
University of Alberta

Improving energy efficiency in broadcasting and multicasting

applications

by

Zohreh Abdeyazdan

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

in

Communications

Department of Electrical and Computer Engineering

c©Zohreh Abdeyazdan
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis and, except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatsoever

without the author’s prior written permission.

Abstract

In this thesis, the problem of transmitting data in the form of multicast and

broadcast traffic has been studied. The traffic can be from a real-time appli-

cation which has a short block length or it can be a general broadcast traffic

in an ad-hoc network. The goal is to reduce the total number of transmis-

sions which results in reducing the delay and improving the energy efficiency

of the system. Toward this goal, network coding and fountain-codes solutions

are studied in this thesis. For the case of broadcasting, a new fountain-code

method is proposed. Our results show that this method increases the energy

efficiency compared to other methods that have the same order of complexity.

For the case of multicasting, we provide a finite block length analysis on the

effect of erasure on overhead. We use this analysis to investigate a method of

packet construction along with using fountain codes.

Table of Contents

1 Introduction 1

2 Background 4
2.1 Idea of Fountain Codes . 4
2.2 Random Fountain Codes . 6
2.3 LT Codes . 7

2.3.1 LT Codes: Encoding 8
2.3.2 LT Codes: Decoding 8
2.3.3 Degree Distribution . 9

2.4 Raptor Codes . 11
2.5 Application of Fountain Codes 12

2.5.1 Storage . 12
2.5.2 Broadcast/Multicast 13

2.6 Network Coding . 13
2.6.1 Galois Fields . 16
2.6.2 Linear Network Coding 17

2.7 Benefits of Network Coding 19
2.8 Applications of Network Coding 22

3 Energy Efficient Broadcasting for Multi-hop Wireless Net-
works 25
3.1 Introduction . 25
3.2 System Model and Previous Solutions 27

3.2.1 Probabilistic Network Coding 27
3.2.2 Switched Codes . 28

3.3 Proposed Method . 30
3.3.1 Forced First Transmission Strategy 31
3.3.2 Proposed Degree Distribution 31
3.3.3 Transmitter and Receiver Algorithms 36

3.4 Numerical Results . 37
3.5 Conclusion . 42

4 Reduced-overhead Multicasting of Different QoS Data Classes 43
4.1 Introduction . 43
4.2 System Model and Problem Statement 45
4.3 Problem Solution . 47

4.3.1 SDI Method . 47
4.3.2 Finite Block Length 48
4.3.3 The MTS Method . 50

4.4 Numerical Results . 54
4.5 Conclusion . 57

5 Conclusion 58
5.1 Future Work . 59

List of Tables

3.1 Table of optimal weights based on density 33

4.1 The overhead of SDI and MTS methods for various receiving
rates of data class 1 and 2, (r1, r2), when K = 1000 and M = 2
and the percentage of Overhead Reduction 56

4.2 The overhead of SDI and MTS methods for various receiving
rates of data class 1 and 2, (r1, r2), when K = 2000 and M = 2
and the percentage of Overhead Reduction 56

4.3 The overhead of SDI and MTS methods for various receiving
rates of class 1, 2, and 3, (r1, r2, r3), when K = 1000 and M=3
and the percentage of Overhead Reduction 56

List of Figures

2.1 An example of a binary erasure channel. 5
2.2 Comparison of Ideal Soliton Distribution(ISD) and Robust Soli-

ton Distribution (RSD) for δ = 0.05 11
2.3 Using network coding for wireless networks, where R is a relay

node. 15
2.4 Using network coding to improve throughput. 20

3.1 Overall degree distribution of two methods. 35
3.2 Comparison of network coding, switched code, and the proposed

method. 39
3.3 Comparison of switched code and proposed method. 40
3.4 Comparison of switched code and proposed method. 41

4.1 Generating transmitted packets in MTS method 52
4.2 The frame shows overheads and data of different classes for a

fixed period of timeK. It also shows the construction of symbols
in MTS method. 53

List of Symbols

r :receiving rate
β : probability of loss on the channel (erasure rate)
N : block length
ot : output packet at time slot t
G : coefficient matrix of random fountain codes
Gnt : element nt of coefficient matrix of random fountain codes
Q : number of received packets
E : number of overhead packets
µ(d) : robust soliton distribution
d : degree of encoded packet for fountain codes
dn : degree at time n
δ : probability of failure
P : length of packet
ci : data packet i
R : number of nodes/users
n(i) : number of neighbors of node i
ρ : density
φ : distribution of switched codes
L : length of buffer
ϕ : binary exponential degree distribution
αi : weight of degree i in the proposed degree distribution
ei : erasure rate of class i M : number of classes
sj : M-tuple symbol
ui : user in class i
K : total number of time slots

Chapter 1

Introduction

In wireless and wired networks, there are various applications that need broad-

casting or multicasting of data. Consider wireless vehicular networks [1] where

some data need to be transmitted to a number of cars, which is an example

of multicasting/broadcasting. Even for an application that uses unicast traf-

fic, broadcasting and multicasting may be required for the network setup at

the beginning of the routing phase. Another example of using broadcasting is

when the traffic is unicast, but the topology of the ad-hoc network is changing

over time and as a result the broadcasting is used as a mechanism to update

the connection between nodes [2]. In other words, information about all the

nodes such as their neighbors and the cost of transmission on the links in the

network should be distributed, so that different nodes can send their data to

a specific destination later.

Broadcasting or multicasting can be from an access point to a number of

users in the network or it can be from one of the nodes in the network to some

or all other nodes. In all the cases, it is important to reduce the number of

required transmissions to distribute the necessary data.

In wireless networks, each transmission usually needs a certain amount of

energy. Therefore, reducing the number of required transmissions decreases

the required energy [3]. This goal is especially important in networks where

nodes do not have access to an unlimited source of energy such as sensor or ad-

hoc networks. In these cases, consuming less energy will increase the lifetime

of the network [4]. Hence, finding a method that reduces the total number of

1

transmissions is one of the goals when designing the multicasting/broadcasting

algorithms.

In wired networks, reducing the number of transmissions can be interpreted

as reducing the required energy and also time for distributing data. In many

applications such as realtime applications reducing the delay is one of the

primary goals. For example, for video or audio broadcasting/ multicasting

if the delay exceeds more than a certain threshold, the data is not useful

anymore [5].

Another issue in multicasting and broadcasting applications is the number

of feedback packets that should be transmitted over the network. If all the

nodes that receive data packets in a multicasting application acknowledge the

reception of data per packet to the transmitter, too many feedback packets will

be transmitted over the network and the efficiency will be reduced. However,

some methods such as rateless codes [6]–[8] and network coding [9] do not need

a feedback per packet [6]. Receivers may only send a feedback after receiving a

whole block of data. The number of feedback packets can be more important

and even critical when sending feedback is very costly or even impossible.

Both rateless codes (also known as fountain codes) and network coding

increase the reliability and reduce the number of required transmissions com-

pared to the conventional routing algorithms [3], [10].

In this thesis, we study multicasting and broadcasting applications that use

network coding and fountain codes. Our focus is on improving these codes for

these specific applications. Specifically our goal is to reduce the total number

of transmissions which will result in increasing the efficiency.

In Chapter 2, the required background on fountain codes and network cod-

ing along with some of their benefits and applications are discussed. Chapter

3 is a study on using network coding and fountain codes for broadcasting in

an ad-hoc network [11], where we focus on broadcasting from all-to-all nodes.

Different methods are discussed and the trade-off between complexity and

energy efficiency for them is explained. Moreover, we suggest a degree dis-

tribution based on fountain codes that reduces the delay and improves the

energy efficiency of the network for broadcasting.

2

Chapter 4 studies fountain codes for multicasting [12], focusing on realtime

applications such as multimedia. Here, we analyze a method to send packets

of different quality of service data classes and we study its effect on the number

of overhead packets. Note that this system model also uses fountain codes.

Finally, we conclude this thesis in Chapter 5 where possible future directions

are suggested.

3

Chapter 2

Background

In this chapter, we explain the theoretical background required for Chapters

3 and 4. In the first part, fountain codes are described. Some important

fountain codes such as LT codes are discussed and the applications of fountain

codes are briefly introduced in Sections 2.1 through 2.5. Network coding and

its benefits along with its applications are discussed in Sections 2.6, 2.7, and

2.8.

2.1 Idea of Fountain Codes

Fountain codes also known as rateless codes have been introduced for broad-

casting data from one source to many destinations over erasure channels with

different erasure rates [6]–[8]. Let us first introduce the erasure channel [13]

since this channel model is widely used throughout this thesis.

Definition 1: An erasure channel is a communication channel where a

unit of data is either lost with probability of β or is received correctly by

probability of r = 1− β.

Fig. 2.1 shows a binary erasure channel, where the unit of data is a single

bit. This unit of data can be a packet in real applications and each packet can

be either received correctly or lost.

One strategy to transmit packets to the receiver over an erasure chan-

nel is that the receiver sends acknowledgements for the received packets and

transmitter retransmits lost packets. The receiver can send either an acknowl-

edgement per received packet or a request for any missing packet. In response,

4

0

1

0

1(1− β)

(1− β)

β

β

(erasure)

Figure 2.1. An example of a binary erasure channel.

transmitter retransmits the erased packets until they have been delivered to

the destination. This method can be costly especially when β is large and

many acknowledgement and retransmission packets will be sent over the net-

work.

With more than one receiver, the situation is even worse. We know that

the transmission can be in the form of multicasting or broadcasting where each

packet should be received by a large group of users. In this case, if each user

wants to send a feedback per packet, there will be a huge number of acknowl-

edgement packets. Moreover, even if just one of the receivers does not receive

a certain packet, the transmitter has to retransmit that packet over the broad-

cast channel and all the other users will receive it again. With random erasures

on the erasure channel of different receivers, the number of transmissions will

increase significantly. Therefore, a large number of redundant packets may be

delivered.

For broadcasting or multicasting applications, these redundant packets can

be significantly reduced by a solution that does not require a retransmission

per lost packet. This leads to the idea of fountain codes where instead of

sending each packet separately and retransmitting it in the case of an erasure,

the transmitter sends a linear combination of packets each time. Any user

who receives enough number of those packets can decode the whole block of

data. Hence, it is not important if a user does not receive one certain packet,

any encoded received packet is acceptable for users and by receiving enough

of them, the original data block can be retrieved by the end of decoding. Each

user may need to send a feedback after receiving the whole block of data.

A variety of fountain codes have been introduced and used in different

5

applications. Random fountain codes [6], LT codes [7] and Raptor codes [8]

are explained in the following sections.

2.2 Random Fountain Codes

In general, the transmitter has a block of N packets of data c1, c2, . . . , cN . A

time slot can be defined as the required time for transmission of one unit of

data. Here, a unit of data which is transmitted over the channel is denoted

as a packet. At each time slot, t, the transmitter generates an output packet

by combining a random number of packets from its buffer, this output packet

is denoted by ot and is sent over the channel. This is done by generating N

random bits Gnt n = 1, . . . , N . The transmitted packet, ot, is constructed

from those packets whose Gnt is 1 as it is shown in (2.1):

ot =

N∑

n=1

cnGnt. (2.1)

From (2.1), it can be understood that an output packet can equivalently

be seen as a linear combination of the input packets.

