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Abstract

Space-time coding is an effective approach to improve thabiéty of data transmission
as well as the data rates over multiple-input multiple-au{MIMO) fading wireless chan-
nels. In this thesis, space-time code designs are invéstigath a view to address practical
concerns such as decoding complexity and channel impaismen

We study low-decoding complexity space-time block codd8(S), a popular subclass
of space-time codes, for quasi-static frequency-flat ad#iMO channels. Therefore,
the space-time code matrices are designed to allow theatepaof transmitted symbols
into groups for decoding; we call these codes multi-grouppdable STBC. A new multi-
group decodable STBC, called orthogonality-embedded sjpmee(OEST) codes, is then
proposed. The equivalent channel, general decoder, antmmaxmutual information of

OEST codes are presented. The following contributionsdbas OEST codes, are made:

e It is shown that OEST codes subsume existing orthogonakiguthogonal, and
circulant STBC. Therefore, the results of OEST codes can lollyesgpplied to these

codes.

e New STBC, called semi-orthogonal algebraic space-time (SAS8des, are derived
from OEST codes. SAST codes are rate-one, full-diversityr-fjroup decodable,
delay-optimal for even number of antennas. SAST codesyaehieve the capacity

of multiple-input single-output channels.

e The framework of OEST codes is applied to the existing shsglmbol decodable
codes, like minimum decoding complexity quasi-orthog@@aBC (MDC-QSTBC)
and coordinate-interleaved orthogonal designs, and dpggaasi-orthogonal STBC.
Several open problems of these codes are solved, includingadent channel, gen-

eral decoder, symbol error rate performance analysis, ptithal signal rotations.



Additionally, MDC-QSTBC are shown to achieve full diversitging antenna selec-

tion with limited feedback.

We also consider the designs of space-time codes for MIM@Bys using orthogo-
nal frequency division multiplexing (OFDM) for frequensglective fading channels. The
resulting codes are called space-frequency codes. The Ofy3tdm performance is heav-
ily affected by inter-carrier interference, which is cadi®y frequency offset between the
carrier oscillators of the transmitter and receiver. Weyitally quantify the performance
loss of space-frequency codes due to frequency offset. Acteesg space-frequency codes,
called inter-carrier interference self-cancellationapfrequency (ISC-SF) codes, is pro-

posed to effectively mitigate the effect of frequency dffse
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Chapter 1

Introduction

1.1 MIMO Systems for Future Wireless Communications

Future wireless communication networks must accommodatgeanumber of subscribers
and variety of services with different levels of predefinedilgy of service (QoS) [1, 2].
Currently, users select communication services, such &g avid data services, with data
rate up to 2 Mb/s via third generation (3G) land mobile comization networks [3]. Ad-
ditionally, wireless local area networks (WLAN) offer datdes up to 100 Mb/s [4]. How-
ever, the throughput of wireless networks at the accessgpbase stations) is expected to
grow tremendously, in the order of Gbit/s [4, 5].

There are several technical challenges for reaching higgn rddées for future wireless
networks. First, signal fading inherent in mobile wirelebsnnels limits the maximum
data rates [6]. Second, the radio spectrum available fa fanbile communications is
limited [6]. Third, the transmit radio power is limited berse the radio emissions need to
be controlled for health reasons and for reduction of therfatence to other radio channels
of the same or different wireless systems [6]. Additionatigndheld mobile units or data
terminals have limited-capacity batteries.

These three challenges may be overcome by MIMO (multigbesirmultiple-output)
technology, where multiple antennas are usdmb#titransmitter and receiver [7—9]. Through-
out this thesis, the notatio{, N) denotes a MIMO system with/ transmit andV re-
ceive antennas. The capacity studies by Telatar [8, 10] asdHni [9, 11] show that a
much higher capacity (i.e. data rates) can be extracted MO systems than from

single-input single-output (SISO) systems. Followingstheitial studies, various MIMO



systems have been proposed. For example, a popular spatigdlexing architecture is
called BLAST (Bell laboratories lgered gace ime) [9, 12, 13]. Depending on how the
data streams are distributed over multiple transmit artgnone obtains V-BLAST (verti-
cal BLAST), D-BLAST (diagonal BLAST) and H-BLAST (horizontal BLAT) [14]. By
using such MIMO systems, one can overcome the capacitydliioit of SISO systems
without spectral expansion or power increase.

In order to increase the reliability of data transmissioaiast fading, space-time coding
has been proposed by exploiting the rich diversity of MIMGawchels [15, 16]. A space-
time code spreads input modulation symbols across mukiiptennas (space dimension)
and multiple time slots (time dimension). A space-time cddsign has been suggested
by Gueyetal. [17,18]. However, the design criteria of Tarokhal. [15, 16] are more
systematic and applicable for different channel modelsh s1$ Rayleigh and Rician fading
channels [16]. Thus, these designs of space-time codesiebguling inherent in wireless
channels to improve communication reliability.

To achieve full spatial multiplexing (i.e., the number adrismit symbols per channel
use (pcu) equals to the number of transmit antennas), the@umhreceive antennas should
be at least equal to the number of transmit antennas [9, 12,HBwever, in practice,
due to size and/or cost constraints, the number of antenirthe enobile handset is likely
not more than that at the base station [19]. From informaiii@ory and efficient signal
detection viewpoints, the maximum data rate should notexkoginimum values of/ and
N [9,12,20]. Thus, the non-full-rate MIMO mobile wirelesssgyms are more prevalent.
However, with lower rates, more stringent mathematicaicstires can be embedded into
the space-time code matrices, helping to reduce the deg@dimplexity at the receiver.

The current developments of wireless systems have beegraitey MIMO into stan-
dards. For example, the IEEE 802.11n standard for WLAN agfiios [21-23] recom-
mends the use of multiple antennas (up to 4) at the transnaitie receiver to provide a
data rate of 100 Mbit/s or higher. The IEEE 802.16e-2005d=teh[24, 25] for fixed and
mobile wireless wide-area broadband access also intetipat&lamouti space-time block
coding [26] and MIMO spatial multiplexing configurations, @), (3, 2), and (4, 2). The
MIMO architectures are also studied for beyond 3G mobileless systems [27].

In conclusion, the applications of MIMO systems can solegkinee challenges of wire-



less communications. In the next section, we will reviewdasign principle of space-time
codes. In particular, a special class of space-time cogesgstime block codes (STBC),

will be discussed in more detail.

1.2 MIMO Channel Models

We consider a MIMO system over a quasi-static Rayleigh fadiramnel [8-10,16], i.e. the
channel gains are constant during the duration of a codewactcan vary from codeword
to codeword. The transmitter and receiver are equipped Wittransmit andV receive
antennas. The channel gdip,,(m = 1,2,..., M;n = 1,2,..., N) between thém, n)-th
transmit-receive antenna pair is assurdéd(0, 1), which is consistent with the Rayleigh
fading assumption. This is the most common channel model fmespace-time code
designs. We assume no spatial correlation at either therraror receive array. The
receiver, but not the transmitter, completely knows thendetgains.

The above-mentioned channel model is ideal and is only egigk when there is a
rich scattering environment around the receive antennaastelexist several more realistic
MIMO channel models to analyze the performance of space-tiodes (see e.g. [28-31)).
These channel models incorporate the correlation amongrié and/or receive antenna
arrays; the channel gains may also have distributions tieadifferent from the Rayleigh
distribution [32]. Nevertheless, the MIMO channel modethnincorrelated Rayleigh fad-

ing is the most widely used model in the literature and willised throughout the thesis.

1.3 Space-Time Code Design Criteria

We examine the design criteria of space-time codes usingtiaanel model described
in Section 1.2. The block diagram of a communication systeasr MIMO channels is
sketched in Fig. 1.1.

The space-time encoder parses data symbols into spaceduiegords” = [¢;,,] of
sizeT x M, wherec;,, is the symbol transmitted from antennaat timet (1 <t < T).

The average energy of a codeword is constrained such that

> Ellewml’] (1.1)

m=1 t=1
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Figure 1.1: Multiple-input multiple-output (MIMO) systemodel.

The baseband received signgl at the receive antenna and at time slot is the

superposition of the signals transmitted framhtransmit antennas:

M
- \/ﬁ Z Ctmhmn + Wi (12)
m=1

wherew, is independently, identically distributed (i.i.d.) add# white noise with distri-
bution~ CN(0,1).
The received signalg;,, can be arranged in a matrix of size7 x N. Thus, the

transmit-receive signal relation can be represented cothypas
Y =/pCH+W (1.3)

whereH = [h,,], W = [wy,] of sizeT x N. The transmit power is scaled byso that the
average signal-to-noise ratio (SNR) at each receive anispnandependent of the number
of transmit antennas.

The upper-bound of pair-wise error probability (PEP) dedivy Tarokhet al. [16] is

P(C — C) (H A ) <£)_m (1.4)

whereC and (' are the transmitted and erroneous codewords the minimum rank of

as follows:

a matrixAq (Ac = C — C‘) for all C # C, A1, A2y, ..., Ap @re non-zero eigenvalues of a
product matrixPe = AL Ac.



Definition 1.1. The diversity gain or diversity orde&¥,; and coding gairG. of a space-time

code are defined as follows:

Gyg=1IN (1.5)
] r 1/
G, = Cm;g (Hz‘:1 )\i> (1.6)

The space-time code design criteria can be stated as fojlys

e The rank criterion The minimum rank ofA. of all pairs of distinct codewords
should be maximized. If the minimum rank gf- is I", then diversity order of 'V

is achieved.

e The determinant criterianThe coding gairG,. taken over all pairs of distinct code-

words must be as large as possible.

Since therank A- = rank Pg, if As of a space-time code is of full rank/ for all
pairs of distinct codewords, then so is the and the diversity order is maximized, i.e.
G4g= MN.

Definition 1.2. A space-time code is said to achieve full-diversity if itgedsity order is
MN.

In the case of full-diversity codes, the coding gain follows

G. = min [det(AgAC)

:| 1/M
C+C '

(1.7)

The diversity order tells us how fast the error rate decayl #N\R on a log-log scale,
while the coding gain reflects the SNR saving to achieve theesarror rate performance.
The larger the diversity order, the faster error rate reguard the larger the coding gain,
the better the SNR saving. We illustrate the diversity om®d coding gain of several
systems in Fig. 1.2, where the values of the error rate and &téRn log scale. For
example, the (2, 2) MIMO system has a diversity order of 4,clwhs higher than the
diversity-one of the SISO system. Thus, the error rate cafibe former is steeper than
that of the latter. For the two (2, 2) systems, the bettergthesl system will save some
SNR compared with the worse-designed system.

Note that the coding gain is an asymptotic performance msinice it is defined for

the worst-case PEP basis and at high SNR. The actual perfoentdra space-time code
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Figure 1.2: lllustration of the diversity order and SNR gafrspace-time systems.

depends on the whole PEP spectrum of all codewords. Sirantatire therefore required
to compare the SNR gain of different space-time codes.

Instead of the above rank-determinant criteria, Hassibitdmchwald [33] proposed an
information-theoretic criterion, whereby the mutual inf@ation between the transmitter
and the receiver is maximized. While space-time codes cammhsgtrticted for any num-
ber of transmit or receive antennas using mutual informatiiterion, full diversity is not
necessarily guaranteed. Moreover, while the rank-detemntiapproach can be applied to
design a wide range of space-time codes, the search for gates esing mutual informa-
tion criterion becomes highly complicated for a large nunmdfentennas or large delay.

Though the upper bound on PEP is given in (1.4), the exact PEPaze-time codes
can be evaluated analytically [34—37]. Thus, the union blaamPEP can be evaluated [37].

Let (2 be the size of the codebook. The union bound on PEP is givewbel

Pos= 53 3 PIC— G, (18)

A design criterion optimizing the union bound is proposeddeveral space-time codes
(e.g. in [38,39]). This approach improves the error perfamoe of the space-time codes.
Tarokh et al. provided space-time trellis codes (STTC) and space-timekbbodes

(STBC) [16, 40]. There are also several types of space-timesdésigned from error
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Figure 1.3: Classification of space-time codes.

control codes [41-43]. In Fig. 1.3 space-time codes aresified. In the first group
of the STBC branch, low-rate STBC with orthogonality, inclsd@STBC and QSTBC
[40,44-48]. The other existing STBC (for example, [49-540mg to the high-rate non-
orthogonal group. In this thesis, we focus on STBC and thesigthecriteria based on either

rank-determinant or union bound performance.

1.4 Space-Time Block Codes

Space-time block codes, which are an important class oespiane codes, have been stud-
ied extensively recently. They are expected to play a prentirole in both third generation
and beyond wireless standards [55-57]. We consider linBBCSin which, the space-time
code matrix is linear with respect to the data symbols and¢bajugates. In the following,
we use the notation STBC to imply linear STBC where no confusiay arise.

In the STBC encoder, a block df data symbolgs, ss, ..., sx) is mapped into the
space-time code matrix of siZé x M. The space-time code matrix has the following

general form [33,40]:
K
k:l

where A, and By, (k = 1,2, ..., K) are (possibly complex-valued) fixed matrices of the

same sizd' x M.



To compare the coding efficiency of different coding schenmeduding the coding
for SISO channels, the code rate of space-time codes, in@grpbr channel use (pcu) is
defined as follows [16, 58].

Definition 1.3. The code rate of a space-time code in symbols per channes tise ratio
of number of data symbols transmitted in the space-time owateix and the number of

channel use§'. Thus, the code rate is given by

R=K/T. (1.10)

51 S2
* *

—S9 5y

For example, the Alamouti cod€ = { } has a rate ol = 1 [26].

1.4.1 Design Parameters and Fundamental Limits

There are several design parameters to be considered for STBC:
1. number of transmit antennak/{;
2. code matrix lengthl() and also the number of channel uses per code matrix;
3. number of receive antennas);
4. diversity gain (or diversity order Y{;);
5. coding gainG..);
6. code ratep);
7. maximum mutual information/§.
There are some fundamental limits on the parameter dessjiadi@wvs [20].
e The maximum diversity order 5 m.x = M N.

e To achieve the maximum diversity order, the minimum encgdielay is7;,;, = M.
This limit comes from theank criterion; the rank of the matrix of ordel/ x T can
not be more than the minimum a@ff and7'. If full diversity is required, then the

necessary condition i& < T.



e The maximum code rate?(,.x = M). With M transmit antennas, we cannot trans-

mit more than)/ independent symbols in a time epoch.

Definition 1.4. A space-time code for an\{, V) system is said to be full-rate if its code

rate is equal tol/ symbols pcu.

The code lengtll” is proportional to the memory length and encoding/decodgigy.

Therefore, given a diversity order, the code lengtts subject to be minimized.

Definition 1.5. A space-time code is said to be delay-optimal if the encodelgy T is

equal toM.

Some of these parameters can be combined for optimized @signd For example,
STBC can be designed with full-diversity, = M N and optimal delayi’ = M [49-51,
59]. On the other hand, linear dispersion codes in [33] asggded to maximizd, with
respect taV/, N, and7. We next briefly review several classes of STBC designed \wih t

rank-determinant criteria.

1.4.2 Orthogonal and Quasi-Orthogonal STBC

The Alamouti code, one of the most well-known STBC, is designetivo transmit anten-
nas [26]. The code is successfully integrated in 3G starsd&#]. It has been generalized
as orthogonal STBC (OSTBC) by Tarokhal. [40] using the results of orthogonal matrix
theory developed by Hurwitz and Radon [60].

Orthogonal design results in a decoupling of symbol dedacgnabling minimal max-
imum likelihood detection complexity. However, orthogbdasigns entail low code rates
[44, 45]; a code rate of one symbol pcu with complex congdielts is available for two
transmit antennas only, and the code rate approaches 1&I&wge number of transmit
antennas [44, 45]. The code rate may be improved by quasegohal STBC (QSTBC)
[46—48], which achieve full diversity by signal consteitet rotations (see [61] and refer-
ences therein), but require joint maximum likelihood détet of pairs of symbols. More-
over, QSTBC also have low code rates because they are baseSTaCO

The channel decoupling property of OSTBC implies that maxmtikelihood detection

of a vector of input symbols is equivalent to solving a setaaflar detection problems, one

We use the terms detection and decoding synonymously.
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for each input symbol; that is, the MIMO channel is decouplgd several equivalent
SISO channels. The maximum likelihood receiver then hadaest complexity. The
transmit-receive signals in (1.3) can be written equivilyeior OSTBC [59, 62] as

y=|Hlsk + w. (1.11)

Since all the transmitted symbols experience the same Rialeenorm|| H || [63] of the
channel matrix, this quantityH || can be considered as the equivalent channel of OSTBC.
The decoding of QSTBC is also decoupled into the detectionmafigs of two symbols
[46—48]. However, it is not known what the equivalent chdsioé QSTBC are.

1.4.3 Non-orthogonal STBC

Alternatively, the orthogonality requirement can be damd for increasing the code rate;
an example is full-diversity diagonal space-time (DST)e®f#9-51]. Rate-one codes can
thus be constructed for any number of transmit antennasim@pDST codes yield bet-
ter coding gains compared with OSTBC for more than two trahamtennas. Moreover,
higher rate codes, namely threaded algebraic space-tik&T{)lcodes (up to full-rate) can
be derived from DST codes, for example, in [58]. However, ®@ TAST codes exhibit
high peak-to-average-power ratio (PAPR) and high complexiaximum likelihood de-
tection because all the transmitted symbols must be joddtected. PAPR can, however,
be reduced by linear TAST (LTAST) codes [20]. Rate-one LTA®des have a circulant
structure [64] and the same PAPR as the input constellalid®T and LTAST codes are
both delay optimal in the sense that the number of channsl pesiespace-time codeword
equals to the number of transmit antennas, i.e., the sjp@eecbdewords are square ma-
trices [40]. However, LTAST codes incur the same high coxiplanaximum likelihood
detection as TAST codes.

Using the cyclotomic number theory, the authors in [53, =tjw the optimal coding
gain for diagonal algebraic space-time (DAST) codes andTrA8des. The high rate
STBC are also constructed using division algebras [52, 65s& codes also have high

maximum likelihood decoding complexity as TAST codes.
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1.5 Designs of Space-Time Codes for Frequency-Selective
Fading Channels

As mentioned before, the first space-time codes proposedimkhet al. [16] for coherent
systems over MIMO quasi-static flat fading channels (ireqd@iency non-selective fading)
achieve the maximum diversity ordée= M N, whereM andN are the number of transmit
and receive antennas. In frequency-selective fading @ianthe maximum achievable
diversity order ist = L,M N whereL, is the number of paths of the frequency-selective
fading channel [66,67]. The achievable diversity orderrefjtiency-selective fading is
therefore higher than that of frequency-flat channels. dfoee, space-time code design
for MIMO frequency-selective fading channels has receiverth attention.

Orthogonal frequency division multiplexing (OFDM) is raiuo frequency selective
fading [68—70]. OFDM converts the wideband frequency<dele channel into paral-
lel narrowband frequency-flat channels, which allow simpleeiver designs. Therefore,
OFDM is widely used in WLAN as well as wireless metropolitaranetworks (WMAN)
[6,71,72]. It is expected that OFDM will be the technologyabfoice for future 4th-
generation (4G) wireless systems [24,57,73-75].

The simplified model of MIMO-OFDM systems employing spaieet coding is illus-
tated in Fig. 1.4. Since with OFDM, the frequency-selectivannel is converted to parallel
subchannels, the frequency diversity can be obtained btilg data are spread over multi-
ple subchannels. Therefore, when the space-time codegnéesior frequency-flat fading
channels are transmitted over MIMO-OFDM, the maximum diitgrorder L, M/ N may
not be achievable.

To achieve the full potential diversity order of frequersslective fading channels, in
general, space-time codes can be designed in the time dq@@ior in the frequency
domain using OFDM and the resulting codes are called spacesncy codes [66], [67],
[77]. Coding for MIMO-OFDM to achieve high diversity orderfeeceived much atten-
tion after the initial papers [66] and [67]. The authors i@][design space-frequency codes
(and also space-time codes) using algebraic theory fouéecy-selective fading chan-
nels [78]. Reference [79] introduces a full-diversity ftdte space-frequency code design,

which is developed using complex field coding [80]. The atgho [81] propose a con-
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Figure 1.4: Simplified diagram of MIMO-OFDM systems.

catenation scheme with Alamouti code [82] as the inner an@listcode as the outer.
Suet al. [83] derive space-frequency code criteria, showing aniexpklation between
the space-frequency code matrix and the characteristanpeters of frequency-selective
fading channels, such as the path delays and power delajeprofie authors in [83] in-
troduce a class of space-frequency codes formed by repesiiace-time codes. They also
show that when any full diversity space-time code is used IMOOFDM as a space-
frequency code, it achieves at least the diversity orddrttha been designed in the time
domain. Thus, many space-time codes are usable as spgoesioy codes.

The design criteria of space-frequency codes are similtidse of space-time codes
described in Section 1.3 [83]. These criteria will be reegiin Chapter VI when we
investigate the performance of space-frequency code®ipréssence of inter-carrier inter-

ference.

1.6 Problem Formulation

1.6.1 Designs of STBC for flat fading MIMO channels

Since several STBC are well-known in the literature, it is thwhile to summarize their
properties. Table 1.1 compares existing space-time cosigre[OSTBC, QSTBC and
rate-one TAST/LTAST codes (or DST codes)]. By emphasizirggdbmplexity (i.e. the

number of real or complex symbols to be jointly maximum likebd detected), we can
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Table 1.1: Comparisons of Several STBC

Code | M | G4 R | maximum likelihood real-symbol decoding
OSTBC| 4 | 4N | 0.75 2 symbol
QSTBC| 4 | 4N 1 4 symbols
LTAST | 4 | 4N 1 8 symbols
OSTBC| 8 | 8N | 0.625 2 symbol
QSTBC| 8 | 8N | 0.75 4 symbols
LTAST | 8 | 8N 1 16 symbols

draw the following observations:

1. Low-rate OSTBC and QSTBC: Current designs of OSTBC and QSTBC lbave
(maximum likelihood) decoding complexity, but they are jggbto the limitation of
rates less than 1 symbol pcu; the rate 1 symbol pcu exists$aBT with 2 transmit

antennas and QSTBC with 4 transmit antennas only.

2. High-complexity, full-rate STBC: Full-rate codes such &ST codes can achieve
full-diversity, but the decoding complexity is high sindbexd the transmitted symbols

in a code matrix must be jointly decoded in order to achieVledfuersity.

In practical mobile wireless systems, the number of anteahahe mobile units may
be smaller than that at the base stations; the maximum syrat®oin this case should be
equal to the number of receive antennas. Thus, full-rate STBZnot be needed.

Consequently, designs of full-diversity, non-full-rate BT with low maximum like-
lihood decoding complexity are important; the design ofhrs8d3BC isone of the main
challenges in this thesis

An important property influencing the decoding complexgythe orthogonality. In
other areas of communications, e.g. CDMA (code division ipl@ltaccess), orthogonal
sequences are used to separate users’ data at the recdivén e designs of STBC, the
orthogonality among linear dispersion matrices of tramtg@disymbols will determine the

decoding complexity.
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1.6.2 Designs of Space-Frequency Codes for MIMO-OFDM Systems

Since the space-frequency codes use OFDM, their perforeneac be affected by un-
derlying impairments, such as frequency offset, phaseeraig time-varying channels.
A residual frequency offset exists due to carrier synctratmon mismatch and Doppler
shift [85]. Residual frequency offset destroys subcarrighagonality, which generates
inter-carrier interference and the bit error rate (BER) iases consequently. The effect
of such impairments on the conventional (i.e. single inpagle output (SISO)) OFDM
has been widely investigated. For example, in [86], BER isudated for uncoded SISO-
OFDM systems with several modulation schemes. The authdB¥1i, [88] provide BER
expressions of MIMO-OFDM employing Alamouti’'s scheme [82he authors in [89] an-
alyze the space-frequency code performance in differ@pggation environments, such as
Rayleigh and Rician fading channels, and with spatial caiicelat the transmitter and/or
receiver. However, the impact of inter-carrier interfexemue to frequency offset on the
pairwise error probability (PEP) performance of generalcgpfrequency codes have not
been investigated. Additionally, the design criteria chap-frequency codes when inter-

carrier interference exists are unknown. These problertd®addressed in this thesis.

1.7 Contributions of Thesis

The main contributions of this thesis are broadly twofolast we characterize the nec-
essary and sufficient conditions to obtain low-complexi®yBE for frequency-flat fad-
ing channels. The low complexity is achieved by separatiegitansmitted symbols into
subgroups for maximum likelihood detection. The codes withh properties are called
multi-group decodable STBC. We propose a new multi-group diiole STBC called
orthogonality-embedded space-time (OEST) codes. Seeamdnalyze the performance
of space-frequency codes for MIMO-OFDM systems in the presef frequency offset
and propose a new class of space-frequency codes to corfdxatvedy frequency offset.
The detailed contributions are summarized in the following

In Chapter Il, the necessary and sufficient conditions for-dtagoding complexity
STBC are presented. A new framework to design STBC called OB8&<cis proposed.
OEST codes subsume existing STBC such as OSTBC, QSTBC, circul®&€ &s spe-
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cial cases. Several properties of OEST codes will also beater We derive a subclass
of OEST called semi-orthogonal algebraic space-time (SA®des, which are identified
with many desirable features: near capacity achievingdeeoding complexity, and better
performance than several codes of the same rate.

Chapter lll treats several open problems of QSTBC, a speciat @aOEST codes,
originally proposed by Tirkkonest al. [47]. This code has been named ABBA because
of its structure. We will show how to obtain maximum likelideb single-complex symbol
decoding for ABBA code, which is the minimum decoding comgielevel that can be
achieved by any non-orthogonal STBC. For ABBA codes, we alsesyatically solve the
open problems, including performance analysis, optingaiai rotation, capacity calcula-
tion, channel state information feedback, and antennatsatewith limited feedback.

Chapter IV proposes a new encoding method so that the OESTE evdae have lower
decoding complexity. SAST codes, a special case of OESTs¢@de analyzed in detail.
Initially, SAST codes allow the decoding of transmitted $is into two groups. A new
decoder is derived, enabling the decoding of the transth#yenbols into four groups and
resulting in a great complexity reduction. The exact PEPauininal signal transformation
of SAST codes are derived.

Chapter V extends the results developed for OEST codes te splken issues of other
STBC, including coordinate-interleaved orthogonal desi@i®©D) [90-92] and QSTBC
with four-group decoding [93]. New decoders, performancalysis and optimal signal
designs are presented for these two codes.

Chapter VI contributes a performance analysis of spacetfecy codes in the pres-
ence of frequency offset. Additionally, inter-carrierarference caused by a time-varying
channel and phase noise is also considered. More impgtavel propose a new space-
frequency coding scheme, called inter-carrier interfeeeself-cancellation space-frequency
codes, to combat even high values of frequency offset, up%. 1

In Chapter VII, we summarize the contributions of the disget. Open research

topics that can be developed from this thesis are identified.
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Chapter 2

Multi-Group Decodable Space-Time
Block Codes

Since low decoding complexity STBC are desirable for prattapplications, the code
matrix structure should allow the separation of the trattgahisymbols into sub-groups for
maximum likelihood decoding, resulting in multi-group delable STBC. Here we empha-
size maximum likelihood decoding as it is a sufficient coioditto realize full-diversity.
Suboptimal detectors, such as zero-forcing decision f@gdlequalization [94], may not
achieve full diversity. In this chapter, we first derive treeassary and sufficient conditions
so that the separation of transmitted symbols for maximkeldihood decoding is possi-
ble. Second, we propose a new class of STBC called orthogypealibedded space-time

(OEST) codes that are multi-group decodable.

2.1 Algebraic Constraints of Multi-Group Decodable STBC
2.1.1 System Model

We use the MIMO quasi-static frequency-flat fading channetieh described in Section
1.2. Other notations of STBC given in Chapter | will be utilizadhis and other chapters.
However, for the reader’s convenience, several basic essdre repeated.

There areM transmit andN receive antennas. In the space-time encoder, the data

symbols are parsed intoZax M code matrix X of an space-time cod#& as follows:

X = [com] (2.1)

t=1,....,Tym=1,....M

We use the term "codeword" and "code matrix" interchangeabl
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wherec,,, is the symbol transmitted from antennaat timet (1 < ¢ < T). The average

energy of code matrices is constrained such that

Ex = Eltrace(X'X)] = E[|X|R] = 3. S Efjconl’) = T (2.2)

m=1 t=1
wheretrace(X') denotes the trace of matriX [95].
The received signalg,, of thenth antenna at timé can be arranged in a matrix of

sizeT x N. Thus, one can represent the transmit-receive signaloelas
Y =\/pXH+W (2.3)

whereH = [h,,,], andW = [wy,] of sizeT x N, andwy,, are independently, identically
distributed (i.i.d.)CN (0, 1). The transmit power is scaled byso that the average signal-
to-noise ratio (SNR) at each receive antenna, imdependent of the number of transmit
antennas. Howevep,is sometimes omitted for notational brevity.

The mapping of a block oK data symbolgsi, sq,- -+ , si) intoaT x M code matrix
can be represented in a general dispersion form [33, 40]lasvi

K
X =) (arAy+ bpBy) (2.4)
k=1

whereA, and By, (k = 1,2,--- , K) areT x M complex-valued constant matrices; they
are commonly called dispersion matrices. The real and inaagiparts of the symbaol,
area;, andby,.

