3: normalized frequency offsetεm,n are constant and the same for all pair of

indices (m,n): εm,n = ε0.

If |E1| = |E2| = |ε0| (if the absolute value of random normalized frequency offset is

not more than a fixed normalized frequency offset value), we expect that the PEP perfor-

mance of Case 2 is more optimistic than that of the Case 1. Therefore, PEP obtained with

AS3 is an upper bound of PEP with frequency offset. This assumption will be relaxed in

our simulation study and thus more realistic performance evaluation is carried out by sim-

ulations. Our analytical results below, however, provide useful insight into the inter-carrier

interference performance of space-frequency codes.

In OFDM systems,K is typically 64 or larger. Therefore, the central limit theorem

can be applied to model the termIm,n(k) as a GRV [148]. The inter-carrier interference

term In(k) in (6.16) is a sum ofM independent GRV’s, it is also a GRV. The first two

moments of the termIm,n(k) in (6.17) by Gaussian approximation are calculated as follows.

Assume that coded symbolscm(p) have zero-mean (such as M-PAM, M-PSK, M-QAM

signal constellations), thenE [Im,n(k)] = 0.

The varianceσ2
Im,n

of Im,n(k) in (6.17) is

σ2
Im,n

= E

[
|Im(k)|2

]

= E



∣∣∣∣∣

(
K−1∑

p=0

cm(p)Hm,n(p)Sm,n(p − k)

)
− cm(k)Hm,n(k)Sm,n(0)

∣∣∣∣∣

2



= E



∣∣∣∣∣

(
K−1∑

p=0

cm(p)Hm,n(p)Sm,n(p − k)

)∣∣∣∣∣

2

− E

[
|cm(k)Hm,n(k)Sm,n(0)|2

]

=
K−1∑

p=0

E

[
|cm(p)|2

]
E

[
|Hm,n(p)|2

]
E

[
|Sm,n(p − n)|2

]

− E

[
|cm(k)|2

]
E

[
|Hm,n(k)|2

]
E

[
|Sm,n(0)|2

]
. (6.30)

In the last two rows of (6.30), the termE
[
|cm(k)|2

]
is the signal power, which is nor-

malized to 1. The termE
[
|Hm,n(k)|2

]
is the average of the channel power, and it is also
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normalized to 1. Eq. (6.30) becomes

σ2
Im,n

=
K−1∑

p=0

E

[
|S(p − k)|2

]
− S0 (6.31)

whereS0 = E

[
|Sm,n(0)|2

]
= |Sm,n(0)|2. Note that the residual normalized frequency off-

set is usually small,ε ≤ 0.2 [148], the number of subcarriersK ≥ 8, henceK sin(πε/K) ≈
πε. Let p(ε) be the probability density function (pdf) ofεm,n. In the case of constant fre-

quency offset,p(ε) = 1 , S0 can be evaluated as

S0 =

(
sin (πε0)

πε0

)2

= [sinc(ε0)]
2 (6.32)

wheresinc(x) = sin(πx)
πx

.

It is found in [85] that the sum
K−1∑
p=0

E

[
|S(p − k)|2

]
= 1, hence

σ2
Im,n

= 1 − S0 . (6.33)

It is clear thatσ2
Im,n

is independent of indicesm and n, it is just dependent on the

normalized frequency offset throughS0. With AS2, In(k) is a complex GRV with zero-

mean and varianceM(1 − S0). Therefore, the inter-carrier interference noise of MIMO-

OFDM z̃n(k) given in (6.22) is also a zero-mean complex GRV with varianceas

σ2
z = M (1 − S0 + 1/ρ) . (6.34)

Values ofσ2
z is identical for all receive antennas.

From (6.20), it is seen that the received signal power has a factor of S0; hence the

equivalent SNR at each receive antenna with frequency offset is

ρ̃ =
MS0

σ2
z

=

(
S0

(1 − S0)ρ + 1

)
ρ . (6.35)

Using the MIMO-OFDM model developed in Section 6.3 and space-frequency code

design criteria in Section 6.4, we derive PEP performance given in (6.25) with frequency

offset in the following.

