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Abstract

Antenna selection reduces the system cost and complexity byreducing the number of ra-

dio frequency (RF) chains while still retaining full diversity. Despite extensive research

on receive antenna selection (RAS), the analysis of transmitantenna selection (TAS) and

transmit and receive antenna selection (T-RAS) encounters problems due to statistical diffi-

culties. In this thesis, performance analysis using a simple measurement known as amount

of fading (AF) is provided. Approximations and bounds for the AF as well as methods

to derive the exact AF calculations for TAS on Rayleigh fadingchannels are derived. A

simple approximate formula for the relationship between the AF and the coding gain in

a TAS system is achieved. Furthermore, the average bit errorrate (BER), average sym-

bol error rata (SER), outage probability and ergodic capacity are derived by utilizing the

characteristic function (CF) of the joint output signal-to-noise ratios (SNR) in generalized

T-RAS systems. This approach can be used for both independentand arbitrarily corre-

lated Rayleigh, Nakagami-m and Rician fading channels. The effects of the antenna array

configuration and the operating environment (fading, angular spread, mean angle-of-arrival

(AOA), mean angle-of-departure (AOD)) on the average BER performance are illustrated.

The simulation results are provided to validate the numerical calculations.
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Chapter 1

Introduction

1.1 Motivation

The wireless communication industry has been experiencingphenomenal growth rates over

the past several years. In many applications, wireless can eliminate the high costs of in-

stalling and maintaining traditional wired systems. Wireless services are accessible even

in the most rural community. However, the largest obstacle facing designers of wireless

communication systems is the random nature of the wireless propagation channel. The

wireless channel is non-stationary and noisy due to fading and interference. Recent ad-

vances have demonstrated that multiple-input-multiple-output (MIMO) wireless systems

can significantly improve the system performance. MIMO technology has thus got the

potential to provide the next major leap forward for wireless communications [1].

However, MIMO systems have increased complexity and cost compared to traditional

single-input single-output (SISO) systems. While additional antenna elements (patch or

dipole antennas) are inexpensive, the radio frequency (RF) elements are expensive. MIMO

systems withNt transmit andNr receive antennas requireNt (Nr) complete RF chains at the

transmitter and the receiver, respectively, including low-noise amplifiers, downconverters,

and analog-to-digital converters.

Due to this reason, there is an increasing interest in antenna selection schemes, where
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the ’best’ antenna subset of available antennas are chosen (either at one or both link ends),

downconverted, and processed. This selection reduces the number of required RF chains,

and thus, leads to significant savings in cost and complexity. The savings come at the price

of a (usually small) performance loss compared to the full-complexity system [2].

Several types of antenna selection are possible: Transmit Antenna Selection (TAS),

Receive Antenna Selection (RAS), and Transmit and Receive Antenna Selection (T-RAS).

Antenna selection attempts to choose the sub-channels thathave the ’best’ performance

in terms of bit error rate (BER) or capacity. When orthogonal space-time block codes

(OSTBCs) are used for transmission, the system is guaranteed to have full diversity but

with a less system cost [2].

1.2 Contributions

In this thesis, we analyze MIMO antenna selection with OSTBCs under both independent

and correlated fading channels.

• The amount of fading (AF) is derived for general MIMO systemswith independent

and identically distributed (i.i.d.) Rayleigh fading channels. Methods of deriving the

exact AF for MIMO TAS systems are provided. Upper bounds and lower bounds are

derived. A simple approximate AF formula is derived.

• Upper bounds and lower bounds on the AF are derived for fadingchannels with

correlation. Simple approximation formulas are derived for the constant correlation

model at the receiver side.

• A simple relationship between the AF and the symbol error rate (SER) is given under

i.i.d. fading channels and TAS. Correspondingly, a simple relationship between the

AF and coding gain is provided.

• By utilizing characteristic function (CF), the average BER, SER,outage probabil-

ity, ergodic capacity are derived for correlated channels in T-RAS MIMO systems.
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Results are extended to Rayleigh, Nakagami-m and Rician fading channels.