In (2.4), there are totallg K variablesa; andb;. We replace variables; andb; (and
their dispersion matriced, and B,) by the same symbolic variable (and dispersion

matrix C;). Then (2.4) becomes
L
X => al. (2.5)
=1

The benefit of the expression (2.5) will be clearer when wevdehe algebraic constraints
of multi-group decodable STBC. Note thain (2.5) is not necessarily an even number.
Denote the transmitted data vecior= [01 Co ...CL}T. The maximum likelihood

decoding of STBC is to find the solutianof the following metric:

¢ =argmin|Y — /pXH|E. (2.6)
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2.1.2 Algebraic Constraints of Multi-Group Decodable STBC

The concept of QSTBC [46—48] is to relax the orthogonality stoaints of OSTBC to
achieve higher data rates. In the code matrices of QSTBC Bl6#e columns are non-
orthogonal in pairs; the maximum likelihood detection of TB& can be made in pairs
of symbols. To obtain a higher data rate of one symbol for amyplrer of antennas, in
[96—-100] the orthogonality is further relaxed so that thkiems of code matrices can be
divided into two groups, and the columns of one group areogiehal to the columns of
the other group. The maximum likelihood detection of traitted symbols are decoupled
into two groups. A rule of thumb can be drawn from the STBC in-H4®, 96—100]: The
number of columns of a group (that is orthogonal to the otmeus of columns) equals
the number of symbols to be jointly detected.

In fact, the orthogonality of columns of code matrices isthetfundamental condition
to obtain multi-group decodable STBC, as we will show later. phtevide a definition of

multi-group decodable STBC to unify the notation in this thes follows.

Definition 2.1. A STBC is said to bé'-group decodable STBC if the maximum likelihood
decoding metriq2.6) can be decoupled into a linear sum bfindependent submetrics,
where each submetric consists of the symbols from only onggiidhel -group decodable
STBC is denoted bi/-group STBC for short.

It is worthwhile to emphasize the following points from Detion 2.1:
1. The numbers of symbols in groups are not necessarily the.sa

2. Since there are no restrictions on the dispersion matot¢he real or imaginary
parts of a complex symbol, they may belong to different gsodphat is, the real and
imaginary parts of a complex symbol can be decoded indepéigd8uch decoding
is possible for quadrature amplitude modulation (QAM) sign as we will show

later.

3. There is no orthogonality constraint on the columng’efroup STBC even though
there are some degree of orthogonality imposed in the cotiecemof some existing
I'-group STBC [46-48,96,97,99,100]. We will show an exampl€-gfroup STBC,

in which the columns of code matrices are not orthogonallat al
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Figure 2.1: Block diagram of MIMO systems using multi-growgzddable STBC.

The block diagram of MIMO systems with multi-group STBC isiftrated in Fig. 2.1.
The data frame of.-real symbols is encoded using multi-group STBC encodergchvhi
performs the multiplications and additions. At the receitlee data symbols are separated
into groups by spatial matched filters. Each group of real®ymis maximume-likelihood
detected so that the whole data frame can be recovered. fhieuglestion is how to design
the spatial matched filters to separate the data symbols.dliaistion can be addressed by
exploiting the properties of the space-time encoder, he.dispersion matrices. Thus, we
must first find the properties of the dispersion matrices dtinguoup STBC.

In the most general case, we assume that theré @m®ups; each group is denoted by
V(i =1,2,...,I") and has.; symbols. Thus[ = Zle L;. Let©, be the set of indexes
of symbols in the groug;.

Yuenet al. [98, Theorem 1] have shown a sufficient condition for a STBC lodtim
group decodable. In fact, this condition is also the necgszandition. We will state these

results in the following theorem.

Theorem 2.2.The necessary and sufficient conditions for a STBC tGigeoup decodable
are
C;Cq + Cng =0 Vpe0O,VgeO;i#j. (2.7)

Theorem 2.2 covers [92, Theorem 9] (single-symbol dec&d&3IBC) and can be

shown similarly below.
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Proof. Let y,, andh,, be thenth column ofY and H, respectively. The maximum likeli-

hood metric (2.6) is rewritten as

N
1Y = XHIE =D lly, — Xhall?
n=1
N
=Y [nCICh, — 2R(y|,Ch,)] + (Y |2 (2.8)
n=1

In (2.8),]|Y]|2 is a constant with respect to the code mafixt can be therefore discarded.
The termR(y! Ch,,) is linear in real variables. Thus, we just need to consider the product

CTC, which consists of cross products of variablgs

L L
cte = <Z cpc;) (Z cq0q>
p=1 q=1
L

L
=> gcfai+ Y e (CiC, +CIC,). (2.9)
=1

P,q=1,p#q
Now we show the necessary condition of Theorem 2.2C;IEatisfies the condition
(2.7), then

r
cie =Y f(w) (2.10)
=1
where
F@) = Y cneClCn. (2.11)
m,ned;

Hence, the maximum likelihood metric (2.8) can be decomgais® a linear sum of”
submetrics, each submetric involves only the symbols ofgsaap. Thus, to minimize the
metric in (2.8), one can minimizE individual submetrics. In other words, the decoding of
L symbols can be decoupled inibindependent groups.

We next prove the sufficient condition. The assumption istthemaximum likelihood
decoding metric is a linear sum @f independent submetrics, each submetric consists of
variables from only one group. From (2.9) we cannot decompgogher the sum that
involves the cross-products of variablgsandc,. Thus, the maximum likelihood metric
is a linear sum of independent submetrics only if that (24lgé. That concludes the

proof. ]
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Using Theorem 2.2, we can identify whether a STBC is multugralecodable or
not. For example, let us examine a 2-by-2 circulant STBC [RQ] With the code ma-
trix X = [xl 2

To T1

dispersion matrices of symbo(s;, a;) and symbolgb,, b,) satisfy Theorem 2.2. Thus,

} Letxy = ay + by, 20 = as + jby. Itis not hard to verify that the

this2 x 2 circulant STBC is a 2-group STBC,; it is also a rate-one singlepierasymbol
decodable STBC for 2 transmit antennas, which is similaréofamouti code. However,
the Alamouti code performs better than this 2 circulant STBC since OSTBC are optimal
in terms of SNR [102] [26]. The other higher order circulafiB& can also be shown to
be 2-group STBC, but this fact is not recognized in [20, 101terestingly, circulant STBC
are an example of 2-group STBC, in which the columns of the caateixrare not orthog-
onal at all. In the next sections, we develop two new claséeate-one 4-group STBC,
which have lower decoding complexity than the two-groupodiable circulant STBC.

There are several existing multi-group decodable STBC, famgite OSTBC [26,
40, 44], QSTBC [46-48], and circulant STBC [20, 101]. They hdifeerent code con-
structions, degrees of column orthogonality, differerdecates, and decoding complexity.
However, we will show that there is a mother code, calledagtimality-embedded space-
time (OEST) codes, of OSTBC, QSTBC, and circulant STBC.

The OEST code construction utilizes the generalized camnpleaeal orthogonal de-
signs of the form) _ (s, Ax + s} By), whereA;, and By, are the linear dispersion matrices of
an underlying OSTBC ans, are transmitted symbols, with two modifications: (1) Each
transmitted symbai;, is replaced by a circulant matriX;, in which a block of transmitted
symbols is encoded; (2) The regular scalar-matrix prodaiceplaced by the Kronecker
product [63, 95]. Therefore, it is of interest to review innfamt properties of OSTBC and
circulant STBC to be used later. We will present the resul@B$T codes with generalized
complex orthogonal designs; however, these results caaily extended to generalized
real orthogonal designs. Therefore, only the propertie@®TBC from generalized com-

plex orthogonal designs are provided.
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2.2 Review of OSTBC and Circulant STBC
2.2.1 Orthogonal Space-Time Block Codes

Definition 2.3 (Orthogonal designs [40, 44]A complex orthogonal desigf is defined
as a R x () rectangular matrix whose nonzero entries at@;, +s,,--- ,+sx or their
conjugatestsy, +s5, - -+, £s%, wheresy, so, - - - , s are indeterminates over the complex
field C, such that

010 = (|1 + [s1]* + - - + |sx[*) I . (2.12)
The matrixQO is also said to be aR, ), K| complex orthogonal design. Whéh= @, O

is called a complex square orthogonal design.

Proposition 2.4( [44]). O is a complex orthogonal design if and only if the basis masic
Ay and By, in (2.4) satisfy

ATA +BIBi=Iy, i=1,2,--,K (2.13a)
AlA;+BIB;=0g, 1<i<j<K (2.13b)
AlB; + AlB; =0q, i,j=1.2,-- K. (2.13c)

To construct STBC foK) transmit antennas from orthogonal designs (OSTBC), the
orthogonal designR, @, K] is used, and the indeterminates are replaced by transmitted

symbols. For example, the OSTBC for 2 and 4 transmit antemeagivzen below:

. S1 S9
Oy = [——53 Sf] , (2.14)
S1 S S3 0
85 s 0 —s3
Oy = s 0 N (2.15)
0 55 —S; 51

The OSTBC for 2 transmit antennas is the well-known STBC pregds/ Alamouti
[82]. The Alamouti code has rate-one. However, when the rmrmobtransmit antennas
increases, the code rate of OSTBC decreases. The maximatatedsf existing OSTBC

is given as follows.

Proposition 2.5( [44]). The maximal code rate of OSTBC f@Qr = 2a — 1 or Q = 2a,

whereq is any positive integer, is

a+1
2a

Rog = (2.16)
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Thus, the rate-one OSTBC exists for 2 transmit antennas énlgthermore, the rate
approaches 1/2 for a large number of antennas. The sub&ooif®, is added to highlight
that the OSTBC is designed fqy transmit antennas. Note that there are several design
criteria existing for OSTBC, such as delay-optimal codes Wita () (or square orthogonal
designs) [59] or rate-optimal, i.e. the code rate is maxauif4].

To guarantee the transmit power constraint (2.2), a scéictgr is required. Thus, the

OSTBC code matrix with normalized power\j& 0. We can show that

B 1
QR0

R

(2.17)

as follows.

Proof. The total energ¥, of OSTBC code matrices is

K
Eo = E [trace(OT0] = kQE[>_ [si’] = kKQE[|si[*] = kK Q.
k=1

From (2.2),one hasKQ =T or k = ~=1 O

QRo,q "
For example, the Alamouti code hag= 1/2.
The coding gain of OSTBC can be easily found to be

B 1
QRo.o

whered,,;, is the minimum distance of the input constellation from whi¢ are chosen.

d2

min

Gog (2.18)

2.2.2 Linear Threaded Algebraic Space-Time Codes

The idea of employing circulant matrices [64] to build ratee STBC has appeared in

[20,101]. We may call such codes circulant STBC. ket= [u; us --- uy| be the
input modulation vector o8/ symbols. The code matrix of circulant STBC fbf transmit
antennas is
U1 Uy Ups
Colwy = |0 (2.19)
v s e

Since circulant matrices are not always full-rank, theynzarbe directly applied with

typical signal constellations to design STBC with full disiy [101]. To achieve full
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diversity, modulation symbols are drawn from the same digoastellation and rotated
differently, i.e. the transmitted symbalsare virtually drawn from different alphabets [20].
The selection of rotation angles heavily impacts the codiaim. We next briefly review
how the rotation angles are selected in [20].

Let S be the input symbol constellation with the minimum Euclidehstanced,,;,.
A block of M constellation symbols is arranged in a vector= [s;, o, -+, sy|". Each
symbols; is rotated by an angle~"/, where¢ is a Diophantine number [20,103]. Let

O = diag[1, ¢'/M, ... ¢M-D/M] the transmitted vectar is as
u = 6Os (2.20)

The LTAST code matrices are circulants given by

1
7= 0w, (2.21)

The rate of the resulting LTAST code due to this constructsoone. The upper bound of

the coding gain is as follows.

Proposition 2.6 (eq. (7), [20]) The coding gain of the rate-one LTAST codes is upper-

1 72
bounded ag:c y; < 7;dz

To achieve full diversity, the Diophantine number is chossp = ¢ (j* = —1).
Thus, theith symbols; is rotated by an angle«. The optimal values of that maximize

the coding gain are given below.

Proposition 2.7(Theorem 2, [20]) For M = 2", r > 1, the optimal coding gain of rate-one
LTAST codes, i.eGc = 77d%;,, can be obtained by choosing the Diophantine number
¢ = j and constellationsS carved from the ring of Gaussian integers (including QAM),
and for M = 273" ry, 4 > 0 by choosingy = ¢?1™/% and constellationsS carved from

the ring of Einstein integers (including hexagonal (HEXhstllations [104]).

[20, Theorem 1] also suggests how to seleébr PSK constellations; however, com-
puter search is required to find tlkethat maximizes the coding gain. Additionally, for
M # 2" or M = 273", only local maxima of the coding gain are guaranteed by caerpu
search. However, for a special case with = 2, we will show that the results of ref-
erence [105] can be readily applied to find the optimal rotetifor any two-dimensional
signal PSK.
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Proposition 2.8( [105]). Consider the rate-one LTAST codes fdr= 2. One of the two
transmitted symbols is drawn from am-ary PSK constellatiors and the other one is
drawn fromel©S. The coding gain of LTAST is maximized if and only if the fotaingle
aistork:O,l,...,M—lif/\A is even anw,kzo,l,...,m\/l—lif/\/l is
odd.

We will show that OEST codes include LTAST codes as a speat&#.cThus, Proposi-

tion 2.8 can be verified when we present the properties of Of8€s in the next section.

2.3 Constructions and Properties of Orthogonality-
Embedded Space-Time Codes

In this section, we develop OEST codes by deriving their rpaiperties, such as the code
rate, diversity order and coding gain. Several existingesaale shown to be special cases
of OEST codes. The group decoding property is fully inveggd. The orthogonality
among the group symbols implies the existence of the orthaigspatial) signatures of the
data vectors [32,48]; our main task will be to show theseiapsignatures. We also derive
an explicit form of the equivalent channel of OEST codes,clvhs used later to analyze

the maximum mutual information of OEST codes.

2.3.1 Constructions of OEST Codes

To construct OEST codes form OSTBC, we replace the symhois (2.4) by circulant
matrices and the scalar product by the Kronecker produa.r&sulting OEST codes have
higher rates than that of OSBTC and, importantly, OEST codfes several code designs
for the same number of transmit antennas with desirableaféslamong rate, performance,
decoding complexity and delay. Furthermore, the new resfilOEST codes shed light on
existing codes, such as QSTBC and LTAST [20, 47]. For exantpéemaximum mutual
information, equivalent channel and general decoder foFBfSand LTAST are obtained
as a byproduct of the OEST results.

Let the number of transmit antennas/le= P, whereP and() are positive integers,
and letA, and By (k = 1,2,--- , K) be the basis matrices &f x ) orthogonal designs.

A block of K x P input symbols are divided int&” vectorss,, each of sizeP® x 1.
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We propose two constructions of OEST codes as follows:

Construction |

K
_ \/g S (Avwc+Bad). (2.22)
k=1

Construction It .
a/%Z(ck@AHC;@Bk). (2.23)
k=1

Since A, and B, have the same sizé; is a square matrix, and the two matriget, ®
Cx) and(C, ® Ay,) are permutation equivalent (the same relation holdg Ry C}') and
(CZ@Bk)) [95, corollary 4.3.10]. Hence, Constructions | and Il arenpgtation equivalent.
We will, therefore, derive the properties of the OEST codesfonstruction | only.

It is of interest to find the linear dispersion form (2.4) of ®Ecodes. Letw; =
[upy upe - urp]’ (k= 1,2,..., K) denote theith input vector to the circulant space-

time encoder (2.21). We know that a circulant matrix has ttieWing decomposition

P

Coluy) =Y upm'™! (2.24)

i=1

whereforward shift permutatiomnatrix = is given by [64, p. 68]

01 0 0 0
0010 ---0

S R (225)
1000 --- 0

From (2.22) and (2.25), the linear dispersion form of OESdecmatrix is as follows:

K P P
= \/g Z Ak® (Zukp’ﬂp_l) +Bk® (Zuzpﬂl_p>]
k=1

i=1 p=1

\/EZZ [ury (Ax @ 7°71) + g, (By @ 777)]. (2.26)

k=1 p=1

This represention will later be used to derive the group deco
Since several different constructions exist for OSTBC [841D86], in combination with
the circulant codes, we can generate several OEST codesgieem number of transmit

antennas. Moreover, OEST codes subsume several existBg 83 we will show below.

1. OSTBC: If P = 1, the circulant matrix, reduces to a single symbol, and we revert

to the original construction of OSTBC codes.
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2. QSTBC: IfQ = 2, the Construction Il is identical with the QSTBC codes given by
Tirkkonenet al. [47].

The QSTBC in [47] is known as ABBA codés This construction fol/ = 20Q

transmit antennas is as follows

B A
where A and B are two matrices of OSTBC codes designed @btransmit an-

Q= {A B] (2.27)

tennas. Henced and B can be represented a6 = > i | (spAx +siB), B =
Sy (SkrxcAr + st Br), whereA, and By, (k = 1,2, - , K) are the basis ma-
trices of OSTBC for) transmit antennas. Substituteand B into (2.27), and we

have

0 |:Z£(—1 (sk A + s3B%) Sy (SkrxcAr + stk Br)
Se

1 (3k+KAk + Sk-i—KBk) Zle (SkAk + SZBk)

K K ¢,
Z |:Sk Sk+K1 ® A, + Z {Sf 3k+K1 QB
=1 k=1

Sk+K Sk+K Sk

Cr C;L

(Cr® Ax +C) @ By). (2.28)

]~

B
Il
—

The above expression is exactly the Construction Il of OESiesadn (2.23).

Note that to achieve full diversity and optimal coding gaon QSTBC, signal rota-
tions are also required. Thus, the optimal rotations of-caie LTAST codes with

P = 2 (see Proposition 2.7) can be applied for QSTBC with QAM and etmstel-
lations. Viceversa the optimal rotations of QSTBC (see [61, 105] and references
therein) can be applied for rate-one LTAST codes; this tesyrovided in Proposi-
tion 2.8.

3. Rate-one LTAST codes [20]: In this cagg= 1, A; = I, B; = 0;.

We will next examine the properties of OEST codes with thetrgubup decoding

property being presented first.

2There are other QSTBC designed for 4 and 8 transmit antennassged by Jafarkhani [46]. However,
the QSTBC for 8 transmit antennas given in [46] cannot betcocted from the code designed for 4 transmit
antennas; The code for 8 antennas was designed by propetigeknd arrangement of the specific OSTBCs’
designed for 4 transmit antennas. Thus, the exemplarytstescof QSTBC given in [46] are not general for
an arbitrary number of transmit antennas.
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2.3.2 Properties of OEST Codes

1. Multi-Group Decoding
From the construction of OEST codes, there Ar&ectors embedded A circulant
matrices. The first important property of OEST codes is thaiiti-group decodability

stated below.
Theorem 2.9. By Constructions | and I, the OEST codes &fegroup decodable.

One can use the linear dispersion form (2.26) and Theorenove. However, we
will follow a slightly different approach so that the sameg@ircan be used later to derive

other properties of OEST codes, such as diversity order ptichal signal transformations.

Proof. From the proof of Theorem 2.2, we need to show thaPifs a code matrix of
OEST codes, then from (2.10), the prod@tD must be decomposed into a linear sum of
K submetrics, each submetric involves only the symbols ofdata vector. We have

K K

DD '
t L pect
e =Y (A4 0C+Bec) ) (A®C+B o)

=1 j=1

K K K K
=Y Y (Al ecle)+> > (BIB) e (@)
=1 j5=1 =1 j=1

Xy

J/

K K K
(AlB;)) @ (clc)) +ZZ (BIA)) @ (CC;) . (2.29)

1 j=1 =1 j=1

Mw

+

(.
Il

g v~

X2 XS

Note thatC; is circulant, therCiT is also circulant; we can apply the commutativity of

circulant matrices to derive the three teris(i = 1, 2, 3) in (2.29).

Xo =) > (AlB))®(C[C))

- % (Z Y AlBy @ (cich+> > (AlB) CTCT)>

i=1 j=1 J=1i=l1

_ %ZZ(AIBj +AIB) ® (Cich). (2.30)

i=1 j=1
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Using the constraint (2.13c) of OSTBC, we hayieB; + Al B; = 0. Therefore X, = 0.
Similarly, we can show thaX'; = 0,,.
To calculateX;, we first swap the indices j of the second term ak; and exploit the

commutativity of circulant matrices to get

K K

X =YY Ala) e (cle) +ZZBTB ® (CC))

=1 j=1 =1 j=1
K

> (AlA; + BIB) @ (clc))

1

-

(2

1
K K
Z (AlA; + BIB) ® (Clc;) + Z(A}Ai +BIB) ® (CICy). (2.31)

1 5=1,j7#¢ i=1

Mx

From the orthogonality constraint (2.13b), the first terf2o81) vanishes and from (2.13a),
ATA; + BB, = Iy. Thus, X, = YK I @ (ClC) = Io ® (Z,f:lc,ick). Substituting
the results in (2.30) and (2.31) into (2.29), we have

K
DD = %IQ ®Y clc,. (2.32)

This completes the proof. n

We next examine the performance of OEST codes. The diversigr and coding gain
are the two main performance metrics for designing OEST £¢8ection 1.3). Of the
primary importance, the diversity order is investigatestfir
2. Diversity order

We derive the conditions so that OEST codes achieve fulksiite

Theorem 2.10.An OEST code achieves full diversity if and only if the unded circulant
STBC has full diversity.

Proof. We first show the necessary part of Theorem 2.10. We now applydiversity
criterion (Section 1.3) to examine the diversity order ofSTEcodes. For two distinct
OEST code matrice® and D, the matrixP;, defined as

Pp % (D - D)'(D - D)
® (Z A}kAck) (2.33)
k=1
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whereA¢, = Ci, — Cy. If Pp is full rank for all distinct code matrice® and D, then the
OEST code achieves full diversity.

SinceD # D, there exists at least one pair@fandC; such that; # C; or AL Ac, is
positive definite. Then the matri%ZkK:1 Aa Ack> Is always positive definite for any pairs
of distinct code matrices. Therefore, the matfix is always of full rank and OEST codes
achieve full diversity. This completes the necessary garbeorem 2.9.

To prove the sufficient part of Theorem 2.10, if the OEST cadeexves full diversity,
we must show that the underlying circulant STBC must be fuidiity. From (2.33), if the
worst case happens, there is only one non-zero different@xné; — C}) forl1 <i< K.

If Pp is full-rank, the matrixAElACi must be full rank as well; this holds for all possible
worst-case pairs of OEST code matrices. Therefore, forasbiple matrice$C; — C;)
are of full rank and the circulant STBC is full diversity. Theopf of the sufficient part is

completed. O

3. Coding gain
When OEST achieve full diversity, the coding gain (1.6) immaezly follows:

K
Gp,m = — mindet Pp
D#D

K
K
= — min |det Al A
PD;é/j[ (; Ci Ck)

In the worst case, where there only exists one paif; ahdC; such that; =+ C., the coding

Q/m
(2.34)

gainis

K /P
GDM = — min [det (AZ’AC>]
7 P Ci#£C; v

=k Gc.p. (2.35)
Thus, using Proposition 2.6 and (2.16), we have the follgwesult.

Corollary 2.11. The coding gairGp 5, of OEST codes is upper bounded as

1 &2, d2;
min — min . 2.36
QRoo P MRo g ( )

Gpu <

Thus, one can select the optimal rotation of LTAST codes twimize the coding gain
of OEST codes as specified in Proposition 2.7 or Propositi8iid2 P = 2 and PSK.

30



4. Code Rate

From the construction of OEST codes, compared with the B2SiEBC, the number
of symbols parsed in an OEST code matrix incred3¢snes. However, the length of the
code matrix also increaséstimes; the code rate of an OEST code fdr= () P transmit
antennas is, therefore, equal to the rate of OSTB@ftransmit antennas used to construct

this OEST code. We thus have the following results.

Corollary 2.12. The rate of an OEST code faf = PQ transmit antennas is equal to the
rate of an OSTBC fof) transmit antennasRp s = Ro g, Which is used to construct this
OEST code. The upper bound of the code rat&fet 2a — 1 or Q = 2a is %1

5. Column orthogonality
From (2.32), the orthogonality property of OEST code masican be stated as follows.

Corollary 2.13. The M = P(Q columns of OEST code matrices (fof = PQ transmit
antennas) can be divided in{p separate groups, each éf consecutive columns, counting
from left to right. Then the columns of the same group are ribbgonal to each other, but

they are all orthogonal to the columns of the other groups.

2.3.3 A Note on the Maximal Rate of OEST Codes

The rate of OEST codes is less than or equal to 1 symbol pcun@yeask whether there
is any STBC with group decoding property and with rate largantone symbol pcu? We
provide a partial answer to this question in the following.

OEST codes are designed with a special property of circatattices: IfC; is a circu-
lant matrix, ther(]lT is also a circulant matrix¢; andCI inherit the commutative property
of circulant matrices. Now, we consider a more generalrsgta familyL of matrices with
the following properties: (1) All the matrices dfare commutative, i.e. it;, Cs € £, then
C1Cy = C5Ch; () IF C € L, thenCI € L. Thus, the circulant structure is not imposed to
the matrices ofL. Our question is: what is the maximum rate of the STBC consttlby
parsing the data symbols into the matrices of thelset

Let C, € L, thenC| € £ and, therefore(,C] = CIC,. Thus,£ is a commutating
family of normal matrices. All the matrices df are simultaneously diagonalizable by

the same unitary matrix [63, Theorem 2.5.5]. The input imfation symbols can only
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be encoded to produce the diagonal entries of the diagonaixnteecause the common
unitary matrix cannot deliver any information. Since thener of independent entries
of diagonal matrix is equal to the number of the column, thdecmte is, therefore, not
more than one symbol pcu. This is similar to the design of D&Jes [49]. And in fact,
rate-one circulant LTAST codes are equivalent to rate-o8& Dodes [20]. Thus, using
the commutating normal matrices to construct OEST code®swith rate larger than one
symbol pcu cannot be obtained.

Having presented the basic properties of OEST codes, weshext how to design an
efficient decoder so that multi-group decoding is possilitbout the exponential com-

plexity of typical maximum likelihood search.

2.3.4 Decoder

In general, OEST codes can be decoded using the matrixrveetinod proposed in [33],
followed by a sphere decoder [107,108]. Therefore, we retvdow to efficiently decou-
ple the transmitted symbols into groups to greatly sim@ifsnbol detection at the receiver.

Since the OEST code rate is not more than 1 symbol pcu, it isilpleso use only one
receive antenna with an efficient maximum likelihood decieh as a sphere decoder
[108]. For the sake of clarity and simplicity, we first corsidhe case witllvV = 1 receive
antennas, and then generalize the resulté\for 1.

Let h = [hy hy --- hy] denote the channel gain between theh (m = 1,2,..., M)
transmit antenna and the receive antenna. /et D be a transmitted code matrix, the

receive signal vectay is adopted from the system model (2.3) as

y — %Dth'w. (2.37)

We can use maximum likelihood decoding. The detected codexnia is given by

D = arg min ||y — \/% Dhl3 . (2.38)
Dep

This approach will lead to the separation of groups of symbml detection. However, we
will present another equivalent derivation to emphasizeditihogonal property of OEST
codes. Moreover, this approach leads to an interestingeseptation of the equivalent
channel of OEST codes.
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Substituting the code matrik in (2.26) to (2.37), we have

K P
y= 33 [ (ko w ) R, (Beo ' ) b w. (239

k=1 p=1
Let
ey = (Av@7" ") h, (2.40a)
B, = [ekl e - ekp] , (2.40b)
fip=(Br®n ") h, (2.40c)
Fo={fu Fro - Fer)- (2.40d)

k=1 p=1
Pk
=4/— |Ey F Ey F Ex F
Iz By Fi By, F k Fk|
X [u] wl wl wl oo UHT +w. (2.41)

Furthermore, the following equation is equivalent to (.41

Y _\/ﬁ L L W 41T, |Ww
[y*]— P {Fl* Ef F[*( E}K{ [ul u; o Ug 'U'K} + w | (2.42)

N J/
g

w

An important property ofV is that the its columns are orthogonal and can be shown in
the following.

We have to show that the following equations hold:

T

E'[E .

{ F:] [ Fll*] = ElE + FFF =0p for k I, (2.43a)
T

E]'[F .

{ Fﬂ [ Eﬂ = E[F, + F]E; = 0p, (2.43b)

We just provide the proof for (2.43a); (2.43b) can be showmilarly.
The following properties of the forward permutation mattixwill be useful for our

next derivation [64, page 27].

=gl =g1=7gF"1 (2.44)



Consequently, one has = 7’ = I'p.
From (2.40), the size of matriX,, = (E} E, + F] Fy") is P x P. The elemen{Zy];; of

Z, can be calculated from (2.40) as

(Zulij = elei; + FLf
= h'(Al @ =) (A @ @ Hh + (B} @ 71)(B} @ n )R
= h'[(ALA) @ (77 )|k + hT[(B{B}) @ (7" 7)]h"
= hi[(ALA) ® (x/)h + BT [(BIB) @ (7 7")]h = hI[(ALA + B[B) @ (x' ")k

N { hi(Io@m~)h, k=1 (2.45)

Thus,Z,; = 0p if k # [ or the columns ol are orthogonal.

