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Abstract

Multiple-input multiple-output (MIMO) wireless systems use antenna arrays at both

the transmitter and receiver to achieve high spectral efficiency. Low-complexity de-

tection is essential for the implementation of MIMO systems. In this thesis, a symbol

detector for wireless systems using space division multiple access (SDMA) and orthog-

onal frequency division multiplexing (OFDM) is derived. The detector uses a sphere

decoder (SD) and has much less computational complexity than the naive maximum

likelihood (ML) detector in high SNR. Two new detectors for a hybrid system with

the combination of spatial multiplexing (SM) and space-time block codes (STBC)

are also derived. The new optimal detectors utilize the block structure of STBC and

the SD. An optimal detector based on an ordering SD for MIMO OFDM systems by

taking advantage of the high correlation among neighboring subcarriers in the system

is also derived.

The ML detection problem in MIMO systems is then relaxed and a family of

constrained detectors is developed. Real constrained detectors and decision feedback

detectors are proposed by forcing the relaxed solution to be real. Modulus constrained

subgroup detectors are developed for both unitary and non-unitary constellations. A

new ordering scheme using these constrained detectors is proposed to achieve a trade-

off between interference suppression and noise enhancement. Moreover, to mitigate

the error propagation inherent in decision feedback detectors, a combined constrained

and decision feedback detector is introduced. These constrained detectors are sub-

optimal but they have much less complexity than the SD based optimal detectors in

low SNR.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless communications has experienced an explosive growth in the past few decades.

The 3rd generation (3G) and beyond 3rd generation wireless systems will provide mo-

bile and stationary users with wireless multimedia services such as video conference,

high speed internet access, and mobile computing [1]. The rapidly rising demand

for these high data-rate services along with high mobility and high quality services

are driving the recent developments in wireless technologies and inspiring many for

broadband wireless applications. Research developments at the physical layer re-

garding efficient coding and modulation schemes and signal processing techniques to

improve the quality and spectral efficiency of wireless communications are crucially

important.

1.2 Multiple Input Multiple Output (MIMO) Sys-

tems

Since the wireless radio spectrum is limited, much research focuses on spectrally

efficient transmission. The use of multiple antennas at transmitter and receiver,
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popularly known as multiple input multiple output (MIMO), is an emerging cost-

effective technology that offers substantial improvements in spectral efficiency [2].

Teletar [3] and Foschini and Gans [4] show that there is a large capacity (i.e., date rate)

gain of MIMO systems; i.e., the capacity (data rate) grows at least linearly with the

number of transmit antennas, provided that the number of receive antennas is greater

than or equal to the number of transmit antennas. To realize this potential capacity,

many MIMO schemes have been proposed, which can be classified into two major

categories: 1) capacity-oriented techniques such as layered space-time processing [5];

2) quality-oriented techniques such as space-time coding (STC) [6–9]. Space-time

refers to the fact that coding is performed across both spatial and temporal domains.

1.3 Space-Time Coding (STC)

Space-time coding (STC) [6–9] has recently emerged as one of the most active research

areas in wireless communications. STC systems process the transmit and receive

signal waveforms in temporal, spatial and coding dimensions to deliver high data

rates with diversity and coding gains. STC has been adopted in the 3G cellular

standards such as WCDMA and cdma2000, and has also been proposed for many

other wireless systems such as local-loop applications [10] and wide area packet data

access [11].

STC can be divided into space-time trellis coding and space-time block coding.

In space-time trellis coding [6], all data are trellis encoded across the transmit anten-

nas and standard maximum likelihood decoding techniques are used at the receiver.

Therefore, the full diversity order and substantial coding gains, can be achieved. The

disadvantage of this approach is that the decoding complexity increases exponentially

with the transmission rate. Hence it is not practical to employ space-time trellis codes

with a large number of transmit antennas or when a high spectral efficiency is required.

Space-time block coding (STBC) [7–9] provides low decoding complexity while

retaining acceptable performance. It provides a simple way to upgrade current wire-
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less systems to MIMO systems while keeping a full diversity gain. It, however, is not

designed to provide significant coding gains.

1.4 Spatial Multiplexing

One simple approach that takes advantage of the capacity of the MIMO system

is spatial multiplexing (SM) [12]. SM divides the input data stream into multiple

substreams to be sent over multiple transmit antennas. The receiver processes all

the spatial streams to recover the original data. Linear receivers, such as zero-forcing

(ZF) or minimum mean squared error (MMSE), and non-linear receivers, such as V-

BLAST [13], provide low-complexity suboptimal data detection. Unfortunately, these

receivers incur a significant performance loss compared to the maximum likelihood

(ML) receiver.

1.5 Space Division Multiple Access

To increase the wireless system capacity and improve the spectral efficiency, multi-

ple access techniques are required in resource critical wireless applications. The use

of SM for multiple access is called space division multiple access (SDMA). SDMA

typically employs an antenna array and allows different users to share the same spec-

trum [14–18]. This sharing is achieved by exploiting differences in geographical posi-

tions of the users and steering a directional beam toward each user while cancelling

out any interference. In [14], a scheme based on direction-of-arrival (DOA) estimation

is proposed to separate signals from different users. In many applications, so-called

wideband SDMA separates different users based on their channel transfer function

vectors, often referred to as their spatial signatures. Reference [15] exploits the finite

alphabet property of digital signals to simultaneously estimate the users’ array re-

sponse vectors and the symbol sequence for each signal. In [17], a recursive estimation

algorithm is developed to recover multiple signals from intersymbol interference (ISI)
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and co-channel interference (CCI) by taking advantage of a special structure of the

array output and the finite-alphabet property of digital signals.

1.6 Orthogonal Frequency Division Multiplexing

Conventional modulation schemes are limited in their maximum data rate in mul-

tipath channels due to the ISI caused by the multipath dispersion. Without equal-

ization, the lower limit on symbol period is given by the channel delay spread. To

achieve higher data rates, complex equalization is required at the receiver.

Orthogonal frequency division multiplexing (OFDM) [19–21] uses the Fast Fourier

Transform (FFT) to multiplex the data on orthogonal subcarriers. This significantly

increases symbol period on each subcarrier, which effectively mitigates the influence

of multipath fading. OFDM thus converts a frequency selective channel into a number

of parallel flat-fading channels, each of which can be easily equalized.

1.7 Thesis Contributions

Existing sub-optimal detectors for MIMO systems incur a performance loss compared

with the ML detector. However, the brute-force ML detector is not deemed practical

due to its high complexity. Therefore it is of interest to develop optimal detectors

with low-complexity compared to the brute-force ML detectors. In Chapter 2, a new

detector based on the sphere decoder for OFDM/SDMA based wireless systems is

proposed. The use of sphere decoder achieves optimal detection with computational

complexity much less than the naive ML detector in high SNR. Furthermore, we show

how the CLS detector of [22] can be used to detect non-unitary signals. A hybrid

orthogonal STBC and SM system is also considered. Such hybrid systems that provide

a trade off between the rate and the diversity gain are of interest, but their optimal

detectors have not yet been reported. Two new optimal detectors for these hybrid

systems are proposed. Our algorithms can also be viewed as a generalization of the

4



conventional SD to handle matrix symbols. Finally, a new low complexity optimal

detector is proposed for a fast fading MIMO OFDM system by taking advantage

of the high correlation among neighboring subcarriers. In the proposed algorithm,

the subcarriers are partitioned into a number of groups such that the correlation

among the subcarriers in each group is high. Within each group, a symbol-detection

reordering is performed on the center subcarrier and the SD operates on that order.

The same ordering is then used on other subcarriers in the group.

Although these detectors has low complexity in high SNR, their worst-case com-

plexity is exponential in the number of transmit antennas, and their average complex-

ity is high in low SNR or for large systems [23]. Both performance and complexity

gaps between the ML detector and the existing sub-optimal detectors have motivated

the development of alternative detectors. In Chapter 3, the ML MIMO detection

problem is relaxed to develop a family of constrained detectors. Real constrained de-

tectors and decision feedback detectors are proposed for real constellations by forcing

the relaxed solution to be real. Modulus constrained subgroup detectors are devel-

oped as MIMO detectors for both unitary and non-unitary constellations. A new

ordering scheme using these constrained detectors is proposed to achieve a tradeoff

between interference suppression and noise enhancement. Moreover, to mitigate the

error propagation inherent in decision feedback detectors, a combined constrained and

decision feedback detector is introduced. These constrained detectors are suboptimal

but they have much less complexity than the SD based optimal detectors in low SNR.

Chapter 4 concludes the thesis and outlines future work in this area.
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Chapter 2

Low-Complexity Optimal

Detection for MIMO Systems

This chapter presents several low-complexity optimal MIMO detectors. In Section 2.1,

a symbol detector is derived for wireless systems using space division multiple access

(SDMA) and orthogonal frequency division multiplexing (OFDM). This detector uses

a sphere decoder (SD) and has much less computational complexity than the naive

maximum likelihood (ML) detector. In Section 2.2, two new detectors are derived

for a hybrid system with the combination of spatial multiplexing (SM) and space-

time block codes (STBC). The new detectors utilize the block structure of STBC

and the SD. Optimal detection is performed with computational complexity much

less than the brute-force ML search. In Section 2.3, a detector based on symbol

detection reorder and SD is derived for MIMO OFDM systems by exploiting the high

correlation among neighboring subcarriers.

6



2.1 Low-Complexity Optimal Detection for SDMA

Systems

The combination of SDMA and OFDM for wireless networks exploits the advantages

of both [22, 24, 25]. For example, in the uplink, the base station handles the SDMA

function while the user terminals are plain OFDM modems. This asymmetry keeps

the overall system cost low. However, previously-developled minimum mean squared

error (MMSE) detectors [24] perform worse than the ML detector. The detector de-

signed in [22] is specifically for unitary signals and outperforms the MMSE detector.

A minimum bit error rate multiuser detector is designed in [26]. Reference [27] de-

velops two linear demodulators for minimizing the probability of error. However, all

these approaches incur a significant performance loss compared with the ML detector.

A new detector based on a sphere decoder (SD) is proposed for OFDM/SDMA

based wireless systems. Sphere decoding [28] has been investigated for multiple an-

tenna systems in [29]. The sphere decoder (SD) [28, 30], proposed in the context

of the closest point searches in lattices, efficiently implements the ML detector. SD

provides the same error performance as the brute-force ML detector. The use of the

SD is further investigated in [31,32]. The complexity of SD depends critically on the

ordering of the columns of the channel matrix.The average complexity of the sphere

decoding used for ML detection in flat fading multiple-antenna systems is polynomial

(often sub-cubic) for a wide range of signal-to-noise ratios (SNRs). With the use of

sphere decoding, optimal detection becomes feasible with computational complexity

much less than the naive ML detector. Furthermore, the CLS detector of [22] is

extended to detect non-unitary signals.