The correlation matrix defined in (6.28) for equivalent channel matrixH̃m,n given in

(6.21) has a new form

R̃ = R̃m,n = E

[
H̃m,n(H̃m,n)†

]
= S0 E

[
Hm,nH†

m,n

]
= S0Rm,n . (6.36)

127



Hence, the matrixQ in (6.26) becomes matrix̃Q

Q̃ = ∆ ◦ R̃m,n = S0 (∆ ◦ Rm,n) = S0Q . (6.37)

We can easily verify that:

• MatricesQ andQ̃ have the same rankΓ .

• If λi is an eigenvalue ofQ thenλ̃i = S0λi is an eigenvalue of̃Q.

Substitutẽλ = S0λi and ρ̃ into (6.25), re-arrange the terms, the PEP expression with

frequency offset is

P (C → E) ≤ L0

(
2ΓN − 1

ΓN

)( Γ∏

i=1

λi

)−N

ρ−ΓN (6.38)

where

L0 =

(
S0

2

ρ(1 − S0) + 1

)−ΓN

. (6.39)

Comparing (6.25) and (6.38), we discern thatL0 represents the PEP performance loss

due to frequency offset. From (6.25), (6.38) and (6.39), we draw the following theoretical

conclusions:

1. The design criteria for space-frequency codes without frequency offset is still valid

in the case of frequency offset. The code design should maximize the diversity order

and coding gain.

2. For the same transmit power, the higher the normalized frequency offset, the higher

PEP performance loss. That is, at the same PEP, the higher normalized frequency

offset, the further PEP curve shifted to the right.

3. The PEP curves will shift right if frequency offset is nonzero. However, with the

same normalized frequency offset, the shift of PEP curves oflower diversity order

systems is larger than the shift of PEP curves of the system with higher diversity or-

der. This is due to the fact that given the same loss factorL0, the SNR compensation

for this loss is smaller for the codes with higher diversity order [c.f. (6.39)]. Thus,

the higher diversity order systems are more robust to the effects of frequency offset.
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4. If ρ (1 − S0) ≫ 1 or at high transmit power and high value of frequency offset,

P (C → E) ≤
(

2ΓN − 1

ΓN

)( Γ∏

i=1

λi

)−N

×
(

S0
2

1 − S0

)−ΓN

. (6.40)

The PEP is no longer inversely proportional with SNR and hitsa floor.

These analytical results can be anticipated since the inter-carrier interference term is

considered as an additional Gaussian noise. When frequency offset is small, the inter-

carrier interference power is smaller than the power of thermal noise; thus, its impact on

the performance of space-frequency codes is negligible. However, when the frequency off-

set is large, the inter-carrier interference noise dominates thermal noise. The inter-carrier

interference power increases with desired signal power. Therefore, when SNR is large,

inter-carrier interference causes the error floor as we havederived. Nevertheless, the ana-

lytical results reveal explicitly that when residual frequency offset is small, about1%, the

performance loss is almost negligible (cf. (6.39)).

To complete this section, we note that one can derive the ML receiver using (6.20) and

(6.24), the same result as (6.38) can be obtained.

6.6 Inter-Carrier Interference Self-Cancellation
Space-Frequency Codes

In Section IV, we have shown that if the normalized frequencyoffset is high, the PEP

performance is limited by a floor level at high SNR. Thus, a space-frequency code which

can mitigate the effects of high normalized frequency offset is desirable. We now relate

space-frequency codes and polynomial cancellation coding(PCC). PCC is first proposed

by authors in [146]. This idea is further analyzed in [147] from theory of finite differences.

We now summarize and analyze the main results of PCC in [146]. To mitigate the inter-

carrier interference caused by frequency offset, one codedor uncoded data symbol modu-

lates a group ofr, wherer = 2, 3, 4, ..., consecutive subcarriers. The optimum weighting

coefficients forr subcarriers to minimize inter-carrier interference are the coefficients of the

polynomial(1−D)r−1. The code rate of PCC is1/r. The inter-carrier interference perfor-

mance of this coding scheme increases withr at the cost of spectral efficiency. Simulation
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results [146] show that this coding scheme withr = 2 (or code rate1/2) outperforms the

system using rate1/2 convolutional code when normalized frequency offset is high (20%)

but PCC performs poorly when normalized frequency offset is small or medium (≤ 10%).