Along with a packet, usually there is a header that carries some infor-

mation. For our purposes, the header indicates which packets are randomly

chosen to let the receivers know the variables of the equation that is sent over

the channel. This can be done by sending the ID of the data packets or just

sending the number of packets and the key of the random number generator

in the transmitter. In this way, the receiver is able to reproduce the same

random numbers.

At each time slot on the receiver side, there may be an erasure on the

channel. So, the receiver will only get some of the equations (output packets).

When the receiver gets enough equations, it is able to start decoding. Assume

that the receiver gets Q random equations from which it wants to retrieve a

block of N packets. Obviously if Q < N the receiver does not have enough

equations to decode a block of N packets. Therefore Q ≥ N is required. Now

6

let us define matrix G as

G = {Gnq}Qq=1. (2.2)

For the case of Q = N the possibility of decoding without error depends

on matrix G. If G is invertible, the receiver can decode all the packets and

each packet cn can be calculated as

cn =

Q∑

q=1

oqG
−1
qn . (2.3)

The invertibility of matrix G depends on the linear independency of the Q

received equations. For large N , the probability of receiving N independent

equations out of Q received ones in almost equal to 0.28 when Q = N [6].

However, it is shown [6] that this probability can be close enough to one if

receiver gets Q = N+E equations, where E is a small overhead. Although this

overhead causes more transmissions which consume time and energy, instead

it reduces the probability of the failure of decoding process. With E overhead

packets, the probability of decoding failure is around 1/2E. For large N , the

overhead percentage can be very small, while decoding success is guaranteed

with very high probability.

The main draw back of random fountain codes is their decoding complexity

which is cubic with N . Notice that for a low overhead percentage, large N is

needed, where complexity is not feasible.

2.3 LT Codes

LT codes define a class of the fountain codes that not only have the desirable

characteristics of fountain codes mentioned earlier, but also have practical

complexity, that is, the decoding process of LT codes is less complex compared

to random linear fountain codes.

In LT codes, instead of using random bits (that are used in random foun-

tain codes) and generating matrix G, a degree distribution is applied for the

encoding process which also affects the decoding process as well. In the fol-

lowing the encoding and decoding process and the degree distribution of LT

codes will be discussed in detail.

7

2.3.1 LT Codes: Encoding

The output packet of the LT encoder, denoted by ot, is generated from a

block of N data packets. Here, instead of generating the random bits, Gnt,

a distribution is used to determine the number of data packets that should

be chosen. By definition, the degree of output packet, d, is the number of

data packets that are combined to construct the equation. This degree, d, is

randomly generated from a degree distribution, µ(d), which will be introduced

later. To generate an output packet, a new d will be generated from the

distribution, µ(d), then d random packets are uniformly chosen and modulo-2

sum (XOR) of them is transmitted over the channel. The characteristics of the

desired degree distribution affect the decoding process directly, so the decoding

is explained first and the degree distribution will be discussed afterward.

2.3.2 LT Codes: Decoding

The decoding strategy of random codes, i.e., inverting matrix G, is applicable

here too, but this high complexity solution is not desired. Assume that the

degree distribution generates degrees of equations such that at least one degree-

one equation exists at the beginning of the decoding process.

Since the value of a variable cn in a degree-one equation is known, this

value can be inserted to any other equation that has this variable. Therefore,

the degree of those equations are reduced by one.

At the second round, a new degree one packet should be found and the

same process is repeated. This process is repeated until the value of all the

original data packets cn, n = 1, . . . , N are determined.

If somewhere in the decoding process, no degree-one packet is available to

continue this procedure, the decoding fails. Therefore, enough small degrees

should be produced to prevent failure of decoding. To reduce the probability of

failure, degree distribution of d should be designed carefully to provide enough

small degrees while it is desirable to reduce redundant packets as well.

8

2.3.3 Degree Distribution

Degree distribution plays an important role in reducing the overhead and in

the decoding process as well [6]–[8]. The desired degree distribution should

generate enough low degrees especially degree ones to let the decoding start

and continue. If in any stage of decoding, the decoder runs out of degree-one

packets, decoding will fail. Therefore, the design of degree distribution should

prevent this situation. On the other hand, all the original packets should be

covered in the received equations. If a packet is not covered by any equation,

it cannot be recovered. Thus, a proper coverage is required. Finally these two

goals are preferred to be satisfied in a minimum number of overhead packets.

The complexity of encoding and decoding depends on the number of non-

zero entries in G, hence the average degree of encoded packets is an important

factor. From the discussions in [6] and [7] in order to have a successful decod-

ing, if the number of received packets is close to the optimal number N , the

average degree of each packet should be around logN . Therefore, the com-

plexity is now reduced to O(N(logN)) [6]. Complexity can be very important

in many applications such as mobile ad-hoc networks where nodes do not have

access to unlimited power and processing abilities.

In order to implement a desired degree distribution with this average degree

and having ideally exactly one degree-one packet at each stage of decoding

process, ideal Soliton degree distribution is an initial option [7]:

σ(d) =

1
N

d = 1

1
d(d−1)

d = 2, 3, . . . , N
. (2.4)

The average degree is about d = logN . In spite of the desired characteristic

of soliton distribution, this degree distribution is not practical. In many middle

stages of decoding process, the probability of having no degree-one packet to

continue the decoding process is still high and decoding can fail. Moreover,

some of the source packets may not be covered at all.

In order to overcome the above mentioned problems, LT codes uses robust

soliton distribution which is a modified version of the ideal soliton distribution.

Two new parameters in this distribution are δ and S. S is the expected number

9

of degree-one packets which is designed to be greater than one in all stages of

decoding process.

S ≡ c loge
N

δ

√
N, (2.5)

where c is a constant of order 1. δ is an upper bound probability of the failure

of decoding process after receiving Q number of encoded packets.

In order to generate robust soliton degree distribution another function

τ(d) is defined as

τ(d) =

S
Nd

d = 1, 2, . . . , (N
S
)− 1

S
N
log S

δ
d = N

S

0 d > N
S

. (2.6)

The normalized addition of σ(d) and τ(d) is the robust soliton distribution,

µ(d) =
σ(d) + τ(d)

Z
, (2.7)

where Z is

Z =
∑

d

σ(d) + τ(d). (2.8)

Fig. 2.2 shows µ(d) which is the robust soliton distribution for δ = 0.05 and

compare it to the ideal soliton distribution that suffers from coverage problem.

Using this distribution, it is guaranteed [6] that the decoding process suc-

ceeds with probability of (1 − δ), when the number of received packets is

Q = ZN . The two required characteristics that were explained earlier is pro-

vided by τ(d). In other words, high probability on small d’s provide enough

small degrees to let the decoding process start and go on. Moreover, the fairly

high weight on N
S
will help the coverage problem that the ideal soliton distri-

bution suffers from. Examples in [6] show that the overhead for a file size of

N = 10000 can be as small as 5%.

Usually in LT codes, just a small portion of packets can be decoded before

receiving Q packets where Q is slightly larger than the original file size N .

But after that point, the decoding is very likely to become complete.

10

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

degree

P
o
o
b
a
b
ili

ty

RSD with δ =.05

ISD

Figure 2.2. Comparison of Ideal Soliton Distribution(ISD) and Robust Soliton Dis-
tribution (RSD) for δ = 0.05 .

2.4 Raptor Codes

LT codes have a reasonable encoding and decoding complexity as we explained

in Section 2.3.3, but Raptor codes improve this complexity even more and

achieve linear time encoding and decoding [8]. Based on the explanation for

LT codes, the average degree is d = logN which affects the complexity directly.

Raptor codes [8] reduce this average to d = 3. But, having a low average degree

may cause some problems, a fraction of source packets may not be covered in

the equations. For d = 3, this fraction is about f̃ = e−d = 5%.

In order to reduce the complexity and solve the coverage problem at the

same time, Raptor codes first use an outer error-correction code to pre-code

the block of N data packets to Ñ = N/(1 − f̃) where f̃ is the fraction of

packets that are not covered in the equations and can be calculated by having

11

the distribution [6] as we mentioned above. After that, an LT code with a low

average degree is used which has a lower complexity compared to original LT

codes. Therefore, the erasure packets from fountain codes, i.e., the fraction of

packets that were not covered, can now be recovered by means of the outer

code.

In [6] there is an example that shows original LT codes can recover 10000

packets out of 11000 received packets, where the low average LT codes can

recover 8000 packets out of 9250 received packets. This simple example shows

how using pre-coding can reduce the need to recover the the whole data from

fountain code. For the outer code, in [8] an irregular low density parity check

code has been used.

2.5 Application of Fountain Codes

Fountain codes can be used in different applications. Two important applica-

tions are briefly explained in the following:(1) storage of data and (2) broad-

casting/multicasting to a number of users. The second application is further

studied in Chapters 3 and 4.

2.5.1 Storage

Storing a file on a hard drive, disc or even in a distributed network traditionally

has been done by storing the original data packets. By using fountain codes,

instead of storing data packets, the encoded packets can be stored in any place

on the device. To read this file from the device, all we need to do is to read

Q encoded packets which gives us Q equations and consequently Q original

packets can be extracted from them. This way if some of the packets are lost,

recovering is much easier and faster since any Q packets are enough to recover

the data and there is no need for any specific packet. So even if a few packets

are lost, the whole data can still be recovered as long as Q good packets are

still available. Note that the storage can be in one place or in a distributed

manner in a network [14].

12

2.5.2 Broadcast/Multicast

One of the main applications of fountain codes is broadcasting/multicasting

data to a number of users [10], [15]. An example could be a stream of multime-

dia which is being transmitted to a large number of users. If the transmitter

broadcasts the original packets without fountain coding, with the erasure rate

of β for a user, that user on average will receive (1− β)N of the packets and

this β may vary for different users. Therefore, the source node has to retrans-

mit those βN packets again while other users with better channel condition

are likely to already have received them. This traditional method makes the

number of transmissions and feedbacks incredibly large even for small values

of β.

As we explained before, by using a fountain code, each user only needs to

receive any Q of transmitted packets. Therefore, the total number of trans-

missions will be almost (1 + β)N and no retransmission is required anymore.

One important aspect of using these codes is to reduce the need to send

and receive feedback. For some cases where sending feedback costs too much

or is even impossible, these codes are ideal, because users do not need to report

lost packets and ask for retransmission [6]. The user only needs to receive any

Q packets.

A similar scenario can be applied for multicasting, where different classes

of data are available and different users wish to receive different data classes.

This case will be discussed in more detail in Chapter 4. Another example is

broadcasting from all-to-all instead of one-to-all in a multi-hop basis. In that

case, all the users are the source of a portion of data while this data should

be received by all users. This case will be discussed in Chapter 3.

2.6 Network Coding

Usually in traditional methods of transmitting information, each stream is a

separate flow that can not be combined with other flows of information until

it is delivered to its destination. However, network coding [16], [17], [18],

allows different sessions or flows to be combined in the intermediate nodes of

13

a network. This idea can potentially improve the overall throughput of the

network and increase the robustness as well. For example, in a case of packet

loss or when an error happens, the network is much more resilient compared to

the time when separate flows have been transmitted over the network [9]. In a

simple form of network coding, an intermediate node can send the summation

of all the input streams as the output stream.

In a very simple example, the idea of network coding can be explained.

Fig. 2.3 shows how combining two different flows of information in a wireless

network can improve the throughput. In this figure the goal is to deliver the

data of two nodes A and B to each other. As it is shown in Fig. 2.3 network

coding reduce the overall required time of transmission.