2.1.1 System Model

The uplink of an OFDM/SDMA system (Fig. 2.1) with U users and a basestation

(BS) is considered. Each user transmit with a single antenna and the BS has A ≥ 1

7



M
od

ul
at

io
n

Se
ri

al
  /

 P
ar

al
le

l

I 
F 

F 
T

A
dd

 C
yc

lic
 P

re
fi

x

Pa
ra

lle
l /

 S
er

ia
l

User 1 1

bit stream

M
od

ul
at

io
n

Se
ri

al
  /

 P
ar

al
le

l

I 
F 

F 
T

A
dd

 C
yc

lic
 P

re
fi

x

Pa
ra

lle
l /

 S
er

ia
l

bit stream

UUser U

Se
ri

al
  /

 P
ar

al
le

l

A

Se
ri

al
  /

 P
ar

al
le

l

1

R
em

ov
e 

C
yc

lic
 P

re
fi

x
R

em
ov

e 
C

yc
lic

 P
re

fi
x

F 
F 

T
F 

F 
T

S D M A

S D M A

Pa
ra

lle
l /

 S
er

ia
l

Pa
ra

lle
l /

 S
er

ia
l

D
em

od
ul

at
io

n
D

em
od

ul
at

io
n

of user 1

bit stream

Estination

Estination
of user U

bit stream

s1[1]

s1[K]

sU [1]

sU [K]

h1,1[k]

h1,A[k]

hU,1[k]

hU,A[k]

y1[1]

y1[K]

yA[1]

yA[K]

s̃1[1]

s̃U [1]

s̃1[K]

s̃U [K]

Fig. 2.1. System model.

receive antennas. The number of simultaneous users is no greater than the number

of BS antennas. The bit stream of user u is modulated and a block of K modulated

symbols is converted to a serial stream of su[1], · · · , su[K]. This frequency domain

series is fed into a K-tap inverse fast Fourier transform (IFFT) to obtain time-domain

samples. A cyclic prefix and the samples are transmitted through a multipath fading

channel. The cyclic prefix is removed at the receiver. The cyclic prefix is longer than

the channel delay spread. The received signals at BS antenna a are converted to a

parallel stream. A K-tap fast Fourier transform (FFT) operator is used to obtain

ya[1], · · · , ya[K], which are processed by SDMA algorithms to separate different users

and provide the estimated data s̃u[1], · · · , s̃u[K] as for user u.

After the removal of the cyclic prefix, the k-th subcarrier output is given by

y = Hs + n, (2.1)

where y = [y1[k], · · · , yA[k]]T is the received signals, s = [s1[k], · · · , sU [k]]T is the

transmitted signals from U users, n = [n1[k], · · · , nA[k]]T is the additive white Gaus-

sian noise, and

H =








h1,1[k] · · · hU,1[k]
...

. . .
...

h1,A[k] · · · hU,A[k]








(2.2)

is the frequency domain channel transfer function matrix, where ha,u[k] is the channel
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between the u-th user and the a-th BS antenna. Assume ha,u[k] are uncorrelated,

time-invariant, and complex Gaussian distributed fading processes with zero mean

and unit variance. Since SDMA processing is applied on a per-carrier basis, symbol

detection can also be solved per subcarrier. For notational simplicity, the index [k] is

dropped.

2.1.2 New Detector

Given the signal model (2.1), the optimal receiver must find the signal vector nearest

to the received vector y. Thus, the ML detector is given by

s̃ = arg min
s∈QU

‖y − Hs‖2, (2.3)

where y ∈ RA, H ∈ RA×U and Q = {−(2P − 1), · · · , 2P + 1} is a Pulse Amplitude

Modulation (PAM) constellation of P elements. Since any quadrature amplitude

modulation (QAM) constellation can be decoupled into real part and image part and

transformed into real PAM constellations, this formulation (2.3) is valid for QAM

too. The case of M-ary phase shift keying (M-PSK) is also treated later. A brute

force ML algorithm must search all P U possible values of s. Hence, its complexity is

exponential in U (the number of unknown variables).

The original SD by Fincke and Phost [28] restricts the search space to the candi-

date signals within a hypersphere of an initial radius. Whenever a valid candidate is

found, the radius may be updated. Eq. (2.3) is equivalent to

s̃ = arg min
s∈QU

(H†y − s)HRHR(H†y − s)

= arg min
s∈QU

(s − ŝ)HRHR(s− ŝ) (2.4)

where ŝ = H†y and R is an upper triangular matrix such that RHR = HHH. Let

the entries of R be denoted by rij, i ≤ j. Since the number of users U is always less

than or equal to the number of BS antennas A, HHH has full rank (positive definite).

The diagonal terms of R are non-zero (rii 6= 0). A candidate is inside a hypersphere

9



of radius r when

(s− ŝ)HRHR(s− ŝ) =
U∑

i=1

r2
ii ‖si − ρi‖2 ≤ r2 (2.5)

where ρi = ŝi−
∑U

j=i+1
rij

rii
(sj − ŝj). The initial radius r is assumed to be large enough

so that the hypersphere (2.5) contains at least one candidate solution. The initial

radius may be chosen according to the noise variance [29].

Since each term in (2.5) is nonnegative, the partial sums must also be less than r2.

This fact can be used to derive a set of admissible values for su (u = U, U − 1, . . . , 1)

as

Lu =
{

t
∣
∣dρu − ru/ruue ≤ t ≤ bρu + ru/ruuc, t ∈ Q

}

(2.6)

where r2
u = r2 −∑U

i=u+1 r2
ii‖si − ρi‖2, si ∈ Li, dxe is the smallest integer greater

than or equal to x and bxc is the largest integer less than or equal to x. In (2.6),

the signal constellation Q can be either PAM or QAM (expressed as two real PAM

constellations). Eq. (2.6) generates all signal vectors satisfying (2.5), the number of

which is much smaller than |Q|U .

If Q is M-PSK, (2.6) is not directly applicable (Q is generally not decomposable

into two real PAM constellations). The set of lists for u = U, U − 1, . . . , 1 is formed

as

Lu =
{
t | r2

uu ‖t − ρi‖2 ≤ r2
u, t ∈ Q

}
. (2.7)

Once all the candidate signal vectors are generated via (6) or (7), the ML estimate is

given by the candidate vector which minimizes (4). Putting all these ideas together,

we propose the following new detector algorithm:

1 Input (y, H, r, Q);

2 [Q,R] = qr(H); ŝ = H†y; i = U ; l = 1; ρU = ŝU ; d2 = r2;r2
U = r2; LU = ∅;

found=0;

3 Generate Li using (6) or (7);

10



4 If Li 6= ∅ and i = 1, goto 8;

5 If Li 6= ∅, ρi−1 = ŝi−1 −
∑U

j=i
ri−1,j

ri−1,i−1

(sj − ŝj), r2
i−1 = r2

i − r2
ii‖si − ρi‖2, i = i− 1,

l = 1, goto 3;

6 If i = U , if found=1, go to 9, else increase r, l = 1, goto 3;

7 i = i + 1, l = l + 1, if l > M , goto 4, else goto 3;

8 found=1, s∗ = s, d̃2 = r2
1 − r2

11 ‖s1 − ρ1‖2, l = 1, goto 3;

9 If d̃2 < d2, d = d̃, goto 7, else return s∗.

2.1.3 Non-unitary Signals

An M-QAM vector can be represented as a weighted sum of N/2 QPSK vectors when

M = 2N and N is an even number [33]. That is, for z ∈ M-QAM and zi ∈QPSK,

0 ≤ i < N/2, the M-QAM symbol can be represented as

z =

N/2−1
∑

i=0

2i

(√
2

2

)

zi. (2.8)

For example, 16QAM transmit vector s can be written as s =
√

2s1 +
√

2
2

s2 where s1

and s2 are QPSK vectors. Thus (2.1) becomes

y =
( √

2H
√

2
2

H
)




s1

s2



+ n. (2.9)

Therefore a 16QAM system with U users and A receive antennas is equivalent to a

QPSK system with 2U users and A receive antennas. Similarly, any other M-QAM

system can also be expressed as an equivalent QPSK system.

However, the CLS detector in [22] may not be applied directly when 2U ≥ A. one

of the conditions of the CLS detector in [22] is that the number of users is less than

that of receive antennas. If this condition is not met, a rank deficiency arises from the

singular value decomposition of the channel matrix. This limitation translates into
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the condition of 2U ≤ A for non-unitary signals. To solve this problem, a modified

CLS detector is proposed for the rank-deficient channel matrix.

Since s is a vector of constant modulus signals, solving (2.3) is equivalent to solving

s̃ = arg min
s∈QU

‖y −Hs‖2 + σ2
n‖s‖2

= arg min
s∈QU

{sH(HHH + σ2
nI)s− yHHs− sHHHy}

= arg min
s∈QU

{sHHH
eqHeqs − yH

eqHeqs− sHHH
eqyeq}, (2.10)

where σ2
n is the variance of Guassian noise, Heq is from the Cholesky factorization

(HHH+σ2
nI) = HH

eqHeq, and yeq = (HH
eq)

−1HHy. Heq becomes the equivalent channel

matrix while yeq is the equivalent received signal vector. This solves the rank-deficient

problem when 2U ≥ A. Therefore the modified CLS detector can be used with M-

QAM.

2.1.4 Simulation Results

A current wireless local-area network (LAN) standard at 5GHz is ETSI BRAN

HIPERLAN/2 [34]. Such a wireless LAN with four simultaneously transmitting users

and a BS with four antennas is considered here. The simulation parameters are sum-

marized in Table 2.1.

TABLE 2.1

Simulation Parameters.

Parameter Value

Number of simultaneous users 4

Number of basestation antennas 4

Bandwidth for each user (MHz) 20

Number of subcarriers 64

Number of data subcarriers 48

Cyclic Prefix Length 16
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The error performance of six detectors (SB is the sensitive bits algorithm from [35])

for QPSK (Fig. 2.2) and 16QAM (Fig. 2.3) is compared. In low SNR, the MMSE

detector gains 2 dB over the V-BLAST detector [13], but the latter outperforms the

former by more than 2 dB in high SNR. The MMSE detector performs slightly better

than the CLS detector for both QPSK and 16QAM. The ZF detector performs the

worst in all SNR, and our new detector performs significantly better than the other

five detectors. It gains about 7 dB over the V-BLAST detector at a BER of 10−2.

This gain increases as the SNR increases. The diversity order (the magnitude of the

slope of the error rate curve) is higher for our new detector than that for V-BLAST.
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Fig. 2.2. Bit error rate of the detectors for QPSK.

Fig. 2.4 shows the performance of the six detectors for the coded system. QPSK

modulation and the industry-standard generator polynomials g1 = 133OCT and g2 =

171OCT of rate 1/2 convolutional code with constraint length 7 are used. As before,

our new detector performs significantly better than the other detectors.

Fig. 2.5 shows the computational complexity of the six detectors for QPSK. The

complexity of the new detector is high for low SNR (two orders of magnitude higher)

but decreases significantly as SNR increases, approaching that of the V-BLAST de-

tector.
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Fig. 2.3. Bit error rate of the detectors for 16QAM.

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error Performance of a Convolutionally Coded OFDM/SDMA System

SNR (dB)

B
it 

E
rr

or
 R

at
e

ZF
CLS
MMSE
V−BLAST
SB (I=3)
SB (I=5)
New Detector

Fig. 2.4. Bit error rate with convolutional coding.

2.2 Low-Complexity Optimal Detection for Hybrid

STBC and SM

The idea of combining orthogonal space-time block codes (STBCs) and spatial multi-

plexing (SM) was originally proposed in [36]. SM can transmit at a rate of n symbols
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Fig. 2.5. Computational complexity of the detectors.

per time slot for a system with n transmit antennas and m receive antennas (m ≤ n),

but does not achieve the maximum diversity order of nm of this system. On the other

hand, orthogonal STBCs can transmit only up to a rate of 1 symbol per time slot

regardless of the number of transmit antennas, but achieve the maximum diversity

order of nm. Thus, such hybrid systems that provide a trade off between rate and the

diversity gain are of interest, but their optimal detectors have not yet been reported.