The reason is that this code is particularly designed to minimize inter-carrier interference

and hence may not be suitable for error correction purposes.To improve the performance

of PCC, an outer error control code is required. The resultant concatenated code has lower

rates asr increases. Thus, the smallest possible value ofr, r = 2 is of practical interest.

Another result of [146] is the inter-carrier interference cancellation demodulation con-

cept. For example, whenr = 2 one data symbolx is sent over two subcarriers that satisfies:

c(k) = x, c(k + 1) = −x. This process is called inter-carrier interference cancellation

modulation. The received signalsy(k) and y(k + 1) create a new signal for detection:

ȳ(k) = y(k) − y(k + 1). This process is named interference cancellation demodulation.

The combination of interference cancellation modulation and demodulation is called inter-

carrier interference self-cancellation (ISC). The inter-carrier interference noise power of

ISC is smaller than the original inter-carrier interference and inter-carrier interference of

interference cancellation demodulation. Therefore, the ISC scheme is powerful against fre-

quency offset. From a diversity point of view, using two valuesy(k) andy(k + 1) to detect

one transmitted symbolx could yield a diversity order of two. Since there is a strong corre-

lation between adjacent subcarriers, however, the use of the two signalsy(k) andy(k + 1)

may not, in fact, provide a diversity order of two. Our targetis to maximize the diver-

sity order of space-frequency codes. Thus, the interference cancellation modulation is our

concern, but not the ISC scheme.

In sum, PCC is suitable for inter-carrier interference reduction. However, its error

correction ability and spectral efficiency are low. Therefore, a low order PCC code with

r = 2 concatenated with powerful error control codes would be a good trade-off solution.

We next develop the idea of interference cancellation modulation to design a class of space-

frequency codes that are robust to inter-carrier interference.

Su et al. [83] show that the space-frequency code formed by repeatingeach row of

a full diversity order space-time codewordr times (1 ≤ r ≤ Lp) achieves at least the

diversity orderd = rMN . This repetition obviously reduces the spectral efficiency; thus,

we consider onlyr = 2.
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Let the number of OFDM subcarriersK = 2K̂. Suppose that the length of a space-

frequency codeword equals to the number of subcarriersK. If the space-frequency code-

word length is smaller thanK, a zero-padding matrix can be used for the remaining sub-

carriers. A space-frequency codeword has the form

C1 =




c1(0) c2(0) ... cM(0)
c1(0) c2(0) ... cM(0)

. . ... .

c1(K̂ − 1) c2(K̂ − 1) ... cM(K̂ − 1)

c1(K̂ − 1) c2(K̂ − 1) ... cM(K̂ − 1)




. (6.41)

Applying the interference cancellation modulation scheme, for r = 2, this scheme is

actually a repetition scheme but the repeated symbols are sign-reversed. In the case of

MIMO-OFDM, the repeated rows are sign-reversed to form new ISC-SF codewords as

C2 =




c1(0) c2(0) ... cM(0)
−c1(0) −c2(0) ... −cM(0)

. . ... .

c1(K̂ − 1) c2(K̂ − 1) ... cM(K̂ − 1)

−c1(K̂ − 1) −c2(K̂ − 1) ... −cM(K̂ − 1)




. (6.42)

We call the space-frequency coding schemes given in (6.41) and (6.42) as SC1 and SC2

for short. We now prove that the new coding scheme SC2 yields the same coding gain and

diversity order (at leastd = 2MN) compared with SC1, but SC2 integrates inter-carrier

interference self-cancellation capability.

Consider an entryai,j of the matrix ∆1 defined in (6.27) being created by space-

frequency codewords (6.41). The entrybi,j of the matrix∆2 being created by space-

frequency codewords in (6.42) is related withai,j as

bij =

{
aij, if ( i + j) is even

−aij, if ( i + j) is odd.

Note that the size of∆1 and∆2 is K × K,K = 2K̂ and, in particular, they can be

written as follows.

∆1 =




a11 a12 · · · a1K

a21 a22 · · · a2K
...

...
.. .