• The effects of the antenna array configuration and the operating environment (fading,

angular spread, mean angle-of-arrival (AOA), mean angle-of-departure (AOD)) on

the average BER performance are illustrated.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 2 provides an overview on general MIMO channels and antenna selection

schemes.

• Chapter 3 deals with AF analysis under both independent and correlated channels in

MIMO TAS systems. A simple relationship between AF, SER and coding gain is

also provided.

• In Chapter 4, a general framework for analyzing antenna selection is introduced. It

allows the derivation of SER, BER, outage probability as well asergodic capacity.

The effects of antenna array configuration and the operatingenvironment are also

illustrated. Numerical results are given to validate derived results.

• Conclusions and future work are given in Chapter 5.
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Chapter 2

MIMO Systems with Antenna Selection

In this chapter, MIMO systems with antenna selection are briefly overviewed. Statistical

assumptions and correlation models are presented in Section 2.2. In Section 2.3, common

performance measures are discussed. Different antenna selection schemes are introduced

in Section 2.4, along with a general system model under OSTBC.

2.1 Introduction

MIMO wireless systems, also known as multiple-antenna systems, have multiple antenna

elements at both the transmitter and receiver [3]. They werefirst analyzed in the 1980s and

1990s [4–6]. The interest in MIMO systems has exploded ever since. They are now being

used for the third-generation cellular systems and for future high-performance modes of

the highly successful IEEE 802.11 standard for wireless local area networks [7].

Obtaining the full benefits of multiple transmit antennas may however require the use

of space-time signaling schemes such as OSTBCs, a class of easily decodable space-time

codes that achieves the full diversity order [8]. The familyof OSTBCs simplifies the max-

imum likelihood (ML) decoding. However, a major limiting factor in the deployment of

MIMO systems is the cost of multiple RF chains (each RF chain requires an amplifier,

mixer, analog-to-digital converters and so on) at both endsof a wireless link. A power-

ful solution is to select a subset of the available antennas while keeping the advantages of
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using all antennas [1]. This results in a limited number of RF chains being dynamically

multiplexed between several transmit/receive antennas. In literature, RAS is a traditionally

well-researched topic [1,9] and the study of TAS is more recent [10–12].

2.2 System Models

2.2.1 Statistical Models of MIMO Fading Channels

Consider a wireless communication system withNt transmit andNr receive antennas. The

quasi-static flat fading MIMO channel can be represented in amatrix form as [13]:

H =




h1,1 h1,2 · · · h1,Nt

h2,1 h2,2 · · · h2,Nt

. . . . . . . . . . . . . . . . . . . . .

hNr,1 hNr,2 · · · hNr,Nt




(2.1)

wherehi, j (1≤ i ≤ Nr, 1≤ j ≤ Nt) is the channel gain between thej-th transmit antenna

and thei-th receive antenna. Note thathi, j is the composite channel impulse response

inclusive of the pulse-shaping filter at thej-th transmitter, the propagation channel and

the i-th receiver matched-filter. The special case in which the elementshi, j are i.i.d. zero

mean circularly symmetric complex Gaussian (ZMCSCG) with unit variance is called the

spatially white channelHw [13].

The squared Frobenius norm ofH, i.e.,‖H‖2
F , is defined as

‖H‖2
F = Tr(HHH) =

Nr

∑
i=1

Nt

∑
j=1

|hi, j|2. (2.2)

Due to the randomness ofH, ‖H‖2
F is also a random variable. The statistics of‖H‖2

F

determines the diversity performance. WhenH = Hw, the probability density function

(PDF) of‖H‖2
F is given by [14]

f (x) =
xNtNr−1

(NtNr −1)!
e−x. (2.3)
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Therefore,‖H‖2
F is a chi-squared random variable with 2NtNr degrees of freedom [15].

The channel gainhi, j for all i, j is commonly described using several different statistical

models. Usually, to analyze the performance of MIMO systems, the cumulative distribution

function (CDF), PDF and the moment generating function (MGF)of the fading amplitudes

are often required.