Some suboptimal detectors, namely the ZF group detector, the MMSE group

detector, and the QR group successive interference cancelation (SIC) detector, have

been proposed in [37, 38] for the STBC/SM hybrid system. All these detectors incur

a significant performance loss compared to the ML detector. In this section, two new

optimal detectors are proposed for the orthogonal STBC/SM hybrid systems. Our

algorithms can also be viewed as a generalization of the conventional SD to handle

input matrix symbols. The simulation results show that the new detectors achieve

the ML performance with low complexity for a wide range of SNRs.
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Fig. 2.6. System model.

2.2.1 System Model

The STBC/SM hybrid system consists of a serial/parallel converter, a number of

STBC encoders, and a detector. The input data stream s1 · · · sb is split into q groups

of length b1, · · · , bq with b1 + · · · + bq = b. The q groups are sent into q independent

STBC encoders, C1, · · · , Cq, respectively. Each STBC encoder has ni(1 ≤ i ≤ q)

transmit antennas with n1 + · · · + nq = n. All the STBC encoded symbols are

transmitted simultaneously from n transmit antennas. The i-th group of data stream

is encoded by Ci and transmitted from ni antennas in ti time slots. In this section,

we assume t1 = · · · = tq = t. With m receive antennas at the receiver, the detector

provides the estimates ŝb · · · ŝ1. The system model is shown in Fig. 2.6.

The received signal over t time slots is given by

y = Hs + n, (2.11)

where H = [hkl] is the m × n channel matrix with hkl ∼ CN (0, 1) for k = 1, · · · , m

and l = 1, · · · , n and E{hklh
∗
k′l′} = δk,k′δl,l′, s is the n×t matrix after STBC encoding,

and n is the m × t matrix of additive white noise CN (0, σ2
n) terms. H is assumed

constant over a block of t time slots but changes independently from block to block.

The transmit signal matrix s can be written as s = [sT
1 sT

2 · · · sT
q ]T , where si is the

coded block from the i-th STBC encoder. The detector operates with the full channel

state information.
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2.2.2 Detection of the STBC/SM hybrid system

The detectors proposed in [38] consist of two parts. The first part is a group receiver

that separates each STBC block from one another. The second part consists of a

number of STBC decoders. Unlike these detectors that separate the group detector

and STBC decoder, our new SD-based detectors exploits the block structure due to

the STBC.

2.2.2.1 MMSE group detector

The i-th MMSE group detector [38] for the signals transmitted from Ci is given by

Wi = arg min
W

E(||Wy − Hisi||2)

= HiH
H
i (HHH + σ2

nIm)−1, 1 ≤ i ≤ q. (2.12)

With the corresponding virtual channel matrix Hi, the output of the i-th MMSE

group detector is processed by an STBC decoder to obtain the estimation of sb1+···+bi−1+1,

· · · , sb1+···+bi
.

2.2.2.2 ZF group detector

ZF group detectors for (3, 3) and (4, 4) hybrid systems with Alamouti codes [7] are

proposed in [39]. Here a ZF group detector is proposed for an (8, 8) hybrid system

with the Alamouti code.

The 8 × 8 channel matrix decomposed into four 4 × 4 matrices is given by

H =




A4 B4

C4 D4



 , (2.13)

where A4,B4,C4, and D4 are all 4× 4 matrices. The ZF group detector at this level

is

W4 =




B−1

4 −D−1
4

A−1
4 −C−1

4



 . (2.14)
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Thus

W4H =




B−1

4 A4 − D−1
4 C4 04

04 A−1
4 B4 −C−1

4 D4



 (2.15)

and the output of this detector is ỹ = W4Hs, which can be written as




ỹ1

ỹ2



 = (B−1
4 A4 −D−1

4 C4)




s1

s2



 (2.16)




ỹ3

ỹ4



 = (A−1
4 B4 −C−1

4 D4)




s3

s4



 (2.17)

For (2.16), the equivalent channel matrix Heq can be written as

Heq = (B−1
4 A4 − D−1

4 C4) =




A2 B2

C2 D2



 , (2.18)

where A2,B2,C2, and D2 are all 2× 2 matrices. The ZF group detector at this level

is

W2 =




B−1

2 −D−1
2

A−1
2 −C−1

2



 . (2.19)

Thus

W2Heq =




B−1

2 A2 −D−1
2 C2 02

02 A−1
2 B2 − C−1

2 D2



 (2.20)

and the output of this detector is ŷ = W2Heqs, which can be written as

ŷ1 = (B−1
2 A2 − D−1

2 C2)s1 (2.21)

ŷ2 = (A−1
2 B2 −C−1

2 D2)s2. (2.22)

With the corresponding virtual channel matrix (B−1
2 A2 − D−1

2 C2), ŷ1 is processed

by an STBC decoder to estimate s1 and s2. The detection for s3, · · · , s8 is similar.

This method can also be extended to any system provided the number of antennas is

2k, k = 2, 3, · · · .
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2.2.2.3 New detector A

The ML detector for the signal model in (2.11) is given by

s̃ = arg min
s∈Qn

‖y −Hs‖2. (2.23)

Let the QR decomposition of H be H = QR, where Q is a unitary matrix and

R is an upper triangular matrix. Let ŷ = QHy. Thus, Eq. (2.11) is equivalent to

ŷ = Rs + n̂, where n̂ = QHn. R is an upper triangle matrix given by

R =











R11 R12 · · · R1,q

0 R22 · · · R2,q

...
...

. . .
...

0 0 · · · Rq,q











. (2.24)

The k-th component of block ŷ can be written as

ŷk = Rk,ksk +

q
∑

i=k+1

Rk,isi + n̂k. (2.25)

Thus (2.23) is equivalent to

s̃ =arg min
s∈Qn

q
∑

k=1

‖ŷk − Rk,ksk −
q
∑

i=k+1

Rk,isi‖2

︸ ︷︷ ︸

f(s)

.

(2.26)

The key complexity-reducing idea of SD is to generate only admissible signal points

such that

f(s) ≤ r2. (2.27)

The initial radius r may be chosen according to the noise variance [30] and can be

increased if it is too small to contain any admissible solution. The problem is that

f(s) is expressed in terms of matrix symbols sk, but the admissible signal points

should be based upon the constellation symbols sk (k = 1, . . . , b). To overcome this
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problem, we use the linear dispersion representation: the matrix symbol sk can then

be written in terms of the underlying constellation symbols as

sk =
∑

sn∈Gk

(Re{sn}An +
√
−1Im{sn}Bn), (2.28)

where sn ∈ Gk are the constellation symbols encoded in sk and An,Bn are fixed basis

matrices of Ck and they satisfy certain orthogonality conditions [40]. As shown in [40],

the q-th term in (2.26) can be written as

‖Rq,q‖2
∑

sn∈Gq

‖sn − 1/‖Rq,q‖2

× (ReTr{ŷqRq,qAn} − iImTr{ŷqRq,qBn})‖2.

(2.29)

Now a looser condition than (6) is that the term (2.29) should be less than r2. Using

this slightly loose condition, the admissible set of sn ∈ Gq can be obtained. In fact,

assume sq
1, · · · , sq

bq
are the independent symbols in the set of sn ∈ Gq. Since each

term in (2.29) is nonnegative, a necessary condition for s to lie inside the hypersphere

is that

‖Rq,q‖2‖sq
1 − 1/‖Rq,q‖2

× (ReTr{ŷqRq,qA
q
1} − iImTr{ŷqRq,qB

q
1})‖2 ≤ r2. (2.30)

Once an sq
1 that satisfies the condition of (2.30) is chosen, a new radius r2

q,1 is derived

accordingly after the deduction of the contribution of sq
1 in (2.29) from r2. The next

step is to choose an sq
2 satisfying the new radius. If there is no such sq

2, the previous

step must be retraced to obtain a new sq
1 and therefore a new r2

q,1. This same process

continues until it reaches s1
b1

, obtaining an admissible set of sn ∈ Gq satisfying (2.27).

The radius r is then updated and the search space is limited by the new radius. The

above process repeats for the q− 1-th term to obtain the admissible set of sn ∈ Gq−1.

This process repeats until all admissible sn ∈ Gk (k = 1, . . . , q) are generated. Of

course, the admissible vectors are generated in depth-first fashion and whenever an

admissible vector is found the radius r is updated and the search space is limited by

the new radius. The above process continues until the ML solution is found.
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2.2.2.4 New detector B

An alternative detector we propose here is that the structure of STBC is processed

before a conventional SD is used to achieve ML detection.

Without the loss of generality, the STBC encoders are assumed to be the Alamouti

code [7]. Since the s in (2.11) is an n × 2 matrix, a conventional SD can not be

employed directly with (2.11). In fact, (2.11) can be written as








y11 y12

...
...

ym,1 ym,2








=








h11 · · · h1,n

...
. . .

...

hm,1 · · · hm,n





















s1 −s∗2

s2 s∗1
...

...

sn−1 −s∗n

sn s∗n−1














+ n. (2.31)

Taking advantage of the orthogonal structure of the STBC, (2.31) can be transformed

to

y′ = H′s′ + n′, (2.32)

where y′ =
[

y11 y∗
12 · · · ym,1 y∗

m,2

]T

, s′ =
[

s1 s2 · · · sn−1 sn

]T

, and

H′ =














h11 h12 · · · h1,n−1 h1,n

h∗
12 −h∗

11 · · · h∗
1,n −h∗

1,n−1

...
...

. . .
...

...

hm,1 hm,2 · · · hm,n−1 hm,n

h∗
m,2 −h∗

m,1 · · · h∗
m,n −h∗

m,n−1














. (2.33)

Thus s′, the part that contains s, has become a vector in (2.32), which means the

conventional SD can now be applied to obtain the ML estimate of s′.

The ML detector for (2.32) is given by

s̃′ = arg min
s′∈Qn

‖y′ − H′s′‖2. (2.34)

Consider QAM for s′. Since a QAM constellation can be decoupled into two real

PAM constellations, solving (2.34) is equivalent to solving

s̃′′ = arg min
s′′∈Q2n

‖y′′ − H′′s′′‖2, (2.35)
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where y′′ = [Re{y′}T Im{y′}T ]T , s′′ = [Re{s′}T Im{s′}T ]T , and

H′′ =




Re{H′} −Im{H′}
Im{H′} Re{H′}



 . (2.36)

Eq. (2.35) can be written as

s̃′′ = arg min
s′′∈Q2n

(H′′†y′′ − s′′)HRHR(H′′†y′′ − s′′)

= arg min
s′′∈Q2n

(s′′ − ŝ′′)HRHR(s′′ − ŝ′′), (2.37)

where ŝ′′ = H′′†y′′ and R is an upper triangular matrix such that RHR = H′′HH′′.

Let the entries of R be denoted by rij , i ≤ j. In this section, we assume m ≥ n and

the diagonal terms of R are non-zero (rii 6= 0). A candidate solution is inside the

hypersphere of radius r when

(s′′ − ŝ′′)HRHR(s′′ − ŝ′′) =

2n∑

i=1

r2
ii ‖s′′i − ρi‖2 ≤ r2, (2.38)

where ρi = ŝ′′i −
∑2n

j=i+1
rij

rii
(s′′j − ŝ′′j ). The initial radius may be chosen according to

the noise variance [29]. The initial radius can be increased if it is too small to contain

any candidate solution. Since each term in 2.38 is nonnegative, a necessary condition

for s′′ to lie inside the hypersphere is that r2
2n,2n ‖s′′2n − ŝ′′2n‖2 ≤ r2, or equivalently

⌈

ŝ′′2n − r

r2n,2n

⌉

≤ s′′2n ≤
⌊

ŝ′′2n +
r

r2n,2n

⌋

, (2.39)

where d·e denotes the smallest integer greater than or equal to its argument. b·c
denotes the largest integer less than or equal to its argument. The same process

continues for s2n−1 and so on until it reaches s1, obtaining a vector point satisfying

(2.37). The radius r is then updated and the search space is limited by the new

radius. The above process continues until no further points are found within the

hypersphere. This process yields the ML solution.