...
aK1 aK2 · · · aKK


 ,
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∆2 =




b11 b12 · · · b1K

b21 b22 · · · b2K
...

...
. . .

...
bK1 bK2 · · · bKK


 =




+a11 −a12 · · · −a1K

−a21 +a22 · · · +a2K
...

...
. . .

...
−aK1 +aK2 · · · +aKK


 .

The matrixR defined in (6.28) is the same for both SC1 and SC2. Therefore, comparing

the signs of entries ofQ1 = ∆1 ◦ R andQ2 = ∆2 ◦ R (defined in (6.26)), we can see that

the signs of entries ofQ2 are changed in accordance with the sign changes of entries of∆2

compared to∆1. Thus, we have following relationship:

• If vectorX1 =
[

x1 x2 x3 x4 ... xK−1 xK

]
is an eigenvector ofQ1 = ∆1 ◦

R, thenX2 =
[

x1 −x2 x3 −x4 ... xK−1 −xK

]
is an eigenvector ofQ2 =

∆2 ◦ R and vice verse, where(Q1, ∆1) and(Q2, ∆2) are sets of matrices associated

with space-frequency codewords defined in (6.26) and (6.27)respectively.

• If λ is an eigenvalue ofX1, it is also an eigenvalue ofX2 and vice verse. The rank of

Q1 andQ2 are the same, hence, space-frequency codes SC1 and SC2 have thesame

diversity order.

Thus, space-frequency codes constructed as in (6.41) and (6.42) have the same diversity

order and coding gain.

We refer to SC2 codes as inter-carrier interference self-cancellation space-frequency

codes or ISC-SF codes for short. The code rate of ISC-SF isRt/2, whereRt is the code

rate of the underlying ST code. Repetition the space-frequency codewords more than twice

in combination with polynomial cancellation coding will gain additional diversity order

and inter-carrier interference mitigation. However, the price paid for those improvements

is the spectral efficiency reduction. Moreover, from the simulation results, we will see

that the ISC-SF codes (r = 2) perform well compared with the codes without inter-carrier

interference cancellation. The higher order PCC codes (r > 2) would not significantly

improve inter-carrier interference reduction. Thus, analysis of the space-frequency schemes

with higher repetition orders (i.e. lower rate) is not discussed further. The ISC-SF coding

scheme (6.42) gives a satisfactory trade-off among error-control performance, inter-carrier

interference reduction and spectral efficiency.
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6.7 Phase Noise and Time Varying Channel

Channel variations and phase noise also produce inter-carrier interference. In Section II, we

assume that the MIMO channels remain constant during one OFDM symbol. However, due

to the relative movement of the transmitter and receiver, the channels may vary during one

OFDM symbol. This variation causes inter-carrier interference and makes BER increase

(see [151], [145] and references therein). For the description of phase noise and its effects,

the readers may refer to the references [152], [143], [71].

In the following, we use continuous time model to show how inter-carrier interference

is created by phase noise and time varying channels. ConsiderSISO-OFDM systems. The

transmitted signal over a block including CP, is given by

s(t) =
K−1∑

k=0

c(k)ej2πk∆ft ,−Tcp ≤ t ≤ Ts, (6.43)

whereTcp is the length of CP. The duration of one OFDM symbol with CP isTb = Tcp +Ts.

The signal at the input of the receiver is

r(t) = s(t) ∗ h(t, τ) =

∞∫

−∞

h(t, τ)s(t − τ)dt + w(t)

=
K−1∑

k=0

Lp−1∑

l=0

c(k)h(t, τl)e
−j2πk∆fτlej2πk∆ft + w(t) . (6.44)

where w(t) is an AWGN process with zero-mean and one-sided power spectral density is

N0. At the demodulator, the phase noiseφ(t) between the carrier and the local oscillator is

added to the phase of received signals. In the baseband representation, adding phase noise

is equivalent to multiplyr(t) with θ(t) = ejφ(t).