In linear network coding, any linear combination over some finite field can

be sent and these fields must be large enough to provide linear independency

between transmitted equations [17]. Note that this linear combining requires

each middle node of the network to have some computational capabilities.

Since all the calculations and combinations in the network coding are done

in Galois fields, before discussing network coding, the basics of Galois fields

are briefly explained.

14

A

a

A

A

A B

B

B

B

b

a

b

a

b

Usual Method

Network Coding

A

A

A
B

B

B

a

b

a XOR b a XOR b

R

R

R

R

R

R

R

Figure 2.3. Using network coding for wireless networks, where R is a relay node.

15

2.6.1 Galois Fields

A field is a set of elements where we can perform addition, subtraction, mul-

tiplication and division without leaving the set. These mathematical calcula-

tions should have some characteristics. Formal definition of a field from [19]

is

Definition 2: “Let F be a set of elements on which two binary operations

called addition “+” and multiplication “·” are defined. The set F together

with two binary operations “+” and “·” is a field if the following conditions

are satisfied.

• F is a commutative group under addition “+”. The identity element

with respect to addition is called the zero element.

• The set of nonzero elements in F is a commutative group under multipli-

cation “·”. The identity element with respect to multiplication is called

the unit element of F.

• Multiplication is distributive over addition. That is for any three ele-

ments a, b, and c in F

a · (b+ c) = a · b+ a · c.” (2.9)

Consider a prime number p. Modulo-p addition can be defined over the

set of integers 0, . . . , p− 1 as the remainder of the real addition between any

two elements of this set divided by p.

Modulo-p multiplication can be defined in the same way. It is shown in [19]

that the set of integers 0, 1, . . . , p− 1 is a commutative group under modulo-p

addition. Moreover, the set of 1, . . . , p− 1 is commutative under modulo-p

multiplication. Following the fact that real multiplication is distributive over

addition, it can be checked, [19], that modulo-p multiplication is distributive

over modulo-p addition. Therefore, the set of 0, 1, . . . , p− 1 is a field of order

16

p and is denoted by GF (p). A famous prime field is GF(2) which is a simple

binary field.

Galois fields can be constructed from either a prime number p or any

q = pm. A widely used field in coding and data storage is GF (2m) and is

based on the binary field. A lookup table for addition and multiplication can

be used for any field. The one for binary is following the boolean logic rules of

bitwise “XOR” for addition and “AND” for multiplication. For each GF (2m)

a polynomial can be defined and with that polynomial all the elements can

be constructed. More detail about these polynomials and a list of them for

various powers of 2 can be found in [19].

2.6.2 Linear Network Coding

Using the concept of fields, we can explain the idea of network coding. Consider

a relay node in a wireless network. When it receives incoming packets, instead

of repeating them as the output packets, the node can combine the received

packets, so several output packets from the received packets can be created.

Packets can be generated from one or several sources and they can be des-

tined to only one node or in a general case, they can be delivered to many nodes

depending on the requirements of the application. The number of sources or

destinations does not change the function of intermediate nodes and encod-

ing/decoding process.

The details of encoding which results in creating output packets and de-

coding the encoded packets at the destination are discussed in the following.

Encoding and Decoding

Let us assume that P is the length of a packet which means a packets consists

of P bits. Combining packets should not change the length of a packet but

if the received packets do not have the same length, enough 0s are added

to smaller packets to provide the same length for all packets. After linearly

combining received packets of length P in GF (2m), the resulting output packet

with the same length is ready to be transmitted [9]. Assume that c1, . . . , cN

represent original data packets that were generated from one or several source

17

nodes and each of them is constructed by symbols taken from a certain Galois

field. For example if the field is GF(2) the symbols are bits. An output packet

can be constructed as

W =
N∑

i=1

gic
i, (2.10)

where gi is a random coefficient in GF (2m). When m > 1, each symbol of the

packet W which is denoted by Wl can be defined as

Wl =
N∑

i=1

gic
i
l. (2.11)

where cil is the lth symbol of ci. If a relay or an intermediate node receives

packet W that is already linearly encoded as in (2.10), it will apply its own

coefficients, h, on packetW with coefficient vector g. Therefore, the coefficients

of the resulting packet, W ′, which is denoted by g′, can be calculated as

g′l =

x∑

j=1

hjg
j
l , (2.12)

where x is the number of coefficients of the second node. It is assumed that

each node sends the coefficients as part of header along with the packet, so

that the calculation of (2.12) is possible. Moreover, to decode all the received

equations in the destination, all the coefficients are needed as well.

To get the original packets at the destination, receiver needs to have Q ≥ N

equations to retrieve c1, . . . , cN packets. Hence, the receiver should solve a

system of linear equations as 2.10.

However, to guarantee that even with Q ≥ N equations the system can

be solved, the linear independency of equations should be provided. The

linear independency of equations depends on the selected coefficients at the

intermediate nodes. There are two ways to provide this required independency.

The first one is to use centralized deterministic coefficients at the intermediate

nodes that are designed to provide the independency [20].

Another method is to use decentralized random coefficients in each node

which will result in certain probability of dependency depending on the size

of the field [17]. To get a desirable result with decentralized method, the field

18

should be large enough and coefficients are randomly chosen over that field. It

has been shown in [21] that even for fairly small field of GF (28) the probability

of linear dependency is almost negligible.

In order to solve the received equations as a system in the destination,

all the coefficients are stored in a matrix that is called the decoding matrix.

The unknowns is the vector of ci’s, i = 1, . . . , N , and the vector W is known.

Hence, each encoded packet is stored in a row of the decoding matrix, and it

can be checked if it is innovative or non-innovative, the non-innovative packets

can be removed. A packet is innovative when it increases the rank of the

matrix which means it is linearly independent from previously stored packets.

As soon as there are N rows in the decoding matrix, it can be solved through

Gaussian elimination method.

There are some issues that should be considered for linear network cod-

ing. Decoding is done by Gaussian elimination which has a high complexity.

Hence, the size of the decoding matrix is a practical limitation. One practi-

cal solution to reduce this complexity is to reduce the size of the matrix by

using generations [22]. It this way, each group of packets are marked as one

generation and will be combined only in their own generation in the interme-

diate nodes. Although there are some methods that combine some generations

to reduce the delay [23], the idea of generations is to keep them separate to

reduce the complexity. Hence, the size of the matrix can be reduced to the

size of generation. The trade-off between the required memory and computa-

tional complexity along with other considerations such as delay for real-time

applications usually determine the size of generations.

2.7 Benefits of Network Coding

Throughput: One of the main advantages of network coding is to improve

the throughput of the network, especially in the case of multicasting. In other

words, if there is more than one receiver and all the receivers require to receive

the data of all the sources, it cannot be done efficiently without network coding

[16], [24]. Fig. 2.4 shows an example where S1 and S2 are two sources of data

19

and both R1 and R2 want to receive data packets x1 and x2. If no network

coding is used in the intermediate nodes, the achievable rate is less compared

to the case where simple network coding is used.

Usual Method
Network coding

S1S1
S2S2

R1
R1 R2R2

x1

x1

x1x1

x1

x1

x1

x2

x2

x2

x2

x1 + x2

Figure 2.4. Using network coding to improve throughput.

20

Throughput advantage is not limited to multicasting applications. Even

for broadcasting and unicasting, it can be seen that throughput can be im-

proved via network coding. For example, in Fig. 2.4 even when S1 wants to

send data to R2 and R1 is the destination of S2, network coding is still useful

and can reduce the overall transmission time. Achieving the optimal through-

put for multicasting applications with routing is an NP-complete problem [9].

However, by using network coding, the optimal throughput for multicasting

applications can be reached via polynomial time algorithms.

Robustness: One of the most important features of network coding is

robustness. Network coding takes different data packets and produces a stream

of encoded packets similar to other coding methods. On the receiver side, if

enough number of encoded packets are received, the node is able to recover

the whole data and there is no need to receive a certain data packet (similar

to fountain codes).

Using network coding makes the network more adaptable. For example

in Fig. 2.3, if relay sends the linear combination instead of the original data

packets, any time that either A or B are in idle mode without notifying relay,

there are still some information for the other awake node. However, without

network coding, transmission of only A or B data packets might be a waste of

time without knowing which one is in idle mode. In order to explain robustness

and adaptivity of network coding, two examples are considered in the following.

One of the applications of network coding is collected coupon problem [25].

In one form of this problem, there is a network with R nodes and the number

of messages that should be passed is of O(R) and all the nodes must receive

all messages. It has been shown that a centralized gossip-based algorithm,

where each node forwards messages based on a forwarding probability, needs

the same number of rounds that a decentralized network coding method does

[26]. However a decentralized routing-based algorithm can not achieve that

bound without network coding in place. More details on this problem for both

network coding and fountain codes will be discussed in the next chapter.

There are also applications that are delay sensitive or have high data rates

where the channels follow the erasure channel model and the packets can be

21

dropped. One strategy is automatic repeat request (ARQ) where each time a

packet is dropped, requests for missing packets will force a large delay. Another

strategy is to use forward error correcting (FEC) methods which are not rate

efficient but their delay is less than ARQ such as fountain codes [6]. In order to

reduce the delay and have the optimal rate at the same time, network coding

can be used as a solution. Therefore, by letting the intermediate nodes to

combine the packets, it is possible to deal with the problem of erasure in an

efficient way.

2.8 Applications of Network Coding

Peer-to-Peer Networks: One of the important applications of network cod-

ing is related to the distribution of files in peer-to-peer networks [27], [28]. In

these applications usually users download information from the server which

will be transmitted in the form of data blocks. Not only users receive blocks of

data from the server, but also the data is distributed among users too. There-

fore, each user as a node gets some of the data blocks from the server and

some from other nodes while it sends its own blocks to other nodes which are

its peers.

These peers can be randomly selected among the set of available peers to a

node. Having linear network coding available in the server as well as in peers,

the server sends the linear combinations of data packets instead of the original

data. Each peer is transmitting a linear combination of data packets to other

peers until they do not receive innovative packets from that node anymore. At

that point, the node stops transmitting and waits to receive more innovative

packets itself to create innovative packets for its peers again.

Using network coding reduces the download time and eliminates the need

for a complex scheduling algorithm [27]. All the nodes send linear combinations

of their received packets instead of checking what other peers have and check

who should send which specific data packets. Moreover, the robustness of

network coding is much better than the traditional method, if any of the

nodes or the server becomes idle, because of the diversity of coded blocks, this

22

system is still robust [9].

Wireless Networks: Network coding can be used in a variety of appli-

cations in wireless networks. One example is shown on Fig. 2.3.

Another application is broadcasting from all-to-all nodes in a wireless net-

work which will be discussed in the following chapter in more detail. Using

network coding or fountain codes for this application reduces the number of

transmissions significantly and is energy efficient.

Ad-hoc Sensor Networks: One of the practical difficulties of sensors

in wireless sensor networks is related to their oscillators [29]. The oscillator

should be tuned and accurate enough to make the communication possible.

For that purpose, quartz oscillators which are complex and costly have been

used. However, if analog oscillators, that are cheaper and easier to built, are

used, the problem of untuned frequency should be considered, because the

probability of one successful direct communication between two nodes will be

reduced due to their untuned oscillators [29].

If many nodes have this problem, the probability of finding a path and

communicating through it, will be reduced even more. However, for a dense

network with many paths and network coding in place, there is no need to find

a single path to send a message. Network coding is more reliable compared

to traditional routing algorithms and messages are distributed all over the

network. Therefore, the use of cheaper oscillators is possible by using network

coding [29].