For other orthogonal STBCs, s can always be transformed into a vector because of

the orthogonality. For example, for an (n,m) hybrid system with a rate 3/4 STBC [40],
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(2.11) can be written as








y11 · · · y14

...
. . .

...

ym,1 · · · ym,4








=








h11 · · · h1,n

...
. . .

...

hm,1 · · · hm,n



























s1 0 s2 −s3

0 s1 s∗3 s∗2

−s∗2 −s3 s∗1 0
...

...
...

...

sn−2 0 sn−1 −sn

0 sn−2 s∗n s∗n−1

−s∗n−1 −sn s∗n−2 0




















+ n. (2.40)

Exploiting the orthogonal structure of the STBC, (2.40) can be transformed into

y′ = H′s′ + n′, (2.41)

where y′ =
[

y11 y12 y∗
13 y14 · · · ym,1 ym,2 y∗

m,3 ym,4

]T

,

s′ =
[

s1 s∗2 s3 · · · sn−2 s∗n−1 sn

]T

, and

H′ =


























h11 −h13 0 · · · h1,n−2 −h1,n 0

h12 0 −h13 · · · h1,n−1 0 −h1,n

h∗
13 h∗

11 h∗
12 · · · h∗

1,n h∗
1,n−2 h∗

1,n−1

0 h12 −h11 · · · 0 h1,n−1 −h1,n−2

...
...

. . .
...

...

hm,1 −hm,3 0 · · · hm,n−2 −hm,n 0

hm,2 0 −hm,3 · · · hm,n−1 0 −hm,n

h∗
m,3 h∗

m,1 h∗
m,2 · · · h∗

m,n h∗
m,n−2 h∗

m,n−1

0 hm,2 −hm,1 · · · 0 hm,n−1 −hm,n−2


























. (2.42)

Thus s′, the part that contains s, has become a vector in (2.41), which means the

conventional SD can now be applied to obtain the ML estimate of s′.
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2.2.3 Simulation Results

Fig. 2.7 (4QAM) and Fig. 2.8 (16QAM) show the error performance of an un-

coded (4,4) STBC/SM hybrid system with two Alamouti encoders at the transmit

side. The performance of a (2, 4) SM system (no STBC encoders) is included. Both

these systems have the same date throughput. The ZF group/STBC detector per-

forms the worst among all detectors. The MMSE group/STBC outperforms the ZF

group/STBC by less than 2 dB for most of the SNR range. The QR group SIC/STBC

detector has a 2 dB or more gain over the MMSE group/STBC one in high SNR. The

new detector (either version A or B) outperforms the QR group SIC/STBC detector

by more than 4 dB at the bit error rate (BER) of 10−4. The MMSE detector for the

equivalent SM system performs slightly better than the ZF group/STBC detector.

The ML detector for the SM system performs worse than the MMSE/STBC detector

in low SNR but outperforms the latter in high SNR.

For 16QAM, the performances of the ZF group/STBC detector and the MMSE

detector for the SM system are very close. The MMSE group/STBC detector has

a 2 dB gain over both of them in low SNR. In high SNR, the performance of the

QR group SIC/STBC detector has about a 2 dB gain over the MMSE detector for

the equivalent SM system. The new detector (either version A or B) significantly

outperforms the QR group SIC/STBC detector by a 3 dB at a BER of 10−2.

Fig. 2.9 shows the performance of the detectors in an uncoded (8,8) 4QAM

STBC/SM hybrid system with 4 Alamouti encoders at the transmit side. The (4,

8) SM system has the same data throughput as the (8, 8) STBC/SM system. In

high SNR, the MMSE group/STBC detector gains 6 dB over the ZF group/STBC,

which has the worst performance among all. The QR group SIC/STBC detector

outperforms the MMSE group/STBC one by more than 2 dB at the BER of 10−4. The

MMSE detector for the SM system outperforms the QR group SIC/STBC detector

by 1 dB in high SNR. The ML detector for the SM system has a 3 dB gain over the

MMSE detector for the same SM system. The new detector (either version A or B)
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outperforms the ML detector for the SM system by 4 dB and has the best performance

among all.

Fig. 2.10 shows the computational complexity of a (4, 4) 4QAM STBC/SM

hybrid system. The two new detectors have similar complexity. In low SNR, the

new detectors have a high computational complexity, but the complexity decreases
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significantly as the SNR increases. In high SNR, the complexity of the new detectors

approaches that of the MMSE group/STBC detector. The complexity of both the

detectors for the (2, 4) SM system is low as a result of the small number of transmit

antennas. The complexity of the naive ML detector for the equivalent SM system

increased exponentially with the increase of the number of transmit antennas.

2.3 Low-Complexity Optimal Detection for MIMO

OFDM Systems

High data rate transmission in frequency selective fading channels can be achieved

by the combination of the OFDM and the MIMO techniques. MIMO significantly

increases the system capacity. For high data rate transmission, MIMO channels be-

comes frequency selective. Since OFDM converts a frequency selective fading chan-

nel into a set of flat fading channels, MIMO-OFDM transforms a frequency selective

MIMO channel into a set of flat fading MIMO channels. A MIMO-OFDM system

transmits independent OFDM modulated data from multiple antennas simultane-
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ously.

A V-BLAST detector for a MIMO OFDM system has been proposed in [41]. This

detector utilizes the high correlation among neighboring subcarriers in some practical

channel models. However, the V-BLAST detector incurs a significant performance

loss over the ML detector. An SD with V-BLAST optimal detection ordering [29]

is shown to reduce the complexity of the SD. However, depending on how often the

ordering is performed, the complexity of the ordering itself may have a considerable

impact on the overall complexity. In this section, a new low complexity optimal

detector is proposed for a fast fading MIMO OFDM system by taking advantage of

the high correlation among neighboring subcarriers in the system. In the proposed

algorithm, the subcarriers are partitioned into a number of groups such that the

correlation among the subcarriers in each group is high. Within each group, the

symbol detection order is adjusted on the basis of the central subcarrier. The same

order is then used on other subcarriers in the group. The simulation results shows

that this new detector has a lower complexity than the conventional SD or the one in

which the symbol-detection order is optimized for each subcarrier in the group, but

it still achieves the ML performance.
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2.3.1 System Model

Consider a MIMO OFDM system with n transmit antennas, m receive antennas,

and K subcarriers. The date stream is converted into n parallel streams. Each of

the parallel streams is again sent into a different serial/parallel converter, of which

the output is fed into a K-tap inverse fast Fourier transform (IFFT). The output of

the IFFT along with added cyclic prefix is converted into a serial stream and then

transmitted through one of the n transmit antennas. The received signals at each of

the m receive antennas are converted into parallel streams. After the cyclic prefix is

removed, a K-tap FFT is performed and the output is fed into a MIMO detector.

The system model is shown in Fig. 2.11.

Since each of the n streams undergoes the identical OFDM, each subcarrier is

effectively an (n, m) narrow band MIMO system. MIMO detectors such as the SD

can be used on each subcarrier. The channels between different transmit and receive

antennas are statistically the same. The impulse response of one of the multipath

channels can be written as h = [h1, h2, · · · , hL]T where L is the number of multipath

channel taps. The frequency response of the channel for an OFDM system with

K subcarriers is given by hF = Fh, where Fi,j = (1/
√

K) exp(−j2π(((i − 1)(j −
1))/K)), i = 1, · · · , K, j = 1, · · · , L + 1. The correlation coefficient of subcarriers i

and j can be written as

ρi,j =
fH
i E(hhH)fj

√

fH
i E(hhH)fif

H
j E(hhH)fj

, (2.43)

where fk is the k-th column of F.
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2.3.2 New Detector

Since each subcarrier is effectively an (n, m) narrow band MIMO system, conventional

MIMO detectors can be applied on each subcarrier. For example, ML detection

is possible by using SD on each subcarrier. Although the SD has a much lower

complexity than the brute-force ML detector, the overall complexity of using the SD

on all subcarriers is high when the number of subcarriers is high.

The computational complexity of SD is sensitive to the ordering of the columns of

the channel matrix [30]. Different ordering of the columns of channel matrix H can

lead to a lower complexity than that of the unordered H.

Let ri,i be the element of the upper triangular matrix from the QR decomposition

of the channel matrix H. Obviously, a larger ri,i corresponds to a smaller interval,

which means less search for the i-th component and therefore reduces the complexity.

By using the V-BLAST optimal detection ordering [42] to generate the permutation

matrix Π, min1≤i≤n ri,i is maximized over all column permutations. Thus the maxi-

mum interval is minimized after the ordering and the search complexity is reduced.

The column ordering Π(n), Π(n − 1), · · · , Π(1) is recursively given by

Π(i) = arg max
j∈Ii

{hT
i [I −Hi,j(H

T
i,jHi,j)

−1BT
k,j]hj} (2.44)

where hi is the i-th column of H, Hi,j is the m × (i − 1) matrix formed by hk with

k ∈ Ii − {j}.
Depending on how often the ordering is performed, the complexity of the order-

ing itself may have a considerable impact on the overall complexity. In a MIMO

OFDM system with fast fading channels, performing ordering on all subcarriers is

not desirable considering its impact on overall complexity.

In some practical channel models, such as non-line-of-sight (NLOS) HiperLAN/2

channel models A, B, C, and E, the correlation is high among neighboring subcarriers

[41]. Taking advantage of the high correlation, the subcarriers are partitioned into

a number of groups such that the correlation among subcarriers within each group

is above a threshold value. Within each group, the V-BLAST column ordering is
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performed on the center carrier before the conventional SD is applied. The same

ordering is used on all other subcarriers in the group before the SD is performed on

each of the subcarriers.

The following steps constitute the new detector algorithm:

1 Set the value of the threshold of the subcarrier correlation coefficient;

2 Partition the subcarriers into a number of groups of size k;

3 Perform the V-BLAST column permutation on the center carrier and apply SD

after the ordering;

4 The column permutation matrix Π is recorded and applied to other subcarriers

in the group;

5 SD is performed on these subcarriers after the ordering;

6 The same procedure is applied to other groups.

The ordering recorded from the center subcarrier in each group is not strictly

optimal for other subcarriers in the group. However, due to the high correlations

between the subcarriers within one group, the channels in the group change only

slightly. Therefore it is reasonable to assume that the ordering of the center subcarrier

is suboptimal for other subcarriers. The complexity is reduced to a lesser degree on

the non-center subcarriers than it is on the center subcarrier.

2.3.3 Simulation Results

The ordered SD and the conventional SD are both ML. The error performance of

the ordered SD is the same as that of a conventional SD without ordering. Without

considering the complexity of the V-BLAST column permutation, the complexity of

the ordered SD is related to the dimensions of the channel matrix. The higher the
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dimensions are, the more complexity reduction the ordered SD provides. As the V-

BLAST column permutation is performed only once for each group of subcarriers,

the impact of the V-BLAST ordering to the overall complexity is negligible.