If we consider the effect of frequency offset only as in Section II-B, let φ(t) = 0 and

h(t, τ) to be constant, one can derivey(p) as in (6.12). In this section, we consider the inter-

carrier interference due to phase noise and time varying channels. Thus, we letδf = 0 to

simplify the expressions. The demodulated signaly(p) is

y(p) = T−1
s

K−1∑

k=0

Lp−1∑

l=0


c(k)e−j2πk∆fτl

Ts∫

0

h(t, τl)e
jφ(t)ej2π(k−p)∆ftdt


+ w(p). (6.45)
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To consider the effect of time varying channels only, letφ(t) = 0 in (6.45), we have

y(p) = H̆(p)c(p)︸ ︷︷ ︸
desired signal

+
K−1∑

k=0,k 6=p

H̆(p − k)c(k)

︸ ︷︷ ︸
ICI

+w(p) (6.46)

where

H̆(i) =

Lp−1∑

l=0


c(k)e−j2πk∆fτl

Ts∫

0

h(t, τl)e
j2π(k−p)∆ftdt


 . (6.47)

The inter-carrier interference term in (6.46) can be approximated by a zero-mean GRV.

Its power can be found in [153].

If we consider the effect of phase noise only, leth(t, τ) in (6.45) be constant,y(p)

becomes

y(p) = a(0)H(k)c(p)︸ ︷︷ ︸
desired signal

+
K−1∑

k=0,k 6=p

a(p − k)H(k)c(k)

︸ ︷︷ ︸
ICI

+w(p) (6.48)

where

a(i) = T−1
s

Ts∫

0

θ(t)e−j2πi∆ftdt , a(0) = T−1
s

Ts∫

0

θ(t)dt . (6.49)

SinceH̆(i) in (6.47) is a non-GRV anda(0) in (6.49) is non-constant, analyzing the

PEP of space-frequency codes with phase noise and time varying channels becomes diffi-

cult. However, comparing Eqs. (6.46) and (6.48) with (6.13), one can see the inter-carrier

interference contributions of subcarriers to one subcarrier due to time varying channels and

phase noise are similar to the inter-carrier interference contribution due to frequency offset.

Thus, ISC-SF codes with capability of cancelling inter-carrier interference should perform

well compared with the space-frequency codes without this feature in cases of phase noise

and time varying channels as discussed for the case of frequency offset.

6.8 Simulation Results and Discussion

We give simulation results to verify the theoretical analysis for space-frequency codes with

frequency offset. We use two channel models: (1) a simple two-path channel with uni-

form power delay profile and time delay between the two paths is 5µs and (2) the six-path
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COST207 typical urban channel model [6], a more realistic model. We use algebraic ST

convolutional codes [42], [154] of code rate1/2 with generator polynomial(5, 7) [32]

without channel interleaver. The Viterbi decoder [154], [32] is employed. The similar sim-

ulation results are observed for both channel models. Thus,we present the simulations with

six-path COST207 typical urban channel model for brevity.

6.8.1 Simulations with Constant Frequency Offset

We compare the performance of space-frequency codes for1%, 10% and20% normalized

frequency offset. Fig. 6.1 illustrates PEP curves of two OFDM systems with 64 subcarriers

and two transmit antennas. System 1 is equipped with one receive antenna and System 2

has two receive antennas, so that the diversity order of the two systems is at leastd = 2

andd = 4, respectively. Using (6.32), for1% normalized frequency offset,S0 = 0.9997,

L0 ≈ 1 in the SNR region of interest (≤ 30 dB). Therefore, theoretically the performance

loss is not significant. Fig. 6.1 confirms this conclusion. Ifthe normalized frequency offset

is small, say1%, the PEP curves almost overlap the PEP of the systems with no frequency

offset. In case normalized frequency offset is10%, the PEP curves of all systems are shifted

to the right and less steep than the curves of PEP with1% normalized frequency offset; this

shift is larger for the system with smaller diversity order.For example, atPEP = 10−3 the

PEP curve of the system withd = 2 shifts right 1.4 dB, whereas it is 0.8 dB for the system

with d = 4. The SNR needed to compensate the effect of frequency offsetincreases with

normalized frequency offset. When normalized frequency offset is20%, the PEP reduces

slightly even if there are large increases in SNR. The PEP performance reaches a floor at an

SNR of about 22 dB. This symptom is more serious for low diversity order systems, where

the floor level is higher than that of higher diversity order systems.