Network Tomography: Network coding can also be used to infer infor-

mation about network such as packet loss rate of the links [30], [31]. Usually

to probe the network, probing packets are multicast over the network. The

receivers can estimate the loss rate of the multicasting tree, by the number

of probes they receive, assuming that the number of transmitted probes are

known. However, using network coding can even provide more information

about network to the receivers. Packets not only can be multicast in the

middle points of the multicasting tree, but also they can be merged.

Merging packets with the use of network coding on their way to the receiver,

is the same as when the receiver initiates a multicasting itself as a source.

23

Therefore, extra information about the topology of the network is provided

through network coding. In order to find out which link causes the loss, some

known coefficients can be used for network coding. Hence, the link that causes

the loss can be determined from the received packets [30].

Network Security: There are different issues that can be addressed in

network security, but the one that network coding can help with [32], is eaves-

dropping. Eavesdropping pertains to the attempts to recover a part or the

whole data by unauthorized users. Applying network coding makes it harder

for eavesdroppers to recover the original data, because the data is distributed

and coded over the network. Moreover, coefficients can be designed to provide

more secure communication between source and receivers [32], in a way that

the mutual information between the packets that the eavesdropper receives

and the original packets is zero. By using network coding, eavesdropper might

not be able to receive all those packets because a user needs to get sufficient

number of linearly coded packets to be able to decode them.

24

Chapter 3

Energy Efficient Broadcasting
for Multi-hop Wireless
Networks

In this chapter, the problem of all-to-all nodes broadcasting in wireless net-

works is studied. We start by an introduction in Section 3.1, then system

model and an overview of some previous solutions are discussed in Section 3.2.

The proposed method is presented in Section 3.3. Section 3.4 presents the

numerical results and Section 3.5 concludes this chapter.

3.1 Introduction

Wireless ad-hoc networks have been widely used for various applications, uni-

cast, multicast, and broadcast traffic can be transmitted over these networks

depending on the requirements of the application. Although an application

may only need unicast or multicast traffic, it still uses broadcasting for the

discovery phase of the routing. Therefore, broadcasting plays an important

role in these networks. Our definition of broadcasting means that all nodes

have data that should be received by all other nodes. Broadcasting can be

done in different ways such as flooding [33].

Since each transmission consumes a certain amount of energy, the number

of transmissions is directly proportional to the energy consumption in the

network. Therefore, the number of transmissions can be used as the indicator

of the energy usage. Total delay is another performance metric for comparing

25

different broadcasting methods. Total delay is defined as the total number of

time slots required until all nodes receive the data of all other nodes.

The problem with flooding is the huge number of required transmissions

resulting in a poor energy efficiency. Consequently, the total delay will be quite

large too. A general idea to reduce the number of transmissions is to apply

coding. One solution which takes advantage of network coding is proposed

in [3], [34]. Network coding lets intermediate nodes to mix the received data

packets, hence it is suitable for this problem configuration where all nodes

want to receive data from different nodes in the network. Although the method

of [3] and [34] is energy efficient, it suffers from high complexity. In each node,

decoding is done by Gaussian elimination, so the complexity of decoding is

O(R3) where R is the number of nodes in the network.

Another solution is to use fountain codes for this problem. Fountain codes

have been used to broadcast data from a transmitter to a number of users [6]–

[8]. For example [10] applies fountain codes to broadcast data in a wireless

sensor network from a single source to all other nodes.

Using fountain codes for broadcasting from all-to-all nodes has been con-

sidered in [35]. In this method, intermediate nodes decode all the received en-

coded packets and re-encode the data packets again and transmit new encoded

packets on the broadcast channel. Therefore, fast decoding in the intermediate

nodes is one of the main considerations for choosing a proper code. At the

same time, reducing the number of transmissions and consequently improving

the energy efficiency and delay of the network is a goal.

Using fountain codes reduces the complexity of decoding from O(R3) to

O(R), but simulation results show that the number of transmissions and delay

suffer in return. In this chapter, we propose a solution for broadcasting from

all-to-all nodes based on fountain codes. In comparison to [35], our solution

has the same decoding complexity, a lower encoding complexity and a reduced

number of required transmissions. It is also more energy efficient and improves

the delay as well.

26

3.2 System Model and Previous Solutions

Consider a network with R nodes where all the nodes have some data to send,

so there are R sources of data in the network. The data of each node should

be broadcasted to all other nodes. The data is transmitted in packets in the

network.

Any node in the transmission range of a generic node is called a neighbor of

that node. When node i broadcasts a packet, for non-neighboring destinations,

the packet goes on a multi hop route. It is assumed that the transmission

of a general node is not received nor heard by the nodes that are out of the

transmission range of that node. The number of neighbors of node i is denoted

by n(i). Based on the transmission range and the area of the network, the

number of neighbors of node i can be varying from 0 to R− 1.

As we mentioned earlier, there are two methods to broadcast data packets

in the whole network using coding. The first one applies network coding [3],

while the second one, [35], uses fountain codes. These two methods will be

explained below. Please note that for simplicity, in the following discussion

we assume each node has one data packet to send, but this solution can be

applied to a general case as well.

3.2.1 Probabilistic Network Coding

The first method that we review is probabilistic network coding, [3], [34], that

use a probabilistic forwarding strategy and network coding together for an

energy efficient broadcasting. Suppose that the data is represented in GF (2q).

In the scheduling phase which is determined by the MAC layer, a node is chosen

as a transmitter. The transmitter chooses random coefficients in GF (2q) to

form a linear combination of the previously received packets that are stored

in its buffer. This linear combination is sent over the broadcast channel. It

also sends the coefficients with the encoded packet, so that the packets can be

decoded at the destination.

The probabilistic forwarding approach is based on a forwarding factor d(i)

for node i. Based on the forwarding factor the number of transmissions in each

27

node is determined. In comparison to methods that always perform forwarding

upon a new arrival, this probabilistic forwarding method reduces the number

of redundant packets. The probability of forwarding upon a new arrival for a

generic node i is determined by its forwarding factor d(i) which itself depends

on the density of the network and the number of its neighbors.

By the end of transmissions, every node should be able to solve its matrix

of received equations (encoded packets) to decode all transmitted packets from

different nodes. More details on how to determine d(i) and other aspects of

this method can be found in [3], [34].

Although probabilistic network coding is an energy efficient way to broad-

cast data for this problem, this method has two important shortcomings. First,

the Galois field should be large enough to provide proper random coefficients

that avoid linear dependency of equations. Another important problem is the

high complexity of decoding at the receiver. In other words, since Gaussian

elimination must be used for decoding, the complexity of decoding N pack-

ets at a given node is O(N3). If back substitution decoding could be used

instead of Gaussian elimination, the complexity would be O(N). This is the

main reason we seek a solution based on fountain codes to provide reliable

broadcasting.

3.2.2 Switched Codes

In this subsection, we review a special fountain code (referred to as switched

code) which is designed in [35].

Switched codes are developed in [35] based on using fountain codes for

the problem of broadcasting from all-to-all nodes. In this method, each node

starts transmitting packets based on a fountain code with a certain degree

distribution. The transmitting node chooses a degree d from a degree distri-

bution φ(d) and forms the XOR of d randomly selected packets from its buffer

of decoded packets and its own packets to be transmitted on the broadcast

channel.

On the receiver side, when a node receives an encoded packet, it starts the

decoding process. Based on the previous decoded packets and its own data

28

packets, if there is only one unknown data packet in the new received encoded

packet, it can be immediately decoded. Otherwise, the packet will be stored in

a separate buffer until its decoding will be possible. Once a new data packet is

decoded in a node or a degree one packet is received, it will be used to decode

all the stored packet in the buffer or to reduce their degrees if possible.

The authors in [35] and [36] use a combination of two different degree dis-

tributions for this application. At the beginning, they use binary exponential

distribution (BED):

ϕ(d) =

{
1
2d

d = 1, . . . , L(i)− 1
1

2L(i)−1
d = L(i)

. (3.1)

where L(i) is the number of data packets available at node i or equivalently

it can be assumed as the buffer size of node i. When the decoding starts at

the receiver, the high probability of choosing small degrees in BED helps fast

decoding. Hence, in the receiver, decoded packets can be used as the data

packets for the encoding. In other words, the next time that this node acts

as the transmitter, it can use these packet to transmit a new encoded packet.

But BED causes redundancy too, covering all the data packets will take a

long time because of choosing small degrees with high probability. That is

the reason [35] suggests switching the degree distribution to that of LT codes

after a while. Based on two counters suggested in [35], the nodes switch the

distribution from BED to LT (i.e. from ϕ(d) to µ(d)). The decision of changing

the distribution is based on the number of packets that has been sent and the

number of data packets available in the buffer of that node (its own packets

and received packets).

Although this method reduces the complexity, it suffers from a large num-

ber of transmissions. The main difference between using fountain codes and

network coding for this problem definition is that network coding combines

encoded packets in the intermediate nodes and send the linear combination

on the channel while the methods that are based on fountain codes decode

the received packets and then re-encode data packets. The reason for decod-

ing and re-encoding data packets is to maintain a certain degree distribution.

This degree distribution causes the lower complexity of decoding in fountain

29

codes compared to network coding that has O(N3) complexity for N nodes.

In the next section we introduce our solution to this problem. Our solution

is based on fountain codes to ensure a low decoding complexity. Moreover,

simulation results in Section 3.4 show our method improves delay and energy

efficiency compared to that of [35].

3.3 Proposed Method

Our proposed solution applies fountain codes to decrease the decoding com-

plexity compared to the solutions based on network coding. There are optimal

degree distributions for fountain codes that are used on one-to-many broad-

cast setups, but those solutions are not immediately applicable to our setup

where many-to-many broadcasting is desired. In other words, it is not trivial

to maintain a desired degree distribution at receivers while the source and the

encoding nodes are distributed in the entire network.

In this work, we propose a degree distribution for the transmitters that at

the receiver side mimics a distribution similar to the optimal LT degree dis-

tribution. As a result, this degree distribution improves various performance

measures when compared with the previous method. Our proposed method

has linear complexity of decoding and it also reduces the total number of

transmissions compared to switched code that has the same complexity. It is

important to note that using a code such as LT code in the transmitter will

cause large delays and an increased number of transmissions (because of the

nature of the distributed sources) and [35] shows that switched codes already

outperform LT code for this problem setup.

Studying the received degree distribution at a decoding node reveals that

switched codes themselves suffer from sending an unnecessarily large number

of degree-one packets. This is because at the beginning each node has only its

own data and the degree is forced to be one. Notice that, choosing a degree

distribution with a large weight on degree one results in inefficiency. The

main goal of this work is to find a more efficient degree distribution for the

many-to-many data sharing setup.

30

Before introducing our improved degree distribution, we first discuss a

simple modification that we suggest. This modification, referred to as forced

first transmission strategy (FFTS), improves the efficiency of switched codes

or any other solution based on fountain codes. Thus, we use this modification

for our own degree distribution too.

3.3.1 Forced First Transmission Strategy

In FFTS, all the nodes have to use their own data in the encoding process of

their first transmission. In a general node, if the first transmission happens

before any receiving, the node automatically sends its own data. In fact, the

degree d is forced to be one and the transmitted packet is the node’s own

data packet since there is no other data packet available in its buffer. But

for a node who has received some data packets before its first transmission,

without FFTS the chance of sending its own data is reduced as more packets

are arrived. Thus, nodes that are scheduled late for their first transmission

may not send their own data for a long time, resulting in major delays in the

whole network awaiting those packets.