An OFDM system with 64 subcarriers and 16-tap cyclic prefix is simulated. The

channel is non-line-of sight (NLOS) HiperLAN/2 channel models A [43] with root

mean square (rms) delay spread of 50 ns. The maximum delay spread is 800 ns,

which corresponds to 16 channel taps for a 20MHz bandwidth sample spaced chan-

nel. Doppler spread is not considered here as the transmit and receive antennas are

stationary. The threshold value is set to 0.8 and the number of subcarriers in each

group is 8. Fig. 2.12 shows the error performance of a (6, 6) MIMO OFDM system.

The new detector has the same error performance as the conventional SD without

ordering. The new detector significantly outperforms the V-BLAST detector. At the

bit error rate of 10−2, the new detector has a 6 dB gain over the V-BLAST detector.

The new detector also has a larger diversity gain than the V-BLAST detector. Fig.

2.13 shows the complexity of a (20, 20) MIMO OFDM system. The complexity is

shown in the numbers of addition, multiplication, division, and square root. The

solid lines are the complexity of the conventional SD detections on each subcarriers.

The complexity of the new detector is shown in dotted line. The complexity reduction

achieved by the new detector is larger in low SNR than in high SNR. Fig. 2.14 shows

the complexity of a (32, 32) MIMO OFDM system.

2.4 Summary

In this chapter, a symbol detector is derived for wireless systems using SDMA and

OFDM. The detector uses a sphere decoder and has less computational complexity

than the naive ML detector. Two new detectors are derived for a hybrid system

with the combination of SM and STBC. They utilize the block structure of STBC

and the SD. Optimal detection is performed with computational complexity less than

the brute-force ML search. As well, a detector is derived based on an ordered SD
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for MIMO OFDM systems by exploiting of the high correlation among neighboring

subcarriers. The simulation results show that these detectors are optimal and have

significantly less complexity than the brute-force ML detector.
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Chapter 3

Constrained Detection for SM

MIMO Systems

This chapter develops constrained detectors and constrained decision feedback de-

tectors (DFDs) for SM MIMO systems. Section 3.1 introduces the background on

this problem. In Section 3.2, real constrained and decision feedback detectors are

proposed for real constellations by suppressing the imaginary interference compo-

nent. The constrained least squares (CLS) detector of [22] is generalized by dividing

the signal vector to several subgroups and applying the unitary constraints to these

subgroups. Similarly, the generalized MMSE (GMMSE) detector [44] is extended to

non-unitary constellations. In Section 3.3, a new ordering scheme that maximizes

the signal-to-interference and noise ratio (SINR) at each step is proposed using the

constrained detectors. Reference [45] shows that the first detected symbol limits the

overall performance of V-BLAST. Thus the constrained detector and the DFD is

combined to improve the quality of the first few detected symbols.
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3.1 Introduction

3.1.1 Background

Various efficient signal detection algorithms for SM MIMO systems have been de-

veloped, among which the V-BLAST (vertical Bell Laboratories layered space time)

detector [13] is a prime example. Although the optimal maximum likelihood detec-

tor (MLD) achieves the minimum error probability for independent and identically

distributed (i.i.d.) random symbols, a requirement that holds in many cases, the

complexity of the MLD grows exponentially with the number of transmit antennas

and the number of bits that index each scalar constellation point, making it com-

putationally prohibitive in most cases. Therefore, various computationally efficient

suboptimal detectors such as the ZF detector and the MMSE detector have been

developed. In [13], the V-BLAST detector with optimal ordering, nulling and in-

terference cancellation is proposed. The equivalence between V-BLAST and a ZF

decision feedback detector (DFD) is demonstrated [46]. If the nulling criterion is

MMSE, the resulting MMSE-DFD [47] makes a trade-off between interference sup-

pression and noise enhancement. However, these suboptimal detectors or equalizers

perform much worse than the MLD. In [28, 29, 48], the sphere decoder (SD), offering

optimal performance, is proposed as an MLD. Although it has low complexity in high

SNR, its worst-case complexity is exponential in the number of transmit antennas,

and its average complexity is high in low SNR or for large systems [23]. Both perfor-

mance and complexity gaps between the MLD and the existing suboptimal detectors

have motivated the development of alternative detectors.

The MIMO detection problem requires minimizing a quadratic cost function over

the discrete set of all possible transmit vectors. In the relaxation approach, this dis-

crete set is embedded in a larger bounded multidimensional continuous space and the

minimization is performed over this continuous space subject to certain constraints.

The resulting minimum solution is mapped back into the original discrete space. Sev-

eral such constrained detectors have been developed [22, 44, 49–51]. For example,
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a generalized MMSE (GMMSE) detector for code-division multiple-access (CDMA)

systems is proposed [44], where the constrained optimization problem resulting from

the relaxation of the BPSK vectors to be inside the unit hypersphere is solved via

the convex duality theorem and gradient descent. In [22], a tighter relaxation is

used in OFDM / SDMA systems employing unitary constellations by restricting the

binary vectors on the hypersphere, resulting in the constrained least squares (CLS)

detector. In [49], semidefinite relaxation (SDR) has been developed for BPSK-CDMA

systems. SDR has also been extended to general M-PSK and quadrature amplitude

modulation (QAM) constellations in [50, 52, 53].

3.1.2 System Model

Consider a standard MIMO system with n transmit antennas and m receive antennas.

In SM, different antennas transmit independent signals rather than jointly encoded

ones. That is, the input data stream is demultiplexed into n equal-rate substreams,

and each of which is simultaneously sent through one of the n antennas over a rich

scattering channel. Each receive antenna collects signals from all the n transmit

antennas. A finite signal constellation Q is used. Consider a flat fading MIMO

channel. The discrete-time equivalent baseband received signals can thus be written

as

r = Hx + n, (3.1)

where x = [x1, . . . , xn]T , xi ∈ Q is the transmitted signal vector, r = [r1, . . . , rm]T ,

ri ∈ C is the received signal vector, H = [hi,j] ∈ Cm×n is the channel matrix, and

n = [n1, . . . , nm]T , ni ∈ C is an additive white Gaussian noise (AWGN) vector. The

elements of H are i.i.d. complex Gaussian, hi,j ∼ CN (0, 1). The components of n

are i.i.d. with ni ∼ CN (0, σ2
n). The channel H is assumed known to the receiver and

n ≤ m. If n > m, the rank deficient problem can be transformed into a full rank

problem as shown in [31]. Note (3.1) models any linear, synchronous and flat fading

channels. Therefore, all our detectors can also be applied to CDMA systems.
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Given the standard model (3.1), the MLD that minimizes the average error prob-

ability is

x̂ = arg min
x∈Qn

‖r − Hx‖2. (3.2)

Due to the discrete nature of Q, (3.2) is an NP-hard problem and exhaustive search

for x̂ has a complexity exponential in n.

3.2 Constrained Detectors

3.2.1 Classic Linear Equalizers

We briefly review several classic linear equalizers. Since Q ⊆ C, a simple relaxation

is to allow each xi ∈ C. This relaxation results in the well-known ZF linear equalizer

and (3.2) becomes

x̂ZF = D

[

arg min
x∈Cn

‖r− Hx‖2

]

(3.3)

where D[x] denotes the threshold detection rule that yields the constellation symbol

closest to x. For a vector x, D[x] operates on each element individually. The mini-

mization part in (3.3) has the least squares (LS) solution and the ZF detector can be

thus written as

x̂ZF = D
[(

HHH
)−1

HHr
]

. (3.4)

If the same relaxation is combined with the minimization of the mean-square

error between the transmitted signals and detected signals E{‖x − x̂‖2}, where the

MMSE prefilter output is x̂ = Gr (G is a prefilter matrix). Using the orthogonality

principle [54], one can determine the optimal prefilter matrix and the MMSE linear

equalizer is then given by

x̂MMSE = D
[(

HHH + σ2
nIn

)−1
HHr

]

. (3.5)

However, both the ZF and MMSE linear equalizers do not guarantee the optimal

solution (2), due to the looseness of the relaxation.

For additional details, the reader is referred to [44, 55].
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3.2.2 Real Constrained Equalizers

A real constellation Q has all real elements, e.g. binary phase shift keying (BPSK)

and pulse amplitude modulation (PAM). If the real signals are transmitted through

a complex channel as (3.1), the received signals are complex, and the ZF and MMSE

solutions from (3.4) and (3.5) are usually complex vectors. However, the receiver has

the a prior knowledge that the transmitted signals are real. Moreover, the imaginary

part may cause additional interference. To impose a real constraint on (3.4) and (3.5),

Q is relaxed to R. Note that the complex system (3.1) can be transformed into a real

system as

r̃ =




Re{r}
Im{r}



 =




Re{H}
Im{H}



x +




Re{n}
Im{n}



 = H̃x + ñ. (3.6)

The entries of ñ have zero means and variance σ2
n/2. The ZF and MMSE linear

equalizers for the equivalent real system (3.6) can be obtained as

x̂R−ZF = D

[(

H̃HH̃
)−1

H̃H r̃

]

(3.7)

and

x̂R−MMSE = D

[(

H̃HH̃ + σ2
n/2In

)−1

H̃H r̃

]

(3.8)

where R-ZF and R-MMSE denote real constrained ZF and MMSE detectors. Since

both H̃ and r̃ are real, x̂R−ZF and x̂R−MMSE are also real. Therefore, the real constraint

is imposed implicitly.

Note that as the solution obtained by either (3.5) or (3.8) has a bias towards zero,

the prefilter output x̂ should be scaled to maintain the average constellation power

before applying threshold decision. By exploiting the power constraint or modulus

constraint of each constellation, the performance of MMSE equalizers can be improved

and x̂ needs not to be scaled.
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3.2.3 Modulus Constrained Subgroup Detectors

When Q is complex, the modulus constraints of Q can be exploited. Consider a

unitary constellation with unity modulus |xi|2 = 1, i.e., M-PSK. This pointwise

constraint directly leads to the candidate vectors being on the hypersphere xHx = n,

e.g., the CLS [22]. However, to achieve better performance, tighter constraints are

required. To this end, the vector x can be partitioned into g > 1 groups and each

group is associated with a subvector xi with size si, i = 1, . . . , g, where
∑g

i=1 si = n.

Each xi can be relaxed on a si-dimensional hypersphere xH
i xi = si. The constrained

detector is thus given by

x̂CML = D

[

arg min
xH

1
x1=s1,...,xH

g xg=sg

‖r− Hx‖2

]

(3.9)

where CML denotes constrained MLD1. The minimization problem in (3.9) can be

written as

min
x

‖r −Hx‖2

s.t. xH
1 x1 = s1, . . . ,x

H
g xg = sg. (3.10)

The Lagrangian L(x, λ1, . . . , λg) for this minimization problem is

L(x, λ1, . . . , λg) = ‖r −Hx‖2 +

g
∑

i=1

λi

(
xH

i xi − si

)
. (3.11)

Taking partial derivatives with respect to x the solution for x can be derived as

x̂(λ1, . . . , λg) =
(
HHH + Λ

)−1
HHr (3.12)

where Λ is a diagonal matrix and given by

Λ = diag{λ1, . . . , λ1
︸ ︷︷ ︸

s1

, . . . , λg, . . . , λg
︸ ︷︷ ︸

sg

}. (3.13)

Note that (3.12) is a minimizer of (3.11) only when HHH + Λ is semidefinite. When

g = 1, there is only one λ1, and Eq. (3.13) reduces to the CLS solution in [22].