Rayleigh Distribution

In urban and suburban areas, when fading is caused by the superposition of a large number

of independent scattered components, the envelope of the received signal can be modeled

as a Rayleigh distribution [13]. LetX =
√

X2
1 +X2

2 whereX1 andX2 are independent zero-

mean Gaussian random variables with common varianceσ2, i.e. X1,X2 ∼ N(0,σ2). Thus,

X is Rayleigh distributed with the PDF given by

fX(x) =
x

σ2e−
x2

2σ2 , x ≥ 0. (2.4)

The squared-envelope is central chi-square distributed with two degrees of freedom, i.e.

X2 ∼ χ2(0,σ2) or exponentially distributed, whose CDF, PDF and MGF are given respec-

tively by [14]

FX2(y) = 1−exp(− y
2σ2), y ≥ 0 (2.5)

fX2(y) =
1

2σ2 exp(− y
2σ2), y ≥ 0 (2.6)

MX2(s) =
1

1+2σ2s
, s > − 1

2σ2 . (2.7)

Rician Distribution

In rural regions, on the other hand, the received signal contains a direct line-of-sight (LOS)

component; thus the envelope of received signal follows theRician distribution [13]. Let

X =
√

X2
1 +X2

2 whereX1 andX2 are independent Gaussian random variables with non-zero

meansm1, m2 and common varianceE [(X1−m1)
2] = E [(X2−m2)

2)] = σ2 andE (x) rep-

resents the expectation of the random variablex, i.e. X1 ∼ N(m1,σ2) andX2 ∼ N(m2,σ2).
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ThenX is Rician distributed with the Rician factorK =
m2

1+m2
2

2σ2 , the average powerΩ =

E (X2) = m2
1 +m2

2 +2σ2, i.e. X ∼ R

(
m2

1+m2
2

2σ2 ,m2
1 +m2

2 +2σ2
)

, and its PDF is given by

fX(x) =
x

σ2 exp

[
−x2 +m2

1 +m2
2

2σ2

]
I0




x
√

m2
1 +m2

2

σ2


 , x ≥ 0 (2.8)

whereI0(x) is the zero-th order modified Bessel function of the first kind,as given by

I0(x) =
1
π

∫ π

0
excosθ dθ . (2.9)

The squared-envelope of a Rician random variable is non-central chi-square distributed

with two degrees of freedom, i.e.X2 ∼ χ2(
√

KΩ
K+1,σ2), whose CDF, PDF, MGF are given

respectively by [14]

FX2(y) = 1−Q

(
√

2K,

√
2(K +1)y

Ω

)
, y ≥ 0 (2.10)

fX2(y) =
K +1

Ω
exp

[
−K − (K +1)y

Ω

]
I0

(
2

√
K(K +1)y

Ω

)
, y ≥ 0 (2.11)

MX2(s) =
1+K

1+K + sΩ
exp

(
− sKΩ

1+K + sΩ

)
, s > −1+K

Ω
(2.12)

whereQ(a,b) is the first order Marcum Q-function. Them-th order Marcum Q-function is

given by

Qm(a,b) =
∫ ∞

b
x
(x

a

)m−1
exp

[
−x2 +a2

2

]
Im−1(ax)dx (2.13)

whereIm(x) is them-th order modified Bessel function of the first kind. As expected, in the

absence of a direct path(K = 0), the Rician PDF reduces to a Rayleigh PDF, confirming

that the Rayleigh distribution is a special case of the Rician distribution [16, Apprendix B].