Applying FFTS at the first transmission, instead of choosing d random

packets from the buffer, the transmitter chooses d − 1 packets from received

data and forms the XOR of these d−1 packets with its own data packet to be

sent over the channel. Thus, the FFTS forces the propagation of each packet

to start as soon as possible.

3.3.2 Proposed Degree Distribution

As was mentioned earlier, the optimal solution of LT codes for one-to-all broad-

casting is not optimal for the stated problem where the source is distributed.

Having a distributed source makes the number of available packets at each

node (the buffer size) time dependant. Therefore implementing a code such

as LT is not an option here. But, keeping the ideas of LT code in mind, we

need to design a code for the transmitters such that at any receiving node the

received degree distribution benefits from the design of LT codes.

31

Here, due to the distributed and probabilistic nature of the source, it is

impossible to obtain the exact same optimal distribution at each receiver.

However, we can ensure that the main characteristics of this distribution is

preserved. In other words, we seek enough low-degree equations for the pur-

pose of fast decoding and some high-degree equations for the purpose of cov-

erage. To allow efficient optimization, we consider a simple case where the

degree distribution has weight only on degrees 1, 2, 3 and L(i) (the buffer

size). Therefore, our suggested degree distribution is as follows.

ψ(d) =

α1 d = 1
α2 d = 2
α3 d = 3
αL(i) d = L(i)

, (3.2)

where
∑

i αi = 1. It is worth noting that if L(i) < 3, some of the weights are

forced to be zero. For example, if L(i) = 1, it is determined that α1 = 1 and

all other αi = 0.

Based on the above discussion, we perform a numerical optimization to

minimize the total number of transmissions for a given density. In other words,

for different sets of weights, the number of transmissions are obtained and the

set of weights which minimize the total number of transmissions is of interest

to us. So, Eq. (3.3) shows the optimization problem where cost function,

NT , is the number of transmissions. For example, given the density of 0.3

for the network, the results show that α1 = 0.35, α2 = 0.05, α3 = 0.5 and

αL = 0.1 generate the best results which are shown in Fig. 3.2(a). This figure

shows that based on these weights, the proposed method reduces the total

number of transmissions about 18% compared to switched code. Table 3.1

shows the optimal weights for the proposed method that have been calculated

for different densities.

min{NT (α1, α2, α3, αL)}
0 ≤ αi ≤ 1∀i∑

i αi = 1
(3.3)

32

Table 3.1. Table of optimal weights based on density

Density α1 α2 α3 αL

0.2 0.35 0.3 .25 0.1
0.3 0.35 0.05 0.5 0.1
0.4 0.4 0.05 0.45 0.1
0.5 0.5 0.05 0.4 0.05
0.6 0.55 0 0.35 0.1
0.7 0.7 0.05 0.15 0.1
0.8 0.75 0 0.1 0.15
0.9 0.85 0 0.15 0
1 1 0 0 0

Weights α1, . . . αL of the proposed degree distribution for various densities

of the network have been calculated through a numerical optimization.

33

The weights α1 and α2 can also be optimized separately for the case that

L(i) = 2. Our results show that this case is not frequent and happens around

1% of the time, so the choice of these two weights when L(i)=2 does not have

a significant effect on the total number of transmissions. Based on our obser-

vations, α1 = 0.6 and α2 = 0.4 are appropriate weights for all the densities.

Fig. 3.1 compares the received degree distribution of our codes with that

of switched codes for a network with 80 nodes and no erasure when density

is 0.2. The purpose of this comparison is to show that compared to switched

codes, our optimized degree distribution (at the transmitter side) results in a

degree distribution (at the receiver side) which is closer to that of the optimal

LT codes.

As we discussed in section 3.2.2, switched codes use LT codes in the en-

coding process while the length of the data buffer, L is varying. This means

that in µ(d) and consequently in σ(d) and τ(d) in Eq. (2.4) and (2.6), L is

not a constant. Therefore, each time a transmission happens, the transmitter

has to calculate these distributions again and this causes an extra encoding

complexity. On the other hand, if L was constant, this complexity of calculat-

ing the degree distribution would be removed because the degree distribution

could be stored in a buffer and used whenever needed.

Our proposed degree distribution does not have this varying length issue in

the calculation of ψ(d). In other words, varying L does not affect our degree

distribution. Thus, it can be saved in a buffer and used anytime a transmission

happens. Therefore, in addition to reducing the total number of transmissions,

our solution reduces the encoding complexity as well.

34

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

degree

N
u
m

b
e
r

o
f
re

c
e
iv

e
d
 p

a
c
k
e
ts

new method

switched code

Figure 3.1. Overall degree distribution of two methods.

This figure compares the received degree distribution of the proposed code

with that of switched code. These are the packets that are received in the

whole network.

35

3.3.3 Transmitter and Receiver Algorithms

In the following the detailed algorithms are presented, the first part explains

the transmitter algorithm while the second part discusses the receiver side.

Transmitter side: Based on a scheduling algorithm in the MAC layer,

at each time slot, one or more nodes are determined as the transmitter(s).

In the transmitting node, by knowing an estimation of density, first a random

number d is chosen based on the ψ(d) distribution from Eq. 3.2 and parameters

of Table 3.1. Then, d random packets are chosen from data packets stored in

the buffer of the transmitter. The XOR of them is sent as an encoded packet

over the channel. When all the neighbors of a node received a certain data

packet, that node will not broadcast that packet anymore. Note that for

the first transmission of every node FFTS, that was explained earlier, will be

applied. Algorithm 1 shows this procedure as well.

Algorithm 1 The Transmitter Side Algorithm

Input: Data packets
Output: One encoded packet
1. Generate a random number, d, based on the ψ(d) distribution from Eq.
3.2 and Table 3.1.
2.
if this is the first transmission of this node then
apply FFTS and choose d− 1 random data packets from the buffer of the
transmitter.

else
choose d random packets uniformly from data packets stored in the buffer
of the transmitter.

end if
3. XOR of selected packets is sent as an encoded packet over the channel.

Receiver side: When an encoded packet arrives, the decoding process

starts. Based on the stored data packets in the buffer of the receiver, if the

arrived packet cannot be decoded, it will be stored as an encoded packet.

Otherwise, the extracted data packets will be stored in the buffer. In the next

step, these new arrived data packets will be used to decrease the degree of the

stored encoded packets at the receiver if possible. In other words, any new

received or extracted data packet that was used in the construction of previous

36

Algorithm 2 The Receiver Side Algorithm

Input: Encoded received packet
Output: The extracted data packet or equation
if there is more than one unknown data packet in the received equation
then
the received packet will be stored as an encoded packet in the buffer.

else
the received packet can be decoded and a new data packet is generated.
while there is a new data packet do
1. use new data packet to decode previously stored encoded packets in
the buffer or decrease their degree if possible
2. extract new data packets if possible and store new data packets in
the buffer.

end while
end if

received encoded packets is a known variable now. Therefore, the degree of

stored equations can be decreased. This process goes on until the degree of

the equations cannot be decreased anymore. All new extracted data packets

can be used to construct an encoded packet for the next time that this node

acts as a transmitter. Algorithm 2 shows this process of decoding too.

3.4 Numerical Results

In this section, our proposed method and the existing ones are compared in

similar situations. To study these methods, nodes are randomly distributed

over the surface of a torus to avoid edge effect. The transmission range of each

node is calculated as

T =

√
ρA

π
, (3.4)

where T is the transmission range of each node, ρ, 0 ≤ ρ ≤ 1 is the density,

and A is the area of the network. We assume that the nodes are uniformly

distributed over the area, A, so the ratio of πT 2/A is the same as density of

the network. So, for a fixed area, A, by changing the transmission range of

nodes, T , we can change the density of the network. The scheduling in the

MAC layer is done by distributed randomized TDMA [37]. At each time slot,

one or more number of nodes will be chosen as the transmitter by sending

37

some handshake messages between a candidate node and its neighbors. It is

not necessary to set up the schedule for the whole network at the beginning.

The scheduling in the MAC layer can be done in one time slot just for that

time slot, or it can be done each time for few number of time slots. In all

simulation scenarios the total number of required transmissions to propagate

all the packets in the entire network has been measured.

The first simulation compares switched codes, probabilistic network coding

(net-code), and the proposed method. As mentioned before, to avoid linear

dependency in network coding, high Galois fields are used. Here we use GF (28)

and we also implement algorithm 6B in [34] which refers to dynamic forwarding

factor. Note that the complexity of network coding is higher than the two other

methods that apply fountain codes. The results of network coding is presented

in Fig. 3.2 as a benchmark. Here, the erasure rate, β is zero, the density is

0.3, and the number of nodes in the network is varying from 40 to 140. Fig.

3.2(a) shows the required total number of transmissions for each method. As

it can be seen, the proposed method has less transmissions compared to the

switched code and still more than network coding while the complexity is

less than the other two methods. Fig. 3.2(b) shows the total delay for each

method. It is clear that network coding has the smallest delay, but among the

methods with the same complexity of decoding, the proposed method reduces

the delay. The gap between switched code and the proposed method becomes

more pronounced as the number of nodes increases.

38

40 50 60 70 80 90 100 110 120 130 140
300

400

500

600

700

800

900

1000

1100

1200

1300

Number of nodes

 N
u

m
b

e
r

o
f

tr
a

n
s
m

is
s
io

n
s

Switched code

Net−code

New method

(a) Total number of required transmissions vs. number of nodes

40 50 60 70 80 90 100 110 120 130 140
100

200

300

400

500

600

700

800

900

Number of nodes

T
im

e

Switched code

Net−code

New method

(b) Total delay vs. number of nodes

Figure 3.2. Comparison of network coding, switched code, and the proposed method.

39

Second simulation shows the effect of density on the system. The number

of nodes is 80, with no erasure and the density is changing from 0.2 to 1. As

we can see in Fig. 3.3, when the density is increased, the required number

of transmissions decreased. However, the number of transmissions will not

reach to the exact number of nodes because of random distributed TDMA

scheduling. In all cases the proposed method outperforms switched codes.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

200

300

400

500

600

700

800

900

1000

1100

Density

T
o

ta
l
n

u
m

b
e

r
o

f
tr

a
n

s
m

is
s
io

n
s

Switched code

New method

Figure 3.3. Comparison of switched code and proposed method.

40

0 0.05 0.1 0.15 0.2 0.25 0.3
500

550

600

650

700

750

800

β (erasure rate)

T
o

ta
l
n

u
m

b
e

r
o

f
tr

a
n

s
m

is
s
io

n
s

new method

switched code

Figure 3.4. Comparison of switched code and proposed method.

In the last simulation, the number of nodes is 60 and density is 0.2. We tested

switched codes and the proposed method for a variety of erasure rates and

measured the total number of required transmissions to propagate the packets

in the whole network. The results in Fig. 3.4 show that under different

erasures, the proposed method outperforms the existing method.

41

3.5 Conclusion

In this chapter we studied the problem of all-to-all nodes broadcasting in

wireless ad-hoc networks. In order to reduce the complexity of decoding,

fountain codes have been applied. A new degree distribution was proposed

and the simulation results showed that it reduces the delay and improves

energy efficiency compared to the existing switched code that has the same

order of complexity for decoding, while our method reduces the complexity of

encoding as well.