1Note that the CML is not maximum likelihood, even in the case where (3.9) is solved exactly.
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When λ1 = . . . = λg = σ2
n, the CML detector reduces to the MMSE detector (3.5).

Compared with the CLS detector [22], our new relaxation is tighter and continuous

space is smaller.

In order to obtain the CML solution in (3.12), the optimal values for λ1, . . . , λg

have to be computed so that the unitary constraints are fulfilled. Substituting

x̂(λ1, . . . , λg) into (3.10), we need the zeros of the set of equations:

F1(λ1, . . . , λg) = ‖x̂1(λ1, . . . , λg)‖2 − s1 = 0

...

Fg(λ1, . . . , λg) = ‖x̂g(λ1, . . . , λg)‖2 − sg = 0. (3.14)

However, the solution of (3.14) does not necessarily guarantee that HHH + Λ is

semidefinite. Therefore, solving (3.14) does not guarantee the optimal solution of

(3.10).

The multidimensional Newton-Raphson root finding method [56] can be used to

solve (3.14). This method needs the partial derivative of Fi with respect to λj ,

∂Fi/∂λj , 1 ≤ i, j ≤ g. For simplicity, only the differentiation of F1 with respect to λ1

and that of Fg with respect to λ1 are shown. ∂Fi/∂λi can be obtained by permuting

the columns of H such that xi corresponds to the first si entries of x. ∂Fi/∂λj , j 6= i

can be obtained by permuting the columns of H such that xi corresponds to the last

si entries of x and xj corresponds to the first sj entries of x. We can obtain ∂F1/∂λ1

∂F1(λ1, · · · , λg)

∂λ1

=rHH




−2Q−3 Q−2BC−1Q−1 + Q−1BC−1Q−2

Q−2C−1BHQ−1 + Q−1C−1BHQ−2 −Q−2BC−2BHQ−1 − Q−1BC−2BHQ−2



HHr,

(3.15)

where A = HH
1 H1+λ1I, B = HH

1 H2, C = HH
2 H2+Λ2, Λ2 = diag(λ2, . . . , λ2, . . . , λg, . . . , λg),

Q = A − BC−1BH , H1 corresponds the first s1 columns of H, and H2 corresponds

the last n − s1 columns of H. We also have

∂Fg(λ1, · · · , λg)

∂λ1
= rHH




Φ Ψ

Ω Ξ



HHr, (3.16)
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where

Φ = −EHD− DHE, (3.17)

Ψ = −EHC−1 − EHC−1BHDH − DHC−1BHEH , (3.18)

Ω = −C−1EH − DBC−1E − EBC−1D, (3.19)

Ξ = −C−2BHEH − EBC−2 − EBC−2BHDH − DBC−2BHEH , (3.20)

A = HH
1 H1+Λ1I, B = HH

1 H2, C = HH
2 H2+λgI, Λ1 = diag(λ1, . . . , λ1, . . . , λg−1, . . . , λg−1),

Q = A − BC−1BH , H1 corresponds the first n − sg columns of H, H2 corresponds

the last sg columns of H, ∆ = diag(1, . . . , 1
︸ ︷︷ ︸

s1

, . . . , 0, . . . , 0), E = C−1BHQ−1∆Q−1,

and D = C−1BHQ−1.

There are several sets of roots for (3.14) and an initial estimate is needed to

guarantee the convergence to the desired root. In the CLS case, where only λ1 exists,

from [57], it was shown that the global minimum is achieved by the maximal real

root λ∗
1, which can be found using one-dimensional Newton method. But in the

multidimensional case, no such theorem exists that specifies the root that minimizes

(3.10). There are two possible initial estimates for λi. First, since the MMSE detector

(3.5) provides a good solution, the initial values for λi are chosen as λ1 = . . . = λg =

σ2
n. Second, the CLS is solved first and the solution λ∗

1 for g = 1 is used as the

intimal estimate. If the Newton method does not converge after a specified number

of iterations, we simply set λ1 = . . . = λg = σ2
n or λ1 = . . . = λg = λ∗

1, and the CML

detector outputs the MMSE or CLS solution. Our simulation results show that the

probability that the Newton method does not converge increases with the increase of

g, which means that the probability that (3.14) does not have a solution increases.

Since the Newton-Raphson root finding method returns the root close to the initial

estimate, the global minimum of (3.10) may not be achieved by the root. Therefore,

our approach is suboptimal for solving (3.10). However, based on our simulation

results we find that if the CLS solution is used as the initial estimate, our detector

always performs better than the original CLS detector.

For a non-unitary constellation such as QAM, we assume ρmax and ρmin as the
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largest and smallest modulus of the constellation, respectively. As before, the vector

x is partitioned into g groups and the constraint ρmax is applied on each group. Thus

each xi is relaxed within a si-dimensional hypersphere xH
i xi ≤ ρ2

maxsi. The CML

detector is modified as

x̂CML = D

[

arg min
xH

1
x1≤ρ2

max
s1,...,xH

g xg≤ρ2
max

sg

‖r− Hx‖2

]

. (3.21)

The Lagrangian function for the minimization problem in (3.21) can be expressed as

L(x, λ1, . . . , λg) = ‖r −Hx‖2 +

g∑

i=1

λi

(
xH

i xi − ρ2
maxsi

)
(3.22)

where λi is the Lagrangian multiplier associated with the ith inequality constraint,

and λi ≥ 0. The Lagrange dual function is the minimum value of the Lagrangian

over (3.22) x and

g(λ1, . . . , λg) = inf
x∈Cn

L(x, λ1, . . . , λg) (3.23)

Minimization of (3.22) for x has the same solution as (3.13). Substituting it back to

(3.22), we obtain

g(λ1, . . . , λg) = −rHH
(
HHH + Λ

)−1
HHr− ρ2

max

g
∑

i=1

λisi, λi ≥ 0. (3.24)

Both the objective function and the constraints are convex. There exists a strictly

feasible point. Therefore, the constraints meet the Slater’s condition and strong

duality holds for (3.21) [58]. The maximum value of g(λ1, . . . , λg) is equal to the

minimum of (3.21). λ1, . . . , λg is solved by maximizing (3.24) first, and substi-

tute them back into (3.12) to obtain the solution to (3.21). In (3.24), the set

S = {[λ1, . . . , λi]|λi ≥ 0, i = 1, . . . , g} is convex. A g-dimensional subgradient al-

gorithm [59] can thus be used to solve (3.24). For simplicity, we only show the

differentiation of g(λ1, . . . , λg) with respect to λ1. ∂g/∂λi, i > 1, can be obtained by

permuting the columns of H such that xi corresponds to the first si entries of x. We

can obtain

g(∂λ1, . . . , λg)

∂λ1

= rHH




Q−2 −Q−2BC−1

−C−1BHQ−2 C−1BHQ−2BC−1



HHr−ρ2
maxs1, (3.25)
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where B, C and Q are defined in (3.15). The gradient descent algorithm starts at

λ1 = λ2 . . . = λg = σ2
n. With dimenishing stepsize, the gradient descent algorithm

converges to the optimal solution [59]. If g = 1, the CML detector (3.21) reduces to

the GMMSE in [44]. Therefore, the CML detector is a generalization of the GMMSE.

For tighter constraints and better performance, ρmin can also be considered by

posing another g constraints ρ2
minsi ≤ xH

i xi, for i = 1, . . . , g on (3.21). But the

resulting optimization problem is non-convex, which is hard to solve in general.

Remarks:

• Eq. (3.12) reduces to the ZF detector if Λ = 0.

• The constrained detectors that use constellation modulus information can be

combined with the real constraint in 3.2.2. For real constellations, the CML

detectors (3.9) and (3.21) can be directly applied to the equivalent system (3.6)

by taking into account both the real and modulus constraints. The combined

receiver is denoted as R-CML.

• The proposed approach can also be extended to MMSE equalizers. Let the

prefilter matrix in MMSE be G and the prefilter output be x̂ = Gr. Denote

P as the average constellation power. The constrained MMSE equalizer can be

obtained by solving

min
G

E{‖x − x̂‖2}, s.t. E{x̂H
1 x̂1} = s1P, . . . , E{x̂H

g x̂g} = sgP. (3.26)

The details of solving (3.26) is omitted here.

3.2.4 Coordinate Ascent Improvement

Although the proposed detectors perform inferior to the MLD, in high SNR they

usually have only one or two symbol errors (i.e., x̃k = xk for most k and for unreliable

decisions x̃k 6= xk). We thus propose using an iterative detector to improve the

performance of our constrained detectors by correcting some unreliable decisions,
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which is a block version of a coordinate ascent algorithm [56]. As before with the

CML detectors, x is partitioned into g groups each with si symbols. In each iteration,

for i = 1, . . . , g, we minimize one group by fixing the other g−1 groups. The algorithm

can be summarized in the following two steps:

• Initialization: Set iteration number k = 0 and obtain the initial data detection

using a suboptimal detector. This initial solution is denoted as x̂(0).

• Iteration: k = k + 1 and set iteration number i = 1.

for i = 1 : g, compute

r(i) = r −Hīx̂
(k−1) (3.27)

where Hī is formed by zeroing the columns from fi =
∑i−1

j=1 sj + 1 to ei =
∑i

j=1 sj . The data vector xi = [xfi
, . . . , xei

]T is detected using

x̂i = arg min
xi∈Qsi

∥
∥r(i) − Hixi

∥
∥

2
(3.28)

where Hi is formed by the columns from fi to ei.

x̂(k) = [x̂1, . . . , x̂g]
T and the iteration continues until x̂(k) == x̂(k−1).

Remarks:

• When the number of groups g varies from 1 to n, different performance levels

ensue. In particular, if g = 1, (3.28) reduces to the maximum likelihood detec-

tion problem (3.2). When g = n, the iterative improvement algorithm is similar

to the parallel interference cancellation (PIC) detector in CDMA systems. How-

ever, the iterative algorithm for MIMO with g = n performs worse than PIC in

CDMA due to the following reason. In the CDMA case, the non-diagonal terms

in H due to the non-orthogonality of the spreading codes are typically small,

which does not hold for the MIMO channel H. Our new iterative improvement,

however, generalizes the PIC detector.
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• When si is small, exhaustive search can solve (3.28), or it may be solved by

the SD with reduced complexity. In any case, the worst-case complexity of

our new iterative algorithm is O(K
∑g

i=1 |Q|si), where K is the total number

of iterations. The complexity is also between those of the SD and PIC. How

to choose g and si depends on many factors. For example, it depends on the

suboptimal detector or equalizer used, and the desired BER and complexity.

Note that for practical system design, g and si can be chosen empirically to

achieve a good performance-complexity tradeoff at a given SNR.

• For soft decoding of linear block codes, Chase has proposed a class of suboptimal

decoders [60]. Different versions of the Chase detector have also been developed

for MIMO detection [61, 62].

• From [45, 63], the diversity order of the first few detected symbols is less than

that of the later detected symbols, and the overall performance is limited by the

first few symbols. Therefore, s1, . . . , sg should be in decreasing order to correct

the errors in early stages.

3.3 Constrained Decision Feedback Detectors

3.3.1 V-BLAST Detection

The V-BLAST detection algorithm [13] relies on nulling and interference cancellation.

Nulling is performed by linearly weighting the received symbols to satisfy the ZF

or MMSE criterion. For interference cancellation, the effect of previously-detected

symbols can be subtracted from the samples for the symbols yet to be detected. This

improves the overall performance when the order of detection is chosen carefully.