6.8.2 Simulations with Inter-Carrier Interference
Self-Cancellation Space-Frequency Codes

The performance of space-frequency coding schemes with andwithout inter-carrier inter-

ference self-cancellation (SC2 and SC1 accordingly) is illustrated in Fig. 6.2. The systems

to be examined have 128 subcarriers, 2 transmit and 1 receiveantennas. We can verify the

results in Section 6.5 that when frequency offset is absent,SC1 and SC2 have the same
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Figure 6.1: Performance of space-frequency codes withK = 64, constant frequency off-
set for the six-path COST207 typical urban channel model. NFOstands for normalized
frequency offset.
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Figure 6.2: Performance of space-frequency codes withK = 128, r = 2, constant fre-
quency offset, six-path COST207 channel model with and without inter-carrier interference
self-cancellation.

diversity order. The difference between the coding gains ofthe two schemes is very small,

less than 0.2 dB at the plotted SNR. This difference is expected to be zero at higher SNR

region. Once again, the performance loss for1% normalized frequency offset is negligible
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Figure 6.3: Performance of space-frequency codes withK = 64, uniformly distributed
frequency offset and the six-path COST207 typical urban channel model.

for both SC1 and SC2. However, the improvement of SC2 over SC1 is remarkable when

normalized frequency offset is10% and20%. For example, in Fig. 6.2 atPEP = 10−3 and

10% normalized frequency offset, the performance loss of SC1 is about 3.7 dB, whereas the

loss is about 0.5 dB with SC2. This improvement is significant in Fig. 6.2 where the loss of

SC2 is only 0.5 dB. In addition, SC2 lowers the error floor level notably when normalized

frequency offset is very high20%.

6.8.3 Simulations with Variable Frequency Offset

In practice, the frequency offset values of receive signalsat antennan that were transmitted

from antennam can be different and they vary from symbol to symbol. We now provide

simulation results for variable frequency offset. The distribution of normalized frequency

offset values are assumed uniform over the range[−E0, E0], where|E0| is the maximum

normalized frequency offset. Similarly to the previous simulations, we will examine per-

formance of the space-frequency codes for|E0| = 1%, 10% and20%.

As discussed in Section IV, assumption AS3, the performanceof space-frequency codes

with variable frequency offset should be upper-bounded by the performance curves with the

constant frequency offset. Fig. 6.3 presents performance of 64-subcarrier systems with one
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Figure 6.4: Performance of space-frequency codes withK = 128, r = 2, uniformly dis-
tributed frequency offset, six-path COST207 channel model with and without inter-carrier
interference self-cancellation.

and two transmit antennas. The two systems have two transmitantennas. By examining

Figs. 6.1 and 6.3, exactly the same observations can be made as with the constant frequency

offset. The only difference between the constant and variable frequency offset cases is that

in the latter case, the performance loss is always less than the loss of the former case,

as expected. For example, comparing Figs. 6.1 and 6.3, for the system 1 (d = 2), 10%

normalized frequency offset, at PEP =10−3, the loss is about 3 dB in case of constant

frequency offset, while it is about 1.7 dB for the system withvarying frequency offset.

Fig. 6.4 presents the performance of the space-frequency coding schemes SC1 and SC2

with variable frequency offset. Comparing with their performance that are given in Fig. 6.2

with fixed frequency offset, the loss for variable frequencyoffset is smaller.

6.9 Summary

We have analyzed the performance of space-frequency codes in the presence of frequency

offset. A MIMO-OFDM model with frequency offset has been developed to analyze the

PEP performance of space-frequency codes. Using the PEP upper bound for of space-

frequency codes, we showed that the conventional code design criteria remain valid pro-
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vided frequency offset is small. Inter-carrier interference is less severe for space-frequency

codes with high diversity order. Therefore, diversity not only improves the performance of

OFDM systems in the dispersive channels, but also makes the system robust to inter-carrier

interference. Furthermore, we proposed a new class of space-frequency codes, ISC-SF

codes with diversity order of at least2MN . ISC-SF codes are constructed from ST codes to

mitigate inter-carrier interference caused by frequency offset, phase noise and time varying

channels efficiently. This class of space-frequency codes permits a good trade-off among

error correction capability, inter-carrier interferencereduction and spectral efficiency. Our

results suggest a new direction in the design of space-time/space-frequency codes capable

of both error correction and inter-carrier interference reduction.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have designed space-time codes for MIMO systems considering the practical con-

straints such as decoding complexity and system imperfections. While reduction in de-

coding complexity leads to power and manufacturing cost savings, mitigating the system

imperfections is necessary to prevent possible transmission errors.