42

Chapter 4

Reduced-overhead Multicasting
of Different QoS Data Classes

In this chapter the problem of multicasting using fountain codes is explained.

Here, two solutions are studied and their overhead based on the finite block

length analysis has been calculated. In the following an introduction to this

chapter is provided in Section 4.1. In Section 4.2, the system model and

the problem statement are explained. Section 4.3 will discuss problem solu-

tions, starting with a review of a method called SDI, discussing the effect of

finite block length on the system, and then discussing another solution, MTS

method. Section 4.4 provides the numerical results, where MTS method is

compared with SDI. This chapter is concluded in Section 4.5.

4.1 Introduction

Broadcasting data to a number of users with different channel quality can

efficiently be done using fountain codes [6]–[8]. The transmitter, however,

must continue the transmission of a data block until all the receivers can

decode it. Only at this point, the transmitter can start transmission of the

next block of data. In this setup, although, the best user can receive one block

very quickly, it must remain idle until the transmission of the next block has

started.

In some applications, such as multimedia, different quality of service (QoS)

data classes can be defined to be sent to different users. More specifically, users

43

can be classified according to their reception quality to receive different quality

multimedia. Since transmissions are done in packets, the user quality can be

defined based on the packet erasure rate.

A user with a low erasure rate can potentially receive more QoS data

classes than a user with a higher erasure rate. This is in contrast with slowing

down the high quality users by the user with worst channel quality. As a result,

users that experience good channel quality can receive high quality multimedia

during the same time that users with poor channel condition receive the same

multimedia at a lower quality. Another example is in vehicular networks [1].

All the vehicles in a highway can receive the necessary information about

the traffic and road conditions while those with better channel condition may

receive other data classes such as data for entertaining applications or their

requested data.

Here, we study the problem of multicasting different QoS data classes on

erasure channels. The source node has data packets from different QoS classes

intended for users that experience various erasure rates. Users with smaller

erasure rates can receive more packets than users with poorer channel con-

ditions. Different solutions have been suggested using rateless codes for mul-

timedia multicasting with different QoS data classes. For instance, [38], [39]

propose expanding window fountain codes. This method, however, alters the

degree distribution of the fountain code whose increased complexity of decod-

ing is not desirable.

References [40], [41] introduce a solution to this problem using fountain

codes and a scheduling algorithm based on data interleaving. Since this

method is based on scheduling and data interleaving, we will refer to it as

the SDI method. In this solution, there are two data classes where users with

good channel quality will receive data from both classes. Users with poor

channel quality will only receive one class of data. Since SDI is based on

scheduling, data from different data classes are transmitted separately. As we

will see later, for applications with small data block sizes such as realtime ap-

plications, this data separation may result in a considerable overhead needed

to guarantee a certain probability of successful transmission. The source of

44

this overhead is the fact that the behavior of the erasure channel may vary

significantly from its average when used over a small block length.

Another solution to this problem that will be discussed in this chapter is

to mix the data of all QoS classes together [42]. In other words, the source

can transmit the encoded data of all classes together over all time slots. We

will refer to this method as MTS (M-tuple symbols). This idea is used in [42]

to formulate and solve the allocation problem of source bits of different data

classes based on a defined cost criterion.

In this chapter, we investigate the effect of this approach on the overhead.

For this purpose, we first provide a finite block length analysis. By using this

analysis, we compare MTS with SDI method in different erasure rates to show

that MTS enjoys a lower overhead. Thus, for applications such as multimedia

which usually have a short block length, MTS should be the method of choice.

4.2 System Model and Problem Statement

Consider a source that multicasts data to R users. In multicasting, a direct

transmission from the source is not a desirable solution. This is because, even

if one of the users fails to receive the packet, the packet must be retransmit-

ted. Thus, as the number of users increases, direct transmission becomes less

desirable. It is well known that fountain codes can avoid this problem [6]–[8].

With fountain codes, the source continues the transmission until the data for

all intended users is provided. Another benefit of fountain coding over direct

transmission is that instead of needing a feedback per each received packet

per user, it only needs a feedback at the end of reception of the whole block

by each user. Moreover, fountain codes can handle users with various or even

unknown erasure rates. Thus, here we assume that data is transmitted using

fountain codes.

The R users experience different erasure rates. Therefore, they can be

classified into L different classes based on their erasure rates where L ≤ R.

Users in the same class are assumed to have equal erasure rate 1.

1In practice, users with almost equal erasure rates are grouped together

45

Let β = ei be the erasure rate of users in class i. The receiving rate can then

be defined as ri = 1− ei. We also order user classes according to their erasure

rate such that for any two user classes i, j ∈ {1, . . . , L}, i < j ⇒ ei > ej .

A typical user in class i ∈ {1, . . . , L} will be referred to as ui. With this

definition, if i < j, potentially uj can receive more packets than ui during the

same period of time. Therefore, different QoS classes can be defined for users

with various erasure rates.

Multimedia streaming is an application of the setup described above be-

cause different QoS levels of data can naturally be defined since users can

receive multimedia with different qualities. Suppose the data stream is split

into M classes, C1, C2, . . . , CM . Here, C1 is the part of stream which provides

the lowest quality multimedia and therefore necessary for any user who wants

to receive the multimedia stream. Packets in Cm, m ≥ 2 are intended for users

that want higher quality of service. So, the more QoS classes a user receives,

the better the quality of the stream it receives. The best quality is provided to

the users that receive all M classes. Similar discussions are valid when these

data classes are completely independent and from various applications with

different priorities.

Without loss of generality we assume L =M . In other words, the number

of classes of users is equal to the number of different QoS classes of data. With

this assumption, by class i, we mean the users whose erasure rate is ei and

expect to receive data from classes C1, C2, . . . , Ci. We also assume that all

data classes are greedy, meaning that they always have data to send.

Similarly, one can view this as a system, where M data classes are broad-

casted on the channel. Each data class has a predefined erasure threshold, and

its data is intended for any user whose erasure rate is below the threshold. In

this view, em represents the predefined threshold for class m. Notice that in

this setup, the transmitter does not need to know the erasure rates of users.

Moreover, users are naturally classified to different classes according to their

erasure rates.

For the defined system, the problem is to devise a data transmission al-

gorithm that ∀i, 1 ≤ i ≤ M provides C1, . . . , Ci to ui with a failure rate

46

guaranteed to be less than δ for all user classes. A failure at user class i is

defined as not having enough received data from data classes C1, . . . , Ci to be

able to decode the data of all i classes.

Here, we assume erasures are the only reason for packet loss, so our results

are valid for memoryless erasure channels.

The next section explains two solutions to this problem. One solution is

SDI method and the other is the MTS method. To motivate MTS solution, the

effect of finite block length on the system is also studied in the next section.

4.3 Problem Solution

As mentioned earlier, to handle the problem of various erasure rates of different

users, the methods discussed in this section use fountain codes [6]–[8]. When

N data packets are fountain coded, any user who received N ′ = (1 + ǫ)N

encoded packets can decode the N data packets. Here, ǫ is the overhead of the

fountain code and is typically due to the linear dependency of some received

encoded packets and the suboptimal decoding. Since all methods discussed in

this section use fountain codes, we treat N ′ as the block size when comparing

these methods. In other words, the block size is defined as the number of

encoded packets needed at the user side. This way, we can compare different

methods without the need to consider the fountain coding. From this point of

view, by one bit in data class m we mean a fountain encoded bit of this data

class. In the remainder of this work, we use N instead of N ′ for the ease of

notations.

4.3.1 SDI Method

For the defined system with M data classes and different erasure rates, [40]

proposed an interleaving based method to transmit data. In this method, each

class has its own Raptor [8] encoder and therefore data of each layer (class)

will first be encoded internally. At each time slot, class m ∈ {1, . . . ,M} will

be chosen with probability γm. Then an encoded packet from this class will

be broadcasted over the channel. [40], [41] optimize probabilities γ1, . . . , γM

47

based on the channel erasure rates. The results show that these probabilities

are proportional to the erasure rate of their corresponding classes.

Please note that in the time slots that the source transmits packets from

Ci, uj, ∀j < i, is in idle mode. Moreover, since uj has a higher erasure rate

than ui, the total number of packets transmitted from Cj is more than what

ui needs. Thus, even ui will be in idle mode for a portion of time when packets

from Cj are transmitted.

Before discussing MTS [42], we provide a finite block length analysis of

the system. While MTS is proposed in [42] for the first time, it is suggested

for solving the allocation problem of various data classes. Here, we discuss

another advantage of MTS, i.e., its lower overhead compared to SDI. For this

purpose, we first need a finite length analysis of the system. Also, in order to

make this advantage more clear, we will review MTS from a new point of view

in Section 4.3.3.

4.3.2 Finite Block Length

On an erasure channel, erasures happen randomly and independently. For

finite block length, the actual number of erasures may differ from the average

expected number. Thus, if we need N received packets at the output of a

channel with erasure rate e, N/(1 − e) transmissions may not be enough. In

fact, to guarantee N received packets with high probability, the number of

transmissions must be larger than N/(1 − e). Thus, the number of extra

packets needed can be define as the transmission overhead. This overhead is

especially important and fairly large in applications that have small block sizes

such as realtime applications. Please note that this overhead is different from

the overhead of fountain codes that we discussed earlier.

We previously defined failure for user in class i, i ∈ {1, . . . ,M} as “ui does

not receive enough encoded packets to decode the whole block of data from

classes 1, 2, . . . , i.” Then, to guarantee a probability of failure smaller than δ,

one can find the needed transmission overhead of each data class.

Now, consider the data class m, with data blocks of size Nm packets. For

users in any class l, l ≥ m that experience channel erasure rate el, the num-

48

ber of received packets Xl from data class Cm after Km transmissions is a

Binomial(Km, 1 − el) random variable. For guaranteed transmission of Cm

to user class l, we wish to have Xl ≥ Nm with probability at least 1 − δ or

equivalently

p[Xl < Nm] < δ.

When Nm is larger than a few hundreds, this Binomial distribution can accu-

rately be approximated with a Gaussian distribution. Thus, Xl ∼ N (Km(1−
el), Kmel(1 − el)) and p(Xl < Nm) can be found using the Q function. Thus,

the reception condition for ul is

Q

(
Km(1− el)−Nm√

Kmel(1− el)

)
< δ. (4.1)

This means that for finite block length, the number of transmissions Km must

be larger than Nm/(1 − el). Thus, a transmission overhead representing the

number of extra encoded packets (compared to the expected number) can be

defined as

kl,m = Km − Nm

1− el
.

Although ul is supposed to receive data from C1 to Cl, since its erasure

rate el is smaller than e1, e2 . . . , el−1, the overhead considered for those user

classes would satisfy the reception condition of ul. Thus, among the users that

receive data from data class Cm, i.e., um, um+1, . . . , uM , the highest erasure

rate belongs to um. As a result, um needs the largest overhead among all user

classes that need Cm. In other words, for each data class m we only need to

satisfy the reception condition for um. Thus, the actual needed overhead for

class m is

km = Km − Nm

1− em
,

where Km can be found using

Q

(
Km(1− em)−Nm√

Kmem(1− em)

)
< δ. (4.2)

The overall overhead is the sum of the overheads of each data class, which can

be found as

ktotal =

M∑

i=1

ki (4.3)

49

Clearly as the block length increases, the needed overhead compared to

the block length becomes smaller. For small block length, however, the trans-

mitting time of overhead can be a significant portion of the total transmission

time. We like to emphasize that by sending km extra encoded packets for each

data class m, the transmitter guarantees a probability of failure less than δ.