Nakagami-m Distribution

The Nakagami-m distribution is a versatile statistical distribution which can accurately

model a variety of fading environments. It has greater flexibility in matching some em-

pirical data than the Rayleigh, Rician distributions. It includes the Rayleigh distribution as
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a special case and can closely approximate the Rician distribution [17]. The PDF for this

distribution is given by Nakagami [18]:

fX(r) =
2

Γ(m)
(

m
Ω

)mr2m−1e−mr2/Ω (2.14)

where the average envelope powerΩ is defined as

Ω = E (X2) (2.15)

Γ(m) is the Gamma function which is defined byΓ(x) =
∫ ∞

0 tx−1e−t and the parameterm,

known as the fading figure, is defined as the ratio of moments

m =
Ω2

E [(X2−Ω)2]
, m ≥ 1/2. (2.16)

When m = 1 Eq. (2.14) reduces to the Rayleigh distribution. The squared-envelope of

a Nakagami-m random variable is Gamma distributed with CDF, PDF, and MGF given

as [14]

FX2(y) = 1− 1
γ(m)

γ(m,
my
Ω

), y ≥ 0 (2.17)

fX2(y) =
1

γ(m)
(

m
Ω

)mym−1exp(−my
Ω

), y ≥ 0 (2.18)

MX2(s) = (
m

m+ sΩ
)m, s > −m

Ω
(2.19)

whereγ(a,x) is the complementary incomplete gamma function as defined by

γ(n,x) =
∫ ∞

x
tn−1e−tdt, n ≥ 0. (2.20)

2.2.2 Spatial Fading Correlation

In Hw no correlation between different entries of the channel matrix is assumed. In practice,

H can deviate significantly fromHw due to a variety of reasons. For example, inadequate

antenna spacing and scattering lead to spatial correlation[13]. Thus, the entries of the

channel matrix are no longer i.i.d.. Therefore, analysis ofcorrelated fading channels has

pratical significance.

8



TheNtNr ×NtNr correlation matrixR is defined as

R = E {vec(H)vec(H)H} (2.21)

where vec(A) stacksA into a vector column and superscript(.)H is the Hermitian operator.

The correlated channels can be expressed in terms of the spatially-white channel:

vec(H) = R1/2vec(Hw) (2.22)

whereHw is the spatially whiteNr×Nt MIMO channel described earlier and(A)1/2 denotes

the square root of matrixA.

Note thatR is a positive semi-definite Hermitian matrix. IfR = INrNt , thenH = Hw.

When the correlation properties at the transmitter are independent of those at the receiver,

a simpler model is given by [13]

H = Rr
1/2HwRt

1/2 (2.23)

whereRr is theNr ×Nr receive correlation matrix,Rt is theNt ×Nt transmit correlation

matrix. Note thatRr andRt are positive semi-definite Hermitian matrices. Since the to-

tal correlation matrix is decomposed into transmit and receive parts, this model has fewer

degrees of freedom than the model in Eq. (2.22). In this model, the receive antenna correla-

tion Rr is equal to the correlation of theNr ×1 receive vector when excited by any transmit

antenna, and is therefore the same for all transmit antennas. This condition holds when the

angle spectra of the scatterers at the receive array for signals arriving from any transmit

antennas are identical and happens if all the transmit antennas are closely located and have

identical radiation patterns [13]. The conditions can alsocarry over to the case of transmit

antenna correlationRt .

The three matricesR, Rr andRt are related as

R = Rt
T ⊗Rr (2.24)

where superscript(.)T is the transpose operator and⊗ is the Kronecker product. Thus, the

total channel correlation can be expressed as the Kroneckerproduct of the transmitter and

the receiver correlation matrices.
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In the presence of receive or transmit correlation, the rankof H is reduced from full

rank to min(r(Rr),r(Rt)), wherer(A) is the rank ofA.

For Rayleigh fading, the MGF of the Frobenius norm of the channel denoted byM‖H‖2
F
(s)

can be given [19]:

M‖H‖2
F
(s) =

1
det(INtNr + sR)

=
NtNr

∏
i=1

1
1+ sλi(R)

, (2.25)

where det(A) is the determinant ofA andλi(R) (i = 1,2, · · · ,NtNr) is theith eigenvalue of

R.

2.3 Performance Measures

To characterize the performance of diversity systems in slow and flat fading channels, per-

formance measures, such as the average SER, the average BER, theoutage probability, and

the AF, are commonly used in the literature [14, 15]. Moreover, for MIMO systems, there

are two other key measures, known as diversity gain and coding gain.