Since fork = [, the matrices/;;, do not depend on the value bfwe drop the subscript

k for brevity. Hence, the entries ¢f are

zij = hi(Ig ® ™7")h. (2.46)
Let flq = [h(q—l)P+1 h(q_l)p+2 s h(q_l)p_,_p}—r for q = 1,2,... ,Q. Thenh =
T
[HI hy - ﬁ;] , andz;; in (2.46) can be rewritten as
Q At A
2=y hy'h,. (2.47)
q=1

The element;; (2.47) exhibits a strong structure gf To examine further the matrix
7, we recall another representation of circulant matrix tbwdm an arbitrary vector
below [64]:

Cl(zx) = [r"z 7'z - 7' Fx]. (2.48)
We now check for the entrg, ;j) of the product matrixC (z)C,.(x) using (2.48):
(CH@)Cr()];; = [Co(x)Cl()]; = an'n 72" = alnia. (2.49)

Comparing (2.47) and (2.49), interestingly, we find an elegaepresentation of be-

low:

Q
7= Cl(hy)Cy(hy). (2.50)
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SinceC,(h,) is circulant,Cl(h,) is also circulant; the product of two circulant matrices
is also circulant and the sum of circulant matrices is alsoutant [64], thus” is also a
circulant matrix.
To separate the transmitted vectgrat the receiver, we multiply the two sides of (2.42)
with [E]  FJT] to get
Ely + Fly* = Zuy, + (Elw + Flw*) . (2.51)
N———
Wy,
The covariance matrix of noisé E[w,w] ] follows
V =E|(Blw + Flw)(Blw + Flw")!
= E,i Elww'E), + F] Elw*w'|F} + E,i Elww'|F} + F] Elw*w']E}
= BBy + FlF, = Z. (2.52)
During the derivation of (2.52), we have used the fact thatlie vectorw of circularly
complex Gaussian random variablggww'] = 0,;.
The noise covariance matrix is not an identity matrix, bwg tioise vector can be

whitened by multiplying the two sides of (2.51) with a whiteg matrix Z~z. The re-

ceived signal with whitened noise is

N

Z73(Ely + Fly") Z2uy, + Z 21, (2.53)
——

w

where the elements @b areCN (0, 1).

From (2.53), we conclude that all of the transmitted vectgyexperience the same
equivalent channel, i.e. the same equivalent channel gainadditive noise statistics.
Thus, all of the transmitted vectors have the same PEP.

We now generalize the result of (2.53) for the case of m@dtipteive antennad] > 1.
The subscript: (n = 1,2,..., N) is added to the channel gain vectar The channel ma-
trix [ is therefore written a& = [hy hy --- hy], whereh, [h1, hon - th}T.

When multiplying the two sides of (2.42) wit[]E,i ET], we actually performspa-
tial maximal ratio combining109, 110] orspatial matched filteringd8]. The equivalent

channel in (2.50) becomes

N N Q
Z=>"7,=> 3 Clhgn)Crlhgn) (2.54)

n=1 ¢=1
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whereh,,, = [h-vpiin hg-1ypion h(qfl)Per’n}T forqg = 1,2,...,Q, n =
1,2,...,N.

Therefore, with multiple antennas and constellation rotain (2.20), the detection
equation (2.53) is generalized for data detection with ipl@ltreceive antennas as

N
Z7 3N (Bl oy, + FLuyl) Ziug + W = Z:0s, + W (2.55)

n=1

g

Yy,

wherey,, is the received signal vector of thgh antenna,

Egn = [ekl,n €r2n ekP,n} ; (2.56a)

erpn = (Ax @7~ ") by, (2.56b)
fork=12,... K;p=1,2,..., P,

Fin = [Frin From = Frenls (2.56¢)
Fipm = (Br@7'?) h,, (2.56d)
(Za)ij = ic:(ﬁq,n)cr(ﬁq,n) fori,j=1,2,...,P, (2.56¢)

q=1

andW ~ CN (0, N); however, we do not need to divide both sides of (2.55)\by
Notice By similar derivation with suitable modifications, the tsamtted symbols of
OEST code matrices of Construction Il are also separatedynatops as (2.55). However,

the main difference is that the elements of maffiare
zij=hi(" @ Iy)h, (2.57)

which will not lead to a compact representationoés in (2.54).

One can useé< sphere decoders (see, e.g. [108]) running in parallel, satthsolve
(2.55). Therefore, the decoding complexity and decodimg tare greatly reduced.

The matrix Z2 can be considered as the equivalent channel of OEST codese Si
Z is a circulant matrix, using [64, Theorem 3.2.3, p. 73], wa show thatZ: is also a
circulant matrix. It means thathen multiple data vectors are encoded in circulant matrices
and mapped to an OEST code matrix, the data vectors can bele@iydecoupled at the
receiver. Each data vector is equivalently experiencedstdrae circulant channel matrix,

which is a superposition of multiple circulant matrices.
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In the following, as a sanity check, we verify the generakdson equation (2.55) for
two special cases: OSTBC and circulant STBC [101].
Detection of OSTBC

For OSTBC,P = 1,() = M and hence,

Eyn = erin = Arhy,, (2.58a)

Zy = [Zy)11 = || hallf- (2.58c¢)
N N

Z=Y Z,=Y_ |kt =|H|E (2.58d)
n=1 n=1

and® = I, then (2.55) becomes

N
IH|[ES (Rl ALy, + b Blys) || H|lpw + 1. (2.59)

n=1
NS >y
vV

Uk

From (2.59), a similar detection equation for single symbplto the metrics given in
[59,62,111] can be derived.
Detection of circulant STBC[101]

For circulant STBCK =Q =1, A, = I, B; = 0,.

From (2.48), (2.56a) and (2.56b), we hakle,, = C..(h,,); from (2.56a) and (2.56b),
Fi,, = Op ¥n; from (2.54),Z = Y., Cl(h,)C,(h,). SubstitutingF, ,, and F\ ,, into

(2.55), we obtain
N

Z72 ) [CHhn)y, ) Z 2w + W (2.60)
n=1

Although (2.60) holds for maximum likelihood detection¢cén be easily modified for the

zero-forcing (ZF) or minimum mean square error (MMSE) reees proposed in [101].

2.3.5 Maximum Mutual Information

Since OEST codes decompose the MIMO channels wite- P() transmit andV receive
antennas intd< parallel equivalent MIMO channels of the same sizex P, we can
calculate the maximum mutual information of OEST codes Bintathe sum capacity of

thesek identical MIMO channels. Thus, the maximum mutual inforimaof OEST codes
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can be calculated using the equivalent channel in (2.619|s\s [10]:

Ip+ 2 Z Z CH(hyn)Cr(hyn) } (2.61)

where R is the code length of underlying the OSTBC code. The coefﬁc@ﬁappears

K
Cp= PR —F {log;2 det

because the maximum mutual information of OEST codes is acdfumaximum mutual
information of K vectors averaged ovér = PR channel uses.

We can use & x P unitary discrete Fourier transform (DFT) matrix to diagbna
ize the circulant matrice€’,(h (Aqn) without changing the distribution &@p. Let A, ,.(p)
(p = 1,2,...P) be the eigenvalues df,(h ). It is well-known that the vectors of
eigenvalues are the DFT of the channel vedtgg. Thus, \,,(p) are independent and
Agn(p) ~ CN(0, P). Let Agn(p) = V' Phgn(p), thenhy, (p) ~ CN(0,1).

By denotingA,, = diag(hgn (1), hgn(2),- - , hen(P)), (2.61) becomes

IP+pI€ZZ }
n= ;\If . A |
QRO Z Z [Frgn ()] ] } : (2.62)

nlql

_Ro
Cp PQ E {log2 det

1+

= R@Q E {10g2 det

In (2.62),Cp is independent of the index therefore, the indey is omitted without loss
of generality. Furthermore, lef = [h,,] € C2*V, we haved" | 2 | |hg,|* = || H]|[2.

1Y A2
Cr=R 1 det |1 H
D o,QE{ng e [ +QRO,QH HFH
— Coo (2.63)

We arrive at the new expression©fp:

whereCp ( is the maximum mutual information of OSTBC designeddoiransmit anten-
nas [112]. Thusthe maximum mutual information of OEST codes does not depetite
value of P, the size of data vectors. When increasing the number o$tn&grantennad/,
but keeping the basis orthogonal matrices, one obtainsdrigliversity but not capacity
benefit. This result also hold for QSTBC.

The results of this section is summarized in the followinggattem.

Theorem 2.14.The maximum mutual information of an OEST codeMo= P antennas

is the same as that of the OSTBC fprantennas used to construct this OEST code.
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—— Channel capacity (M, N) = (4, 1)
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—%— OEST, mutual information (P, Q) = (1, 4)
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Figure 2.2: Channel capacity and maximum mutual informabio@EST, (4, 1) system.

The maximum mutual information of OEST codes for differeatgameter sets are plot-
ted in Figs. 2.2 and 2.3. For one receive antenna or the MI@@re#, in Fig. 2.2, SAST
codes corresponding 1@ = 2 nearly attain the channel capacity. Other configurations
suffer from remarkable capacity loss. These losses are sigméicant forN > 1 (see Fig.
2.3). This result is expected because the rates of OEST e@wda®t more than 1 symbol

pcu, while MIMO channels support ratesafn(M, N).

2.3.6 Semi-Orthogonal Algebraic Space-Time Codes

We can identify a special case whepe= 2 or the OEST constructed from the Alam-
outi code. This code has the feature that the columns of ¢ and the left halves are
orthogonal. Thus, we call this code semi-orthogonal algielspace-time (SAST) code.

Additionally, there are several points that make SAST cacp®rtant.

1. Since the Alamouti code achieves full capacity of (2, Brotel, hence, SAST codes

achieve significant capacity of the MISO (multiple-inputge-output) channel.

2. SAST codes have rate of 1 symbol pcu, the highest rate\adiieeby OEST codes.

Fig. 2.4 plots the maximum mutual information of SAST ancteiant STBC (or

LTAST) codes, two subclass of OEST codes having the sameradel®f 1 symbol pcu,
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Figure 2.3: Channel capacity and maximum mutual informabio@EST, (4, 2) system.

together with the capacity of MISO channels far = 2,4, 8,16. Fig. 2.5 illustrates the
relative channel capacity attained by the two codes. Theenigal results show that for
M = 4, SAST codes attain more than 95% and up to 98% of channel itap&or M
= 16, SAST codes achieve not less than about 92% channelittapHus is because for
a specific high SNR, the channel capacity does not actuallgase when the number of
transmit antennas increases, but the number of receiveragés fixed [14]. Fig. 2.4 also
shows that the capacity increment of the MISO channel isigie¢g¢ when the number of
transmit antennas increases from 8 to 16. Therefore, SA8&soearly attain the capacity
of MISO channels.

The next section will present the constructions and perdmees of OEST codes for 4,

6 and 12 antennas.

2.4 Examples of OEST Codes

Given a value of\/, one can find the sets of all paiféP, Q)| P, @ € N, PQ = M}. Note
that one can delete one or several columns of OEST coded/ftnransmit antennas to
construct OEST codes for the smaller numbers of transnainaats.

In the following, we will present OEST codes for 4 and 6 traitsamtennas using

40



10

T
—— Channel capacity M = 2 1
—©— Channel capacity M = 4
9H —©- Channel capacity M = 8 4
—A~ Channel capacity M = 16
—8- SAST
g — LTAST i

Mutual Information [bits/s/Hz]

|
0 5 10 15 20 25 30
SNR [dB]

Figure 2.4: Maximum mutual information of SAST and LTAST esdver MISO channels.
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Figure 2.5: Capacity achievable rates of SAST and LTAST cadespared with the ca-
pacity of open-loop MISO channels.

Construction | and their performances in quasi-static fldinig channels.
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2.4.1 Code Construction Examples

Let us denote OEST codes designed for the set of paramét&yssDp. For M = 4
transmit antennas, there are at least three variants of @B&3s as follows.

U1 U9 Us 0
*
1 I l=uy  wy 0 —us

Dis= —04 = — . (2648.)
y * *
V3 V3 |—uz 0 uy o U
0 uz —Uy Uy
i U1l U2 us U4_
D 1 (%) U1 Uy us
2,2 — T~ * * * *
VA | Tuy o —ug Uy Uy
—uy —uz o u; g
Uy Uz U3 Uy
1 fug wy wus wusg
Dy = —
VA |us ug up ug

=Cy- (2.64c)
For M = 6, there are at least 4 variants as follows.

Dy =—=0s (see [44, (101)]) (2.65a)

N

i Uy (%) us Uy Us U6_
U2 Uy Ua us Ue Us
—uz —u; uy  uy; 0 0
- V2 | —up —ui  w w00
22T gl o —uE 0 0wt
—ug —uz 0 0 uy U
0 0 us o ug  —uz  —uy
00w w —up g

= Q. (2.65Db)
[ w Ua us Uy Us U |
Us (751 (%) Ug Ug Us
’ V6 | —uy —ug —us o oul uy o u
—up —uy; —Ug Uy U] Uz
[—ug —us —up  uz Uz U

= Ss. (2.65c¢)
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Uy Uz Uz Uy Us Us
Ug U U2 U3 Ug Us
1 Us Ug U U2 U Uy
V6 (U us ug ur uz ug
Uz Uygy U5 Ug UL U2

Uz U3 Ug Uy U UL

= Cs- (2.65d)

To construcD, 3, we have used Construction | and the orthogonal basis msif€@STBC
O3 [59] by deleting the last columns of (2.64a). If Constructibwas used, the resulting
OEST code would be equivalent to a QSTBC far = 6 as we have shown in Section
2.3.1.

The OEST codes presented abovefor= 4, 6 are equivalent to the previously known
codes since there are only a few choices for the pairs of pateasP and(). Nevertheless,
other new OEST codes fal/ = 6 can be obtained by deleting some columns of the
OEST codes designed far > 8. For larger values ol/, for exampleM = 12, we have
more freedom to select the values of the paits): (1, 12), (2,6), (3,4), (4,3), (6,2), and
(12,1). We can construct several completely new OEST codes foralues of parameters
(P,Q): (3,4) or (4,3). The details are omitted for brevity.

The main parameters of OEST codes fdr= 4,6, 12 are summarized in Table 2.1.
The OSTBC with maximal rates in [44] are selected to constil@EST codes.

2.4.2 Simulation Results

Comparison of OEST codes implementations

We have performed simulations to compare the performandéfefent implementa-
tions of OEST codes for 4, 6 and 12 transmit antennas. The agmstellations are selected
so that the bit rate is 3 bits pcu. A summary of OEST codes coeabwith signal con-
stellations is given in Table 2.2. However, exceptfars (or Og) andDs g (Or Q15) with
symbol rate of 2/3 symbol pcu, there is no constellation thatches the bit rate of 3 bits
pcu. Thus, 16QAM is selected, resulting in the bit i&t& bits pcu. Note that the minimum
Euclidean distances of 16QAM is 0.6325, and of 8QAM and 8Hex3a8165 and 0.9631,
respectively. The shapes of 8QAM and 8Hex [104] are sketochEdy. 2.6.

For M = 4, all OEST code variants have the same spectral efficiencyhifs3pcu.
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Table 2.1: Comparisons of Several OEST Codes

M | OEST codes Known as G, Rate| Decoding complexity Delay
4 D14 Oq 2| 3 1 symbol 4
4 D22 Sa TdZn |1 2 symbols 4
4 Das T Td2i 1 4 symbols 4
6 D1 Og TdZn | 2 1 symbol 30
6 Do new= Qs | 2d2, | 3 2 symbols
6 D32 Sé % dlznin 1 3 SymbOlS
6 De.1 T sdZ 1 6 symbols
12 D112 Oh2 T 5 1 symbol 792
12 Das new,= Qi | :+d2, | = 2 symbols 60
12 Ds.4 new sdZ. | & 3 symbols 12
12 Das new s | 3 4 symbols 16
12 D2 Si2 L2, 1 6 symbols 12
12 D121 Tio 1—12 d? .. 1 12 symbols 12

001 011
° °
010 OI1 001 000
[ ® o o 101 000 010
® ® ®
° ° ° °
100 110
110 111 101 100 ° °
(2) SQAM ) 11
(e) 8Hex

Figure 2.6: Geometrical shapes of 8QAM and 8Hex consteliati

The optimal rotations in Proposition 2.7 can be usedSpand7;. S; with 8Hex (large
Euclidean distance) outperfornd®,. Note that forM = 4, S, and Q, are equivalent; this
observation is also made in [61]. Using the same 8QAM, how&ecode gains 1.7 dB

over7,. On the other hand, performance&f with 8QAM is inferior to that ofO,, even
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Table 2.2: OEST Codes and Simulation Parameters

M Codes Modulation Coding gain Bit rate
4 D4l Oy 16QAM 0.1334 3
4 | Dysl Q41S, | BQAM/8Hex | 0.1667/0.2319 3
4 Dy1l T, 8QAM /8Hex | 0.1667/0.2319 3
6 D11 Og 16QAM 0.1 8/3
6 | Dysl=0Qs 16QAM 0.0889

6 Dso 1 Sg 8QAM /8Hex | <0.1111/0.1546

6 De1l7Ts 8QAM /8Hex | 0.1111/0.1546

12 | Do/ = Qus 16QAM 0.05 8/3
12 D34 16QAM <0.0445 3
12 Dais 16QAM 0.0445 3
12 De.2 8QAM < 0.0556 3
12| Do/ Tho 8QAM < 0.0556 3

BER

—— (P, Q) = (4, 1), LTAST, 8QAM
—x— (P, Q) = (1, 4), OSTBC, 16QAM
-o- (P, Q) = (2, 2), SAST, 8QAM
A (P, Q) = (2, 2), SAST, 8Hex

T T T

1 1 1 1 1
6 8 10 12 14 16 18 20 22 24 26
SNR [dB]

10°

Figure 2.7: Performance of OEST codes with 3 bits pcu, (4ydfesn.

though its coding gain is higher.

For M = 6, with 8QAM and 6 transmit antennas, the optimal rotatiorrscicculant

STBC are not available analytically. By computer search, @ fbbund rotation angles
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A~ (P, Q) = (6, 1), LTAST, 8QAM, 3bits pcu
—— (P, Q) = (2, 3), QSTBC, 16QAM, 3bits pcu
—0- (P, Q) = (1, 6), OSTBC, virtual rate 3bits pcu
—— (P, Q) = (1, 6), OSTBC, 16QAM, 8/3 bits pcu
—= (P, Q) = (3, 2), SAST, 8QAM, 3bits pcu
—©- (P, Q) = (3, 2), SAST, 8Hex, 3bits pcu

T T T T

1 1 1 1
6 8 10 12 14 16 18 20 22 24
SNR [dB]

Figure 2.8: Performance of four implementations of OESTesoir 6 transmit antennas
with 3 bits pcu, excepD; ¢ (or Og) with 8/3 bits pcu.

are approximately) = e/™/* for the Sy and¢ = €i™/3 for 7;. From Fig. 2.8,S; also
yields better performance among the investigated OESTsc&davith 8QAM gains about
0.5 and 1.2 dB ovef; and O, respectively. Moreover$s with 8Hex even outperforms
OSTBC, which has lower spectral efficiency.

Even though the rate @ is 8/3 bits pcu, we can still compare its performance with
other codes with a rate of 3 bits pcu. Recall the fact that OST@®ert the MIMO channel
to the scalar (SISO) channel (Section 1.4.2). Also, in tladasachannel, to obtain 1 more
bit of spectral efficiency using QAM, an additional SNR ofedst 3 dB is required [113] at
high SNR. Additionally, in the space-time system, it is shdwrzheng and Tse [114] that
among OSTBC, only the Alamouti code achieve the optimal ditgersultiplexing tradeoff
for 2 transmit/1 receive MIMO system. It is also confirmedttiveth the Alamouti code
and QAM, to gain an additional rate of 1 bit, the SNR incremsrdt least 3 dB [115]. In
our simulation, the OSTB®; do not achieve the optimal diversity-multiplexing tradeof
Therefore, more than 3 dB is expected to gain 1 bit of data fateeach the rate of 3 bits
pcu from the current rate of 8/3 bits pcu, one needs to inerdesdata rate by 1/3 bit pcu,
which requires more than 1 dB of SNR. In Fig 2.8, we plot anotherBER curve ot
with a virtual rate of 3 bits pcu by shifting the a part of BER wiof Oy (starting from

46



SNR = 10 dB) to the right by 1 dB. With this virtual rat®g perform slightly better than
QSTBCQ;. This result is different from the case of 4 transmit antenménere OSTBC is
inferior to QSTBC. The virtual rate concept may not provide ecfge comparison for the
codes with similar performance. However, it helps to cldsedap of rate mismatch for
asymptotic comparisons.

The performances of five variants of OEST codes for 12 trainantennas are illus-
trated in Fig. 2.9. The OSTBQ);. is not presented due to this code entails a long delay
of 792 channel uses [106]. For QSTRL;, with rate of 8/3 bits pcu, the virtual rate con-
cept is again applied enabling the reasonable performamog@arison. With 12 transmit
antennas, excef, ; and Dy, ; (or LTAST code7;,), the other three variants of OEST
codesDg 2 (or SAST codeS;s3), Ds 4, andDs ¢ (or QSTBC Q- with virtual rate of 3 bits
pcu) clearly show a performance-complexity tradeoff: tighbr decoding complexity, the
better performance. The decoding complexitymafs is slightly higher than that ob; 4
(see Table 1), but the latter yields a small SNR gain of 0.1 d& ¢he former. The LTAST
code7;; has highest decoding complexity, but BER is inferior to theeotcodes at low
and medium SNR. Only when SNR > 18 dB, the LTAST code perfornghigyi better than
Ds.4, Das, andDsg; but its performance is still about 0.6 dB worse than thahef$AST
code.

Comparison of SAST codes and other codes

In this section, we compare the performance of SAST codestret STBC of rate-
one symbol pcu or less. Unless otherwise stated, the BERarembtained by maximum
likelihood detection.

Fig. 2.10 plots the BER of SAST and LTAST codes for a MISO chawniitd 4 transmit
antennas system using 4-, 16- and 64-QAM (with spectralieffotes 2, 4 and 6 bits pcu
accordingly). The SNR gain of SAST codes over LTAST codeslistantial. For example,
the SNR gain is about 1.3, 2, 2.5 dB for 2, 4, 6 bits pcu, resgeygt The gains increase
with the spectral efficiency.

Similar gains can be observed for a higher number of tranantgnnas. Fig. 2.11
compares the BER of SAST and LTAST codes for MISO channel witai&smit antennas.
Again, SAST codes outperform LTAST codes. The SNR gain is@d 1.3 dB with 2 and

6 bits pcu, respectively.
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Figure 2.9: Performance of OEST codes with 3 bits pcu, exBept(or Q;,) with 8/3 bits
pcu, (12, 1) system.

While our theoretical analysis is carried out for even nurakmrtransmit antennas,
SAST codes for an odd number of transmit antennas can benelthy deleting one col-
umn of SAST codewords (or switching off one transmit ant@mmal by setting the channel
gain associated with the switched-off antenna to zero ad¢iceder.

Fig. 2.12 illustrates the performance of SAST codes andespaw linear constellation
precoding (ST-LCP) codes [51] with the same 2 bits pcu (4-QABT}LCP codes, in fact,
are equivalent to DAST codes proposed in [49]; by using diedfourier transform (DFT),
one can convert LTAST codes to DAST codes (see [20]). Theeslag the BER curves
of SAST and ST-LCP codes are almost parallel, indicating thatformer achieve full
diversity. Furthermore, notable gains of 1 and 1.5 dB oveL 6P codes are obtained for
M = 3andM = 5, respectively. Thus, SAST codes perform better comparddlWAST
codes for any number of transmit antennas.

Fig. 2.13 compares performance of SAST, ST-LCP and linegedsson codes [33] for
spectral efficiency 2 and 6 bits pcu (4- and 64-QAM, respebtthand withA/ = 3, N = 1.
Fig. 2.13 shows that SAST codes perform better than ST-LCE<fudt all bit rates. SAST
codes also perform better than the linear dispersion cotle tive same delay’ = 4 at
high SNR. With 2 and 6 bits pcu, SAST codes gain about 0.4 andB.@ver the linear
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Figure 2.10: Performances of SAST and LTAST codes, (4, liesys

M=8N=1

BER
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Figure 2.11: Performances of SAST and LTAST codes, (8, lteays

dispersion codes at a BER of—*. With higher delay desigii’ = 6 and for 2 bits pcu,
SAST codes perform the same as the linear dispersion codias &N\R, but outperform
them at high SNR. SAST codes improve over the linear dispersides because the design

criterion of the linear dispersion codes aims at maximizimgmutual information, which
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Figure 2.12: Performances of SAST and ST-LCP codes with 4-QMNM= 3.5, N = 1.

may not extract full diversity. Therefore, the performantéhe linear dispersion codes is
worse than that of SAST codes at high SNR. Note that the degaimplexity of linear
dispersion codes is always higher than that of SAST codes.

We have investigated the error-rate performance of SASExodrhe results show
that SAST codes outperform LTAST, ST-LCP/DAST, QSTBC, anddirdispersion codes.
Since the performance of OSTBC is inferior to these codes4@3%1, 61], SAST codes
also outperform OSTBC codes.

Since suboptimal detectors may sometimes be employed teedtie detection com-
plexity, we examine the performance of LTAST and SAST codis %6-QAM, using the
V-BLAST optimal nulling and cancellation receiver or the ioml zero-forcing decision
feedback equalization (ZF-DFE) receiver [94]. Fig. 2.14idts the performance of the
two codes with the ZF-DFE receiver. The BER of SAST codes With= 2 (Alamouti
code) andV/ = 4,8 using sphere decoder, and uncoded BER over single Rayleigigfad
channel are also presented for comparison. By comparingdpesof BER curves, we
conclude that with the V-BLAST ZF-DFE receiver, SAST codeliewe a diversity order
of 2, while the diversity order of LTAST codes is only 1; moveq SAST codes have
smaller BER than that of LTAST codes. With the ZF-DFE receil/@AST codes produce
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Figure 2.13: Performances of SAST, ST-LCP and linear digpeisodes with 4- and 64-
QAM, (3, 1) system.

a marginal gain compared with uncoded data transmittedsingle Rayleigh fading chan-
nel (M = N = 1) case. On the other hand, SAST codes with= 4 and 8 gain about
1-dB and 2.9-dB, respectively, over the Alamouti code. Wiita ZF-DFE receiver, SAST
codes do not achieve full diversity, but still deliver a f@&acoding gain.

The diversity orders of SAST codes and LTAST codes using BAeDan be intuitively
explained by checking back (2.54). With one receive antetimeeelements on the main di-
agonal of the equivalent channel of SAST codes are the suwmoadquares of two channel
amplitudes, while the elements on the main diagonal of thivabtent channel of LTAST
codes are a square of a channel gain. Thus using the ZF dedtloeleliversity orders of
SAST codes and LTAST codes are two and one, respectively.DREehelps to improve
the error rate (coding gain) but not diversity order.

From the simulation results, we conclude that SAST codeaydwwerform better than
LTAST codes (see also [100]), even thought this two spe@aés of OEST codes have
the same coding gains. The reason is that the distance wpeofrSAST codes is im-
proved compared with LTAST codes. This fact can be verifieddiynting the number of

codewords with minimal coding gain.
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Figure 2.14: Performances of SAST and LTAST codes using V-8LAptimal nulling
and cancellation (or ZF-DFE for short) receiver for 16-QAM,= 4,8, N = 1.

2.4.3 Decoding Complexity

Since SAST codes offer better performance than several STBEof interest to inves-
tigate their arithmetic complexity. We thus compare the plaxity of SAST codes and
LTAST codes, which have the same rate-one, for 8 transmétnauais. The two codes are
decoded by a sphere decoder with Fincke-Pohst enumeragtigooh[116] [108], written
in Matlab Release 13. Note that the decoding of SAST codesiedode two data vectors,
each with 4 complex symbols; while with LTAST code, we needé¢code only one data
vector of 8 complex symbols. Therefore, we have to verify thbethe total number of
arithmetic operations to decode two length-4 data vectb&A&ST codes is less than that
of the decoding of one length-8 data vector of LTAST codes.

We differentiate "hard" operations, including multiplicat, division and square, and
simple addition. The results for a (8, 1) system with 16-QAid plotted in Fig. 2.15.
Clearly, the decoding complexity of LTAST codes higher th&8% codes 27 times at 14
dB (low SNR), 16.3 times at 20 dB (medium SNR) and 3.1 times atB@high SNR).
Thus much arithmetic computation savings can be obtainading 2-group SAST codes
compared with 1-group LTAST codes. This is a good evidendegblight the efficiency

of multi-group STBC in complexity reduction.
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Figure 2.15: Comparison the arithmetic complexity of SAS@e®and LTAST codes for
(8, 1) system using 16-QAM.

2.5 Summary

We have derived the necessary and sufficient conditions @ti-group decodable STBC.
Based on these conditions, we have presented a new genessloflapace-time codes
called OEST codes. Their full-diversity and optimal codgegn are achieved by rotat-
ing the input constellations. The blocks of transmitted sgta in the OEST codewords
can be maximum-likelihood decoded separately at the rec&ithout any interference
from other blocks. This is a highly desirable decoding-ctaxipy-reduction property for
practical systems. The OEST framework sheds new light opria@ously known STBC,
including OSTBC, QSTBC, and rate-one LTAST codes. Furthernsonew class of rate-
one STBC, namely semi-orthogonal space-time codes, is fahtiFor a given number
of transmit antennas, OEST code variants can be derivediexible tradoffs among rate,
performance, and decoding complexity.