Now let us define a time slot, as the time period needed to transmit one

packet over the channel. Here, the total of K time slots are available where

K = K1 + . . .+KM . In SDI method, these time slots are first divided among

M data classes, meaning that the transmission time allocated to data class m

is γmK. Depending on the number of data classes, γmK can be significantly

smaller than K resulting in a significant needed overhead to combat the finite

block length effect.

Our main insight in this work is to reduce the overhead by sending the data

of all classes over all time slots, so that the needed overhead will be calculated

for time K instead of γmK. As a result, the needed overhead is for a much

larger data block and therefore is smaller. The details of this idea is provided

in the next section.

4.3.3 The MTS Method

Considering M QoS data classes, C1, C2, . . . , CM , let c
j
i represent the jth en-

coded bit of data class Ci. We define symbol sj as an ordered M-tuple con-

structed from fountain encoded bits of all data classes i.e. sj = (cj1, c
j
2, . . . , c

j
M).

A symbol in this method is the smallest unit of data from which a packet is

formed. A transmitted packet, therefore, contains ⌊P/M⌋ symbols where P is

the size of a packet. Fig. 4.1(a) shows different data classes and Fig. 4.1(b)

shows a symbol sj and a transmitted packet p in this method. We call this

method MTS, because it works with M-tuple symbols.

In MTS, similar to SDI, each data class has its own fountain encoder. In

other words, the data of each QoS data class is fountain encoded separately

and then the encoded bits are used to generate symbols. Thus, as long as

each user receives enough number of encoded packets from a data block of a

certain data class, it will be able to decode the whole block. This means that

50

our method does not effect the coding part. Thus, comparisons can be made

without considering the effect of fountain codes.

Although in MTS the same number of bits from all classes are put into

each packet, it does not mean that users of all classes are receiving the same

amount of data. This is because, each class is working independently and the

symbols are created by encoded bits (not raw bits). To clarify this point, let us

consider data class Cm. The number of transmitted encoded bits is determined

based on three factors. The first one is the data block length Vm (similar to

Nm in SDI method) which is determined based on the requirements of the

application. The second factor is the erasure rate em of the worst case user

that can receive this data. So, on average, Vm

1−em
encoded bits are required to

be transmitted, but as we discussed in Section 4.3, for guaranteed QoS, the

actual number of needed transmissions is K ′
m = Vm

1−em
+ k′m, where k

′
m is the

overhead which depends on the acceptable probability of failure δ and the data

block length. Here, K ′
m which is the total transmission time for class m, is

equal to K for m = 1, . . . ,M , because encoded bits of any class are present in

all K transmitted packets.

51

C1

C2

CM

...
...

c11 c21 . . . cK1

c12 c22 . . . cK2

c1M c2M . . . cKM

(a) Blocks of data from different classes, C1, C2, . . . , CM which con-
tain encoded bits.

cj1 cj2 cjM. . .

. . .p

sj

s1 s2 s⌊ P

M
⌋

(b) A generic symbol, sj , and a transmitted packet, p, which is formed
by defined symbols.

Figure 4.1. Generating transmitted packets in MTS method

52

To summarize, ⌊P/M⌋K fountain encoded bits from Cm are used in the

construction of symbols during K time slots which include overhead bits as

well. As soon as these symbols are constructed, the next data block from

Cm will be used for construction of new symbols. Any other data class is

performing a similar procedure in parallel and independently from class m. As

we mentioned, it is assumed that all data classes are greedy and always have

data to send. To clarify, Fig. 4.2 shows an example of different data classes,

where each class (Ci) has a block of data (Vi) plus the needed overhead (k′i). As

we can see, depending on the various erasure rates, the length of the overhead

of different data classes are not the same. This figure also shows how symbols

and consequently packets are constructed in MTS method.

C1

C2

CM

K

V1/(1− e1)

V2/(1− e2)

VM/(1− eM)

k′1

k′2

k′M

. . .

s1 s2 . . .

Data Overhead

Figure 4.2. The frame shows overheads and data of different classes for a fixed
period of time K. It also shows the construction of symbols in MTS method.

53

The benefit of MTS, as discussed earlier, is that data class m, instead of

being sent over only γmK, is sent over K, i.e., all time slots. This way, the

data experiences an erasure channel whose behavior is closer to its average.

Thus, the needed overhead for guaranteed reception is reduced. By using Eq.

(4.2) for MTS, we have

Q

(
K(1− em)− Vm√
Kem(1− em)

)
< δ. (4.4)

and Vm can be calculated for each class m. It is important to note that in Eq.

(4.4) and in Fig. 4.2 , k′m and Vm are number of bits not packets. This should

be considered when comparing the overhead of two methods. Having Vm and

K, the overhead of class m can be found as

k′m = K − Vm
1− em

,

where k′m is the number of overhead bits from data class Cm. To compare the

overhead of MTS with that of SDI, the total number of overhead symbols for

MTS is calculated as the average of k′i’s which is

k′total =

M∑

i=1

k′i

M
(4.5)

The average arises since different data classes have various size overheads.

The numerical results in the next section verify that MTS reduces the overhead

of SDI. Moreover, MTS does not need any optimization and the implementa-

tion is fairly simple.

4.4 Numerical Results

In this section, we numerically compare the overhead of MTS and SDI methods

where the number of data classes are M = 2 and M = 3 and the total

transmission time, i.e., data plus overhead is equal for both methods. We

consider total transmission time as K = 1000 and K = 2000 time slots. For

a certain δ and a fixed K with various erasure rates, the overhead is found.

Here we added the constraint that after K transmissions all classes should be

54

done by transmission of one block. Thus, the block size of different classes

vary. This has no effect on the overhead comparisons of these two methods,

and is merely done for the ease of comparison.

In SDI, the overhead for data class m, km, m = 1, . . . ,M is found for each

class separately and the overall overhead is obtained from Eq. (4.3). For MTS

method, by using Eq. (4.5) the overhead can be calculated as well.

Table 4.1 provides the results for M = 2 and K = 1000. (r1, r2) is the

receiving rate of users in class one and two respectively. Table 4.2 represents

the same results for K = 2000 and Table 4.3 shows the results for M =

3 and K = 1000 where in all tables ri shows the receiving rate of class i.

To compare these methods more directly, we also report the percentage of

overhead reduction (OR) by MTS. If k is the overhead of SDI and k′ is the

overhead of MTS, then the overhead is reduced by

OR =
k− k′

k

The results shows that the needed overhead of MTS method is smaller than

SDI method in all three cases. As expected, by increasing K, the ratio

overhead/K for both methods is reduced. For asymptotically large K, since

the channel behavior converges to its average, the overhead compared to the

data block size will be negligible for both methods.

55

T
ab

le
4.
1.

T
h
e
ov
er
h
ea
d
of

S
D
I
an

d
M
T
S
m
et
h
o
d
s
fo
r
va
ri
ou

s
re
ce
iv
in
g
ra
te
s
of

d
at
a
cl
as
s
1
an

d
2,

(r
1
,r

2
),
w
h
en

K
=

10
00

an
d
M

=
2

an
d
th
e
p
er
ce
n
ta
ge

of
O
ve
rh
ea
d
R
ed

u
ct
io
n

(r
1
,r

2
)

(0
.4
,0
.4
5
)

(0
.4
,0
.6
5
)

(0
.4
,0
.8
3
)

(0
.5
,0
.6
3
)

(0
.5
,0
.7
5
)

(0
.5
,0
.9
3
)

(0
.6
,0
.7
1
)

(0
.6
,0
.8
5
)

(0
.6
,0
.9
3
)

(0
.7
,0
.8
1
)

(0
.7
,0
.8
9
)

(0
.7
,0
.9
5
)

k
S
D
I

2
3
1

1
9
3

1
6
2

1
7
4

1
5
3

1
1
4

1
4
1

1
1
6

9
5

1
0
6

9
0

6
2

k
′ M
T
S

1
5
8

1
3
2

1
1
0

1
1
9

1
0
5

7
9

9
7

8
0

6
6

7
4

6
2

4
3

O
R
%

3
2
%

3
1
%

3
1
%

3
1
%

3
1
%

3
1
%

3
1
%

3
1
%

3
1
%

3
0
%

3
0
%

3
0
%

T
ab

le
4.
2.

T
h
e
ov
er
h
ea
d
of

S
D
I
an

d
M
T
S
m
et
h
o
d
s
fo
r
va
ri
ou

s
re
ce
iv
in
g
ra
te
s
of

d
at
a
cl
as
s
1
an

d
2,

(r
1
,r

2
),
w
h
en

K
=

20
00

an
d
M

=
2

an
d
th
e
p
er
ce
n
ta
ge

of
O
ve
rh
ea
d
R
ed

u
ct
io
n

(r
1
,r

2
)

(0
.4
,0
.4
5
)

(0
.4
,0
.6
5
)

(0
.4
,0
.8
3
)

(0
.5
,0
.6
3
)

(0
.5
,0
.7
5
)

(0
.5
,0
.9
3
)

(0
.6
,0
.7
1
)

(0
.6
,0
.8
5
)

(0
.6
,0
.9
3
)

(0
.7
,0
.8
1
)

(0
.7
,0
.8
9
)

(0
.7
,0
.9
5
)

k
S
D
I

3
2
4

2
7
0

2
2
6

2
4
3

2
1
5

1
6
0

1
9
8

1
6
3

1
3
4

1
4
9

1
2
6

8
8

k
′ M
T
S

2
2
3

1
8
7

1
5
7

1
6
9

1
4
9

1
1
1

1
3
7

1
1
3

9
3

1
0
4

8
8

6
1

O
R
%

3
1
%

3
1
%

3
1
%

3
1
%

3
1
%

3
1
%

3
0
%

3
0
%

3
0
%

3
0
%

3
0
%

3
0
%

T
ab

le
4.
3.

T
h
e
ov
er
h
ea
d
of

S
D
I
an

d
M
T
S
m
et
h
o
d
s
fo
r
va
ri
ou

s
re
ce
iv
in
g
ra
te
s
of

cl
as
s
1,

2,
an

d
3,

(r
1
,r

2
,r

3
),

w
h
en

K
=

10
00

an
d
M
=
3

an
d
th
e
p
er
ce
n
ta
ge

of
O
ve
rh
ea
d
R
ed

u
ct
io
n

(r
1
,r

2
,r

3
)

(0
.3
,0
.4
7
,0
.6
)

(0
.3
,0
.5
3
,0
.7
2
)

(0
.3
,0
.6
9
,0
.9
4
)

(0
.4
,0
.5
5
,0
.6
3
)

(0
.4
,0
.6
5
,0
.7
3
)

(0
.4
,0
.6
7
,0
.9
)

(0
.5
,0
.6
3
,0
.7
6
)

(0
.5
,0
.6
5
,0
.8
4
)

(0
.5
,0
.7
1
,0
.8
8
)

k
S
D
I

3
0
0

2
6
6

1
7
8

2
5
5

2
4
1

1
9
4

2
3
9

2
0
3

1
9
4

k
′ M
T
S

1
6
2

1
4
4

9
8

1
3
9

1
3
1

1
0
7

1
3
0

1
1
1

1
0
6

O
R
%

4
6
%

4
6
%

4
5
%

4
5
%

4
5
%

4
5
%

4
5
%

4
5
%

4
5
%

T
h
es
e
th
re
e
ta
b
le
s
ar
e
th
e
n
u
m
er
ic
al

re
su
lt
s
to

sh
ow

th
e
co
m
p
ar
is
on

b
et
w
ee
n
th
e
tw

o
m
et
h
o
d
s.