2.3.1 Average Error Rate

The average error rate is one of the most commonly used performance criteria, which eval-

uates the effectiveness of different diversity schemes in wireless fading channels. It is

obtained by averaging the conditional error probability over the statistics of the fading

amplitudes. Many approaches have been proposed to evaluatethe average error rates of

MIMO systems under different fading assumptions. One of themost popular is the PDF-

based approach, which averages the conditional error probability over the PDF of the output

signal-to-noise ratio (SNR):

P̄e =
∫ ∞

0
Pe(γ)p(γ)dγ (2.26)

wherePe(γ) is the conditional probability of error given the output SNRγ for a specific

modulation scheme andp(γ) is the PDF of the output SNR in a specified fading channel.
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Due to the difficulties of getting closed-form expressions of the infinite integral, the MGF-

based approach has been widely used to evaluate the error rate performance of various

coherent diversity schemes recently. The basic idea is to find an exponential-type repre-

sentation for the conditional probabilities so that the average error rates can be expressed

strictly in terms of the MGF of the output SNR [20–23].

2.3.2 Outage probability

In addition to the average error rate, outage probability isanother standard performance

criterion of diversity systems, which is defined as the probability that the instantaneous

output SNRγ falls below a certain given thresholdγT . Outage probability is a useful

statistical measure of the radio link performance in the presence of interferences. The

outage thresholdγT is determined by many factors, such as the receiver structure and the

propagation environment.

The outage probability of a diversity combiner relates to the CDF (F(x)) of the combiner

output SNR as follows [24]:

P(γT ) = Pr(0≤ γ ≤ γT ) = F(γT ). (2.27)

2.3.3 Diversity Gain

Diversity schemes at transmit and/or receive ends provide the receiver with multiple copies

(or branches) of the transmitted signal. With the increase in the number of independent

branches, the probability that all branches fade simultaneously reduces significantly. Thus

diversity techniques stabilize the wireless link which will lead to a reduction of the error

rate.

To leverage diversity, the transmitter can send the same symbol across all links. With

frequency flat fading across all branches, the receiver getsmultiple independently faded

versions of the transmit symbols, which are given by

yi =

√
Es

Nt
his+ni, i = 1, · · · ,Nt (2.28)
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whereyi is the received signal corresponding to theith diversity branch,Es/Nt is the symbol

energy available to the transmitter for each of theNt diversity branches,hi is the channel

response of theith diversity branch, andni is additive ZMCSCG noise with varianceN0.

The additive noise samples are uncorrelated with each other. Given the multiple versions of

s at different receive antennas, the SNRγ could be maximized by the so-called maximum

ratio combining (MRC). Let the average SNR at the receive antenna in a single fading

channel beη = Es/N0. Assuming perfect channel knowledge at the receiver, the received

SNRγ after MRC combiners is given:

γ =
1
Nt

Nt

∑
i=1

|hi|2η . (2.29)

Using ML detection at the receiver, the probability of symbol error is given by [15]:

Pe ≈ NeQ

(√
γd2

min

2

)
(2.30)

whereNe anddmin are the number of nearest neighbors and the minimum distanceof the

underlying signal constellation, respectively, andQ(·) denotes the Gaussian Q-function.

Applying the Chernoff boundQ(x) ≤ e−x2/2, Pe can be upper-bounded by

Pe ≤ Nee
−
( Nt

∑
i=1

|hi|2
)ηd2

min

4Nt . (2.31)

Averaging the probability of symbol error over the statistics of hi which are independent

ZMCSCG random variables with unit variance,Pe is upper-bounded by

Pe ≤ Ne

Nt

∏
i=1

1

1+ηd2
min/4Nt

. (2.32)

In the high SNR region, i.e.,Es/N0 ≫ 1, the upper bound can be simplified as

Pe ≤ Ne

(ηd2
min

4Nt

)−Nt
. (2.33)