In the next two chapters, we will develop two STBC from OEST]ckihare the exten-
sions of QSTBC and SAST codes, with even lower decoding coftpleviore sophisti-
cated encoding will be designed to utilize the lower decgdiamplexity compared with

the original codes.
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Chapter 3

Minimum Decoding Complexity
Space-Time Block Codes

In Section 2.3.1 of the previous chapter, we have shown tiBRBAAcodes, proposed by
Tirkkonen, Boariu, and Hottinen [47], are a special case ofsBaction Il of OEST codes
(see (2.23)). Even though the two constructions of OEST £ade permutation equiva-
lent, the equivalent channels of the two constructions dferent (see (2.54) and (2.57)).
We have derived the equivalent channel of Construction | o6DEodes, but omitted the
details of Construction Il. In this chapter, we derive theiegjent channel of ABBA codes,
which is a special case of OEST Construction Il. Many furthgoartant results can be de-
veloped based on the equivalent channels of ABBA codes. Feongbe, the original ABBA
codes allow pair-wise complex-symbol decoding complexitgwever, ABBA codes also
allow single-complex symbol decoding, the feature whicls\waown to associate with
only OSTBC.

3.1 Existing Results and Open Issues of ABBA Codes

ABBA codes [47], a class of QSTBC, have been proposed to incris@seode rate of
OSTBC [40, 44]. Since ABBA QSTBC have low complexity pair-wisanplex-symbol
decoding and perform better than OSTBC [61], they have bedalystudied for various
applications such as coherent and non-coherent MIMO conuations, beamforming,
precoding, and others (see, e.g., [19,117-119]).

Recently, Yueret al. [120] have shown that the ABBA codes also enable pair-wise

real-symbol decoding, which is thminimum decoding complexi{iMDC) achievable by
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non-orthogonal STBC; they call such codes MDC codes. Thudgevitweir code rate is
higher than that of OSTBC, their decoding complexity is eqoaihgle complex symbol
decoding. In the following, we reserve the term "ABBA" for th&sTBC proposed by
Tirkkonenet al. [47] with pair-wise complex-symbol decoding [61] and theté'MDC-
ABBA" for the ABBA codes with pair-wise real-symbol decodint20].

Single complex symbol decoding for ABBA codes is possiblengghase feedback
schemes. Specifically, these schemes are tailored for ABRe<with 4 [121, 122], 6
[123], and 8 antennas [124]. However, these methods mayiecessary since the ABBA
codes are already single-symbol decodable.

To design MDC-ABBA codes with full-diversity, conventionali@drature amplitude
modulation (QAM) or phase-shift keying (PSK) signals nemte transformed [120, 125].
Yuenet al.[120] and Wanget al. [125] employ the coding gain metric [16] to derive the
optimal signal transformatiohgor QAM and 8PSK. Their analytical results are reported
for QAM only. However, maximizing the coding gain is, in fat minimize the worst-case
codeword PEP; this provides no guarantee for minimizingsthmebol error rate (SER). In
general, finding the optimal signal transformations for QANBK, and other constellation
with good minimum Euclidean distance, such as lattice oflatpral triangular (TRI) (also
called hexagonal (HEX)) or amplitude PSK (APSK) [104, 126terms of minimal SER,
is still an open problem.

Furthermore, despite extensive research, a general secowthod for ABBA codes
for arbitrary numbers of transmit and receive antennastiavailable. One reason for this
gap is that the equivalent channel for ABBA codes is not knawtné most general case.
Several decoders for ABBA codes have been proposed, but ongofne specific cases,
for example with 4 or 6 antennas in [127-129].

In this chapter, we will systematically solve the fundena¢open problems of ABBA
QSTBC. They include the general decoder and optimal signasfimamations in the mini-
mal SER sense. We first derive general decoders of ABBA codikaply these decoders
for the signal transformations proposed by Ywatral. [120] and Wanget al. [125]. The

exact symbol pair-wise error probability (PEP) and unionrmbon the SER are derived.

1By using the term "transformation”, we imply that the tramsfation matrix is not necessarily orthogo-
nal. On the other hand, the term "rotation" is used only whienthe transformation matrix is orthogonal.
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The union bound can be used to precisely predict the perfucenaf MDC-ABBA codes
and, moreover, to optimize the signal transformations fgr @nstellation. Furthermore,
for the constellations with inphase-quadrature powerailafice, such as rectangular QAM
(QAM-R), we propose a new method combining signal rotatiah @ower allocation. Our
new signal transformations for QAM-R perform better andehlwer encoding/decoding
complexities than that proposed in [125]. Since antennectieh is an effective method
to improve the performance of space-time codes, as well asplify the structure of
transmitter/receiver, we investigate the performance BYXOVABBA codes with transmit
and receive antenna selection. We show that MDC-ABBA codeaeliull diversity in

the systems with antenna selection and with limited feekipE®0O].

3.2 Decoding of ABBA QSTBC Codes

We briefly review the construction of ABBA codes. Léf and B (k = 1,2,--- | K)
be thet x m basis matrices of an OSTB@,,,. Two blocks of data, each af symbols,
are mapped into two code matricgsand 5 of ©,,, as A = Z,ﬁ; (s Ak + s3By), B =
Zlf;{:l (Sk+KAk: + SZH(Bk)-

The ABBA code matrices fod = 2m transmit antennas are constructed from as

A B
Q]\/f — |:B A:| ’ or
K S S K s; Sy
k k+K k kK
= A + B
Qui kz: |§k+K Sk } @Akt Z [SZJFK Sk } =
=1, , k=1 ,
Cr ct

K

= (Ce® Ay +CL @ By). (3.1)
k=1

The above expression have been shown in (2.28)r et {0

1 1.2
1 O},thenw—w T =
Ig,and

Ck = (Skﬂo + 8k+K7T). (32)

For example, the code matrix of the MDC-ABBA code for 4 transamtennas built
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from the Alamouti code [26] is given below:

S1 59 53 5S4

*
53 S4 S1 52
—3S4 s3 =S5 S1

We next derive the equivalent channel of ABBA and MDC-ABBA cqdesich is
similar to the steps of deriving the equivalent channel of€Sarction | of OEST codes. The
number of receive antennd = 1 is considered first and then the results are generalized
for multiple receive antennas.

Leth = [hy hy -+ hy)T denote the channel vector with ~ CA(0,1). LetQ € Qy,
be a transmitted code matrix, the receive signal vectgr is \/?Qh + w, wherew is
noise vector with independently, identically distribu{edd.) entries~ CA/(0,1); p is the
average receive signal-to-noise ratio (SNR).

From (3.1) and (3.2), the received signal vector can be sgprkas

K 2
p/i 2: i— —1 *
Y=V P D[ @ Ag) hspyni + (7177 @ By) hsjoyg] +w. (33)

=1

Letey, = (7' @ Ay) h, By = [en ews], fru = (@@ B)h, Fy = [frn [ral
ands; = [s; sk+K}T, (3.3) can be rewritten as

y:\/? (B, F E, Fy -+ Ex Fg]x[sT sl sl sb o sL si] +w.

(3.4)

We now use a trick in [111] to decode OSTBC for our next dervatiThe following
equation is equivalent to (3.4):

y_\/ﬁElFl'”EKFK T o T 41T |w
{y*}— 9 {Fl* Er - Fi Ei ><[s1 sl . sk SK} + w | (3.5)

N /
g

w

We can show that the columns of matbix are orthogonal. To do this, we need to show

that the following equations hold:

T
[?’“] [?} — Bl E + FFf =0, for k # 1, (3.6a)
k l
T
E'[F .
[F:] [EZJ — EF+ FEf =0, Vk, 1. (3.6b)
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We just provide the proof for (3.6a); (3.6b) can be shown lsirty. Let 7;;, = (E,IEI +

FTFy), its element can be calculated as

(Ziilij = e;rm'elj + fZifZ}-
= hi[(x"") @ (ALA)]h + hT[(x'7) ® (BLB})h’
— BI[(x7) @ (AL A+ BLBi)h

|0, k#1;
B { hi(w = @ ILy)h, k=1 S

Thus,Z,;, = 0, if k # [. Since fork = [, the matricesZ,, = Z Vk, where the entries of
arez;; = hT(ﬂ'j_i ®Im)h In partiCU|ar,Zl’1 = Zo2 = Hh”?:, 212 = 221 = EZl(hlh*

+m

hth;im). ThereforeZ is also a circulant real matrix and can be represented as

Z =Y HH, (3.8)
=1
hfi hi-i—m .
whereH; = b b . To separate the transmitted vecta(k = 1,2, ... K) at the
i+m )

receiver, we can multiply the two sides of (3.5) with] F]] to get

Eliy + Fly* =4 /%Zsk - (E,iw + Flw*). (3.9

Thus, [E,i F,ﬂ plays the role of the spatial signature of the data vestor
We now generalize the result of (3.9) for the case of multipteive antennagy > 1.
The subscript: (n = 1,2,..., N) is added to the channel gain vectar The channel ma-
trix 7 istherefore written ag( = [hy hy --- hy|, whereh, = [h1, hay - th}T.
We can show that the matrix in (3.8) becomes

m

N
7 = Z > HlH;; (3.10)

=1 i=1

whereH, ; = {Z” Z”W} . Therefore, (3.9) is generalized for multiple receive ante
i+m,j 2,7
nas as follows:

N N
S (BLy,+ FLyy) =[5 Zsi+ Y (Blw, + FLw)) (3.11)
n=1 n=1

J/
' '

Yy, Wy,
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wherey,, is the received signal vector of theh antenna,

= lexn €r2nl, fork=1,2,... K, (3.12a)
erin = (Ay @) hy, fori=1,2, (3.12b)
= [frin From) (3.12¢)
Frin= (B ") hy. (3.12d)

The noise vectofv,, is colored with covariance matriXx = ]E[ﬁ)kﬁ;z] = 7 # I,. Let

H = Zz. This color noise can be whitened by a whitening makfix! = Z 2.
SinceZ is real, we can rewrite (3.11) by decoupling the real and imey parts of the

two sides of (3.11) as

ggﬂ ) \g@ @EZH i % (3.13)

Thus, the real and imaginary parts of the transmitted vegtaran be separately de-
tected. Including the noise whitening matitk~!, the general equivalent transmit/receive

signal relation of MDC-ABBA codes are:

HOR(g,) = (|55 HR(s1) + H' Ry, (3.14a)
HS(9,) = /%ﬁ%(sk) + A1 (1) (3.14b)

In (3.14), H is theequivalent channedf MDC-ABBA codes. We have some important

properties ofd as follows.

Lemma 3.1. The equivalent channel matrix of ABBA codes and its invarare real and

circulant.

Proof. Since Z is a2 x 2 normal circulant matrix, its two eigenvalues and \, are
non-negative;Z can be diagonalized by 2 x 2 (real) Fourier transform matrix; =
NG E _ﬂ asZ = Fj diag(\, \)F. If H? = Z, thenH = Fj diag(v A1, vA2)Fb.
Thus, H is real. One can also verify thaf is a circulant matrix. The matri¥/ ! can be

similarly shown to be a real and circulant matrix. The pr@ofompleted. ]
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Note that, in general, the equivalent channel of Constrodliof OEST codes is not
circulant. However, with the special case of ABBA QSTBC, theiegjant channel is also
circulant.

The detection of vector&(s;) and 3(sx) in (3.14) involves only 2 real symbols.
Therefore, maximum likelihood detection of MDC-ABBA codesbmes single complex-
symbol decoding, a feature previously known to be possdss€5TBC only.

In order to achieve full-diversity, optimal signal transfations are required before
transmission and these are derived for MDC-ABBA codes. Wedinatyze the encoding
and decoding of existing signal transformations propose(lLp Yuen, Guan, and Tjhung
(YGT) [120] and (2) Wang, Wang, and Xia (WWX) [125]. Note tha¢ toding gain metric
[16] is used to optimize signal transformation in [120, 128hich may not be optimal in
terms of minimal SER.

3.3 Analyzing the Existing Signal Transformations

Let the input symbols b&, = a; + jbg, dkrx = ki + jbrik, (k= 1,2,..., K); they
are drawn from a unit average energy constellagoifior example QAM, PSK. Let;, =

Pr + 1k, Skik = Drrk + ) Qe i D€ the transmitted symbols. We can jointly transform the
real input symbols,, by, a, . x andby ., i by a real transformatioR to generate transmitted

symbolspy, qi, pr+ i, andgy x as

[%(Sk)T %(Sk)T}TZ [pk Pr+k Gk Qk+K]T
:R[ak bk ak+K bk+K]T. (315)

. J
v~

[

1. Signal rotation proposed by Yuen et |I20]:

In [120], the transmitted symbols are generated as follows:

R(sp) = [pk pk+K}T =R [ak bk}T ) (3.16a)
S(sk) = [ax Qk+K]T = R apix bk+K}T (3.16b)
whereR is a unitary matrix,
_ |cos(a)  sin(a)
= [sin(a) —cos(a)} ’ (3:17)
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and optimal angle, in terms of coding gain [16], for QAMiis= ; arctan(3) = 13.2825°.
Thus, the signal rotatior is of the form

R 0,
R = {02 R] (3.18)

2. Signal transformation proposed by Wang et[aR5]:

Wang et al. [125] present a general format of signal transformations simow that
there are three cases that can be used to achieve pair-aiss/mbol decoding. However,
these three cases are permutation-equivalent. We thugleonsly the first case with the

following signal transformation:

[P @r Drik Qk+K}T = RwCr (3.19)
where
Uy Us
RW - |:U1R1 U2R2:| ) (320)

andUy, U, Ry, R, are2 x 2 real matricesR? = I, R2 = I.
However, the symbol mapping in [125] is slightly differenbrin (3.15): thep,, x and

q. are permuted compared with the arrangement in (3.15) sath th

[%(Sk)T %(Sk)T}T:[Pk De+k Gk Qk-i-K}T

=7 [Pk Gk DPrik qk+K}T=7rRW Cr; (3.21)
~——
Rw
where
1 000
0010
™10 10 0 (3.22)
0001

SubstitutingRy into (3.13), we have

U = 1 /%f{ﬁzwék + iy (3.23)
The matrixH Ry in (3.23) is not block-diagonal; thus, pair-wise real-syintbecoding

seems to be impossible. However, by multiplying to sides3a23) with 7A2€V we again

obtain another block diagonal matriy, Ry
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We first can show that the produet Hr = |~ Iy 21y Then,
z9 Ig 21 IQ
H=RyHRw = Ry HrRw = X1 0 (3.24)
0, X,

where

X1 = 21U Uy + 22R{U{ Uy + 22U Ui Ry + 21 R{UT Uy Ry,
Xy = 21U Uy + 20 RyU, Uy + 25U Uy Ry + 21 RyUy Us Ry,

where,z; andz, are the elements df such thatZ = jl 22} .
2 1

Now, multiplying both sides of (3.23), one gets:

~ lpk | X7 O ~

The noise vectofR,, ) can be shown to have covariance matfiix Thus, we can use

the noise whitening matri%/ —z. Eq. (3.25) becomes

X2 0, |~ [pr[xz o0
! 2_; Rwyy = PR 2;

Let Rwd, = (5, 9i.)", wheregl, andg], are2 x 1 real vectors, 7@, =

ey + H 2wy, (3.26)

[,wk LW, wherefwk 1 andw“ are2 x 1 vectors with i.i.d. real Gaussian elements,

X, 2'y,“—n XQCk—i—wkl, (3.27a)

Xy Qym—\/ X Cr+K T W 2. (3.27b)

The maximum likelihood detection equations for MDC-ABBA cedeith signal transfor-

(3.26) is equivalent to

mation from [125] are

¢p = arg min (pchchk — 24/ %czym)) : (3.28a)
Ck
R .
Crix = arg Iilln (pl-@cHKchkJrK — 24/ p2 Cr kUi 2) : (3.28b)
Cr+ K

Thus, the decoding of MDC-ABBA codes with WWX-transformatioduees to pair-wise
real-symbol decoding.
We have some comparisons on the signal transformationsdyetal.[120] and Wang

et al.[125] as follows.
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e Encoding complexity: The x 4 transformatiornRy, of Wanget al.[125] has higher

encoding complexity compared with tBex 2 rotation R of Yuenet al.[120].

¢ Decoding complexity: However, the multiplication ®f;y andy, in (3.25) slightly
increase the complexity, compare with the decoding of MDC-AB&des with
YGT-rotation.

e Performance: For square QAM (QAM-S), the transformatiofil@b, Theorem 2]
provides no SNR gain compared with the rotation proposedusn¥t al.[120]. The
transformation in [125, Theorem 3] performs better withtaegular QAM (QAM-R)

at the cost of higher encoding/decoding complexities.

3.4 Optimal Signal Transformations

We will only consider the signal rotation of Yuest al. [120] for deriving the exact sym-
bol PEP because their rotation is mathematically convéniéfore important, we will

show that by combining power allocation and signal rotat@nnphase-quadrature power-
unbalanced constellations like QAM-R, we can achieve nog bekter performance but

also less complexity than by using the transformation irb[Izheorem 3].

3.4.1 Exact Symbol Pair-Wise Error Probability

From (3.15) and (3.16), we can rewrite (3.14) as
=1/ PR T -
H'R(y,) = S HR lax bg] + R(wy), (3.29a)
Tl ) — [ PR A T
H™3(g,) = 5 AR aksre berx] + S(wy). (3.29b)

Since H 'R (w),) and H'S(w,,) are real random Gaussian vectors with i.i.d. entries
(zero-mean and variandé, = 1/2), the information vectorsay, bk}T and[ax x bk+K}T
(k=1,2,..., K) experience the same channels; they are subject to the seon@rba-
bility. We thus can consider the error probability of onelod two vectors only; the sub-
script of symbols can be omitted for brevity. Furthermohe, pair-wise error probability

of each vector is also the symbol PEP.
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Consider two distinct symbolé = a + jb andd = a + jb. Letd, = a — a,05 =
b—b A = [61 d5]T, the conditional symbol PEP of and d can be expressed by the
GaussiarQ)-function as [32]

pr|HRA|?

o (3.30)

P(d—d|H)=Q
We have shown thal/ is a2 x 2 real circulant matrix in Lemma 3.1. HencHH =
HH = H? = Z, whereZ is given in (3.10). We can use eigenvalue decomposition
for H SO thatH = FQTAi,jFQ, Where/lm- = diag()\i7j71,)\i7j72) and [/\i,j,l AZ‘J‘?Q]T =
Fy[hij hivnsey)T. Sinceh; ; andhyp o ; are ii.d.~ CA(0,1), so are the\; ;; and; ;.
Thus,

N M2
Z=7 Y Fdiag(Nial, Nigel’) Fo. (3.31)
j=1 i=1

Letz 2 |HRA|? = (RA)'HTH(RA), one has

N M/2

1= 33" [(FRA) diag(Aijal ol ) (FRA))
j=1 i=1

N M/2

= SN (BN + B2 gel?] (3.32)

j=1 i=1
where[3; 3,]T = FLRA, andj3, and3, are real.
We can apply the Craig’s formula [131] to derive the condisiicsymbol PEP in (3.30).

w/2
A PRT 1 —pPRT
P(d—dH) = ) == I A6
(d = d|H) Q( 2 ) 7r/0 P (4811129)

1 e Aijal? + B2
/ HHGXP( PR 61| Z]1| +52| '5]2| ))de (333)

i 4 sin® 0

Since); ;; and ), ;- are i.i.d~ CAN(0,1), we can apply a method based on the mo-
ment generation function (MGF) [132, 133] to obtain the urditonal symbol PEP in the

following:

o1 P32 prB2 M
Pld—d) =~ 1 1 1 2 de. 3.34
(d—d) 7r/0 {( +431n20) ( +4511120)} ( )

[ J/

G(x)
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We can further derive another closed form of symbol PEP tadawbegral operation.

Letz = sin%6, ¢, = ﬁ,@ = ﬂQ, andLZ = MN/2. Using the partial fraction for the

equation inside the integral (3.34), one has

=
L

-1

G(x) ! - Uk
— — — 6 €
(I1+z/e))l (14 x/ex)t 1€2) par :L‘—|—61 — (x4 eg)m=F
(3.35)

where

" — (=1)'L(L+1)... EL'+ 7 — 1)7 (3.36)

’i!(EQ — 61)1"H
_N\ET(T 7 _
Uk:< DFL(L+1)...(L+k 1). (3.36b)

k!(El — €2)E+k

SubstitutingG(x), u;, vy, into (3.34) and after algebraic manipulations, we get

P(d — d)
/ m/2 a9 +Li v 1 /”/2 df
E € = = — =
1€2) o ef im (1+ Lsin?)b— = l-imfo (14 Lsin?0)E-
(3.37)
Sincel ”/2 #__ (and alsot f”/Q m) is the symbol PEP of a maximal

ratio combining (MRC) system W|thL — 1) receive antennas [32], we obtain

1 /2 b Lo \NE I T i1\ (1!
i g () S )
o (1+ Zsin®@)L 2 l 2

m
=0
(3.38a)
[ db L=\ I D —i— 140\ (1 l
s -5 O
o (1+2 S sin 20)L- 2 P l 2
(3.38b)
Wherenl = 1/(1+€1),772: 1/(1+€2)
The symbol PEP of MDC-ABBA codes can be found below.
-1
P(d—d) = <UZ€1€2 My + vi€ €2M2 z) ) (3.39)
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SER

[| =& Exact SER union bound, 4QAM
. + Simulated SER union bound, 4QAM
10 " -4~ Simulated SER, 4QAM
F| - Exact SER union bound, 8QAM-S
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Figure 3.1: Union bound on SER compared with simulated SERAIf signals, (4, 1)
system.

3.4.2 Optimal Signal Rotations Based on Tight SER Union Bound

Assume that/; andd,, i,7 = 1,..., (2, are signals drawn from a constellatisnof size
(2. Using the symbol PEP expression (3.34), we compute thenumoaind on SER of
MDC-ABBA codes with constellatio as

9 -1 2
P8 =5 >3 Pl — dy). (3.40)

i=1 j=it+1

The SER union bound of square QAM (QAM-S) with signal rotatia (3.17) and
a = 13.2825° are plotted in Fig. 3.1. The geometrical shape of 8QAM-S (@sd other
8-ary constellations) can be found in Fig. 3.2. The bit magps designed such that the
average number of different bits of neighbor symbols is mined.

The union bound is only about 0.1 dB apart from the simulatE® Svhen SER<
10~2. Therefore, the SER union bound can be used to predict the f@&rmance of
MDC-ABBA codes accurately. Furthermore, this bound can bd tseptimize the signal
rotation .

We run a computer search to find the optimal rotation in terfmainimizing the SER
union bound for popular constellations. During the seatloh,incremental step size of

rotation angle i$.001°. The optimal angle is searched in the raf@fe45°], because ifv

66



010 011 001 looo
[ ] [ ]
010 0Ll | 001 000 001 010
[ ] [ ] [ ) [ ]
110 000 i ¢
° ° ° ° 131 o 180
1o 111 | 101 100 111 101 100 ® °
i ® 111 110

(a) 8QAM Rectangular

(b) 8QAM Square

(c) 8QAM Square Rotated

(8QAM-R) (8QAM-S) (8QAM-SR)
001 011
101 001 000 ° *
[ ] [ ]
101 000 010
011 010 ° LJ Ld
@ L 4
100 110
111 110 100 ° °
[ ] [ ]
111
(d) 8TRI-a (¢) 8TRI-b

() 8PSK (g) 8APSK

Figure 3.2: Geometrical shapes of 8-ary constellations.

is an optimal angle, the following angles are also optimal 90° + «, 180° 4+ «, 270° + a.
The SNR is chosen such that the SER of corresponding optotaifion angle is about
10~8. At such low SER, the optimal rotation angles also yield tlillersity MDC-ABBA
codes. The results are summarized for the optimal anglesiraihige0°, 45°] in Table 3.1.
The SER union bounds of several 4-, 8- and 16-ary constalisitare illustrated in
Fig. 3.3. Compared with QAM, TRI performs quite well when theg ased for fading
channels [104, 126], and for OSTBC and ABBA codes [61, 105]. ddnestellations with
larger minimum Euclidean distance tend to perform betteneéier, this conclusion may
not be valid for MDC-ABBA codes. For example, 8TRI-b has the b@simum Euclidean

distance among 8-ary constellations, but its performasigerse than 8QAM.
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Table 3.1: Optimal Rotation Angles of Popular Constellations

Signal Optimal « Signal Optimal «
4QAM 14.382° 8QAM-S 12.268°
4TRI 31.155° 8QAM-R 13.166°
8PSK | 5.915°, 39.085° || 8QAM-SR 31.964°
8APSK 33.472° 16PSK | 24.883°, 42.617°
8TRI-a 30.284° 16TRI 0°
8TRI-b 0° 16QAM-S 13.195°

We also compare the frame error FatEER) of MDC-ABBA codes with the new opti-
mal signal rotation and existing transformations for squatated 8QAM (8QAM-SR) in
Fig. 3.4. Our new optimal signal rotation gains remarkaldRSat high SNR compared
with the signal rotation in [120] and performs slightly letthan the signal transformation
in [125], however, with lower encoding/decoding complist

Note that in Fig. 3.4, while ABBA codes (with pair-wise compigymbol decoding)
have a better FER compared with MDC-ABBA codes, the BER of theéoris inferior to
that of the latter. Gray-bit mapping may not be optimal for AB&odes with SQAM-SR.

The new optimal rotation angles for QAM (square or rectaagutonstellations are
very close to the proposed anghe = 13.2825° by minimizing codeword PEP [120].
Therefore, the SNR gains in these cases are negligible aeahpa the results of [120]
and [125, Theorem 2]. We will next present a new approach;hvisiapplicable to find the
optimal rotation angle for QAM-R so that the MDC-ABBA codesfpem better but have

lower encoding/decoding complexity than that proposed &5 Theorem 3].

3.5 Optimal Signal Rotations with Power Allocations

For QAM-R, for example 8QAM-R in Fig. 3.3, the average powefrthe real and imag-
inary parts of the signal points are different. We may chahgepower allocation of the

real and imaginary parts of QAM-R signals to a get betteraV&ER.

2Since a frame or vector of symbol data is mapped into a codgwloe term "frame error rate” bears the
meaning of "codeword error rate".

68



Union bound SER

10

—— 16PSK
—*— 16TRI
—— 16QAM-S
10°H —= 8PSK
—A— 8APSK
-O- 8TRI-a
—— 8TRI-b

|| -~ 8QAM-R
10 H - 8QAM-s
— 8QAM-SR
-0~ 4TRI
-8 4QAM
10’ T 1 1

0 5 10 15 20 25 30

SNR [dB]

Figure 3.3: SER union bound of 4-, 8-, 16-ary constellati¢gfhsl) system.
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Figure 3.4: Performances of ABBA codes and MDC-ABBA codes u8iQ4M-SR, (4, 1)
system.

In particular, the real and imaginary parts of QAM-R sigrale scaled by constants
11 andy., respectively, before they are rotated. For examples leé a constellation with
signal setS = {d | d = a+jb, a,b € R}, the new constellation with new power allocation

isS = {d | d= pa+jub;a,b € R}. The average energy of the constellation is kept
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Table 3.2: Optimal Power Allocation and Signal Rotation f&xNDR

Constellation| Lo Optimal «

8QAM-R | 0.9055| 1.3784 0°
32QAM-R | 0.8972| 1.3487| 1.954°

—- 32QAM-R, YGT rotation
—— 32QAM-R, WWHX transformation
—©- 32QAM-R, new optimal power allocation
—k— 8QAM-R, YGT rotation
—— 8QAM-R, WWX signal transformation
—&- 8QAM-R, new optimal power allocation

T T T T

8 10 12 14 16 18 20 22 24 26 28
SNR [dB]

Figure 3.5: Performance of MDC-ABBA codes with new optimal powallocation and
existing signal transformations for QAM-R, (4, 1) system.

unchanged. Scalars, and ., are called power loading coefficients. For example, the
8QAM-R with signal points{(£3 =+ j, =1 + j)//48} has a constraint equation for power
loading coefficients:; andu, asbu? + p3 = 6. We ran an exhaustive computer search
to find the best power loading coefficients and rotation afgle3- and 32QAM-R. The
results are given in Table 3.2.

The FER of MDC-ABBA codes with our new power loading scheme f&MIR is
compared with the existing signal transformations in Figh. ur proposed scheme per-
forms better compared with the signal rotation method on¥@ian-Tjhung and also per-
forms slightly better than the signal transformation mdtbbWang-Wang-Xia with lower
encoding/decoding complexities.

We can apply the power allocation method for other congtetia, such as 8TRI-b and

16TRI. With such power scaling, the square or equilaterahtyie of lattices are actually
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distorted, which reduces the minimum Euclidean distandbetonstellations. Therefore,
we again confirm that, in contrast with OSTBC, maximizationh& minimum Euclidean

distance is not essential for MDC-ABBA codes.

3.6 MDC-ABBA Codes with Antenna Selection

When a low-rate feedback channel exist between receiveranshhitter, several feedback
schemes have been proposed for OSTBC. Among these schemssjitfieeceive antenna
selection is simple, yet provides significant SNR gain comgavith the open-loop OS-
TBC [130,134-136]. We will therefore investigate the periance of MDC-ABBA codes
with transmit/receive antenna selection and compare MDC-AB&les with OSTBC with
antenna selection. The transmit (or receive) antennasedgeted so that the Frobenius
norm of the channel is maximized.
From (3.32), let3, = min(|51],|52]), B2 = max (|41, |B2]), we have

N M/2

2> > [BE (Nigal” + higal?)]