The detection process consists of n iterations. In the k-th iteration, the signal with

maximum post-detection SNR among the remaining n − k + 1 symbols is detected,

which is known to be the optimal detection order. The whole algorithm is described

as follows:
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• Initialization:

r1 = r (3.29a)

G1 = H† (3.29b)

k1 = arg min
j

‖(G1)j‖2 (3.29c)

• Recursion: for i = 1 to n

wki
= (Gi)ki

(3.29d)

x̂ki
= arg min

x∈Q

∣
∣x − wH

ki
ri

∣
∣
2

(3.29e)

ri+1 = ri − x̂ki
(H)ki

(3.29f)

Gi+1 = H†
k̄i

(3.29g)

ki+1 = arg min
j /∈{k1,...,ki}

‖(Gi+1)j‖2 (3.29h)

where (A)i is the i-th column of matrix A and Hk̄i
is obtained by zeroing the

k1, . . . , ki-th columns of H.

As suggested in [46], given an optimum order k1, . . . , kn, V-BLAST detection is

equivalent to the ZF-DFD. Assuming Π is the column permutation matrix obtained

from the optimum order, we apply Π to H2. Let the QR factorization of H̃ = HΠ

be QR, where Q is a unitary matrix and R is an upper-triangular one. Eq. (3.1) is

equivalent to

y = Rx + v (3.30)

where y = QHr and v = QHn is also an i.i.d. complex Gaussian vector with mean

zero and variance σ2
n. The second description of V-BLAST algorithm is given by

• for i = n to 1

x̂i = arg min
x∈Q

|yi − Ri,ix|2 (3.31a)

y = y − (R)ix̂i (3.31b)

2As in [46], the filtering matrices in constrained detectors and the corresponding constrained

ordering can be applied similarly.

46



end

where Ri,i is the (i, i)-th entry of R, and (R)i is the i-th column of R.

3.3.2 Real Decision Feedback Detectors

For real valued constellations, the V-BLAST algorithm (3.29a)-(3.29h) is performed

on the real system (3.6), which automatically takes the real constraint into account.

V-BLAST for (3.6) is denoted as R-V-BLAST. Using the same arguments in 3.2.2, R-

V-BLAST performs better than the original V-BLAST by suppressing the imaginary

interference. More precisely, if n = m and no permutations are used, the squared-

norm of the entries of R are known to be χ2 distributed [64], specifically, |Ri,i|2 ∼
χ2(2i), for i = 1, . . . , n and |Ri,j|2 ∼ χ2(2), for j > i, where χ2(k) denotes the chi-

squared distribution with k degrees of freedom. Since the performance of V-BLAST is

limited by the first detected symbol [45], the diversity order of V-BLAST detection is

only one [65,66]. However, if QR decomposition is performed on the 2n×n real matrix

H̃ in (3.6), we first construct a 2n × 2n real matrix H1 with each entry zero mean

and variance 1 and the first n columns are equal to H̃. Let the QR decomposition

H̃ and H1 be H̃ = Q̃R̃ and H1 = Q1R1, and |Ri,i|2 ∼ χ2(i), for i = 1, . . . , 2n and

|Ri,j|2 ∼ χ2(1), for j > i. We have R2 = H̃QH
1 , which consists of the first n columns

of R1. Therefore the squared-norm of the entries of R̃ are also χ2 distributed but

|R̃i,i|2 ∼ χ2(i + n), for i = 1, . . . , n and |R̃i,j|2 ∼ χ2(1), for j > i. Therefore, using

the analysis approach in [45, 63], it can be readily verified that the diversity order of

R-V-BLAST increases to (n + 1)/2. For real constellations, by using the decoupled

system with real constraint (3.6), the diversity order increases from 1 to (n + 1)/2,

which has significant performance gain over the original V-BLAST. This also shows

a diversity rate trade-off.

For decoupleable complex constellations i.e., QAM, (3.1) can be rewritten as




Re{r}
Im{r}



 =




Re{H} −Im{H}
Im{H} Re{H}








Re{x}
Im{x}



+




Re{n}
Im{n}



 (3.32)
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or

r̃ = H̃x̃ + ñ. (3.33)

In [67], it has been shown that applying V-BLAST to the equivalent real system (3.32)

yields an additional performance gain. However, diversity order is not increased.

These suggest that it is always beneficial to perform V-BLAST algorithm on the

equivalent real system if the constellation is decoupleable or real.

3.3.3 Constrained Ordering Decision Feedback Detectors

The ZF nulling vector wki
(3.29d) in V-BLAST completely removes the interferences

from the other antennas but also amplifies the additive noise. Instead of using wi in

(3.29d) to remove completely the interference, we use a non complete nulling vector

for a better tradeoff between noise enhancement and interference suppression. We

propose using the filtering matrix in our proposed constrained detectors in 3.2 as

nulling vector instead of the ZF nulling vector in V-BLAST. We replace (3.29b) and

(3.29g) with

G1 =
(
HHH + Λ

)−1
HH (3.34)

and

Gi+1 =
(
HH

k̄i
Hk̄i

+ Λi

)−1
HH

k̄i
(3.35)

where Λ and Λi can be calculated using (3.14) and (3.24) for constant unitary and

non-unitary constellations, respectively.

Since interference cannot be removed completely when nulling is performed using

CML, we propose to determine the detection order at each iteration by maximizing

the SINR defined as

SINRj =
|(Gi+1Hk̄i

)j,j|2E{|xj |2}
∑n

k=1,k 6=j |(Gi+1Hk̄i
)j,k|2E{|xk|2} + σ2

n‖(Gi+1)j‖2
(3.36)

where (A)i,j is the (i, j)-th entry of matrix A and (Gi+1)j denotes the j-th row of

matrix Gi+1. In the V-BLAST detection algorithm, (3.29h) is replaced by

ki+1 = arg max
j /∈{k1,...,ki}

SINRj . (3.37)
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This modified V-BLAST detection is denoted as constrained ordering DFD (CODFD).

Note that if Λ = σ2
nIn, CODFD reduces to MMSE-DFD in [47]. If Λ = 0,

our CODFD becomes the original V-BLAST. Different ordering schemes with CML

detectors and MMSE detectors can be combined to form hybrid ordering schemes.

From [45,63], the diversity order of the first few detected symbols is less than that of

the later detected symbols. Since the CML detector with g = n performs better than

the other CML detectors and MMSE detector but with higher complexity, ordering

can be performed with this detector in the first k symbols for a better tradeoff between

noise enhancement and interference suppression. In the last n−k stages, the original

V-BLAST or MMSE-DFD ordering with low complexity can be applied since the

diversity order in these stages is high. This hybrid ordering scheme gives a tradeoff

between complexity and performance.

3.3.4 Combined Constrained and Decision Feedback Detec-

tors

The performance of ZF-DFD, or equivalent V-BLAST, is limited by the error propa-

gation of decision feedback. Even with the V-BLAST optimal ordering, the diversity

order of V-BLAST detection is just one [65,66]. This is because V-BLAST is a greedy

algorithm. That is, a hard decision is made based only on the “local” metric (3.31a)

without taking the subsequent symbol decisions into account. We thus combine the

constrained detectors in 3.2 and the ZF-DFD in order to make hard decisions less

greedily. At each iteration, a “global” metric is used to make decision on each sym-

bol, which is obtained by the constrained detectors.

In the i-th iteration, define Ri = R(1 : i − 1, 1 : i − 1), ri = R(1 : i − 1, i) and

yi = y(1 : i− 1). For each x ∈ Q, after cancelling x from y, the soft decisions for the

remaining n − i symbols can be obtained using the constrained detectors as

x̂i =
(
RH

i Ri + Λi

)−1
RH

i (yi − rix) (3.38)

where xi = [x1, . . . , xi−1]
T and Λi is defined in (3.12). Since the solution to (3.10)

49



or (3.21) gives a low bound on ‖r − Hx‖2, the effect of x on the decision metric for

the remaining n − i symbols can be measured using ‖yi − rix − Rix̂i‖2. The global

metric for x is defined as

Mi(x) =‖yi − rix −Rix̂i‖2 + |yi − Ri,ix|2

=
∥
∥(In−i − Ri(R

H
i Ri + Λi)

−1RH
i )(yi − rix)

∥
∥

2
+ |yi − Ri,ix|2

=|ai − bix|2 , (3.39)

where

ai =

√

‖(In−i − Ri(RH
i Ri + Λi)−1RH

i )ri‖2
+ |Ri,i|2

bi =
(
yH

i (In−i −Ri(R
H
i Ri + Λi)

−1RH
i )2ri + y∗

i Ri,i

)
/ai. (3.40)

In the ZF-DFD, (3.31a) is simply replaced by

x̂i = D

[

arg min
x∈Q

Mi(x)

]

. (3.41)

The resulting detector is denoted by CML-DFD. With pre-computed ai and bi, the

total complexity of CML-DFD is still O(n3).

Remarks:

• If the CML detector is used, from the duality theory [58], ‖yi − rix − Rix̂i‖2

gives a lower bound and it measures the effect of x on the remaining symbols.

• If Λi = σ2
nIn−i, (3.38) reduces to MMSE. Though it does not give a lower

bound on ‖yi − rix−Rix̂i‖2, the metric (3.39) also measures the effect of x on

the overall metric. Therefore, the combined MMSE and DFD (CMMSE-DFD)

enhances the performance.

• The terms ‖yi − rix − Rix̂i‖2 and |yi − Ri,ix|2 are equally weighted in (3.39).

However, the two terms may be weighed differently, and (3.39) can then be

written as

Mi(x) =wi‖yi − rix −Rix̂i‖2 + (1 − wi) |yi − Ri,ix|2 , (3.42)
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where 0 ≤ wi ≤ 1 is the weight coefficient. If wi = 0.5, (3.42) is equivalent

to (3.39). If wi = 0, (3.42) reduces to (3.31b), and the CML-DFD becomes

ZF-DFD. The coefficient wi can be optimized by minimizing the MSE for xi.

In practice, wi may be found by simulation.

• When the channel varies rapidly, the coefficients ai and bi must be updated fre-

quently, thereby increasing the average complexity of the detector. To alleviate

this computation burden, the global metric (3.39) is used to detect the first k

symbols and the original V-BLAST local metric (3.31b) for the remaining n−k

symbols. The parameter k offers a complexity-performance tradeoff.

3.4 Simulation results

Our proposed constrained detectors are tested for a MIMO system with 8 transmit

and 8 receive antennas over a flat Rayleigh fading channel. The receiver has perfect

channel state information (CSI) and noise variance. The notation CAI-X denotes

the combination of the detector X and coordinate ascent iterative correction in 3.2.4.

The system is simulated using MATLAB V7.0.4 on a workstation with an Intel Xeon

processor at 3.2GHz. The average CPU computation time is used as the measure of

complexity. The signal-to-noise ratio per bit is defined as

Eb

N0
=

E{‖Hx‖2}
m log2 |Q|N0

, (3.43)

where N0 is the spectral noise density. The SD is implemented using the algorithm

in [48].

Fig. 3.1 shows the BER performance of different constrained detectors in a BPSK

modulated system. Our detectors are compared with the MLD and the CLS detector

[22]. When all the detectors are applied to the complex system (3.1), the CLS and

CML perform close to MMSE. In high SNR, the CML with g = 8 performs better

than MMSE. But all these detectors perform worse than the SD, which is optimal.