Eq. (2.33) relates to the Chernoff upper bound on the probability of the symbol error for the

additive white Gaussian noise (AWGN) channel [25]. On a log-log scale, the magnitude
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of the slope of the SER versus SNR (η) curve will demonstrate the effect of diversity. The

diversity order is the magnitude of the slope. Diversity gain Gd can be defined as

Gd = − lim
η→∞

logPe

log(η)
. (2.34)

2.3.4 Coding Gain

If the average SERPe of an uncoded (or coded) MIMO system at high SNR is approximated

by the expression

Pe ≈ c(Gc ·η)−Gd (2.35)

wherec is a scaling constant dependent on the modulation type and the channel statistics,

thenGc represents the coding gain, andGd represents the diversity order. While diversity

gain manifests itself in increasing the magnitude of the slope of the error rate curve, coding

gain (Gc) shifts the error rate curve to the left.

2.3.5 Moments

An alternative to the average error rate is to use moments of the output SNR as the perfor-

mance measures. A single moment, such as the average output SNR alone does not reveal

enough information and the higher order moments can furnishadditional information for

system design. For example, if the variance of the output is small, large fades from the

average is not likely. The moments of the combiner output SNRcan be obtained by the

output MGF (M(s)) as

mn = E(γn) =
∫ ∞

0
γnP(γ)dγ =

d(n)M(s)
ds

|s=0. (2.36)

2.3.6 Amount of Fading (AF)

In evaluating the performance of diversity systems, sometimes it is difficult to get closed-

form results especially for BER, SER since statistical analysis requires averaging the in-

stantaneous results over the fading distribution. In such cases, a frequently used approach
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is to take advantage of the transformed domain (e.g. by its MGF) in order to obtain a

computational resolve. The amount of fading (AF), as a measure of the severity of fading,

directly utilizes the moments of the fading distribution itself. Thus it becomes a simple but

effective way to quantify fading in both single and MIMO systems. For a single channel

model, AF is defined by [26, eq. (2)]:

AF =
Var{α2}
(E {α2})2 (2.37)

whereα is the instantaneous fading amplitude of a complex fading channel, Var{·} is the

statistical variance. For a single Rayleigh fading channel,AF = 1. In Nakagami-m fading

channels, AF= 1/m [18], where the range of the AF is given by the interval [0, 2].

2.4 Antenna Selection

The MIMO systems provides higher data rates and the reliability without any additional

bandwidth [27]. Higher data rates are achieved by transmitting multiple data streams si-

multaneously using spatial multiplexing techniques. Increased reliability is achieved by

exploiting spatial diversity to significantly reduce the error probability caused by signal

fading.

Although MIMO technology has many advantages, they come at the expense of higher

hardware cost, higher signal processing complexity, more power consumption, and bigger

component size at the transmitter and the receiver. For example every extra transmit/receive

antenna pair requires its own dedicated RF chain (power amplifier, low noise amplifier

(LNA), analog to digital (A/D) convertors, digital-to-analog convertor (D/A), etc.) [27].

The increase in complexity has inhibited the widespread adoption of MIMO systems. For

example, the third-generation cellular system specification (3GPP) currently supports only

an optional two antenna space-time transmit diversity scheme and does not require the

handsets to have more than one antenna element [28]. Therefore, cost-effective implemen-

tation of MIMO technology remains a major challenge. Antenna selection is a possible

solution for the complexity drawbacks of MIMO systems. It reduces the hardware com-
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plexity of transmitters and receivers by using fewer RF chains than the number of antenna

elements. The idea is that, while the antenna elements are typically cheap, the RF chains are

considerably more expensive and therefore must be reduced.The transmission/reception is

performed through a subset of the available antenna elements, and selection helps in reduc-

ing the implementation cost while retaining most of the benefits of MIMO technology [29].

In antenna selection, a subset of the available antenna elements is adaptively chosen by a

switch, and only signals from the chosen subset are processed further by the available RF

chains.

2.4.1 Antenna Selection Scheme

A block diagram representation of antenna selection at the transmitter and the receiver is

given in Fig. 2.1.