N
2 <Y S B (Aigal® + [Aigal?)] -

j=1 i=1

Since[i 1 Aije2lT = Folhij hiyayz,]", we get
Nigal® 4 Pigal® = [his? + [Rigarsa ). (3.41)
Therefore,
Bl H? <o < Bl H ™ (3.42)

Actually, H is dependent opy. We thus rewrite the upper and lower bounds of condi-

tional symbol PEP as

Q<1/w>gp(d_”ﬂ7{)§@<ww>' (3.43)

If both 3, and 3, are nonzero for all distinct pairs of symbols, the lower apger
bounds of symbol PEP of MDC-QSTBC in (3.43) are simply a symld? Bf some OS-

TBC transmitted over the same chanpglwith different SNR scales. Therefore, as long
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as/3 and, are nonzero, the symbol PEP of MDC-ABBA codes is bounded by tilio f
diversity symbol PEP curves. Hence, MDC-ABBA codes must aghiiell diversity. From
(3.34), if 4, and 3, are nonzero for all distinct pairs of symbols, the MDC-ABBA esd
are full diversity; this condition also holds for the signensformations using the rank-
determinant criteria with codeword PEP [16, 120].

In the case of transmit antenna selection, anlyut of M/; available transmit antennas
are used. The effective channel of MDC-ABBA codes with transmienna selection is
‘H, which consists of\/ columns with the largest Frobenius norm of the mafkix In
this case, the matrix in (3.43) is replaced byy. It is similar to the case of OSTBC with
transmit antenna selection [130]. Since OSTBC achieve fudlrdity with transmit antenna
selection, MDC-ABBA codes also achieve full diversity withrismit antenna selection.

More importantly, full diversity can be obtained with lired feedback [130]. The con-
cept of antenna selection with limited feedback can be axpthas follows. With full
information feedback, choosinty out of M, transmit antennas requirés= [log, ()]
bits and the number of feedback bitsnay be large. In some scenarios, it is required to
keepb small. Therefore, instead of picking one group\éfantennas from the set t@ﬁ?)
possible choices, th&#/ antennas are selected from the set with smaller cardin#hitys,
the number of feedback bits is reduced. This method is chiteted feedback. Obviously,
the selected// antennas may not be optimal with limited feedback, but thediadth of
feedback channel can be set small and also the time to sefekitiigack would be shorter.
It is shown that OSTBC can achieve full diversity with limitesbdback [130]. Therefore,
MDC-ABBA codes also achieve full diversity with limited feealtk.

The similar explanation can be given with receive antenftecgen [134]. Therefore,
with transmit antenna selection and receive antenna gatediDC-ABBA codes always

achieve full diversity with full or limited feedback.

3.7 Simulation Results

Simulation results are next presented using the new desdoleABBA and MDC-ABBA
codes to compare their performances. The diversity ordeMDBC-ABBA codes with

antenna selection is also verified. All signal constellaiase Gray-bit mapping.
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Figure 3.6: Performances of MDC-ABBA codes compared with ABBAe&s and OSTBC,
(4, 1) system.

3.7.1 Performance of MDC-ABBA, OSTBC, and ABBB Codes

The performances of ABBA and MDC-ABBA codes for an open loop 41TRX antenna
system are compared in Fig. 3.6. Performance of OSTBC ratsy®Mbol pcu [44] with
16QAM (3 bits pcu) is also plotted in Fig. 3.6. While the penfance of MDC-ABBA
codes with 4- and 16QAM closely approach to that of ABBA cotlesformer outperforms
the latter with 8QAM-S with signal points. Therefore, theagibit mapping may be not
the optimal bit mapping for ABBA codes. With another BQAM-R, I@EABBA code also
performs better than the ABBA code but slightly worse than 86TThe MDC-ABBA
code with 8QAM-S gains 0.5 dB over OSTBC with the same speeffaliency of 3 bits

pcu.

3.7.2 Performance of MDC-ABBA Codes with Antenna Selection

1. Diversity order of MDC-ABBA codes with transmit antenna sekction and limited
feedback

We examine the diversity order of MDC-ABBA codes with transaritenna selection
using limited feedback. One can choasle= 3 out of M; = 4 available transmit antennas.

Full complexity systems requirte= ’—logQ (gﬂ = 2 bits to be sent back from the receiver
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Figure 3.7: Performances of MDC-ABBA codes with limited antl faedback, choose
M = 3 transmit antennas from/; = 4 antennas, and 1 receive antenna, 16QAM.

to the transmitter. In the limited feedback system, theeeanly 2 possible choices to
choose 3 out of 4 antennas. Thus only 1-bit feedback is neddddg 3.7, performances
of MDC-ABBA codes with full and limited feedback schemes armpared forNV = 1 and
using 16QAM. There is a loss of 0.5 dB when using 1-bit feellzamenpared with optimal
transmit antenna selection (2-bit feedback). However1thé limited feedback scheme
still improves 0.9 dB over the performance of the open-lodp@AABBA code. Perfor-
mances of the two feedback schemes are compared with tHa af¢al rate-one OSTBC
with transmit antenna selection, which serves as the lowant on the performance of
the MDC-ABBA code with transmit antenna selection. The penfance gap between the
limited feedback MDC-ABBA code and the lower bound is aboutdB8
2. Comparing MDC-ABBA and OSTBC with antenna selection

Performances of an MDC-ABBA code designed for 3 transmit argsnvith transmit
antenna selection is presented in Fig. 3.8. The number dfabl@a antennas\/, = 4
and 1 receive antenna. Compared with the open loop case, the-MEBA code with
transmit antenna selection and 16QAM gains about 1.2 dB.d&pe the performance
of (g) transmit antenna selection is slightly better than thatrofdeal imaginative rate-
one OSTBC using the same 16QAM. Note that the performance @femh hypothetical
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Figure 3.8: Performances of MDC-ABBA codes and OSTBC desigoedf = 3 with
transmit antennas selection, number of available antehhas 4, and 1 receive antenna.

10° ¢ T

F| -5~ MDC-ABBA, open loop, M = 4
[| %~ MDC-ABBA, TAS, M =4, Mt =
[| = MDC-ABBA, TAS, M =3, Mt =
—6—- Alamouti code, TAS, M = 2, Mt

T

4,
3,
= 6

Mn oo

1 1
0 5 10 15 20 25
SNR [dB]

Figure 3.9: Performances of MDC codes with transmit antesetection, 16QAM (4 bits
pcu), number of available antenn&g = 6, number of active antenndg = 2,3,4, and 1
receive antenna.

rate-one OSTBC is also the performance limit of ABBA-QSTBC wptiase feedback
schemes [122-124]. Compared with OSTBC for the same spetficatiecy of 3 bits pcu

and transmit antenna selection, MDC-ABBA code gains 0.8 dB.
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Figure 3.10: Performances of MDC codes compared with thenAlgi code when feed-
back is delayed, 16QAM (4 bits pcu), number of available amés)/, = 6, number of
active antennas/ = 2,4, and 1 receive antenna.

In Fig. 3.9, we compare the performances of MDC-ABBA codes fan@ 4 transmit
antennas with that of the Alamouti code. All these STBC aresictared with transmit an-
tenna selection, where the available transmit anteffias: 6 and 1 receive antenna, and
all codes have rates of 1 symbol pcu and use 16QAM. The Alamode performs signif-
icantly better than MDC-ABBA codes. However, this excellanprovement is obtained
with a perfect assumption: there is no feedback delay. Ile chslelayed feedback, the
transmitter has the outdated channel state informationpidede the simulation results
with correlation covariance coefficient of the actual antdated channel gains = 0.9
and 0.7 in Fig. 3.10. The advantage of the Alamouti code ovBCMABBA codes with
transmit antenna selection vanishes quickly whee 0.7; the Alamouti code performs
worse than MDC-ABBA codes when SNR > 17.5 dB.

3.8 Summary

In this chapter, we have applied the framework of OEST codethdroughly analyze
ABBA QSTBC. We have derived the general decoder of ABBA coded|dwaither pair-

wise or single complex symbol decoding. Existing signal¢farmations were adapted for
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the newly proposed decoder of MDC-ABBA codes. A tight unionrmbon the SER was
presented and used to optimize the signal rotations for MIBBA codes with various
signal constellations. We have also proposed a nhew methodinong the optimal power
allocation and signal rotation to find the best signal trarmeftion for inphase-quadrature
power-imbalanced constellations such as rectangular Q@M. new signal transforma-
tions perform better than the existing ones and also haverlencoding/decoding com-
plexities. The MDC-ABBA codes have been shown to achieve iu#rdity with antenna
selection and with full or limited feedback. Although ourdysis is restricted to the ABBA
codes, it can be also extended for other QSTBC in [46, 48] anddawate interleaved or-
thogonal designs (CIOD) [92].
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Chapter 4
Four-Group Decodable SAST Codes

In Chapter 2, ABBA QSTBC, as a special case of OEST codds;ggoup decodable. In
Chapter 3, we show that by a new encoding method, ABBA codescaually 2 K -group
decodable. The single-symbol decoding capability of ABBAle® is obtained because
their equivalent channel is a real matrix. In general, thehadent channels of OEST
codes are complex matrices, which make the decoding compleduction difficult or
impossible. In this chapter, we will solve this problem bpmosing a more sophisticated
encoding method for OEST codes by exploiting the circulaopprty of the equivalent
channel to obtain lower decoding complexity OEST codes.dde®EST codes arkk -
group decodable in general.

Among subclasses of OEST codes, SAST codes have sevenadjdishing properties
such as near-capacity performance, rate-one for any nuofili@nsmit antennas, and bet-
ter performance than several existing codes. ThereforayiWwpresent the new encoding
method to obtain lower decoding complexity for SAST codescdRehat SAST codes are
constructed from the Alamouti code witi = 2. Thus, the new encoding method will

make SAST codes 4-group decodable.

4.1 General Encoder o2 K-Group OEST Codes

Recall that in Section 2.3, before mapping a data vector(slymbols) into a circulant
matrix, each element (data symbol) of the data vector idedtaeparately by a specific
angle to make the OEST codes full diversity. We now consideird rotation of all the

data symbols, i.e. to rotate the data vectors by a specialxnaamelyinverse discrete
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Fourier transform(IDFT) £ [64]. Letz be the data vector, the rotated vector is

We consider the simple case of circulant STBC. The data vestfrst rotated as in
(4.1), and then mapped to a circulant STBC. Our question is hamyrgroups of symbols
can be separated at the receiver for maximum likelihoodctiete? To answer this question,
we need to examine the dispersion matrices of the circul@BCSwith respect to Theorem
22 Lety; = a;+jb (i = 1,...,P),and F' = [fu] = [f1 fo .- fp] (fu =
\/Lﬁej 2r(=1)(k=1)) 'we have

S1 S9 Sp
C(S) _ Sp :91 Sp-1
S9  S3 S1
P P
k=1 k=1
where
P
A= fam™ = C(f1), (4.3)
i=1
P .
By=jY far ' =jc(fy). (4.4)
=1

Let A, be the vector containing the eigenvaluesAf Since A, is circulant, the
eigenvalues ofd;, can be found by taking the unnormalized DFT ff [64]. Therefore,

A =VPFfi=100 ... 0 VP 0 ... O]T and the only nonzero eigenvalue appears
at thek position.

Now we consider two different dispersion matricésand A, of two real symbols;

anda;, respectively, and one has
AlA; + ATA; = F' diag(A]) diag(A;)F + F' diag(A}) diag(A;) F = 0. (4.5)
Thus, according to Theorem 2.2, the real symhoknda; can be separated at the receiver.

Similarly, we can show that real symbalsandb,; can be separated as well. It means that alll
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the real symbols can be decoupled for maximum likelihooéc&in or we obtain single-
real symbol decoding complexity. This result is beyond ogegtation since we just try to
get two-group decoding for circulant STBC.

However, since the dispersion matricés and B, have only one nonzero eigenvalue,
these dispersion matrices are of rank one; one cannot dothdiversity circulant STBC.
On the other hand, each circulant matdx has only one nonzero eigenvaluekdh po-
sition. Therefore, ifA is a linear combination of circulant matricesd;, k = 1,..., P,

A will have P nonzero eigenvalues of is full rank. This means one more time the real
symbolsa; (or b;) must be spread out over the new dispersion matrices, whectha linear
combination ofP dispersion matriced,,k=1,...,P (or By,k=1,...,P).

We summarize the above results as follows.

e With signal rotation (4.1), circulant STBC are single re@rdol decodable. How-

ever, the diversity order is only 1.

e To achieve full diversity, the data vector must be rotatecbgther rotation matrix
R before applying the rotation (4.1). Thus, the compoundtimtamatrix is in the
form £t R. With this two rotating stages, the circulant STBC is twotgralecodable.
Consequently, the products)'C(s) can be written as the sum of two terms, each

contains the symbols from one group only.

We now consider the general construction of OEST codes,avthercirculant matrices
are embedded. If the matrices of two-group circulant STBCsalestituted to (2.29), we
get2K terms. Hence, OEST codes are actually-group decodable and full-diversity is

achievable. We state the main result of this section in thevitng theorem.

Theorem 4.1. Using the signal rotation of the forr™ R, OEST codes ar2K -group de-

codable and full diversity can be achieved.

To appreciate the advantages of 4-group SAST codes, we evilpare the main pa-
rameters of SAST codes and other low-complexity STBC, indgddDSTBC, QSTBC,
MDC-QSTBC, and codes from coordinate-interleaved orthogdealgns (CIOD) [92],
for 6 and 8 transmit antennas in Table 4.1. Clearly, the newodgSAST codes offer sev-

eral distinct advantages, such as higher code rate, lovwsediteg complexity, and lower
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Table 4.1: Comparison of Several Low-Complexity STBC for 6 afth&nnas

Codes r Maximal rate| Delay | Real symbol decoding
OSTBC [44,137] | 2K orK | 2/3(5/8} | 30 (56) 1or2(1or?2)

CIOD [92] K 6/7 (4/5) | 14 (50) 2(2)
MDC-ABBA [120] K 3/4 (3/4) 8 (8) 2 (2)
QSTBC [47] K/2 3/4 (3/4) 8 (8) 4(4)
2-group QSTBC [96] 2 1(1) 8 (8) 8 (8)
SAST 2 1(1) 6 (8) 6 (8)
4-group QSTBC [93] 4 1(1) 8 (8) 4 (4)
4-group SAST (new) 4 1(2) 6 (8) 3(4)

aThe numbers in the parentheses indicate the codes’ panaf@t® antennas.

encoding/decoding delay. The 4-group SAST codes also lmaver IPAPR than that of
OSTBC, QSTBC, MDC-QSTBC, and CIOD codes because there are no zehesdonde
matrices. Moreover, from extensive simulation results,4&group SAST codes also yield
significant SNR gains compared with the existing codes.

In the next section, we will present the decoding of OEST sosliéh two steps. The
first step is to separat& transmitted vectors of data symbols, as solved in Chapteh@. T
second step will decompose the real and imaginary partsobf @@ta vector for maximum
likelihood detection. As mentioned earlier, we will illuste these two decoding steps for

the representative SAST codes.

4.2 Decoder for 4-Group SAST Codes

To obtain 4-group decodable SAST codes, we need two stegsfirShstep is to decouple
the transmitted symbols into two group. The second stepsepharate each group into two
smaller groups. The first step has been solved in Sectioa @ hapter 2. Nevertheless,
for the case of SAST codes, we can develop an alternativ@agipito design the decoder,
which is more computationally efficient by reducing intedhate deriving steps.

We first review the construction of SAST codes introducedant®®n 2.3.6. The SAST

code matrix is constructed fd = 2P transmit antennas using circulant blocks. Two data

81



T T
vectorss; = [s; sy ... sp| andsy = [spy1 spi2 ... sop| areused to generate

two circulant matrices:

S1 So ... Sp Sp+1 8p+2 ... Sop

Sp 81 ... Sp-1 S2p Sp+1 .- S2p-1
Clsi)=1{. . . . ; C(s2) = |. : L . (46)

S22 S3 ... S1 Sp+2 SP+3 --- SP41

The SAST code matrix is constructed fr@rs; ) andC(sz)as

_ | C(s1) C(s2)

For example, the SAST code for 6 transmit antennas is

Uy U2 us Uy Us Ug

Uy —Ug —Uj Uy Us Ug
* * * * * *
—Us Uy TUg Ug Uy Us

We introduce another type of circulant matrix called leftutant, denoted by{; (x),

where theith row is obtained by circular shiftg ¢ 1) times to the left the row vectae.

rr I ... Tp
o T3 ... T1

Colm)=|. . . . : (4.9)
Irp 1 ... Tp-

Let us define a permutatiafd on an arbitrary matrixXX such that, thé P — i + 2)th row
is permuted with theth row fori = 2,3, ..., [£], where[()] is the ceiling function. One

can verify that

II(Cpr(x)) = C(x). (4.10)
This useful operator will be used for our next derivation.
Lety = [’yI yg]T, Yy, = [yl Y2 ... yP}T, Yy, = [yP—i—l Ypy2 .- ZJM}T, =
(W] Rl hy=1[h hy ... hp] ho=[hpsy1 hpys - hop] w=[w] w]]’,
w, = [wl Wy ... wp]T,wg = [pr Wpta ... wgp]T.

We can write the transmit-receive signal relation as

AR il 1 R g
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Applying permutation// in (4.10) for the column matriy,, we obtain [100]:

Y, (y;) p | H Hﬂ {31} [ﬁ’l]
J . = /= + | 4.12
[?JJ Lh } M {Hg —H{| [s2] |2 (4.12)
————
H
whereH; = C(hy), Hy = C(hsy), wy = II(w,), ws = wj. The elements ofv; andw,
have the same statistiag)\/ (0, 1), as elements afv; andws,.
We now multiply7¢! with the both sides of (4.12). Le{ = H] H, + HJ H,, we get

Yi| _ y| [ [H Op][s: W
AR R A | RS
G e
——

w

lI>

The covariance matrix of the additive noise veainis

0p H

Therefore, noise vectors,; andw, are uncorrelated and have the same covariance matrix

Efww!] = {H QP} | (4.14)

#. Thus,s; ands, can be decoded separately usifjg= #s; + w;, i = 1,2. The noise
vectorsw; andw, can be whiten by the same whitening matﬁo(m. The equivalent

equations for transmit-receive signals are

T R T T (4.15)

At this point, the decoding of SAST codes becomes the deteofi2 group of complex
symbolss; (i = 1,2). Our next step is to separate the real and imaginary partsaibrs
s; by exploiting the properties .

Recall that)y = H|H, + H]H,, and bothH, and H, are circulant. Hencely is also
circulant [64]. Letd; = [X\;1 A2 ... \;p| betheP eigenvalues off; (i = 1,2). We

can diagonalized!; by Fourier transform matrix af; = F' A; F. Thus,
T = FH(AJA + ALAy) F (4.16)

Let Al A, + Al A, = A, thenA has non-negative entries in the main diagonal and

. 1/2

H

. —1/2

H

= FiAV2 £, (4.17a)
= FiA V2 . (4.17b)
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We haves; is pre-multiplied (or rotated) by a matrixf. Substitutings; by £'s; and
multiplying both sides of (4.15) wittF, one obtains

A F g =\ [ F s+ A7 P

= S LA 4 A2 i, (4.18)
M 5,—/
SinceA'/? has real elements (in the main diagonal), the real and iraagiparts ofs;

now can be separated for detection.
A VPR(F ) = /ﬁmﬂm(si) + R(w;), (4.19a)
AV2S(Fg,) = /ﬁAl/Q%(si) + S (w;). (4.19b)

Using (4.19), one can use a sphere decoder to detect theniteetssymbols. Thequiva-
lent channebf 4-group SAST codes ig!/2.

We thus have derived the general decoder for 4-group SAS€&scodihe role of the
IDFT rotation matrixz! is to diagonalize the channel, facilitating the lower déngadom-

plexity for SAST codes. We next analyze the performance®ftigroup SAST codes.

4.3 Performance Analysis

Note that the eigenvalues @t x P matricesH; and H, can be found easily using un-
normalized Fourier transformation of the channel vectorandh, [64]. Therefore, the
eigenvalues of/; and H, have distribution~ CA/ (0, P).

We introduce a real orthogonal transformatiBrio the data vector®(s;) and<(s;)
(1 = 1,2) to make 4-group SAST codes full diversity. Thus, the actigria rotation of
4-group SAST codes ig'R.

Since the PEP of vectoi(s;) and<(s;) (i = 1,2) are the same, we just calculate the

PEP of the vectoR(s;). Letd = R(s1) = [a1 a2 ... aP}T.
The PEP of the paid andd can be expressed by the Gaussian tail function as [32]
S p |AV2R6 |2
P(d— dlH) =Q ( STA (4.20)
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whereN, = 1/2 is the variance of the elements of the white noise veRtap, ) in (4.19a),
8 = d — d. Substituting! = Al A, + Al A,, one has

o P [5TRT(A1A1 + A;AQ)Ra]
P(d—dH) =Q 16

I
O

2 P 321y 2
\/P(Zi1 21‘61 55 X1 )) (4.21)

where3 = RJ.
We now use the Craig’s formula [131] to derive the conditidP&P in (4.20).

P(d—d|H)=Q (\/'O(Z“ 2 =1 )‘i,j2))

16

w/ (32 P 321N 2
— l/ i exp ( Pict 25m B g )> dov. (4.22)
0

T 32sin? a

We can apply a method based on the moment generating fufMiGi) [132, 133] to

obtain the unconditional PEP in the following:

/2 P 2 -2
P(ded):%/o/ [H <1+8£§;a)] de. (4.23)

i=1

Since there are four vectors to be decoded in each code miueixodeword PEP is
therefore equal to 4 times the PEP given in (4.23).

Assume that); #0V: =1,2,..., P. One can find the upper bound on PEP of 4-group
SAST codes at high SNR as follows.

_ 26mp72P w/2 P
P(d—d) =~ / (sin a)'®da Hﬂfl
& 0 i=1

93M =M 1) M2 »
= 3R 11 6 (4.24)

The asymptotic bound in (4.24) shows an important propeftthe 4-group SAST
codes at high SNR: The PEP is heavily dependent on the prodslamde]"[f:1 0 (see,
e.g. [138]). The exponent of SNR in (4.24)4sM. This indicates that the maximum
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diversity order of 4-group QSTBC is 8 and it is achievable & groduct distance is non-
zero for all possible data vectors. Furthermore, at high ShE&Rasymptotic bound becomes
very tight to the exact PEP. Therefore, the larger the prodistance, the lower FER can be
obtained. Thus, we can optimize the rotation/bgo that the minimum product distance
4
dpmin = miny ]}_[1 x| (4.25)
is non-zero and maximized.

For QAM signals, the symbols; andb; are in the sef{+1,+3,+5,...}, the best-
known rotations for QAM that maximizes the minimum producdtaince are provided
in [139, 140]; they are denoted Wz .

In [139, 140], the rotated lattice points are generated:by dRgzoy, whered € 7"
and Rpoy is of sizen x n. In this representatiory andd are row vectors, while we use
column vector notation in our paper. Thus, the rotation esR 5oy given in [139, 140]
will be transposed. For the 3 and 4-dimensional lattices,rthation matrices are given

below.

[—0.3279852776 —0.7369762291 —0.5910090485
Rpovs = | —0.5910090485 —0.3279852776  0.7369762291 | , (4.26)
| —0.7369762291  0.5910090485 —0.3279852776

[—0.3663925121 —0.2264430248 —0.4744647080 —0.7677000246
—0.7677000238 —0.4744647078  0.2264430248  0.3663925106

Rpova =1 4230815704 —0.6845603618 —0.5049593144  0.3120820189
| 0.3120820187 —0.5049593142  0.6845603618 —0.4230815707
(4.27)

Note that in the construction of 4-group SAST codes, the dattorss; (i = 1,2) with

proper size are rotated to generate the veaip@su,; = F' Rs;.

4.4 Simulation Results
4.4.1 Union Bound on FER

It is of interest to investigate the union bound on FER of dugr SAST codes using the
exact PEP in (4.23). The union bound and simulated FER of @dpgSAST code for 6
antennas is plotted in Fig. 4.1. The bound is only about 0.IrdB the simulated FER
when FER <10~2. Therefore, instead of optimizing the worst-case PEP, tiierubound

can be optimized to obtain lower FER.
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t{ =~ Union bound, 8QAM
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Figure 4.1: Union bound on FER of 4-group SAST codes for (&ysjem.

4.4.2 Performance of 4-Group SAST Codes

The performance of 4-group SAST codes will be compared wBTBC, MDC-QSTBC
[120], QSTBC [47, 61], DAST [49], 4-group QSTBC [93], and SASddes. The per-
formance of CIOD codes [92] is not compared because of twarsag1) We could not
find suitable constellations for maximal-rate CIOD codeg f@that CIOD codes have the
same bit rates with our newly developed codes; (2) Since ihemal-delay CIOD codes
have the same code rate and performance as that of MDC-QSTBC2BR it is enough
to compare the performance of our codes with that of MDC-QSTBC.

Since 4-group SAST for 4 transmit antennas is equivalent RCMABBA, we thus
present the results for 5, 6, and 8 transmit antennas. Thé&wuohreceive antennas is one
in all simulations.

1. Performance 4-group SAST codes for 6 transmit antennas

Since the rate of OSTBC for 6 transmit antennak/issymbol pcu [44], we use 8QAM
to produce a data rate of 2 bits pcu and compare performaric@SDHBC and our new
codes in Fig. 4.3. The rate of 4-group QSTBC and 4-group SASIE€@s one. We thus
use 4QAM to obtain 2 bits pcu. Two columns (4 and 8) of 4-gro®IeC for 8 transmit

antennas is deleted to create the code for 6 transmit argenvih spectral efficiency
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Figure 4.2:
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-5 4Gp-SAST, 16QAM
~A~ SAST, 16QAM
<~ 4Gp-QSTBC, 16QAM

" H —+ OSTBC, 8QAM-R

—5- OSTBC, 8QAM-S
—— 4Gp-QSTBC, 4QAM
—B- 4Gp-SAST, 4QAM
O SAST, 4QAM

T

5

SNR [dB]

Figure 4.3: Comparing performances of 4-group SAST coddsseiveral STBC for (6, 1)
system, 2 and 4 bits pcu.

of 2 bits pcu, 4-group SAST codes gains 0.8 and 1.6 dB over OSTBRTC8QAM-S and
8QAM-R, respectively, while the decoding complexity slighbcreases (joint decoding of

3 real symbols). Performance of 4-group SAST codes is $jighferior to that of 4-group
QSTBC (0.2 dB). Note that the decoding complexity of 4-groupl®S (joint detection

of 4 real symbols) is higher than that of 4-group SAST codemtjdetection of 3 real

symbols).

In Fig. 4.4, performances of 4-group QSTBC, 4-group SAST caod#s 3 bits pcu
are presented. With this spectral efficiency, only QSTBC aldCMQSTBC with rate
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Figure 4.4: Comparing performances of 4-group SAST coddsMR2C-QSTBC, QSTBC,
and 4-group QSTBC for (6, 1) system, 3 bits pcu.

of 3/4 symbol pcu (using 16QAM) are compared. For 6 transmieanas, the 4-group
SAST codes have 4 groups, each has 3 real symbols. 4-group &&d® yields 0.3 dB
improvement over MDC-QSTBC (two real symbol decoding) andquars the same as
QSTBC (four real symbol decoding). The 4-group QSTBC using BRRR gains 0.5 dB
over 4-group SAST codes at the cost of higher complexitye@-symbol decoding versus
3-real symbol decoding).
2. Performance 4-group SAST codes for 8 transmit antennas

Performance of 4-group SAST codes are compared with 4-g@&ipBC, SAST and
DAST codes for 3 and 4 bits spectral efficiency in Fig. 4.5.rdugp SAST codes perform
the same as 4-group QSTBC and the two codes have the samerdgcodiplexity (4
real-symbol decoding). However, the two codes gain 0.8 d8 ®AST code, which has
much higher decoding complexity. The 4-group SAST code @ab.5 dB worse than
SAST codes at high SNR, but keep in mind that the decoding 8f3AST code required
joint detection of 8 real symbols (see Table 4.1).

For the data rate of 3 bits pcu, 4-group SAST code is also supgerMDC-QSTBC and
QSTBC. Our code yields 0.8 and 1 dB gains over MDC-QSTBC and QSTRB@ectively.

3. Performance 4-group SAST codes for 5 transmit antennas
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Figure 4.5: Comparing performances of 4-group SAST coddsseveral STBC for (8, 1)
system, 3 and 4 bits pcu.
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Figure 4.6: Comparing performances of 4-group SAST and 4m®QSTBC for (5, 1)
system.

We compare the performances of 4-group QSTBC and 4-group S%8&s in Fig.
4.6. The 4-group QSTBC for 5 transmit antennas is obtainedebstidg three columns
(4, 7, and 8) of the 4-group QSTBC for 8 transmit antennas. I8itpi the 4-group SAST

code for 5 transmit antennas is also created by deleting olneno of the SAST code for
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6 transmit antennas. Therefore, 4-group SAST code is mdag-@dficient and have lower
decoding complexity than 4-group QSTBC. With these advastagigroup SAST codes
incur 0.2 dB loss compared with 4-group QSTBC at high SNR.