Low decoding complexity STBC have been considered in Chapters2 to Chapter 5.

The necessary and sufficient conditions for low decoding complexity STBC are proposed

for quasi-static frequency-flat MIMO fading channels. To achieve low complexity, we

have developed multi-group decodable STBC. For a fixed number of transmitted symbols

encoded in a code matrix, an increase in the number of groups leads to lower decoding

complexity.

We have proposed a new framework, OEST codes for low complexity STBC. The or-

thogonal designs are employed for constructing OEST codes,in which the indeterminates

are substituted by circulant matrices and scalar product isreplaced by Kronecker product.

If the orthogonal designs haveK indeterminates, the resulting OEST codes haveK data

vectors embedded in theK circulant matrices. At the receiver, theseK data vectors can

be detected separately with no interference from the other vectors. Hence, OEST codes are

K-group STBC.

The main properties of OEST codes have been derived. We have shown that OEST

codes can achieve full diversity with signal rotation. Optimal signal rotations that maximize

the coding gain or minimize the union bound have been computed. The maximal mutual
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information of OEST codes is shown to be equal to that of the underlying OSTBC. A

general decoder of OEST codes has been developed.

Additionally, we have shown that OEST codes subsume OSTBC, QSTBC (ABBA

codes), and circulant STBC. Therefore, many open problems of these codes can be solved

in a systematic manner. Detailed analysis has been performed for ABBA codes. A new

decoder is derived to facilitate single complex symbol decoding, i.e. minimal decoding

complexity (MDC), a property has been known to be possessed byOSTBC only. Further-

more, the SER performance of MDC-ABBA codes is directly optimized. This approach is

different from all the previous works, which optimize the code performance based on the

worst-case codeword PEP. The combination of MDC-ABBA codes and various signal con-

stellations is investigated. The results show that MDC-ABBA codes yield the best perfor-

mance with QAM. We also considered antenna selection, a closed-loop method to improve

the performance of MDC-ABBA codes. It is shown that MDC-ABBA codes can achieve

full diversity even with limited feedback. Simulation results shown that MDC-ABBA codes

perform better than OSTBC with the same decoding complexity.Thus MDC-ABBA codes

are a potential replacement of OSTBC when there are more than 2transmit antennas.

Importantly, the framework of OEST codes allows us to designa new STBC called

SAST codes. SAST codes are constructed by the Alamouti code,thus they are 2-group

decodable. SAST codes are of rate-one symbol pcu and they cannearly achieve the capacity

of MISO channel. From extensive simulations, we find that SAST codes also perform better

than other STBC having the same code rate, such as linear dispersion codes, DAST codes,

LCP codes, and QSTBC.

We furthermore proposed a new encoding method so that the OEST codes become2K-

group decodable, which wasK-group decodable initially. The representative SAST codes

have been analyzed in great detail. The new decoder for SAST codes has been derived for

the new encoding method. This makes SAST codes 4-group decodable. The best signal

transformations, in terms of coding gain, have been identified. They are the real rotation

matrices proposed for square lattices. Since 4-group SAST codes have low complexity, are

near-capacity achieving, and have good performance, 4-group SAST codes are suitable for

downlink wireless channels, where the multiple transmit antennas are used to improve the

diversity gain of the systems.
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Another contribution of OEST framework is the general method to derive the decoder

for low complexity STBC. This method is implemented into 3 sub-tasks: (1) to obtain the

spatial signature of data vectors; (2) to derive the equivalent channels; and (3) to propose

the simplified transmit-receive signal relations. This method has been successfully applied

for other low-complexity STBC: CIOD codes and 4-group QSTBC. As a side product, we

also derive the optimal signal designs for these two codes.