When they are applied to the real system (3.6), all the detectors perform better. At
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Fig. 3.1. Performance comparison of constrained detectors in an 8×8 MIMO system

with BPSK.

a BER of 10−3, R-MMSE has a 0.5 dB gain over R-CLS. Both R-CML with g = 4

and g = 8 perform better than R-MMSE. They have 0.3 dB and 2 dB gain over R-

MMSE, respectively. After employing the iterative improvement to all the detectors,

R-MMSE, R-CLS and R-CML with g = 4 have 2 dB, 1.8 dB and 1.5 dB gains at a

BER of 10−3. The detector R-CML with g = 8 improves by 1 dB at a BER of 10−4.

The BER of GMMSE [44] and different constrained detectors for 16QAM is shown

in Fig. 3.2. The GMMSE performs worst among all the detectors. CML with g = 4

has a 0.8 dB loss over MMSE at a BER of 10−3. In low SNR, CML with g = 8 per-

forms better than MMSE, but they perform identically in high SNR. With the Chase

iterative improvement, R-MMSE, R-CLS, R-CML with g = 4 and R-CML with g = 8

have 2 dB, 1.8 dB, 1 dB and 1.2 dB gains at a BER of 10−2, respectively. Since the

group-wise hypersphere constraint (3.21) is loose, the resulting performance improve-

ment is marginal. Tighter constraints are needed for high order QAM constellations.

Fig. 3.3 compares the BER of DFD and real DFD with different constrained

ordering schemes. BPSK modulation is used. The performance of V-BLAST and the
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Fig. 3.2. Performance comparison of constrained detectors in an 8×8 MIMO system

with 16QAM.

SD is also shown in Fig. 3.3. A dramatic performance improvement is observed even

for the constrained DFDs on the complex model. At a BER of 10−2, the CODFDs

and MMSE-DFD have more than 3 dB gain over V-BLAST. Therefore, the CODFD

and the MMSE-DFD have a smaller noise enhancement compared to the ZF-DFD.

When the real constraint is imposed, R-V-BLAST and R-MMSE-DFD perform close

to the SD at high SNR. They both perform only about 0.2 dB worse than the SD at

a BER of 10−4. The gap between R-CODFD with g = 8 and R-V-BLAST is 0.7 dB

at a BER of 10−4. Since the diversity order of R-V-BLAST is (n + 1)/2, it performs

well and the performance improvement by using R-MMSE-DFD is small.

Fig. 3.4 shows the BER of DFD with different constrained ordering schemes for

16QAM. V-BLAST and the SD are used as benchmarks. The performance of R-V-

BLAST using (3.33) is also presented. CODFD with g = 1 has only a 0.7 dB gain over

V-BLAST at a BER of 10−3, but it has a 0.8 dB loss over R-V-BLAST, which may

be due to the loose hypercube relaxation (3.21). When g = 8, CODFD has a 2.7 dB

loss over the SD at a BER of 10−3. MMSE-DFD performs better than CODFD. At
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Fig. 3.3. Performance comparison of constrained ordering decision feedback detectors

in an 8 × 8 MIMO system with BPSK.

a BER of 10−3, MMSE-DFD only has a 1.5 dB loss over the SD. The gap reduces

to 0.5 dB when R-MMSE-DFD is used. Therefore, R-MMSE-DFD is a preferable

ordering scheme. However, all the order schemes only achieve a diversity order one,

which may be caused by the greedy nature of the DFD.

The BERs of the combined constrained and decision feedback detectors for a

BPSK system for different k are shown in Fig. 3.5, where k is the number of symbols

detected using the global metric (3.39) and the remaining symbols are detected using

the original V-BLAST local metric (3.31b). Our proposed CML-DFDs significantly

improve the performance, indicating their ability to mitigate error propagation. The

performance of all the combined detectors improves with k. At a BER of 10−2,

the CML-DFD with g = 1 and k = 8 has a 4 dB gain over V-BLAST. The CML-

DFD performs better than the CMMSE-DFD with the same k. At a BER of 10−4,

the CML-DFD with g = 8 performs 0.5 dB better than the CMMSE-DFD when

k = 8. The performance gain by increasing k diminishes with the increase of k. For

CMMSE-DFD, 1.2 dB gain is achieved by increasing k from two to four at a BER of
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Fig. 3.4. Performance comparison of constrained ordering decision feedback detectors

in an 8 × 8 MIMO system with 16QAM.

10−3. However, the performance gain reduces to 0.2 dB when k increases from four

to eight. The CML-DFD with g = 8 and k = 8 has the best performance among all

the combined detectors and it performs only 2.2 dB worse than the SD at a BER of

10−3.

Fig. 3.6 shows the average computational time of the SD and CMMSE-DFD for

different k. The computational time of the SD is without counting the preprocessing.

For CMMSE-DFD, the coefficients ai and bi are computed in each block, which is

included in the computational time. The CMMSE-DFD has a constant complexity

with the same k over all the SNRs, and its complexity increases with k. The CMMSE-

DFD is faster than the SD in the observed SNR region. At SNR= 0dB, CMMSE-DFD

with k = 2 is 13 times faster than the SD. In practice, the choice k = n/2 achieves a

good performance-complexity tradeoff.

Fig. 3.7 shows the performance of combined detectors for a BPSK system when

the real constraint is applied. All the detectors perform close to the SD. R-CMMSE-

DFD with k = 1 has only a 0.6 dB loss over the SD at a BER of 10−4. R-CML-DFD
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Fig. 3.7. Performance comparison of combined constrained and decision feedback

detectors in an 8 × 8 BPSK MIMO system using real constraints.

with g = 8 and k = 8 almost achieves the maximum likelihood performance. However,

the performance gain by increasing k decreases compared to the complex case in Fig.

3.7. Our combined detectors perform better than the V-BLAST detector.

Fig. 3.8 shows the average computational time of the SD and R-CMMSE-DFD.

R-CMMSE-DFD is less complex than the SD for different SNR. Since only real op-

erations are performed when solving the real system (3.32), R-CMMSE-DFD is less

complex than the corresponding CMMSE-DFD, while the former performs better for

the same k. R-CMMSE-DFD with k = 1 has a 16 times complexity saving over the

SD at SNR= 0dB. When real constellations are used in practice, R-CMMSE-DFD

with k = 1 is enough to achieve good performance with low complexity.

Fig. 3.9 compares the combined constrained and decision feedback detectors for a

16QAM system for different values of k. While the performance of all the combined

detectors improves by increasing k, the improvement is not as significant as that for

a BPSK system. At a BER of 3 × 10−3, CMMSE-DFD with k = 8 has about 4 dB

gain over V-BLAST. CML-DFD with g = 1 performs worse than CMMSE-DFD, and
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Fig. 3.8. Average computational time of combined constrained and decision feedback

detectors in an 8 × 8 BPSK MIMO system using real constraints.

it has a 1 dB loss over CMMSE-DFD at a BER of 10−3. CML-DFD with g = 8 and

k = 8 achieves the best performance, and it almost reaches the benchmark by the

SD. Therefore, the global metric given by CML-DFD with g = 1 is loose compared

to the other two detectors.

Fig. 3.10 shows the average computational time of the SD and CMMSE-DFD for

different k. The computational time of the SD is without counting the preprocessing.

For CMMSE-DFD, the coefficients ai and bi are computed in each block, which is

included in the computational time. Similarly, the CMMSE-DFD has a constant

complexity for the same k over all the SNRs, and its complexity increases with k. In

low SNR, CMMSE-DFD is less complex than the SD for all values of K. The SD has

less complexity than CMMSE-DFD with k = 8 in high SNR (SNR> 23 dB). In low

SNR (SNR< 15 dB), which is usually the case in practice, our CMMSE-DFD has 2−3

orders of magnitude of complexity reduction over SD. For example, at SNR= 5dB,

our CMMSE-DFD is 538 times faster than the SD. When the channel is static over

several blocks and ai, bi can be precomputed, the resulting computational saving is
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even more significant.

3.5 Summary

In this chapter, several constrained detectors and constrained decision feedback de-

tectors have been proposed. Real constrained detectors are proposed to exploit the

real-valued property of the real constellations such as BPSK. This is found to increase

the diversity order to (n + 1)/2. The previous CLS detector for OFDM/SDMA and

GMMSE detector for CDMA were generalized as MIMO detectors for both unitary

and non-unitary constellations. A coordinate ascent iterative technique has also been

proposed to improve the performance of the proposed detectors. A constrained order-

ing scheme for DFDs has been derived to alleviate noise enhancement and to improve

interference suppression. We also proposed combined constrained and decision feed-

back detectors, where a global metric is defined to mitigate the error propagation.

The complexity of these combined detectors is reasonably low.
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back detectors in an 8 × 8 16QAM MIMO system.
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Chapter 4

Conclusion

4.1 Summary

The first part of the thesis focuses on the low-complexity optimal detection for MIMO

systems. A new detector based on the SD for OFDM/SDMA based wireless systems

is proposed. The use of sphere decoding allows optimal detection with computational

complexity much less than the naive ML detector in high SNR. Furthermore, it is

shown how the CLS detector of [22] is extended to detect non-unitary signals. Next,

the hybrid orthogonal STBC and SM system is considered. Such hybrid systems

provide a trade off between the rate and the diversity gain. Two new optimal detectors

are proposed for these hybrid systems. Our algorithms can also be viewed as a

generalization of the conventional SD to handle input matrix symbols. Finally, a new

low complexity optimal detector is proposed for a fast fading MIMO OFDM system

by taking advantage of the high correlation among neighboring subcarriers in the

system. In the proposed algorithm, the subcarriers are partitioned into a number of

groups such that the correlation among the subcarriers in each group is high. Within

each group, the symbol-detection order is chosen based on the central subcarrier. The

same order is then used on other subcarriers in the group to perform the SD.

The second part of the thesis is dedicated to the relaxation of the ML detection
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problem in MIMO systems and the development of a family of constrained detectors.

Real constrained detectors and decision feedback detectors are proposed for real con-

stellations by forcing the relaxed solution to be real. Modulus constrained subgroup

detectors are developed as MIMO detectors for both unitary and non-unitary con-

stellations. A new ordering scheme using these constrained detectors is proposed to

achieve a tradeoff between interference suppression and noise enhancement. Moreover,

to mitigate the error propagation inherent in decision feedback detectors, a combined

constrained and decision feedback detector is introduced. These constrained detec-

tors are suboptimal but they have much less complexity than the SD based optimal

detectors in low SNR.

4.2 Future work

Based on the research presented in this thesis, the following work can be carried out

in the future:

• In Chapter 2, a modified CLS detector is proposed after the increase of the

number of users as a result of non-unitary signals being expressed as a sum

of constant modulus signals. This method can be generalized to systems with

constant modulus signals that have more users than the number of receive an-

tennas.

• In Chapter 2, a large complexity reduction for the MIMO OFDM system is

achieved only when the number of antennas is large. Simulation results show

that when the number of antennas is small, for example a (4, 4) system, the

complexity reduction is minimal. This is due to the nature of the ordered

SD, which provides marginal reduction of computational complexity unless the

number of antennas is large. For MIMO OFDM systems with small number

of antennas, different algorithms other than the ordered SD must be found to

obtain low-complexity optimal detection.
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• In Chapter 3, the modulus constrained subgroup method can be extended to

MMSE equalizers. This new detector can be derived by solving the prefilter

matrix G in (3.26).

• Also in Chapter 3, the non-convex optimization problem of (3.21) with con-

straints ρ2
minsi ≤ xH

i xi, for i = 1, . . . , g can be solved by sum of squares method

in [68, 69].
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