4.5 Summary

We have presented a new encoding method so that OEST codeks ayeup decodable.
The complexity reduction is significant because the numbaymbols in each group is
reduced by half compared witki-group OEST codes. As a typical example, we obtained
4-group SAST codes from 2-group SAST codes. Extensive sitionl results show that
4-group SAST codes perform better than several existingdomplexity STBC, such as
OSTBC, MDC-QSTBC, and QSTBC codes. Additionally, 4-group SASTesdtave low
encoding/decoding delay. Since there are no zeros in SA8€ pwtrices, SAST codes
have better PAPR than that of OSTBC. These advantages makeig-§AST codes suit-
able for MISO systems, where transmit diversity is one ofahailable resources to im-

prove the error performance of wireless links.
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Chapter 5

Extensions of OEST Framework

In previous chapters, we have derived the multi-group degpproperty of OEST codes
in general and examined in detail MDC-ABBA and SAST codes, tacksses of OEST
codes. A rigorous approach to decouple the data vectorsusetaheir orthogonal spatial
signatures at the receiver. In this chapter, this appraaektended to investigate other two
existing STBC. The first code, called coordinate interleavéitbgonal designs (CIOD), is
proposed by Khan and Rajan. Similar to MDC-ABBA codes, CIOD cadeslso single-
symbol decodable. The second code, 4-group QSTBC, is simikkugroup SAST codes.
However, SAST codes are more delay-efficient than 4-groupBZS

5.1 Coordinate Interleaved Orthogonal Designs

5.1.1 Introduction

While OSTBC have minimal decoding complexity, their code satee low for more than

2 transmit antennas (see Section 1.4.2). To improve ther@d®f OSTBC and maintain
low decoding complexity, some alternative code design lmeen introduced recently.
They are (1) minimum decoding complexity (MDC) QSTBC [120,]1ddd (2) STBC us-

ing coordinate interleaved orthogonal designs (CIOD) [Z)-%hese two codes are single
(complex) symbol decodable. In Chapter 3, we have studied MIBBA codes, which

are similar to MDC-QSTBC. The maximal code rates of OSTBC, MDC-QST&d also
MDC-ABBA codes), and CIOD codes are summarized in Table 5. hisnumber of trans-
mit antennas\/ = 2, ..., 8. Clearly, CIOD codes offer equal or higher rates than the other

codes. This advantage motivates the study of CIOD codes here.
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Table 5.1: Code Rates of Single-Symbol Decodable STBC

Codes M=2|M=34|M=56|M="17,8

OSTBC 1 3/4 2/3 5/8
MDC-QSTBC 1 3/4 3/4
CIOD 1 6/7 4/5

While OSTBC achieve full diversity for any constellation, Cl@Bdes may not achieve
full-diversity with the conventional constellations, suas QAM or PSK. To achieve full
diversity, modulation symbols may need to be rotated by giean[90-92]. Proper choice
of the rotation anglex will maximize the code diversity gain and also minimize theoe
performance. The authors in [92] use the coding gain paemiEs] to derive the optimal
« for QAM. However, maximizing the coding gain amounts to mizing the worst-case
codeword pair-wise error probability (CPEP), which prowd® guarantee for minimiza-
tion of the symbol error rate (SER). Moreover, references-§2) did not derive optimal
signal rotations for QAM, PSK, and other constellationshwgbod minimum Euclidean
distance, such as lattice of equilateral triangular (TRIBqaalled hexagonal (HEX)) or
amplitude PSK (APSK) [104] in terms of minimal SER.

In this chapter, we will extend the method, which has beenl useanalyze MDC-
ABBA codes to solve several open issues of CIOD codes. Firstdevve equivalent
channelrepresentations. Aew maximum likelihood decoderalso presented in a simple
form. A closed form symbol pair-wise error probabilisPEP) is derived. Hence, the
union boundon the symbol error rate (SER) can be easily evaluated. Fdahaltested
cases, the union bound is within 0.1 dB of the simulated SERré&fhre, this bound can be
used taaccurately analyze the performanaeCIOD codes as well as tptimize the signal
rotation for any constellation with an arbitrary geometrical shepienilar to MDC-ABBA
codes, we present a design of signal transformation foatsgmith unbalanced powers of
real and imaginary parts such as rectangular QAM (QAM-R). i@ method combines
signal rotation and power (re)allocation yielding betterfprmance than the existing ones
in [92,125] for QAM-R.
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5.1.2 Construction of CIOD Codes

The CIOD code forM transmit antennas is constructed from two OSTBC components,
O, andOyy,, whereM = M, + M, [90-92]. The size of code matrices O, andO,y,
areT) x M; andTy x Ms, respectively; there arE; and K; complex symbols embedded
in Oy, and Oy, respectively. Additionally, the matricas,,, and ©,,, are scaled by
constants:; andk, to satisfy the power constraint (2.2).

Let K be the least common multiplécn) of K, and Ky, ny = K/K,ny = K/Ko,
Ty = mTy,Th = nyTs. A block of K = 2K data (information) symbols;, = a; + j b,
(j*=—1),i =1,2,..., K is mapped to the intermediate symbo|s(k = 1,2,..., K) as

follows: )

Ik_{ak—l—jbk_f{, F=K+1,K+2.. . K. (5.1)
By this encoding rule, the coordinates of the symbglss,, . .., s; are interleaved with
the coordinates of the symbois, -, sy, . - .., sox. Now we construct; OSTBC code

matricesOy,; (i = 1,2,...,ny) andny, OSTBC code matrice®,, ; (j = 1,2,...,n2)
and arrange them in the intermediate matriceandc, as

Om (21,22, .., TK,)
O 2(Try 11, Try 42, - -+ Tok,)

Cl : )

_O]Wl,nl (x(nl—l)Kl—i—la x(nl—l)Kl—i-Qa L 7xf_{)

OMon (TR 41, TRrs - TR I)
OM2,2<xF<+K2+1> TR Kyt2y -+ axf{-i-QKQ)

Ca

_OMQ,TLQ (’rK+(n271)K2+17 TR+ (ng—1)Ka+27 - s fo()
Hence, the size af; and(, areT; x M, andT, x M,, respectively.
The CIOD code matrix is formulated by

_ \//’{_161 OT1><M2‘| 5.2
¢ [OfﬂMl Nt (52)

Thus, the size of the CIOD code matrices are M, whereT = T, + Ty = ny Ty + noT,
M = M, + M.

For example, here is a CIOD code for 4 transmit antennas, tisengd-by-2 Alamouti
code. In this construction\/; = M, = 2, K = Ky = 2, T, = Ty, = 2. Therefore, the
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CIOD code is

ay + jbs as + j by 0 0
. —a,2+jb4 al—jbg 0 0
Ca= 0 0 as +Jb1 ay +Jbg ' (53)
0 0 —a4—|—jb2 a3—jb1

In this CIOD example, the real and imaginary parts are seggraiansmitted oven/;
and M, antennas, i.eq; appears on the first two antennas only. Thus, full diversitiy g
cannot be achieved. The solution is to rotate the real angimagy parts of the input
symbols and then to map the rotated symbols to CIOD code reatrichis ensures that the
real and imaginary parts of the input symbols are spreadalveansmit antennas, leading
to full symbol-wise diversity [19].

Nevertheless, not all signal rotations will result in theteror-rate performance. Khan
and Rajan [92] use the coding gain [16] to minimize the woestecPEP of code matrices,
which may not be optimal for the overall code performancecdntrast, we investigate
the performance of CIOD codes by deriving a tight union boum&BR. As a preliminary
step, we derive a new simplified transmit-receive signaltireh of CIOD codes, in which

the equivalent channel can be shown explicitly.

5.1.3 Equivalent Channels and Maximum Likelihood Decoder

Since the mapping rule of the real and imaginary parts of s, are known, one
can write explicitly the dispersion matrices of these sylmbBor notational convenience,
we reserveA and B for the dispersion matrices of OSTBC and uSeand F' for the
dispersion matrices of CIOD codes; there &e= 2K pairs of such matrice&), £},
(i = 1,2,..., K). Additionally, we write A;(Ou;) or B;(Oy;) to denote the dispersion
matrices of OSTB@,y, (j = 1,2).

The matricest,, and F}, can be explicitly written though they are quite lengthy. For

example, the dispersion matrices of symboére:

A1(On) 07, xa
04— O(n,—
E, — (n1—1)T1 x My (n1—1)T1 x M3 , 5.4a
! 0T2><M1 0T2><M2 ( )

0(7’L2—1)T2><M1 O(ng—l)TQXJ\/fg
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0T1 ><M1 OT1 X]V[Q

Ony— Ony—
F — (nl 1)T1><M1 (n1 1)T1><M2 . 54b
! 0T2><M1 Bl(OMQ) ( )
0(77,271)T2XM1 O(TL2*1)T2><M2

We can write the CIOD codes using the dispersion form (2.4) asszzl (arEx + b Fy),
note thatk’ = 2K andK = lem{ K, K,}.

To simplify our analysis, we first consider the number of ree@antennas i& = 1 and
generalize forN > 1 later. The following derivation is similar to the steps taide the

decoder and equivalent channels of MDC-ABBA codes in Sectidn 3

Let the channel vector ble = [hy hy ... hM}T, the receive vector be
y=1[yn p .. hT]T, the data vectod = [a; by ax by ... ag bK]T, the ad-
ditive noise vector bav = [w; wy ... wT}T. Let C' be a CIOD code matrix, the

transmit-receive signals in (2.3) becomes
y=+pCh+w
= \/ﬁi (arExh + b Frh) + w
= \/ﬁllelh Fh Esh Fh ... Exh Fghld+w. (5.5)

In (5.4), the scalars; andx, are notincluded for brevity. We can rewrite (5.5) equivéien

as
{y*] =V {E;‘h* Fht ... Exht Frht| O w0 (5.6)
_ [Ewh  Fih B .
LetH; = [Egh* F,jh*] fork=1,2,..., K, it follows
HiH, = diag (ﬁl, Bz) 24 forl<k<K, (5.7a)
HiH, = diag (ﬁg, ﬁl) 24, fork <k <K, (5.7h)
HIH) = 090, fOrk #1. (5.7¢)

WhereiLl =2 Z?ﬁll |hi|27 }Alg =2 ZiAiQI |h7,|2
Thus, if the two sides of (5.6) are multiplied WL one gets

_ (7] ~ a — w
w2 - e i o 2]
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wherep=1if 1 <k < Kandp=2if K <k < K.

The matrixﬂ,t plays the role of the spatial signature of the data veé€torSince the
data vectorsl, can be completely decoupled, (5.8) can be used for maximketinood
detection. However, since the noise vecioy is colored with covariance matr'r}%(p, it

needs to be whitened by a whitening mau?jgm. After this whitening step, (5.8) becomes

~—1/2_ ~1/2 ~—1/2 _
H, Py, = \/ﬁHp/ dr. +H, iy (5.9)
We can conclude that the matriceg = 7%?2 and H, = f{éﬂ are theequivalent
channelsf CIOD codes.

The maximum likelihood solution of (5.9) is
dy, = argmin(pdHydi — 2/pR(L)dr). (5.10)
k

The resultin (5.10) can be generalized for multiple recavennas. To this end, we in-

clude the scalars, andx, for completeness. We can show that= 2x; Zév:l SOM R 2,

hy = 2k Z;V:l Z?iﬁ \hij| g, = Zj‘vzl ﬂ}gm B:}} , Wherey,, is the receive vector ofth

Eih, Fih, |’
From (5.8), the decoding of the real symbajsandb, can be decoupled. However,

antenna}y., = h,, is thenth column of the channel matriX .

since the symbols, andb, are not transmitted ove¥/ channels, full diversity cannot be
achievable. Hence, we need to spread out these symbolsibwrannels by applying a
real unitary rotationk, as

cos(ay) sin(ay,)
sin(a,) — cos(ay)

p =

Y (p = 17 2)7
to the data vectorg, [92,125]. Including the rotation matrix to (5.9) and (5.1@¢ have

.1/

7,2y = R Rydy + 7, b, (5.11)

and
dy = arg r%ikn@dw;ﬂpz%pdk — 2/ pR(G}) Rydy). (5.12)

Some interesting facts can be drawn from the newly proposedder of CIOD codes.
First, akin to the decoding metric of OSTBC, the decoding ra€&i12) of CIOD codes
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does not involve the dispersion matrices [62]. This facuioes the decoding complexity
compared with the one proposed in [92, eq. (84)], where thganision matrices of symbols
are required. Second, with OSTBC, the MIMO channel is decaupi® single-input
single-output (SISO) channels and the equivalent charaeligithe Frobenius norm of the
MIMO channel. On the other hand, similar to the MDC-ABBA codfg, MIMO channel
become2 x 2 diagonal channels with CIOD codes; the two entries of theahagare
simply Frobenius norms of the firdt/; and the othe/, columns of the MIMO channel
matrix, where respectively, the real and imaginary parte@fotated signal are transmitted
on.

In the next section, we will investigate the performance ddBlcodes with different

types of constellations by exploiting this special struetof the equivalent channels.

5.1.4 Union bound on SER and Optimal Signal Designs

We first consider the data vectats = [, b,]" for 1 < k < K. These data vectors are sent
over the same equivalent chanrﬁeﬁ/ ? and, therefore, they have the same error probability;
we thus drop the subindéxfor short. Letd = [a 5]™ andd = [a b]T be the transmitted and
the erroneous detected vectors,det= a — @, 9y = b — b, A = [61 85]T. From (5.11), the
SPEP of the symbol pait; andd,, can be expressed by the Gaussian tail function as [32]

o H1R A
P(d— diF) = Q ( pT> (5.13)
0

whereN, = 1/2 is the variance of the real part of the elements of the whiieeneector
i, win (5.11). Let

sin(ag)  —cos(ay)| |09

Using the Craig’s formula [131] to derive the conditional $Pi& (5.13), one has

N v )

no i) sl e

1 71'/2 _ 2 2
_ _/ exp p(ﬁlhljﬁQhQ) do
T Jo 4sin” 0
L pr1BEIRs N\ T1 priafF3| |
— v _paral gl do.
7r/ H[Hexp( 4sin* 0 )Hexp( 4 sin? 0 )
(5.15)
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We can apply a method based on the moment generating furfMiGi) [132,133] to

obtain the unconditional SPEP in the following:

R 1 7|—/2 2 — M N 2 —MoN
Pi(d — d) = —/ (1 L Pab ) (1 4 Prals ) db. (5.16)
0

T 4sin® 0 4sin® 0

The exact SPEP of CIOD codes is quite similar to that of MDC-ABRAles in (3.34).
The difference is that the exponents of the term involvih@nd 3, are M; N and My N
respectively, while the exponents of the term involvihgand 3, are the samé/ N/2 with
MDC-ABBA codes. Note thaf\/ = M; + M,. We can further simplify (5.16) to avoid
integration as we have done for MDC-ABBA codes. However, metaits are omitted for
purposes of brevity.

The SPEP in (5.16) is given for symbaols sent over the equivalent chanrigl. For
the symbolss;, (K < k < K) transmitted over the equivalent channgl, the SPEP can
be found similarly:

N 7|—/2 2 —Ma N 2 —M1 N
Py(d — d) = l/ (1 L Preab > (1 + M) df (5.17)
0

0 4sin% 0 Asin2 0
where
@1 o COS(O{Q) Sin( ) 51
{52 ~ |sin(ag) —cos(ag)| |d2] (5.18)
Assume thatl;, d;, d,,, d,, (i,j,m,n = 1,2,...,2), are signals drawn from a con-

stellationsS of size 2. From the SPEP expression (5.15) and (5.17), we can find tlo@ un
bound on SER of CIOD codes with constellatigras

Pu(8) = Pui(S) + Pu2(S) (5.19)
where
0N—-1 N2
Pui(S 52 Z (d; — d) (5.20)
-
P,s(S Z Z (d — d,,) (5.21)

For a fixed SNR, the union bourfg,(S) depends on the constellatigrand the rotation

anglesy; anda,. Thus, one can find the optimal valuessgfanda; to minimize the union
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Figure 5.1: Comparison of the simulated SER and the union dof@ma rate-one CIOD
code for (4, 1) system antl; = 2, M, = 2.

bound on SER. Note that, anda, can be optimized separately. We can run a computer
search to find the optimal values @f anda.

The run time for searching optimal values @f and «; of a given constellation is
only few minutes. However, we can further reduce the seagctime by considering the
following observation. In practices is usually symmetric via either horizontal or vertical
axis of the Cartesian coordinate system. We can assumg thalymmetric via the vertical
axis. If S is symmetric via the horizontal axis, we can always rotagenhole constellation
an angle ofr/2 to make it symmetric via the vertical axis.

Assume thatw, = 7/2 — a;. For each pair of symbolgl;, d;) = ([a;, b:]", [a;, b;]7),
we can find one and only one pdit,,,d,) = ([a;, —b;]",[a;, —b;]") so thatPi(d; —

d;) = Ps(d,, — d,,). Therefore,P,1(S) = P,2(S); and if a,, is the optimal value of,,
thenw/2 — a,, is optimal fora,. Hence, we just write the value of and imply that the
value ofay = 7/2 — a;.

The union bound on SER is plotted in Fig. 5.1 for a CIOD codelibr= 4 transmit
antennasi/y, M) = (2,2). For the three examined constellations (4QAM, 8QAM-R, and
16QAM), anda; = 31.7175° [92], the union bound becomes tight when SER0~! and
is less than 0.1 dB apart from the simulated SER at high SNRil&8inesults can be found
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Figure 5.2: Comparison of the union bound and simulated SERRQ@OD code with rate
of 6/7 symbol pcu for (6, 1) system and, = 2, M, = 4.

for the case with\/ = 6, M; = 2, M, = 4 in Fig. 5.2; the union bound even converges
with the simulated SER.

5.1.5 Numerical Examples

Since the union bound is very tight for SER &2, it can be used to optimize the values of
rotation anglesy; anda;. The new optimal signal rotations for the popular constielies
based on minimizing the SER union bound are summarized ile aB. Only the optimal
valuesa,,,; of a; are listed, the optimal values af = 7/2 — a,,;. The geometrical shapes
of 8-ary constellations are sketched in Fig. 5.3. The be®l8m terms of minimum
Euclidean distance (carved from the lattice of equilaterahgular) is selected [104].

Note that in Table 5.2, the,,,; varies with the number of antennas and M.

It is shown that CIOD codes perform better that OSTBC in [92]. tes just com-
pare the SER union bounds of CIOD code with new optimal sigasighs in Fig. 5.4 for
(My, My) = (2,4). Obviously, QAM signals yield the best performance comgawéh
other constellations of the same size. On the other hand, diRdtellations have the best
minimum Euclidean distance; however, their performandeferior to that of QAM sig-

nals. This observation is also confirmed in Fig. 5.4, wheeeSER of CIOD codes for

101



Table 5.2: Optimal Rotation Angles of Popular Constellations

Signal (2,1) (2, 2) (2, 3) (2,4) (3,3)
4QAM 28.939° | 30.417° | 29.698° | 29.003° | 30.778°
ATRI | 20.142° | 13.883° | 71.739° | 68.687° | 75.836°
8PSK | 37.690° | 39.216° | 38.808° | 38.534° | 39.857°
8APSK | 10.316° | 11.528° | 11.181° | 11.000° | 12.015°
8TRI | 20.309° | 45.000° | 11.061° | 9.430° | 45.000°
8QAM-R | 33.037° | 31.834° | 29.658° | 28.626° | 31.737°
8QAM-SR | 12.234° | 13.036° | 12.925° | 12.701° | 13.173°
16PSK 3.485° | 2.570° | 2.832° | 2.964° | 2.200°
16TRI | 19.236° | 45.000° | 47.116° | 70.690° | 45.000°
16QAM | 31.436° | 31.677° | 31.557° | 31.462° | 31.704°
looo 001 011

011 001 000 001 010

o | o o ° ° 10f JEOL

110 111 | 101 100 101 . .011. 100 100 | 110

111 110
(2) SQAM-R (b) 8QAM-SR 111
(c) 8TRI

(d) 8PSK

(e) 8APSK

Figure 5.3: Geometrical shapes of 8-ary constellations.

(M, M) = (3, 3) with various constellations is sketched.
Our newly proposed rotation angles are only slightly défeérfrom the optimal rota-

tion angles for QAM in terms of coding gain derived in [92]. éfkfore, the performance
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Figure 5.4: SER union bound a CIOD code with rate of 6/7 symbalfpr (6, 1) system
andM1 = 2, My = 4.
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Figure 5.5: SER union bound a CIOD code with rate of 3/4 symbalfpr (6, 1) system
andM; = 3, M, = 3.

improvement is marginal, but note that [92] does not covestallations other than QAM.

Nevertheless, the exact PEP derivation is a useful tool ¢arately analyze the perfor-

mance of different constellations with signal rotations.

Note that we have used unitary rotations for the above aisalyhis approach produces
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good performance for signal constellations with even pafére real and imaginary parts.
For the signal with bias powers of the real and imaginaryspauch as QAM-R, the non-
unitary rotations may perform better. This approach wor&h fer MDC-ABBA codes (see
Section 3.5). In the next following, we will apply this methpresented for MDC-ABBA
codes to design the non-unitary rotation for CIOD codes wiMZ2R by combining power

allocation and signal rotation.

5.1.6 Optimal Signal Rotation with Power Allocation

For QAM-R, e.g. 8QAM-R in Fig. 5.3, the average powers of tha and imaginary
parts of the signal points are different. We may change theepallocation to the real and
imaginary parts of QAM-R signals to get better overall SER.

To change the power allocation, the real and imaginary of QRMignals are first
multiplied by constantgr; ando,, respectively, then they are rotated by unitary matrix
Ry, R,. For example, leg be a constellation with signal sgt= {d | d = a+jb,a,b € R},
the new constellation with new power allocationSs= {d | d = oia + josb;a,b € R}.
The average energy of the constellati®ns kept the same as that gf i.e. unitary. For
example, the 8QAM-R with signal poinf§+3 + j, +1 & j)/1/48} has constraint equation
for coefficientss; ando, asbo? + o3 = 6. Hence, if the value of, is given, the value of
o9 IS known explicitly.

We still use (5.15) to calculate the union bound on SER of Cl@Bes with signal
rotation and power re-allocation; (5.16) can be rewritie@rntclude the effects of power
re-allocation as

3] = [omten e [ 2] o] 622

N /

R
The total effect of signal rotation and power re-allocai®tne non-unitary signal trans-
form R,. Now the minimization of the union bound is based on two \@és: o; (or o)
anda;. We run exhaustive computer search to find the optimal valtiesandq;. In fact,
there is only single value af; so that the union bound is minimized; this valueogfis
the global solution of the union bound minimization. Theimatl values ofo; anda; for
8QAM-R and 32QAM-R are provided in Table 5.3.
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Table 5.3: Optimal Power Allocation and Signal Rotation f&xNDR

Constellation| o, 09 Qopt

8QAM-R | 0.9055| 1.3784| 45.0°
32QAM-R | 0.8972| 1.3487| 43.0°

Error rate

—— SER union bound, 32QAM-R, KR rotation
—+— SER union bound, 32QAM-R, WWX transformation
.|| & SER union bound, 32QAM-R, new transformation
10 " —= SER union bound, 8QAM-R, KR rotation
—— SER union bound, 8QAM-R, WWX transformation
—©- SER union bound, 8QAM-R, new transformation
—k— BER simulation, 8QAM-R, KR rotation
—©- BER simulation, 8QAM-R, WWX transformation
—A- BER simulation, 8QAM-R, new transformation

T T T

5 10 15 20 25 30 35
SNR [dB]

Figure 5.6: BER and union bound on SER of the rate-one CIOD catlterectangular
8QAM and 32QAM for (4, 1) system antl; = 2, M, = 2.

In Fig. 5.6, we compare the union bounds on SER of 8QAM-R ar@A2-R using
signal rotation of Khan-Rajan with; = 31.7175° [92], signal transformation of Wang-
Wang-Xia [125, Theorem 6], and our new signal transfornmefits CIOD codes with\/ =
4 (M; =2,M, =2), N =1. At SER =109, our new signal transformation yields 0.2 dB
and 0.4 dB gains compared with the signal designs of Wanggwaa and Khan-Rajan,
respectively. The BER of 8QAM-R also confirms the improvenwdrdgur newly proposed
transformation over the existing ones.

The success of the new signal design arises because thespofitbe real and imag-
inary parts of QAM-R are significantly different. We foundattHfor other constellations
with more balanced powers of the real and imaginary paren ¢rough the new signal
design method can improve the performance, the improvermemarginal.

To this point, we have extended the methodology, which has beed for MDC-ABBA
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codes, to analyze CIOD codes. CIOD codes are single-symbobtdbte. The main ad-
vantage of CIOD codes is the higher code rate compared with MBBA codes and
OSTBC. Various open issues of CIOD codes have been addressledjmg the equivalent
channels, new maximum likelihood decoding method, peréorce analysis and optimal
signal designs.

The next section will treat another class of STBC with 4-grdapoding called 4-group
QSTBC proposed by Yuen, Guan, and Tjhung [93]. We also follesteps that help us in
analyzing several low-complexity STBC. The key problem is howlerive the equivalent
channel of 4-group QSTBC.

5.2 4-Group Quasi-Orthogonal STBC
5.2.1 Code Construction

The 4-group QSTBC is developed from MDC-QSTBC [120]. The redliaraginary parts
of a complex symbol can be mapped to the same group. We thubeigeneral form of
STBCin (2.4):X = Z,ff:l (ar Ay + b By) to study 4-group QSTBC; hence, Theorem 2.2

can be restated as follows.

Lemma 5.1. The necessary and sufficient conditions for a STBC in (2.40tves/ -group

decodable are

AlA, +AlA, =0, (5.23a)
BiB,+ BiB, =0, (5.23b)
AlB, + BjA, =0. (5.23¢)

VpE@Z,qu@],lgz#jgf
The sufficient condition so that a STBC is four-group decogl@&bfound in [93].

Theorem 5.2( [93]). Given a 4-group STBC folM transmit antennas with code length
andK sets of dispersion matricés,, By; 1 < k < K), A 4-group STBC with code length

27T for 2M transmit antennas, which consist2df sets of dispersion matrices denoted as
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(4;, B;),1 < i < 2K, can be constructed using the following mapping rules:

- A, O - B, O — 0 A — 0 B
A2k71 - |:0k Ak:| ’ A2k - |:Ok Bk:| ) BQk*l - |:Ak: Ok:| ) B2k - |:Bk: Ok:| .

(5.24)

The recursive construction of 4-group STBC specified in Taepb.2 suggests that
we can start with the MDC-QSTBC for 4 transmit antennas proghosL20] to construct
4-group STBC for 8, 16 transmit antennas and so on, because QIBIBC is one of
the STBC satisfying Lemma 5.1; the resulting STBC is thus dallgroup QSTBC. For
practical interest, we will illustrate the encoding praces4-group QSTBC for 8 transmit
antennas from the MDC-QSTBC for 4 transmit antennas [120]erfaHowing.

Note that MDC-QSTBC in [120] is actually equivalent to the ABBAdes [47, 125].

We can write the code matrix of MDC-QSTBC for 4 transmit antenas

ap +jasz as+jas bi +jbs by+]jby r1 T2 T3 X4
F o —Q2 +_] ay Qq —ja3 —bg +_] b4 b1 —_]b3 o —J,’; [ET —ZL‘Z I'z;
Y70 by+jby by+jb j a: ' -
1+Jb3 02+ )04 ap+Jaz ag+Jay T3 Ty 1 T2
—by+jbys b1 —jbs —ax+jas a1 —jas —xy  ay -1y )
(5.25)

wherej? = —1, the intermediate variables = a; +jas, v2 = as+j a4, x5 = by +j by, and
x4 = by + j by are used to highlight the ABBA structure of MDC-QSTBC codes J£0)].
The four transmitted symbols = a; +jb;, (i = 1,...,4) in the code matrix’, can be
separated at the receiver for maximum likelihood detecte now build the code matrix
of 4-group QSTBC for 8 transmit antennas frdgimusing mapping rules in (5.24) below:

ai+jas aztjar ax+jag aq+jag
—az+jar ay—jas —as+jag az —jag
az +Jjag aq+jag ay+Jjas as+jas
—as+jag ax—jag —az+jay ap—jas
by +Jbs b3+ jbr by +Jjbs by +]jbg
—b3+]jbr by —jbs —by+jbg by —]bg
by +jbs by+jbs b1 +]jbs bz+]jbr
| —by+jbs by —jbs —bz+]jbr by —jbs ...
by +Jbs by+]jbr  ba+jbs by+]jbg
—bs+jbr by —jbs —by+jbs by —]bs
by +]jbs by +]bg bi +jbs b3+ by
—b4+.jbg bg—zjb(j —b3+4'b7 bl—ib5 . (5.26)
ay +Jas az+jar az+jasg ag4+jas
—az+jar ay—jas —aqs+jag az —jag
az +Jag as+jag ay+jas az+jag
—ay+jag az—jag —az+jay a; —jas
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The code rate of 4-group QSTBC for 8 transmit antennas is anéshpcu. In general,
by construction, the rate of 4-group QSTBC fov/ transmit antennas is the same at the
rate of MDC-QSTBC forM transmit antennas. Since the maximal rate of MDC-QSTBC
is one symbol pcu [120], the maximal rate of 4-group QSTBCS3s ane symbol pcu and
it is achievable for any number of transmit antennas. Singeodip QSBTC is constructed
for 2 transmit antennas, if the number of transmit antenndg is. 2, then(2™ — M)
columns of the code matrix fd™ transmit antennas can be deleted to obtain the code
for M antennas. The resulting codes can be shown to achieveivalisity [16, 96] if the

mother code foR™ antennas is full-diversity.

5.2.2 Decoding

We know that the symbols,, s, s3, s4 of F; can be separately detected. Therefore, from
Theorem 5.2, the 4 groups of 8 symbolsiGf can be detected independently. These 4
groups ar€ s, s2), (s3, s4), (5, S¢), and(sz, ss). We will present the decoding of 4-group
QSTBC for 8 transmit antennas in details.

The decoding of 4-group QSTBE; requires maximum likelihood search over 4 real-
symbols [93]. Itis desirable to alleviate this high comperf maximum likelihood search
by using a sphere decoder [107,108]. To do so, we will deniveguivalent code and the
equivalent channel afy.