An input bit stream is sent through an encoder and modulator.The space-time en-

coder converts a single bit stream into symbol streams through a proper mapping and then

converts the complex symbol vector intoMt parallel streams of symbols. Each of these

streams is sent through a RF chain to produce signal for transmission through each trans-

mit antennas. However, the number of RF chains are smaller than transmit antennas (i.e.

Mt ≤ Nt), thus the RF switch chooses the ’best’Mt antennas out ofNt . At the receiver,

the RF switch chooses the ’best’Mr out of Nr receive antennas (Mr ≤ Nr). The channel

seen by the selected subset of transmit and receive antennasis the sub-matrix̃H ∈ C Mt×Mr ,

which is obtained by selecting the rows and columns of the channel matrixH that corre-

spond to the selected receive and transmit antennas, whereC m×n is a m× n-dimensional

complex matrix space. There are
(Nt

Mt

)(Nr
Mr

)
possible sub-matrices ofH. The various selec-

tion criteria include the system capacity maximization [30, 31], SNR maximization [32],

or union-bound on error rate minimization [33]. In this work, we do not propose new cri-

teria or new methods for selecting antennas. Instead, we analyze the performance of such

systems.
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Fig. 2.1. Antenna Selection Scheme

2.4.1.1 Receive Antenna Selection (RAS)

Several receive antenna selection (RAS) algorithms to pick the best antenna subset have

been proposed [2, 30, 33–36]. Performance analysis for RAS space-time coded systems

under both uncorrelated and correlated channels has been reported in [2, 34] where only

performance bounds were derived. In [30], Molisch et al. studied the effect of antenna se-

lection from a channel capacity perspective. It was shown that only a small loss in capacity

is suffered when the receiver uses a good subset of the available receive antennas.

2.4.1.2 Transmit Antenna Selection (TAS)

Just as RAS, TAS is implemented to reduce the complexity at thetransmitter. The idea of

using transmit diversity is motivated by the difficulty and cost of placing multiple antennas

on small mobile handsets. Therefore, multiple antennas arepreferably placed at the base

station for downlink transmission. Since TAS requires feedback from the receiver side,

limited feedback methods are used to improve capacity and performance [37].

TAS has been studied recently. A TAS schematic diagram is given in Fig. 2.2. Joint

transmit/receive antenna selection algorithms were presented in [9]. In [38], the authors

proposed a new scheme that involves using hybrid selection/maximal-ratio transmission

where the transmitter uses a good subset of the available antennas and the receiver uses

MRC. They investigated this scheme in terms of SNR, BER, and capacity. They demon-
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Fig. 2.2. Transmit Antenna Selection Scheme

strated the effectiveness of their scheme relative to already existing schemes. The same

scheme was also treated in [39] but the transmitter selects the best single antenna. Other

schemes that use hybrid selection/MRC were also considered in [40–43]. A nice overview

of antenna selection for MIMO systems can be found in [7].

2.4.2 Orthogonal Space-time Block Codes (OSTBCs)

Space-time coding [13, 44] is a coding technique designed for exploiting diversity when

multiple transmit antennas are in use. Coding is performed inboth spatial and temporal

domains to jointly modulate signals transmitted from various antennas at various time pe-

riods. The spatial-temporal modulation is used to exploit the MIMO channel fading and to

minimize transmission errors at the receiver. Space-time coding can achieve transmit diver-

sity and power gain over spatially un-coded systems withoutsacrificing the bandwidth [45].

Among all types of space-time codes, space-time block codeswith orthogonal designs are

the major focus in this thesis.

The Alamouti scheme is the first space-time block code to provide full transmit diversity

for systems with two transmit antennas [46]. Tarokh et al. [47] extended the Alamouti’s

2-transmit diversity scheme to more than two antennas. A space-time block code is defined

by the mapping of theQ-tuple input signals to the set of signals to be transmitted fromMt

antennas overT time intervals, represented in aMt ×T transmission matrixX as
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X =




x1,1 x1,2 · · · x1,T

x2,1 x2,2 · · · x2,T

. . . . . . . . . . . . . . . . . . . . .

xMt ,1 xMt ,2 · · · xMt ,T




(2.38)

wherexi,t ,1 ≤ i ≤ Mt ,1 ≤ t ≤ T are functions of theQ-tuple input sequence and their

complex conjugates. At time slott, xi,t is transmitted from antennai. SinceQ information

symbols are transmitted overT time intervals, the rate of the code is defined asRs = Q/T .