56

4.5 Conclusion

We studied the problem of transmitting different QoS data classes to users

with various erasure rates. Each data class was intended for any user whose

erasure rate was better than a predefined threshold. Since for some appli-

cations such as multimedia small block length is needed and in that case the

number of erasures introduced by the channel can significantly be greater than

its average, a large overhead may be needed for acceptable probability of suc-

cess.We studied the effect of the block length on the overhead and provided an

analysis to compare different solutions in terms of their overhead. Our results

showed that MTS requires a much lower overhead compared to SDI.

57

Chapter 5

Conclusion

In this thesis, we studied multicasting and broadcasting using fountain codes

and network coding. In Chapter 3 the problem of broadcasting from all-to-

all nodes has been studied. One solution to reduce the number of required

transmissions is network coding which is energy efficient. However, the cubic

complexity of decoding in each node is a problem, especially when nodes do

not have enough processing capabilities. To reduce the complexity, fountain

codes as a solution has been considered.

Compared to network coding, fountain codes need more transmissions in

general. However, our suggested degree distribution for fountain codes reduces

the number of transmissions compared to the previous method [35], [36] that

used fountain codes and fills the gap between the previous proposed fountain

codes and network coding. It also has the lowest complexity between all these

three methods. Therefore, using this fountain code reduces the number of

transmissions and complexity and consequently, reduces the required energy

consumption for distributing the data in the entire network.

The problem of multicasting data from one transmitter to a number of users

has been studies in Chapter 4. Different data classes were transmitted for users

where each group of users experiences different erasure rates. The goal was

to reduce the overall transmission time by reducing the overall overhead. By

using fountain codes at the transmitter and mixing data packets of all classes

together, the total overhead is reduced and the analysis showed that in various

erasure rates this method can reduce the required overhead for the guaranteed

58

probability of success. This method is specially useful where the block length

is finite such as multimedia applications. As the block length goes to infinity,

the overhead compared to the block size becomes negligible and both discussed

methods have almost the same result.

In general, as we expected using both network coding and fountain codes

help reducing the number of transmissions and improving the energy efficiency

and delay of the system while using fountain codes has less complexity com-

pared to network coding.

5.1 Future Work

To extend this research there are some suggestions. For the case of broadcast-

ing form all-to-all nodes, one possible work is to analytically find the optimal

degree distribution in Chapter 3. Therefore, the optimal weight for each degree

can be calculated and our numerical results for the proposed degree distribu-

tion can be justified.

The degree distribution can also be considered as a general distribution

where instead of having weights only on four degrees, other degrees can have

non-zero weights as well. In that case, the effect of all possible weights on the

total number of transmissions and the dependency of results to the density

can be analyzed as well.

The case of multicasting different quality of service data classes in Chapter

4 can be extended too. Instead of constructing each symbol using one bit of

each class, we can have symbols where different classes have different number

of bits in one symbol based on their requirements.

The idea of weighted fairness while compared to the round-robin [43], [44]

in fair queuing in the computer networks can be helpful to construct weighted

symbols as well, which is the same as comparing weighted symbols to the M-

tuple symbols. The effect of weighted symbols in the case of erasure should

be considered and overhead should be recalculated as well.

59

Bibliography

[1] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and

T. Weil, “Vehicular networking: A survey and tutorial on requirements,

architectures, challenges, standards and solutions,” IEEE Communica-

tions Surveys Tutorials, 2011.

[2] C. Diot, J. Scott, and E. Upton, “The haggle architechture,” Intel Reseach

Cambridge, Tech. Rep., 2004.

[3] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “A network coding approach

to energy efficient broadcasting: From theory to practice,” in 25th IEEE

International Conference on Computer Communications.(INFOCOM),

Barcelona, Spain, Apr. 2006, pp. 1–11.

[4] L. Zhaohua and G. Mingjun, “Survey on network lifetime research for

wireless sensor networks,” in 2nd IEEE International Conference on

Broadband Network Multimedia Technology, IC-BNMT ’09., 2009.

[5] D. Wu, Y. Hou, W. Zhu, Y. Zhang, and J. Peha, “Streaming video over

the internet: Approaches and directions,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 11, no. 3, pp. 282 –300, Mar 2001.

[6] D. MacKay, “Fountain codes,” Communications, IEEE Proceedings-, vol.

152, no. 6, pp. 1062–1068, Dec. 2005.

[7] M. Luby, “LT codes,” in Proc. 43rd Annu. IEEE Symp. Foundations of

Computer Science (FOCS), Vancouver, BC, Canada, Nov. 2002, pp. 271–

280.

60

[8] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information The-

ory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.

[9] C. Fragouli, J.-Y. B. Le, and J. Widmer, “Network coding: An instant

primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68,

Jan. 2006.

[10] N. Rahnavard and F. Fekri, “CRBcast: A collaborative rateless scheme for

reliable and energy-efficient broadcasting in wireless sensor networks,” in

The Fifth International Conference on Information Processing in Sensor

Networks, IPSN, Nashville, TN, Apr. 2006, pp. 276 –283.

[11] Z. Abdeyazdan, M. Ardakani, and C. Tellambura, “Energy efficient broad-

casting in wireless ad-hoc networks,” in Submitted to IEEE Wireless Com-

munications and Networking Conference (WCNC), Apr. 2013.

[12] ——, “Reduced-overhead multicasting of different quality of service data

classes,” in Canadian Conference on Electrical and Computer Engineering

(CCECE), Apr. 2012.

[13] A. Shokrollahi, “LDPC codes: An introduction,” Digital Fountain, Inc.,

Tech. Rep, p. 2, 2003.

[14] S. Aly, Z. Kong, and E. Soljanin, “Fountain codes based distributed stor-

age algorithms for large-scale wireless sensor networks,” in Proceedings

of the 7th international conference on Information processing in sensor

networks, ser. IPSN ’08, 2008, pp. 171–182.

[15] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z. Xiong,

“Scalable video multicast using expanding window fountain codes,” IEEE

Transactions on Multimedia, vol. 11, no. 6, pp. 1094 –1104, oct. 2009.

[16] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”

IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204 –1216,

jul 2000.

61

[17] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits

of coding over routing in a randomized setting,” in IEEE International

Symposium on Information Theory, june-4 july 2003, p. 442.

[18] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong,

“A random linear network coding approach to multicast,” IEEE Trans-

actions on Information Theory, vol. 52, no. 10, pp. 4413 –4430, oct. 2006.

[19] S. Lin and J. D. J. Costello, Error Control Coding. Pearson Education,

Inc, 2003.

[20] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for

network information flow,” in Proceedings of the fifteenth annual ACM

symposium on Parallel algorithms and architectures, ser. SPAA ’03, 2003,

pp. 286–294.

[21] Y. Wu, P. Chou, and K. Jain, “A comparison of network coding and

tree packing,” in International Symposium on Information Theory, ISIT,

June-2 July 2004.

[22] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Allerton,

2003.

[23] Y. Li, E. Soljanin, and P. Spasojevic, “Collecting coded coupons over

overlapping generations,” in IEEE International Symposium on Network

Coding (NetCod), Jun. 2010.

[24] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transac-

tions on Information Theory, vol. 49, no. 2, pp. 371 –381, feb. 2003.

[25] G. Blom, L. Holst, and D. Sandell, Problems and Snapshots From the

World of Probability. New York Springer-Verlag, 1994.

[26] S. Deb and M. Medard, “Algebraic gossip: A network coding approach

to optimal multiple rumor mongering,” in Allerton, Oct. 2004.

62

[27] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content

distribution,” in 24th Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), vol. 4, march 2005, pp. 2235 –

2245 vol. 4.

[28] X. Zhang, J. Liu, B. Li, and Y., “Coolstreaming/DONet: a data-driven

overlay network for peer-to-peer live media streaming,” in 24th Annual

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), vol. 3, march 2005, pp. 2102 – 2111 vol. 3.

[29] D. Petrovic, J. K. Ramchandran, and Rabaey, “Overcoming untuned ra-

dios in wireless networks with network coding,” IEEE Transactions on

Information Theory, vol. 52, no. 6, pp. 2649 – 2657, june 2006.

[30] C. Fragouli and A. Markopoulou, “A network coding approach to overlay

network monitoring,” in In Allerton, 2005.

[31] T. Ho, B. Leong, Y.-H. Chang, Y. Wen, and R. Koetter, “Network moni-

toring in multicast networks using network coding,” in International Sym-

posium on Information Theory, ISIT, sept. 2005, pp. 1977 –1981.

[32] N. Cai and R. Yeung, “Secure network coding,” in IEEE International

Symposium on Information Theory, 2002.

[33] H. Lim and C. Kim, “Flooding in wireless ad-hoc networks,” Computer

Communications, vol. 24, no. 34, pp. 353 – 363, 2001.

[34] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “Efficient broadcasting

using network coding,” IEEE/ACM Transactions on Networking, vol. 16,

no. 2, pp. 450 – 463, Apr. 2008.

[35] N. Kadi and K. A. Agha, “Distributed switched code (DiSC): A dis-

tributed rateless code for broadcast in ad-hoc wireless networks,” in ACM

Proceedings of the 6th International Wireless Communications and Mobile

Computing Conference (IWCMC), 2010.

63

[36] ——, “New degree distribution to improve LT code in network coding

for broadcasting in ad-hoc wireless networks,” in IEEE 21st Interna-

tional Symposium on Personal Indoor and Mobile Radio Communications

(PIMRC), Istanbul, Turkey, Sep. 2010, pp. 1820–1825.

[37] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed random-

ized TDMA scheduling for wireless ad-hoc networks,” in Proceedings of

the 7th ACM international symposium on Mobile ad hoc networking and

computing.

[38] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. Piechocki,

“Expanding window fountain codes for unequal error protection,” IEEE

Transactions on Communications, vol. 57, no. 9, pp. 2510 –2516, Sep.

2009.

[39] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z. Xiong,

“Scalable video multicast using expanding window fountain codes,” IEEE

Transactions on Multimedia, vol. 11, no. 6, pp. 1094 –1104, Oct. 2009.

[40] C. Yu, S. Blostein, and C. Wai-Yip, “Optimization of rateless coding for

multimedia multicasting,” in IEEE International Symposium on Broad-

band Multimedia Systems and Broadcasting (BMSB), Shanghai, China,

Mar. 2010, p. 1.

[41] ——, “Unequal error protection rateless coding design for multimedia

multicasting,” in Int. Symp. on Inform. Theory (ISIT), Austin, TX, Jun.

2010, p. 2438.

[42] W. Sheng, W.-Y. Chan, S. D. Blostein, and Y. Cao, “Asynchronous and

reliable multimedia multicast with heterogeneous QoS constraints,” in

IEEE International Conference on Communications (ICC), Cape Town,

South Africa, May 2010, pp. 1 –6.

[43] A. Parekh and R. Gallager, “A generalized processor sharing approach

to flow control in integrated services networks: the single-node case,”

64

IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344 –357,

Jun. 1993.

[44] S. Golestani, “A self-clocked fair queueing scheme for broadband applica-

tions,” in 13th Proceedings IEEE Networking for Global Communications,

INFOCOM ’94, Jun. 1994, pp. 636 –646 vol.2.

65