The equivalent code afy is obtained by column permutations for the code matrix of
F3 in (5.26): the order of columns is changed to (1, 3, 5, 7, 2,,48)6 This order of
permutations is also applied for the rowsgf Letx, = a; + jas, x5 = as + jag, r3 =
by +jbs, x4 = by + jbg, x5 = az + jar, xg = a4 + jag, r7 = by + by, x5 = by + j bg be the
intermediate variables, we obtain a permutation-equntalede offy below

D1 D2
D= { (5.27)
* * .
—D; Di
where
Ty T2 T3 T4 Ts Tg Ly Ty
To T1 T4 T3 Tg Ty Tg X7
Dy = , Dy= . (5.28)
T3 T4 T1 To 7 Tg Ty Tg
Ty Tz T2 Ty rg Ty Tg Ts
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The sub-matrice®; andD, have a special form calldalock-circulant matrix with circu-
lant blocks[64].
We next show how to decode the coffle For the sake of simplicity, we consider a
single receive antenna. The generalization for multipbeiree antennas is straightforward.
Assume that the transmit symbols are drawn from a constellatith unit average

power. The transmit-receive signal model in (2.3) for theecaf STBCD follows

- \/gDh +w. (5.29)
T . % «1 T
Letm:[xl To ... .Ig} ,y:[yl o Ys Ys o yg],
ﬁ):[wl wy Wi ... wg} , and
hi hs hs hy hs he hy hg
_|he b1 hy Dy _|he hs hs Ny
= by by bl 27 by hs hs he| (5.30)
hy hy hy hs hy he hs
We have an equivalent expression of (5.29) as
. P |H1 Ho .
=4/= . 531
[ (5.3
h\!—/
H

Note that?{; and 7, are block-circulant matrices with circulant-blocks [64Thus,

they are commutative and so g¢f and?¢;. We can multiply both sides of (5.31) with'

to get
IR — B HTHI‘FH;HQ 0 = oA 532
\ny/ 8 [ 0 Hi H1+H5 He m—{—Hv?w. (5:32)
Y w

It is not hard to show that the noise elements of veatoare correlated with covariance
matrix 7!7. Thus, this noise vector can be whitened by multiplying ksittes of (5.32)
with the matrix(HTH)‘l/Q. LetH = H: Hi + H; He, (5.32) after the noise whitening step

is equivalent to the following equations

7:(_1/2@1 = \/?7:(1/2331 + wy, (5.33a)
5 *1/2@2 _ \/57:(1/2332 + b, (5.33b)

_ _ _ _ _ 1T _ _ _ _ _ 1T T
wherey, = (41 %2 Us Ya] +Us = [Us U6 Ur Us| 1= |11 T2 X3 T4] , @2 =
(25 w6 7 xS]T. The noisevectorﬁ‘ul:ﬁ[l/2 (21 2 2 24]T,

Wy = e R ES}T are uncorrelated and have element€ NV (0, 1).
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At this point, the decoding of the 8 transmitted symbols ia tode matrixD can be
readily decoupled into 2 independent groups. Howevergdine code is a 4-group STBC,
we can further decompose them into 4 groups in the following.

Denote the2 x 2 (real) Fourier transform matrix by, = - [1 } The block-

V2 |1 —1
circulant matriceg{; and?{, can be diagonalized by a (real) unitary maffix= 7 ® 7
[64, Theorem 5.8.2, p. 185]. Note that = T, therefore,; = TA,T andH, =
TA,T, whereA; and /A, are diagonal matrices, with eigenvaluegpfand?{, in the main

diagonal, respectively. Thus,
T = T(A} A + ALAS)T, (5.34)

and alsoiy'/? = T(A{ A, + Al A,) V2T

Sinceﬂl/ ?is a real matrix, (5.33) becomes
PR \/7 PR () + R(w:),  i=1,2, (5.35a)
) =[O S - Sy, =12 (5.35)

Note thatR(z;) = [a1 a2 by bg}T = dy, i.e. R(x,) is dependent on the complex
symbolss; ands, only. Similarly, ®(x;), S(x1), and(x2) depend on(ss, s4), (S5, S¢),
and(s, sg), respectively.

From (5.35), the decoding of 8 transmitted complex symb®dISTBC D reduces to
the decoding of 4 groups, each with 4 real (or two complex)syis1 The maximum-
likelihood solution of, for example, vectd®(x; ), which consists of symbols;, and s,

is:
d, = arg min Ngdmdl —2diR(y,)| . (5.36)
Nevertheless, we can use a sphere decoder [108] to reducerttpexity of the maxi-
mum likelihood search (5.36). The matrﬁi(l/2 can be considered as tbquivalent channel
of the 4-group QSTB.

5.2.3 Performance Analysis

In (5.35), the four data vectors experience the same e@mivahannel and the additive

noise vectors have the same statistic; the PEP of the fouorgeare the same. We only
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need to consider the PEP of vectats = R(z1) = [a1 as b bg}T. For notational
simplicity, the subindex of d; is dropped.

Additionally, we can introduce redundancy on the signaktepay using at x 4 real
unitary rotationR to the data vectofa; a, b bg]T [138]. Thus, the data vectel =
Rlar ay b bQ]T. To keep the transmit power unchanged, the rotation matagsumed
orthogonal, i.eRTR = I [63].

From (5.35a), the PEP of the paiiandd can be expressed by the Gaussian tail function
as [32]

I

£ 1/2

i 7" Ra|?
Pd—dH) =@ ( N, (5.37)
whereN, = 1/2 is the variance of the elements of the white noise vektao, ) in (5.35a),

8 = d — d. From (5.34), one has

p[aTRﬁrwALh-+A;@yrRa]
16

P(d—dlH) =Q J (5.38)

Let 8 = TR6. Remember thatl; is a diagonal matrix with eigenvalues #f; on the
main diagonal. Let\;; (i« = 1,2;5 = 1,2,3,4) be the eigenvalues gf,. Then/; =
diag ()\i,la )\1,27 )\i,37 /\i,4>-

_ 2 S B2
Pld - 31 =0 ( \/p@:l Y Bl >> | 5,39

16

To derive a closed form of (5.38), we need to evaluate theiloligion of A, ;. The
eigenvectors of{; is the columns of the matriX = %]—“2 ® Fa. Thus, the eigenvalues of

H, can be found to be
[/\1,1 A2 A3 )\1,4}T = (Fa ® Fo) [h1 hy  hs h4}T- (5.40)

Sinceh; (j = 1,...,4) have distribution~ CN(0,1), thus,\;; (j = 1,...,4) have
distribution~ CA/(0,4) and so do\ ;.
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We now use the Craig’s formular [131] to derive the conditidP&P in (5.39).

2 4 2
- . ‘. NCIPVIE:
P(d N d’H) — Q \/p<21_1 Ziél ﬁ]‘ ,]’ )
w2 (Y2 S gy
1 / eXp( AEim Xyt i )) o (541)
™ Jo 32sin” av

We can apply a method based on the moment generating fufMiGi) [132, 133] to

obtain the unconditional PEP in the following:

4

/2 2 —2
Pld—d) = %/0 [H <1 + 85%)] da. (5.42)

=1

Since there are four vectors to be decoded in each code mihieixxodeword PEP is
therefore bounded by 4 times the PEP given in (5.42). Assinatethere arer possible
vectorsd, the union bound on the frame error rate (FER) is

9 o-1 o i .
P,=4x = ;j;lp(d — ). (5.43)

We now examine the tightness of the union bound (5.43) coadpaith the simulated
FER. Recall that the signal rotatidghplays an important role on the decoding performance
of 4-group QSTBC. In [93], the symbols, s3, s5, s7 are rotated by and angtg, and the
other symbols are rotated by an angle This type of complex signal rotations is equivalent

to the real signal rotation, denoted By ¢, below.

cos Y1 sin 7yq 0 0
_|siny —cosm 0 0
fvor = 0 0 COS Y2 Sin 7o (5.44)
0 0 sinys — CosYs

For this class of rotation matrices and 4QAM, the valygs- 7° andv, = 23° maximize
the coding gain [16]. In Fig. 5.7, the FER of STBQ with the best-found rotation of
the form in (5.44) is plotted for 16QAM. The union bound beesnight at FER< 10~2.
Since a similar result was obtained with 4QAM, we omit the FitiRve of 4QAM.

The tight union bound at medium and high SNR suggests thabthind can be used to
optimize the signal rotatioRk. In the most general case, thex 4 orthogonal matrixk has
no less thar independent entries. Therefore, an exhaustive searcimssconpractical.

To overcome this problem, we propose two search strategirsamplexity reduction

in the following.
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Figure 5.7: FER and union bound of 4-group QSTBC for (8, 1)aysusing the signal
rotation in [93].

Stl Reducing number of independent variables of the rotatiomixn&t
One class of theé x 4 real orthogonal matrix is given below:

01 02 03 04
—02 01 —04 03
—O03 04 01 —02
—04 —O03 02 01

R= (5.45)

where}"; | o? = 1 and entries; are real. Because of this normalization, there are

only 3 independent variables out of 4 variables.

Another class oft x 4 orthogonal matrix is given in (5.44). This class has only two
variables, we therefore would not expect further perforoeagain over the orthogo-

nal family in (5.45).

St2 OptimizingR based on the asymptotic bound at high SNR3;1££ 0Vi = 1,2, 3,4,
thenl + ~ 2% at high SNR, the approximation of the exact PEP in (5.42)

8 sin? 8sin? «

is
~ D A A - -4 _ 207816 —4
Pld—d)~ (=L [ (sina)an ) TLIoI = ™ Hw
i=1
(5.46)
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Using the asymptotic bound, the searching time is redu@ddndously, because no
integration is required. We can also use the rotation gingB.45) for the computer search.
The values ob; (i = 1,2, 3) are in the rangé—1, 1) and the increment i8.005.

Similar to 4-group SAST codes, the asymptotic bound in (bst6that the PEP of
4-group QSTBC is heavily dependent on the product distdﬁg‘::q G; (see, e.g. [138]).
Recall that3 = TR(d — d); we can consider the product matifi? is a combined rotation
matrix for data vectod.

The exponent of SNR in (5.46) is -8. This indicates that th&imam diversity order
of 4-group QSTBC is 8 and it is achievable if the product distais non-zero for all
possible data vectors. Furthermore, at high SNR, the asyimptmund becomes very tight
to the union bound and, therefore, very tight to the FER. Tioesgthe larger the product
distance, the lower FER can be obtained. This observatiearissimilar to the diversity-
coding gain concept due to Tarokhal.[16]. Thus, we can optimize the rotation B/so
that the minimum product distance

4
dpmin = mMmi , where = [TR(d' — &’ 5.47
panin = i ]}_[1 1B B = [TR( )] (5.47)

is non-zero and maximized.

Note that the searches for the best rotation makizased on the union bound (5.43)
and the worst-case PEP (5.47) can be run independently. diticag one can use the
coding gain metric [16] to search for the matiik[93]. The rotation matrix minimizing
the union bound of FER should yield the lowest FER compardd tie best rotation
found by optimizing the worst-case PEP and coding gain. Hewewve have used the
rotation matrices in (5.44) and (5.45) with a few independeanables to reduce the search
complexity, the results may not as good as the case with thierb&tion matrix in terms
of optimizing the worst-case PEP.

If the complex signals are drawn from QAM, the (real) elersenitd are in the set
{#£1,43,+£5,...}. The best known rotations for QAM in terms of maximizing theim
mum product distance are provided in [139,140,142]; thatiat matrix for 4-dimensional
vector is given in (4.27).

The FER and BER of 4-group QSTBC with 16QAM, using signal rotatn (4.27) and
the best rotation in (5.44) (in terms of coding gain), are pared in Fig. 5.8. Clearly, the
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Figure 5.8: FER and BER of 4-group QSTBC with newly proposedtion for (8, 1)
system.

rotation in (5.44) performs better at high SNR.

We have compared performances of 4-group QSTBC with sigtatioo in (4.27) and
with the best rotations of the form (5.45) in terms of minimgthe union bound (5.43)
and asymptotic bound (5.46). The rotation in (4.27) alstogiéhe best performance. Thus,
from now on, we use the rotation given in (4.27) for 4-groupi@8S.

Another application of the union bound on PEP is to compageptrformance of 4-
group QSTBC with different types of constellations. For epéanwe investigate the per-
formance of 4-group QSTBC with 8QAM-R and 8QAM-S (see Fig.)4.2Zhe FER of
4-group QSTBC with these two constellations are also congpiar&ig. 5.9. The union
bounds for 8-ary constellations are very tight to the sinadaFER when FER< 1072,
We observe an SNR gain of 0.9 dB by using 8QAM-S instead of 8GRRNHowever, this
improvement comes at the cost of complexity; we can use therspdecoder to decode
transmitted symbols from 8QAM-R, while maximum likelihoodasch must be used to
decode signals from 8QAM-S.
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Figure 5.9: The union bound on FER of 4-group QSTBC using 8QRM~nd 8QAM-S
rotated by the newly proposed rotation, (8, 1) system.

5.2.4 Summary

In this chapter, we have analyzed single-symbol decodindGi@les and 4-group QSTBC
by applying the methods developed for OEST codes. The dguivehannels and new de-
coders of the two codes were derived. Optimal signal dedigue been presented, based
on the exact PEP and union bound. These results show thapproeech for OEST codes
is powerful for analyzing the performance of the existin@3&T

In the next chapter, design and performance of space-tiahesan frequency selective
fading channel are considered for MIMO-OFDM.
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Chapter 6

Intercarrier Interference
Self-Cancellation Space-Frequency
Codes for MIMO-OFDM

In this chapter, the design of space-time codes in frequsal®ctive fading is considered.
Since OFDM is robust against frequency-selective fadibgs used in current wireless
systems and is under investigation for the future MIMO syste In frequency-selective
channels, the frequency diversity can be exploited so kiatdtal diversity order becomes
L, times higher than that of a frequency-flat fading channegneh,, is the channel order.
This full spatial-frequency diversity can be extracted lbynbining OFDM with MIMO,
and encoding the data symbols along the spatial and fregu#mensions. The resulting
codes are called space-frequency codes. Since the perfoenth OFDM is sensitive to
the intercarrier interference, which is caused by frequasitset, phase-noise, and time-
varying channel, we will investigate the performance ofcgptiequency codes in the pres-
ence of intercarrier interference. Furthermore, a new @ngomethod will be proposed to
effectively improve the performance of space-frequenayesovhen intercarrier interfer-

ence is severe.

6.1 Introduction

The previous chapters focused on the low-decoding contgl8XiBC for flat-fading MIMO
channels. In practice, because of the multipath propagatiee mobile wireless chan-

nels are frequency-selective. An OFDM front-end can be tisexmbat the frequency-
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selective channels because OFDM converts the widebandeneg-selective channel into

parallel frequency-flat channels. In order to exploit tregfrency diversity, coding is per-

formed across the subchannels or in the frequency dimengrarefore, signal design for

MIMO-OFDM can be regarded as space-frequency coding. Smeeubchannels have
different amplitudes and phases, the quasi-static assumipt space-time coding is no

longer valid for space-frequency coding and low-compiegpace-frequency code design
is more difficult.

In OFDM systems, there are several inherent factors thdticsmyerely degrade the
error rate performance of any space-frequency coding sebenhey are frequency offset,
phase noise, fast time varying channels, to name a few. Auakfrequency offset exists
due to carrier synchronization mismatch and Doppler sB8%.[Residual frequency offset
destroys subcarrier orthogonality, which generates-caerer interference and the BER
increases consequently. The effect of such impairmenti@irdnventional SISO (single
input single output) OFDM has been widely investigated. &mample, in [86], BER is
calculated for uncoded SISO-OFDM systems with several fiadidn schemes. Several
works have been done for MIMO-OFDM. The authors in [87], [&)vide BER expres-
sions of MIMO-OFDM employing Alamouti's scheme [82]. Thetlors in [89] analyze
the space-frequency code performance in different prapagsettings, such as Rayleigh
and Rician fading channels, and with spatial correlatiomatitansmitter and/or receiver.
However, the impact of inter-carrier interference due tmrency offset on the pairwise
error probability (PEP) performance of general spacedeeqgy codes and whether the
existing space-frequency code design criteria should beifred when inter-carrier inter-
ference exists have not been investigated. This importaedtepn will be addressed in this
chapter.

We will analytically show that the conventional space-treqcy code design criteria
hold even with frequency offset. The performance loss idigi&te if the normalized fre-
guency offset is small. This loss, however, increases hapitih the increasing normalized
frequency offset and with SNR. When the normalized frequetiisgbis large, the domi-
nance of inter-carrier interference noise power prevémgsyipical rapid decay of PEP with
SNR and the PEP performance hits a floor.

Since inter-carrier interference can severely degradednmrmance of OFDM, sev-
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eral inter-carrier interference suppression methods agable (see [143], [144], [145]
and references therein). For SISO-OFDM, the authors in][1]487] propose an inter-
carrier interference self-cancellation coding (or polynal cancellation coding) method
to mitigate inter-carrier interference (caused by freqyeoffset) effectively. By analyz-
ing [146], [147] and [83], we derive aewclass of space-frequency codes, named inter-
carrier interference self-cancellation space-frequdi8Z-SF) codes, that provide a sat-
isfactory trade-off among error correction ability, int=rrier interference reduction and
spectral efficiency. ISC-SF codes not only achieve the sameedilly order (at leastM/ V)
and coding gains as the corresponding space-frequencyg dediged in [83] but also no-
tably improve the performance of space-frequency coddsfwatjuency offset. Although
our primarily focus is the performance of ISC-SF codes widlgfrency offset, we demon-
strate that ISC-SF codes also perform well when inter-camigrference is caused by
phase noise and time-varying channels. Due to the similar@af inter-carrier interfer-
ence caused by frequency offset, phase noise and time gaciignnels, we present the

simulation results for frequency offset only.

6.2 MIMO-OFDM System Model

Consider a MIMO-OFDM system withi/ transmit andV receive antennas as illustrated
in Fig. 1.4. The number of subcarriers in the OFDM modulai®¥s. The L,—path quasi-
static Rayleigh fading channel model is assumed for the letlwben transmit antenna

(m =1,..., M) and receive antenna(n = 1, ..., N). The channel impulse response in the

time domain is [6]
Ly—1

P (,7) = Y Qo (£, 1)3(7 = 1) (6.1)
=0

wherer; is the channel delay of théh path ( = 0, ..., L, — 1) andd(.) denotes Dirac’s delta
function. The coefficients,, ,,(¢,1)’s are complex channel gains of tfi path between
transmit antenna: and receive antenna They are modeled as zero-mean complex Gaus-
sian random variables (GRV's) with variangg]| ... (1)|*] = §?. We assume the MIMO
channel is spatially uncorrelated and remains constardtfgast one OFDM symbol du-
ration, but can vary randomly from symbol to symbol. Thug toefficientsu,, (¢, 1)

are independent variables and the time intlean be omitted. Without loss of generality,
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the total power ofL,-path channels is normalized, so t@f;’o_l 52 = 1. The frequency

response of the channel between the transmit antenaad the receive antenmaat sub-

carrierk is
Ly—1

Hyp(k) = () e85 = /=1 (6.2)
=0

whereAf = 1/T is the subcarrier spacing afid is the OFDM symbol duration.

The transmitted symbols are distributed oféitransmit antennas and subcarriers of
each OFDM modulator. Let,, (k) be thekth subcarrier being sent from transmit antenna
m in one OFDM symbol duration. In the frequency domain, thagraitted symbols over
M antennas can be represented in the matrix form as follows.

c1(0) c2(0) em(0)
O e (1) ca(1) ep(1) ' (6.3)

(K —1) e(K—1) . en(K—1)

Before transmitting, thé( symbols of each column in (6.3) are modulated by inverse
discrete Fourier transform (IDFT) and cyclic prefix (CP) syisbare appended [148]. At
the receiver side, the CP symbols are discarded to removehiatek interference. The re-
maining K symbols are DFT demodulated to recover transmitted synibtte frequency
domain. Assume that received subcarriers are perfectlpleahand let the received signal

at the receive antennabey, (k)

M
Y (k) = (k) Hy (k) + wo(k) k=0, K -1, (6.4)

wherew, (k)’s are independent and identically distributed (i.i.d)sgosamples, which are
modeled as zero-mean complex GRV’s. The transmit power &aah antenna is normal-
ized to 1, resulting a noise variance per dimensiongf2y) wherep is the average SNR
at each receive antenna.

The input-output relation of MIMO-OFDM systems can be didsext in several matrix
forms. We adopt the approach in [83] to derive the PEP of sfracgiency codes. For the

zero frequency offset case, the received signal in (6.4)dsgnted in the vector form as

Y =DH +W (6.5)
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whereY is the received signal vector that concatenates receigedlsi of N receive an-

tennas as
Y=[5(0) . nu(K—=1) 500 .. p(K-1) yn0) .. yn(K—-1)]", (6.6)
and the channel vectd{ is of size K M N x 1 is given by

T

H=[HI, .. Hy, Hf, .. Hb, .. H'y .. Hby] (6.7)

where
Hypn = [ Hun(0) Hpu(1) . Hoyu(K—1) 1" (6.8)

The noise vectow is represented similarly to the received vectoas

W =[w(0) ... wi(K~-1) wy(0) ... wo(K—1) wn(0) ... wy(K—1)]".

(6.9)
The data matriD size K M x KM N represents the transmitted data in (6.3):
Dy Dy ... Dy 0 O ... 0 ... 0 0 ... 0
N 610
0 0 .. 0 0 0 .. 0 .. D Dy .. Dy
Each matrixD,, consists of coded symbols transmitted from antenna
D,, = diag [¢;,(0), (1), ..., e (K —1)] . (6.11)

6.3 Model of MIMO-OFDM with Frequency Offset

We now extend the MIMO-OFDM system given in (6.5) for the rmame frequency offset
case. To subsume the frequency offset in (6.5), we firstwethe model of SISO systems
with frequency offset that was described in [149].

There is always a frequency offsef at the sampling points of received signal in fre-
guency domain [149], [148]. In the SISO-OFDM system, themadized frequency offset
e is defined by = 0 f/Af. The normalized frequency offset is the same for all sularr
of one OFDM symbol, but may vary from symbol to symbol. In tH&8 systems, the

receivedkth subcarrier is expressed as follows:

y(k) = S<S>Hik>g<fc> + g g S(p — k)H (p)e(p) +w(k) (6.12)
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Let /(k) denotes inter-carrier interference from the other subearto the receiveflth

subcarrier: e
I(ky=)_ > Sp—k)H(p)c(p). (6.13)
p=0 p#k
CoefficientsS(k) in (6.13) are expressed as:
sin [7 (k + €)] { ( 1) }
S(k) = 1——=)(k . 6.14
The coefficientS(0) in (6.12) can be derived by substitutikg= 0 in (6.14) to be
sin (7e) , 1
S(0) = ————~ 1——= . 6.15
(0) = o (22) P [ﬂr ( K) 81 (6.15)

Egs. (6.12) and (6.15) show that due to the frequency ofteet.amplitude of the
desired subcarrier is attenuated and its phase is rotatethefmore, the inter-carrier in-
terference from the other subcarriers can be considered additional noise. Hence, the
SNR of the received signal is reduced.

We now generalize (6.12) for MIMO-OFDM systems and allowdgstinct frequency
offset's among different transmit/receive antennas palrst the normalized frequency
offset of the transmission link from transmit antennand receive antennabec,, ,,. For
MIMO systems, the inter-carrier interference tefpik) at subcarriert of each receive
antennan is the superposition oM/ inter-carrier interference terms, (k) caused by

transmitted signals from transmit antenmasis

M
L(k) =) ILna(k) (6.16)
where o
Lng(k) = Y > con(0) Hynn(0) S (p — k) (6.17)
p=0 p#k
and
~ sinfm(k+epmn)] , 1
Simn(k) = K sin [Z (k& )] exp [jﬂ (1 K) (k + smn)} (6.18)
~ sin(mEmm) , 1
Eq. (6.12) becomes:
M
Yn(k) = (k) Hyn (k) Sn(0) + I (k) + wn (k) . (6.20)
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Note thatS,, ,,(0) is a constant with respect to subcarrier indexdence, in (6.20) we

can groupH,, ,,(k) andsS,, ,,(0) as:
Hpp (k) = Sy (0) Hypo ()

The equivalent form of (6.8) is

- - - - T
Hy = [Hmm(o) Hyn(1)... Hyn (K — 1)] . (6.21)
Matrices]f[mm are arranged into the matrbt, which has exactly the same structure
with the matrixH given in (6.7), but the matril accounts for the presence of frequency
offset.
The equivalent noise at each received subcarrier is a sume after-carrier interference

noise and complex Gaussian thermal noise terms as
Zn(k) = L,(k) + wy (k) . (6.22)
The MIMO-OFDM model with frequency offset is now written as
Y =DH+W (6.23)

whereY is the received vector and the matbxconsists of transmitted symbols. They are
described in (6.6) and (6.10) accordingly and rewritter6i28) without modification.

The matrix representations (6.5) and (6.23) are suitableldéoving the PEP perfor-
mance of space-frequency codes. In the next section, theupg& bound of space-
frequency codes without frequency offset based on (6.3)ogigiven. It is an asymptotic
bound [150] and is tighter than the Chernoff bound [16] at HENR. In the presence of
frequency offset, the equivalent representation (6.28)eiused to derive the PEP perfor-

mance (Section V).

6.4 Design Criteria of Space-Frequency Codes

In the space-frequency encoding process, the source date-dimensionally encoded
across the space (over multiple antennas) and frequeney {og subcarriers of OFDM

symbols). A space-frequency codeword may occupy sever@8INDBymbols [77], [81]
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or one OFDM symbol [67], [42], [83]. The maximal diversitydar can be achieved by
coding over the subcarriers of only one OFDM symbol [67]][8Bereas in [77], [81] the
maximal diversity order is gained by coding over multipleBD¥ symbols. That obviously
causes higher coding and decoding delay. We adopt the aghpio$83] for our analysis.
In the following, we summarize the results of [83].

The input data symbols are divided infkesymbol source words and are parsed into
blocks and mapped to space-frequency codewords as refgeseri6.3). At the receiver,
the maximum likelihood (ML) decoder selects a codeward its metric M e is minimum:

K—1 N
Me = Z

k=0 n=1

2

-1 M

Yn(k) — Z Cm (k) Hyp ()

m=1

(6.24)

Assume perfect channel state information (CSI) is availabline receiver but not at
the transmitter and perfect symbol timing. The PEP for asimatied codeword” and
erroneously decoded codewakdin a frequency-selective fading fading channel is upper
bounded as [83]:

r -N
2I'N — 1 _I'N
P(C—E)< ( N ) (HA) P (6.25)
wherel is the rank of the matrix) which is defined as
Q&= AoR (6.26)

and where> denotes Hadamard product [63] akd: = 1, ..., I") are non-zero eigenvalues

of ). The matricesA andR are as follows:

A=(C—-E)(C—-E)", (6.27)
R=Ryp=E[Hn,Hi,] =V diag (53, 52, .. 5§p_1> v (6.28)
where
1 1 .. 1
7o v . v Ep—1
V= : : : : (6.29)

U(Kil)TLpfl
andvy = e 72747,

From (6.25), the space-frequency code design criteria eatadied as follows.
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e Diversity criterion: The minimum rank of) over all pairs of distinct codewords

should be as large as possible.

I
e Product criterion: The minimum value of the prodydt\; over all pairs of distinct
=1

codewords should be also maximized.
From (6.25), the diversity order of space-frequency coglés\, maximum achievable

diversity order is equal tain(L,M N, KN).

6.5 Performance of Space-Frequency Codes with
Frequency Offset

We continue the analysis with the two assumptions below:

e AS1: Residual normalized frequency offset)s,, are independent of the channel

coefficients.

e AS2: The inter-carrier interference termg (k) in (6.16) and (6.17) are indepen-
dent.

The coherent receiver first estimates the channel coeffscieihen the phase shift
caused by frequency offset is compensated [149]. Thus,etidual frequency offset is
somehow dependent on the channel estimation method. ThesAfdden to simplify our
analysis. In practice, transmit data over multiple antsrenr@ encoded. There may be a
degree of correlation among the transmitted data streathsarsequently, the inter-carrier
interference noise terms, (k) could be also correlated with respect to the subseript
With AS2, all the inter-carrier interference noise at theeiee antennas will have the same
variance and zero mean. AS2 will be made clearer during theadien below. Therefore,
the ML detection in the presence of AWGN noise given in (6.2318.

To investigate the PEP of space-frequency codes with freyueffset using formula
(6.25), the channel coefficients,,, ,,(k) in (6.21) should be complex GRVs. This require-
ment can be metif,, ,(0) is deterministic or normalized frequency offset is not ad@m
variable (Case 1). In general casg,,, can be assumed to be i.i.d random variables in

the rangg £, Es], their values can be changed from OFDM symbol to symbol (Case 2
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However, the performance of space-frequency codes witl fraéues of frequency offset
is of greater interest since it provides a closer look at #rgpmance of space-frequency
codes at specific frequency offset values.

For analytical tractability, we further have the third asgdion:

e AS3: normalized frequency offset, ,, are constant and the same for all pair of

indices (n, n): €0 = €o.