Chapters 2 to 5 deal with STBC in frequency-flat fading channels. However, frequency-

selective channels are of interest too and OFDM is commonly employed to deal with such

situations. We have studied the design of space-frequency codes for MIMO-OFDM sys-

tems with imperfections due to frequency offset. The designcriteria of space-frequency

codes have been revised when frequency offset exists. The results showed that the diversity

gain of MIMO system may be totally lost when frequency offsetis large, resulting in a irre-

ducible error floor. We proposed a new space-frequency coding scheme to partially cancel

the inter-carrier interference. The new coding scheme works well even when the frequency

offset is 10%.

7.2 Future Work

7.2.1 Maximal Rate of Multi-Group Decodable STBC

We have derived the necessary and sufficient conditions so that a STBC is multi-group

decodable. These conditions are given for a quasi-static fading channel, where the channel

is constant during the transmission of a code matrix. However, given a specific number of

groupsΓ > 1, the maximal code rate that can be designed is still unknown.For example,

the maximal code rate of OSTBC, a special case of single-symboldecodable, is known

[44]; but the maximal rate of single-symbol decodable is notyet reported [92]. In another

effort to search for high rate 2-group STBC, Yuenet al. [98] find a code of rate 5/4 for

4 antennas. Nevertheless, this rate is not shown to be maximal for 2-group STBC for 4

antennas. Thus in the direction of designing low complexitySTBC, we have two main

open problems.

1. What is the maximal rate ofΓ -group STBC?

2. How to systematically constructΓ -group STBC with maximal code rate.
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Another open problem is to design the low complexity space-frequency codes for MIMO-

OFDM systems. Since the channels of subcarriers vary along the frequency axis, that

means, the rows of space-frequency code matrix experience different channel gains. This

fact opposes to the MIMO frequency-flat channels, where the rows of space-time code

matrix experience the same channel gains. Therefore, the necessary and sufficient con-

ditions so that a space-frequency code is multi-group decodable need to be revised. The

design of low-complexity space-frequency codes becomes more difficult. Furthermore, the

two open questions of designing low complexity STBC in quasi-static frequency-flat fad-

ing channels are the open problems of designing low complexity space-frequency codes in

MIMO-OFDM.

7.2.2 Exploiting Channel State Information

We have pointed out that SAST codes are suitable for coherentMISO channels. SAST

codes can also be used in MIMO systems where the code rate of one symbol pcu is ac-

ceptable. When some form of channel state information is available at the transmitter, one

can derive the precoders to improve the performance of SAST codes. Several precoding

methods have been proposed for OSTBC [155–159] and for QSTBC [19, 118, 119]. The

combination of SAST codes (and also OEST codes in general) and precoding to exploit the

channel state information can be investigated.

7.2.3 Combination with Error Control Coding in Multi-User Systems

We may investigate the combination of OEST codes with error control codes, which are

employed by practical systems to correct transmission errors [41]. In Addition, modern

error control codes, like turbo codes [160,161] or low-density parity-check (LDPC) codes

[162–164], require the soft output from the inner STBC for iterative decoding [165–167].

An OEST decoder that produces the soft output information may be developed. While this

thesis has focused on point-to-point communications, adaptation of OEST codes and their

subclasses, such as SAST codes and MDC-ABBA codes, in multi-user systems with error

control codes can be investigated.
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7.2.4 Applications of OEST Codes

We have designed OEST codes for coherent communications andfor point-to-point links.

However, OSTBC and QSTBC, two special cases of OEST codes are shown to be suit-

able for differential encoding and non-coherent detection[117, 168, 169]. Furthermore,

OSTBC and QSTBC are recently investigated for relay cooperative communication proto-

cols [170–172]. Therefore, the applications of OEST codes for non-coherent or cooperative

communications, in general, can be further developed.
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1. D. N. Ðào and C. Tellambura, “Intercarrier interference self-cancellation space-

frequency codes for MIMO-OFDM,”IEEE Transactions of Vehicular Technology,
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3. ——, “A general combinatorial sphere decoder and its application,” IEEE Commu-

nications Letters, vol. 10, pp. 810- 812, Dec. 2006.
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