If |E\| = |Es] = |eo| (if the absolute value of random normalized frequency ofise
not more than a fixed normalized frequency offset value), xyeet that the PEP perfor-
mance of Case 2 is more optimistic than that of the Case 1. Tdretd?EP obtained with
AS3 is an upper bound of PEP with frequency offset. This agsiam will be relaxed in
our simulation study and thus more realistic performanedugtion is carried out by sim-
ulations. Our analytical results below, however, provideful insight into the inter-carrier
interference performance of space-frequency codes.

In OFDM systems K is typically 64 or larger. Therefore, the central limit them
can be applied to model the terfp, (k) as a GRV [148]. The inter-carrier interference
term I, (k) in (6.16) is a sum of\/ independent GRV’s, it is also a GRV. The first two
moments of the term,, ,,(k) in (6.17) by Gaussian approximation are calculated asvisllo
Assume that coded symbals,(p) have zero-mean (such as M-PAM, M-PSK, M-QAM
signal constellations), them|7,,, (k)] = 0.

The variancerj  of I, ,(k) in (6.17) is

07, = E [[In(k)[]

p=0

=K (2_: Cm<p)Hm,n(p)Sm,n(p - k)) - Cm(k)Hm,n(k?)Smm(O) ]

. (ij o (0) Hon(5) S k))

p=0

:| —E [|Cm(k)Hmn(k>Smn(O)’2}

=Y B len® ] E [|Hnn®)*] E [|Smn(p — n)[’]

p=0

—E [|ea(B)*) E [ Huno (k)] E [| S (0)] - (6.30)

In the last two rows of (6.30), the term[|c,.(k)|*] is the signal power, which is nor-

malized to 1. The terng []Hm,n(k)ﬂ is the average of the channel power, and it is also
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normalized to 1. Eq. (6.30) becomes
K-1

o7, = > E[ISp -k - S (6.31)
p=0

whereSy = E [|S..(0)°] = [Sm.»(0)|*. Note that the residual normalized frequency off-
setis usually smalk < 0.2[148], the number of subcarriefs > 8, henceX sin(re/K) ~
me. Letp(e) be the probability density function (pdf) ef, .. In the case of constant fre-

quency offsetp(¢) = 1, S, can be evaluated as

. 2
Sp = (Sm (”50>) — [sinc(zo)]? (6.32)
TEQ
wheresinc(z) = %
K-1
It is found in [85] that the sumd_ E [|S(p — k)|’] = 1, hence
p=0
ol —1-5,. (6.33)

It is clear thata%m,n is independent of indices: andn, it is just dependent on the
normalized frequency offset throudly. With AS2, I,,(k) is a complex GRV with zero-
mean and variancg/ (1 — S,). Therefore, the inter-carrier interference noise of MIMO-

OFDM z,(k) given in (6.22) is also a zero-mean complex GRV with variaase
o2=M(1—-Sy+1/p). (6.34)

Values ofc? is identical for all receive antennas.
From (6.20), it is seen that the received signal power hastw@rfaf S); hence the

equivalent SNR at each receive antenna with frequencytoffse

. MSy So
e (e (639

Using the MIMO-OFDM model developed in Section 6.3 and sgaeguency code
design criteria in Section 6.4, we derive PEP performaneengin (6.25) with frequency
offset in the following.

The correlation matrix defined in (6.28) for equivalent ohﬁdrmatrix]flmm given in

(6.21) has a new form

R=Ryn=F [ﬁmm( Hm)*} = S0 [HypnHl\ ] = SoRn - (6.36)
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Hence, the matrix) in (6.26) becomes matri&
Q=A0R, =S (A0Ry,) =SQ. (6.37)
We can easily verify that:
e MatricesQ and(Q have the same rank.
e If )\; is an eigenvalue of) then)\; = Sy)\; is an eigenvalue af).

Substitutel = Sy\; andj into (6.25), re-arrange the terms, the PEP expression with

frequency offset is

-N
2N — 1\ [+
< : —IN .
P(C—>E)_L0< e )(HA) 0 (6.38)
where .
Lo — <—502 ) (6.39)
"\ p(1=8) +1 . .

Comparing (6.25) and (6.38), we discern tlhgtrepresents the PEP performance loss
due to frequency offset. From (6.25), (6.38) and (6.39), veavdthe following theoretical

conclusions:

1. The design criteria for space-frequency codes withaguency offset is still valid
in the case of frequency offset. The code design should maeithe diversity order

and coding gain.

2. For the same transmit power, the higher the normalizegu&ecy offset, the higher
PEP performance loss. That is, at the same PEP, the highmahned frequency
offset, the further PEP curve shifted to the right.

3. The PEP curves will shift right if frequency offset is nena. However, with the
same normalized frequency offset, the shift of PEP curvdeveér diversity order
systems is larger than the shift of PEP curves of the systéimhigher diversity or-
der. This is due to the fact that given the same loss faggpthe SNR compensation
for this loss is smaller for the codes with higher diversitder [c.f. (6.39)]. Thus,

the higher diversity order systems are more robust to tleetsfof frequency offset.
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4. If p(1 —Sp) > 1 or at high transmit power and high value of frequency offset,

P(C — E) < (QFZ]YN_ 1) <1j Ai> B x ( . f 0;) o . (6.40)

The PEP is no longer inversely proportional with SNR and diti®or.

These analytical results can be anticipated since the-cateier interference term is
considered as an additional Gaussian noise. When frequdfsat & small, the inter-
carrier interference power is smaller than the power ofrtta@moise; thus, its impact on
the performance of space-frequency codes is negligibleveder, when the frequency off-
set is large, the inter-carrier interference noise dorem#termal noise. The inter-carrier
interference power increases with desired signal poweeréfbre, when SNR is large,
inter-carrier interference causes the error floor as we Havieed. Nevertheless, the ana-
lytical results reveal explicitly that when residual fremey offset is small, about’, the
performance loss is almost negligible (cf. (6.39)).

To complete this section, we note that one can derive the Meiver using (6.20) and

(6.24), the same result as (6.38) can be obtained.

6.6 Inter-Carrier Interference Self-Cancellation
Space-Frequency Codes

In Section 1V, we have shown that if the normalized frequeaffget is high, the PEP
performance is limited by a floor level at high SNR. Thus, a sgaequency code which
can mitigate the effects of high normalized frequency offselesirable. We now relate
space-frequency codes and polynomial cancellation cog?@y). PCC is first proposed
by authors in [146]. This idea is further analyzed in [14 @hfrtheory of finite differences.
We now summarize and analyze the main results of PCC in [146ifigate the inter-
carrier interference caused by frequency offset, one codedcoded data symbol modu-
lates a group of, wherer = 2, 3,4, ..., consecutive subcarriers. The optimum weighting
coefficients for- subcarriers to minimize inter-carrier interference aeedbefficients of the
polynomial(1 — D)"~!. The code rate of PCC ig/r. The inter-carrier interference perfor-

mance of this coding scheme increases witt the cost of spectral efficiency. Simulation
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results [146] show that this coding scheme with- 2 (or code ratel /2) outperforms the
system using raté/2 convolutional code when normalized frequency offset ih{20%)
but PCC performs poorly when normalized frequency offsetialbor medium € 10%).
The reason is that this code is particularly designed tormae inter-carrier interference
and hence may not be suitable for error correction purpoBesnprove the performance
of PCC, an outer error control code is required. The resulamta@tenated code has lower
rates as increases. Thus, the smallest possible value of= 2 is of practical interest.

Another result of [146] is the inter-carrier interferen@cellation demodulation con-
cept. For example, when= 2 one data symbalt is sent over two subcarriers that satisfies:
c(k) = z, ¢(k+ 1) = —x. This process is called inter-carrier interference cdateh
modulation. The received signajgk) andy(k + 1) create a new signal for detection:
y(k) = y(k) — y(k + 1). This process is named interference cancellation demtola
The combination of interference cancellation modulatiod demodulation is called inter-
carrier interference self-cancellation (ISC). The intarrier interference noise power of
ISC is smaller than the original inter-carrier interfererand inter-carrier interference of
interference cancellation demodulation. Therefore, 8@ $cheme is powerful against fre-
quency offset. From a diversity point of view, using two &8y (k) andy(k + 1) to detect
one transmitted symbal could yield a diversity order of two. Since there is a strooge-
lation between adjacent subcarriers, however, the useediub signals (k) andy(k + 1)
may not, in fact, provide a diversity order of two. Our targeto maximize the diver-
sity order of space-frequency codes. Thus, the interfereaacellation modulation is our
concern, but not the ISC scheme.

In sum, PCC is suitable for inter-carrier interference réiduc However, its error
correction ability and spectral efficiency are low. Therefca low order PCC code with
r = 2 concatenated with powerful error control codes would be@lgoade-off solution.
We next develop the idea of interference cancellation natdn to design a class of space-
frequency codes that are robust to inter-carrier interfege

Suetal. [83] show that the space-frequency code formed by repea@atp row of
a full diversity order space-time codewordimes ( < r < L,) achieves at least the
diversity orderd = rM N. This repetition obviously reduces the spectral efficienioys,

we consider only: = 2.
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Let the number of OFDM subcarrieis = 2K. Suppose that the length of a space-
frequency codeword equals to the number of subcarfiersf the space-frequency code-
word length is smaller thai’, a zero-padding matrix can be used for the remaining sub-

carriers. A space-frequency codeword has the form
C, = : : . ) (6.41)

Applying the interference cancellation modulation schefoer = 2, this scheme is
actually a repetition scheme but the repeated symbols grereversed. In the case of

MIMO-OFDM, the repeated rows are sign-reversed to form re@-5F codewords as

c1(0) c2(0) e (0)
—c1(0) —c5(0) —cpr(0)
C, = (6.42)
a(K—1) e(K-1) .. ey(kK—-1)
—c)(K—1) —cy(K —1) ... —ey(K—1)

We call the space-frequency coding schemes given in (6rtlj&a42) as SC1 and SC2
for short. We now prove that the new coding scheme SC2 yieklsdime coding gain and
diversity order (at leasit = 2M N) compared with SC1, but SC2 integrates inter-carrier
interference self-cancellation capability.

Consider an entry;; ; of the matrix A, defined in (6.27) being created by space-
frequency codewords (6.41). The entry;, of the matrix A, being created by space-
frequency codewords in (6.42) is related withy as

h:{%, if (i + 5) is even
Y —a;j, if(i+7)is odd.
Note that the size of\; and A, is K x K, K = 2K and, in particular, they can be

written as follows.

ay; Qa2 - MK
Q21 Q22 -+ 2K

Al - )
a1 Aag2 - AKK
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bii bz -+ bk ‘a1 —ai2 - —k
by bag - bk —a21  +azp -+ taok

b1 bra - bik —ag1 tago -+ tagi
The matrixR defined in (6.28) is the same for both SC1 and SC2. Thereforgy@ongy
the signs of entries a); = A, o R and@, = A, o R (defined in (6.26)), we can see that
the signs of entries af, are changed in accordance with the sign changes of entriég of

compared ta);. Thus, we have following relationship:

e IfvectorX; = [ 1 22 23 x4 .. zx_1 xk |Iisaneigenvector of); = A o
R, thenX, = [ &y —ay 3 —x4 ... xx_; —xx | IS an eigenvector of)s =
Ay o R and vice verse, wher@),, A,) and(Q,, A,) are sets of matrices associated

with space-frequency codewords defined in (6.26) and (6e5pectively.

e If Ais an eigenvalue ok, itis also an eigenvalue of, and vice verse. The rank of
@, and(@), are the same, hence, space-frequency codes SC1 and SC2 hsaméhe

diversity order.

Thus, space-frequency codes constructed as in (6.41) af) (Gave the same diversity
order and coding gain.

We refer to SC2 codes as inter-carrier interference seltalfation space-frequency
codes or ISC-SF codes for short. The code rate of ISC-S¥ /8, whereR, is the code
rate of the underlying ST code. Repetition the space-freqjueadewords more than twice
in combination with polynomial cancellation coding will igaadditional diversity order
and inter-carrier interference mitigation. However, theg paid for those improvements
is the spectral efficiency reduction. Moreover, from thedation results, we will see
that the ISC-SF codes & 2) perform well compared with the codes without inter-carrie
interference cancellation. The higher order PCC codes (2) would not significantly
improve inter-carrier interference reduction. Thus, gsialof the space-frequency schemes
with higher repetition orders (i.e. lower rate) is not dissed further. The ISC-SF coding
scheme (6.42) gives a satisfactory trade-off among ewotrol performance, inter-carrier

interference reduction and spectral efficiency.
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6.7 Phase Noise and Time Varying Channel

Channel variations and phase noise also produce inteecanrterference. In Section Il, we
assume that the MIMO channels remain constant during oneMD&nbol. However, due
to the relative movement of the transmitter and receiverctiannels may vary during one
OFDM symbol. This variation causes inter-carrier intezfesze and makes BER increase
(see [151], [145] and references therein). For the desongf phase noise and its effects,
the readers may refer to the references [152], [143], [71].

In the following, we use continuous time model to show howelisdarrier interference
is created by phase noise and time varying channels. Cor8i8&-OFDM systems. The

transmitted signal over a block including CP, is given by

=

s(t) =) c(k)e*™ T, <t <T, (6.43)
0

=
Il

whereT,, is the length of CP. The duration of one OFDM symbol with CPyis= T, + 1.
The signal at the input of the receiver is

o0

r(t) = s(t) « h(t,7) = / h(t,7)s(t — 7)dt + w(t)

—00

=

Ly—1
c(k)h(t, r)e 32T RAITgI2TRATE 4y (t) . (6.44)
0 =0

B
Il

where w(t) is an AWGN process with zero-mean and one-sidecpepectral density is
Ny. At the demodulator, the phase noisig) between the carrier and the local oscillator is
added to the phase of received signals. In the basebandegpaéon, adding phase noise
is equivalent to multiply-(¢) with 6(t) = /¢,

If we consider the effect of frequency offset only as in Sacfil-B, let ¢(¢) = 0 and
h(t,T) to be constant, one can deriy@) as in (6.12). In this section, we consider the inter-
carrier interference due to phase noise and time varyingreda. Thus, we leff = 0 to

simplify the expressions. The demodulated sigiia) is

K—1Lp—1 Ts
y(p) =T " Z Z c(k)e I2mkAIm /h(t,Tl)ejd)(t)eﬂ’r(k_pmftdt +w(p). (6.45)
k=0 1=0 )
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To consider the effect of time varying channels onlydet) = 0 in (6.45), we have

K-1
y(p) = H(p)e(p) + Y H(p — k)e(k) +w(p) (6.46)
desired signal  F=0.k7P g ,
ICI
where
Ly,—1 T
H(i)=) (c(k;)eﬂ”mf” / h(t,n)eﬂ”(kp)Aftdt) . (6.47)
=0 0

The inter-carrier interference term in (6.46) can be apipnated by a zero-mean GRV.
Its power can be found in [153].
If we consider the effect of phase noise only, At, 7) in (6.45) be constanty(p)

becomes
K-1
y(p) = a(0)H(k)ep)+ Y alp — k)H(k)c(k) +w(p) (6.48)
desredsgnal | k=0k#p ,
ICI
where . .
a(i)=T" / O(t)e 2™t qr - a(0) =T * / O(t)dt . (6.49)

Since H(i) in (6.47) is a non-GRV and(0) in (6.49) is non-constant, analyzing the
PEP of space-frequency codes with phase noise and timengaciiannels becomes diffi-
cult. However, comparing Egs. (6.46) and (6.48) with (6, bB)e can see the inter-carrier
interference contributions of subcarriers to one subeadte to time varying channels and
phase noise are similar to the inter-carrier interferemmegrdoution due to frequency offset.
Thus, ISC-SF codes with capability of cancelling inter-earinterference should perform
well compared with the space-frequency codes without #asure in cases of phase noise

and time varying channels as discussed for the case of fnegudfset.

6.8 Simulation Results and Discussion

We give simulation results to verify the theoretical aneysr space-frequency codes with
frequency offset. We use two channel models: (1) a simplegatb channel with uni-

form power delay profile and time delay between the two pathg ¢ and (2) the six-path
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COST207 typical urban channel model [6], a more realistic ehoWe use algebraic ST
convolutional codes [42], [154] of code ratg2 with generator polynomia(5,7) [32]

without channel interleaver. The Viterbi decoder [154P][B employed. The similar sim-
ulation results are observed for both channel models. Mrpresent the simulations with

six-path COST207 typical urban channel model for brevity.

6.8.1 Simulations with Constant Frequency Offset

We compare the performance of space-frequency codas#or0% and20% normalized
frequency offset. Fig. 6.1 illustrates PEP curves of two @F&ystems with 64 subcarriers
and two transmit antennas. System 1 is equipped with onévecagtenna and System 2
has two receive antennas, so that the diversity order ofwtbesystems is at leagt = 2
andd = 4, respectively. Using (6.32), far% normalized frequency offset, = 0.9997,

Lo ~ 1 in the SNR region of interes&( 30 dB). Therefore, theoretically the performance
loss is not significant. Fig. 6.1 confirms this conclusiorthé# normalized frequency offset
is small, sayl %, the PEP curves almost overlap the PEP of the systems witteqadncy
offset. In case normalized frequency offset@:, the PEP curves of all systems are shifted
to the right and less steep than the curves of PEP Witinormalized frequency offset; this
shift is larger for the system with smaller diversity ordéor example, aPEP = 1073 the
PEP curve of the system with= 2 shifts right 1.4 dB, whereas it is 0.8 dB for the system
with d = 4. The SNR needed to compensate the effect of frequency afisetases with
normalized frequency offset. When normalized frequencyetffts20%, the PEP reduces
slightly even if there are large increases in SNR. The PERpadnce reaches a floor at an
SNR of about 22 dB. This symptom is more serious for low divgisider systems, where

the floor level is higher than that of higher diversity ordgstems.

6.8.2 Simulations with Inter-Carrier Interference
Self-Cancellation Space-Frequency Codes

The performance of space-frequency coding schemes withvahdut inter-carrier inter-
ference self-cancellation (SC2 and SC1 accordingly) istiied in Fig. 6.2. The systems
to be examined have 128 subcatrriers, 2 transmit and 1 reaeteanas. We can verify the

results in Section 6.5 that when frequency offset is abse@f, and SC2 have the same
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Figure 6.1: Performance of space-frequency codes With 64, constant frequency off-
set for the six-path COST207 typical urban channel model. &@ds for normalized
frequency offset.
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Figure 6.2: Performance of space-frequency codes Wwith- 128, = 2, constant fre-
guency offset, six-path COST207 channel model with and withder-carrier interference
self-cancellation.

diversity order. The difference between the coding gairth@ftwo schemes is very small,
less than 0.2 dB at the plotted SNR. This difference is expleictde zero at higher SNR

region. Once again, the performance lossifdarnormalized frequency offset is negligible
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Figure 6.3: Performance of space-frequency codes With- 64, uniformly distributed
frequency offset and the six-path COST207 typical urban cblmodel.

for both SC1 and SC2. However, the improvement of SC2 over SCInark@able when
normalized frequency offset i9% and20%. For example, in Fig. 6.2 &£ P = 10~3 and
10% normalized frequency offset, the performance loss of SChasie3.7 dB, whereas the
loss is about 0.5 dB with SC2. This improvement is significariig. 6.2 where the loss of
SC2is only 0.5 dB. In addition, SC2 lowers the error floor levahbty when normalized
frequency offset is very high0%.

6.8.3 Simulations with Variable Frequency Offset

In practice, the frequency offset values of receive sigaatitenna that were transmitted
from antennan can be different and they vary from symbol to symbol. We noavjate
simulation results for variable frequency offset. Theriisition of normalized frequency
offset values are assumed uniform over the rargg,, Ey|, where|Ey| is the maximum
normalized frequency offset. Similarly to the previous siations, we will examine per-
formance of the space-frequency codes|fayl = 1%, 10% and20%.

As discussed in Section 1V, assumption AS3, the performahspace-frequency codes
with variable frequency offset should be upper-boundedhbyerformance curves with the

constant frequency offset. Fig. 6.3 presents performah8é-subcarrier systems with one
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Figure 6.4: Performance of space-frequency codes With 128, = 2, uniformly dis-
tributed frequency offset, six-path COST207 channel modil and without inter-carrier
interference self-cancellation.

and two transmit antennas. The two systems have two tra@giahnas. By examining
Figs. 6.1 and 6.3, exactly the same observations can be madthdhe constant frequency
offset. The only difference between the constant and vigrilabguency offset cases is that
in the latter case, the performance loss is always less thatoss of the former case,
as expected. For example, comparing Figs. 6.1 and 6.3, éosythtem 1 = 2), 10%
normalized frequency offset, at PEP1873, the loss is about 3 dB in case of constant
frequency offset, while it is about 1.7 dB for the system widnying frequency offset.

Fig. 6.4 presents the performance of the space-frequentiggechemes SC1 and SC2
with variable frequency offset. Comparing with their penfi@nce that are given in Fig. 6.2

with fixed frequency offset, the loss for variable frequentfget is smaller.

6.9 Summary

We have analyzed the performance of space-frequency codes presence of frequency
offset. A MIMO-OFDM model with frequency offset has been deped to analyze the
PEP performance of space-frequency codes. Using the PEET bppnd for of space-

frequency codes, we showed that the conventional coderdesigria remain valid pro-
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vided frequency offset is small. Inter-carrier interferens less severe for space-frequency
codes with high diversity order. Therefore, diversity nolygmproves the performance of
OFDM systems in the dispersive channels, but also makey#tens robust to inter-carrier
interference. Furthermore, we proposed a new class of dpageency codes, ISC-SF
codes with diversity order of at leaast/ N. ISC-SF codes are constructed from ST codes to
mitigate inter-carrier interference caused by frequeritset phase noise and time varying
channels efficiently. This class of space-frequency coéesips a good trade-off among
error correction capability, inter-carrier interfererregluction and spectral efficiency. Our
results suggest a new direction in the design of spacegpaeé-frequency codes capable

of both error correction and inter-carrier interferencguetion.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have designed space-time codes for MIMO systems considdre practical con-
straints such as decoding complexity and system impeofexti While reduction in de-
coding complexity leads to power and manufacturing cosingay mitigating the system
imperfections is necessary to prevent possible transomssrors.

Low decoding complexity STBC have been considered in ChafdosChapter 5.
The necessary and sufficient conditions for low decodingpderity STBC are proposed
for quasi-static frequency-flat MIMO fading channels. Tdiage low complexity, we
have developed multi-group decodable STBC. For a fixed nuniizearssmitted symbols
encoded in a code matrix, an increase in the number of gregms|to lower decoding
complexity.

We have proposed a new framework, OEST codes for low contpl&4iBC. The or-
thogonal designs are employed for constructing OEST codeghich the indeterminates
are substituted by circulant matrices and scalar produefpksiced by Kronecker product.
If the orthogonal designs havé indeterminates, the resulting OEST codes hAvdata
vectors embedded in th& circulant matrices. At the receiver, the&edata vectors can
be detected separately with no interference from the otbetovs. Hence, OEST codes are
K-group STBC.

The main properties of OEST codes have been derived. We Ihavensthat OEST
codes can achieve full diversity with signal rotation. @pl signal rotations that maximize

the coding gain or minimize the union bound have been condpufbe maximal mutual
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information of OEST codes is shown to be equal to that of theéetging OSTBC. A
general decoder of OEST codes has been developed.

Additionally, we have shown that OEST codes subsume OSTBC,B@S(ABBA
codes), and circulant STBC. Therefore, many open problentseskttcodes can be solved
in a systematic manner. Detailed analysis has been perfofoneABBA codes. A new
decoder is derived to facilitate single complex symbol digeg, i.e. minimal decoding
complexity (MDC), a property has been known to be possess&@SHBC only. Further-
more, the SER performance of MDC-ABBA codes is directly optimei. This approach is
different from all the previous works, which optimize thedeoperformance based on the
worst-case codeword PEP. The combination of MDC-ABBA codesvanious signal con-
stellations is investigated. The results show that MDC-ABBAes yield the best perfor-
mance with QAM. We also considered antenna selection, adtmop method to improve
the performance of MDC-ABBA codes. It is shown that MDC-ABBA cedmn achieve
full diversity even with limited feedback. Simulation résutshown that MDC-ABBA codes
perform better than OSTBC with the same decoding complekhius MDC-ABBA codes
are a potential replacement of OSTBC when there are more ttrangnit antennas.

Importantly, the framework of OEST codes allows us to desigrew STBC called
SAST codes. SAST codes are constructed by the Alamouti ¢bds,they are 2-group
decodable. SAST codes are of rate-one symbol pcu and theyeealy achieve the capacity
of MISO channel. From extensive simulations, we find that $&&des also perform better
than other STBC having the same code rate, such as linearsimpeodes, DAST codes,
LCP codes, and QSTBC.

We furthermore proposed a new encoding method so that thd O&&es becomekK -
group decodable, which wds-group decodable initially. The representative SAST codes
have been analyzed in great detail. The new decoder for SA8d@schas been derived for
the new encoding method. This makes SAST codes 4-group dBldThe best signal
transformations, in terms of coding gain, have been idextifiThey are the real rotation
matrices proposed for square lattices. Since 4-group SA8&schave low complexity, are
near-capacity achieving, and have good performance, dpg8&ST codes are suitable for
downlink wireless channels, where the multiple transmieanas are used to improve the

diversity gain of the systems.
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Another contribution of OEST framework is the general mdttmderive the decoder
for low complexity STBC. This method is implemented into 3 sabks: (1) to obtain the
spatial signature of data vectors; (2) to derive the egeimathannels; and (3) to propose
the simplified transmit-receive signal relations. Thisnoethas been successfully applied
for other low-complexity STBC: CIOD codes and 4-group QSTBC. Agla product, we
also derive the optimal signal designs for these two codes.

Chapters 2 to 5 deal with STBC in frequency-flat fading chanrnédsvever, frequency-
selective channels are of interest too and OFDM is commanmigieyed to deal with such
situations. We have studied the design of space-frequerdgscfor MIMO-OFDM sys-
tems with imperfections due to frequency offset. The desiggeria of space-frequency
codes have been revised when frequency offset exists. Shikgshowed that the diversity
gain of MIMO system may be totally lost when frequency ofisdarge, resulting in a irre-
ducible error floor. We proposed a new space-frequency gatiheme to partially cancel
the inter-carrier interference. The new coding scheme svadl even when the frequency
offset is 10%.

7.2 Future Work

7.2.1 Maximal Rate of Multi-Group Decodable STBC

We have derived the necessary and sufficient conditions atoattsTBC is multi-group
decodable. These conditions are given for a quasi-statindachannel, where the channel
is constant during the transmission of a code matrix. Howereen a specific number of
groups/” > 1, the maximal code rate that can be designed is still unkndwnexample,
the maximal code rate of OSTBC, a special case of single-syodxmddable, is known
[44]; but the maximal rate of single-symbol decodable isy@itreported [92]. In another
effort to search for high rate 2-group STBC, Yuenal. [98] find a code of rate 5/4 for
4 antennas. Nevertheless, this rate is not shown to be mbafoma-group STBC for 4
antennas. Thus in the direction of designing low compleSTHBC, we have two main

open problems.

1. What is the maximal rate df-group STBC?
2. How to systematically construét-group STBC with maximal code rate.
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Another open problem is to design the low complexity spaegtfency codes for MIMO-
OFDM systems. Since the channels of subcarriers vary aloagrequency axis, that
means, the rows of space-frequency code matrix experidffeeedt channel gains. This
fact opposes to the MIMO frequency-flat channels, where tives rof space-time code
matrix experience the same channel gains. Therefore, tbessary and sufficient con-
ditions so that a space-frequency code is multi-group delgledneed to be revised. The
design of low-complexity space-frequency codes becomes difficult. Furthermore, the
two open questions of designing low complexity STBC in qusatic frequency-flat fad-
ing channels are the open problems of designing low contplepiace-frequency codes in
MIMO-OFDM.

7.2.2 Exploiting Channel State Information

We have pointed out that SAST codes are suitable for cohé&O channels. SAST
codes can also be used in MIMO systems where the code rateeayonbol pcu is ac-
ceptable. When some form of channel state information idablai at the transmitter, one
can derive the precoders to improve the performance of SASiES Several precoding
methods have been proposed for OSTBC [155-159] and for QSTBQ]B, 119]. The
combination of SAST codes (and also OEST codes in generdipr@atoding to exploit the

channel state information can be investigated.

7.2.3 Combination with Error Control Coding in Multi-User Systems

We may investigate the combination of OEST codes with eromtrol codes, which are
employed by practical systems to correct transmissionr®fdd]. In Addition, modern

error control codes, like turbo codes [160, 161] or low-digmzarity-check (LDPC) codes
[162—-164], require the soft output from the inner STBC fordtave decoding [165-167].
An OEST decoder that produces the soft output informatioy begadeveloped. While this
thesis has focused on point-to-point communications, tatiap of OEST codes and their
subclasses, such as SAST codes and MDC-ABBA codes, in meitisystems with error

control codes can be investigated.
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7.2.4 Applications of OEST Codes

We have designed OEST codes for coherent communicationfoapdint-to-point links.
However, OSTBC and QSTBC, two special cases of OEST codes ane1gbdbe suit-
able for differential encoding and non-coherent detecfidv, 168, 169]. Furthermore,
OSTBC and QSTBC are recently investigated for relay cooperabmmunication proto-
cols [170-172]. Therefore, the applications of OEST codesdn-coherent or cooperative

communications, in general, can be further developed.
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1. D. N. bao and C. Tellambura, “Intercarrier interferendé-sancellation space-
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vol. 54, pp. 1729 - 1738, Sep. 2005.
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IEEE Communications Lettersol. 10, pp. 713- 715, Oct. 2006.
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nications Lettersvol. 10, pp. 810- 812, Dec. 2006.
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