If the condition

XXH = (
Q

∑
i=1

|si|2)I (2.39)

holds, whereI is the identity matrix, then the code is called an OSTBC. If the channel

coefficients are constant over theT symbols, the orthogonality properties of OSTBC allow

simple linear ML decoding by decomposing the MIMO enhanced into Q SISO channels.

The OSTBC codeword is formed from a set ofQ symbolss1,s2, · · · ,sQ all taken from

the same signal constellation. Space-time block codes can be constructed for any type of

signal constellation.

2.4.3 OSTB-Coded MIMO Systems with Antenna Selection

The MIMO system model with antenna selection employing OSTBCis given in Fig. 2.1.

The received signals are expressed as

Y =

√
Es

Mt
H̃X +N (2.40)

where the matrixY ∈ C Mr×T is the complex received matrix.̃H is a submatrix ofH,

X ∈ C Mt×T is the complex transmitted matrix andN ∈ C Mr×T is the additive noise matrix

consisting of i.i.d. entries with zero mean andN0 variance. If we denote a circularly

symmetric complex Gaussian variable with meanµ and varianceσ2 asz ∼ C N (µ,σ2),

then each element ofN is denoted asC N (0,N0). The coefficient
√

Es
Mt

ensures that the

18



total transmitted power at each receiver isEs and is independent of the number of transmit

antennas.

As shown in [13], if theQ symbols{s1, · · · ,sQ} with the unit average power are used

for transmission, the ML decoder can be simplified to a symbol-by-symbol decoder of the

following form:

Zq =

√
Es

Mt
(

1
Rs

‖H̃‖2
F)sq +nq, p = 1, · · · ,Q (2.41)

wherenq ∼ C N (0, 1
Rs
‖H̃‖2

FN0). The OSTBC MIMO system is then equivalent toQ inde-

pendent SISO systems [32].

2.5 Summary

In this chapter, MIMO antenna selection is briefly reviewed.Statistical assumptions, per-

formance measures are introduced. Different antenna selection schemes are summerized,

and the general system model with OSTBC is provided.
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Chapter 3

Amount of Fading Analysis in MIMO

Systems with TAS

This chapter is organized as follows. The background is provided in Section 3.1. Section

3.2 introduces the system and the channel model based on order statistics. In Section 3.3,

the AF is analyzed for i.i.d. Rayleigh fading channels. By utilizing the Kronecker model,

the AF is analyzed for receiver correlation channels in Section 3.4. In Section 3.5, the

average SER at high SNR is expressed in terms of the AF. The main results are summarized

in Section 3.6.

3.1 Introduction

Recently, MIMO TAS systems have received much interest [12, 48–50]. In [48], the au-

thors analyzed the performance of space-time coded MIMO systems with antenna selection

by deriving explicit upper bounds on the pairwise error probability (PEP) for quasi-static

Rayleigh flat fading. The authors also described code design principles suitable for antenna

selection schemes. Zhang et al. [49] proposed a geometricalframework for theoretically

analyzing the diversity order achieved by TAS under spatialmultiplexing systems. Further-

more, the approach can be used to evaluate the diversity-multiplexing tradeoff in spatial
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multiplexing systems with TAS. In [12] and [50], the authorsderived the exact BER and

capacity expressions for OSTB-coded TAS systems, respectively. However, the aforemen-

tioned works provide considerably complex analysis and do not provide insights into the

performance of the proposed systems. This motivates our work to use a simpler perfor-

mance metric known as amount of fading (AF) [51, 52]. The performance measurements

such as SER, BER, diversity, and coding gain can also be quantified by the AF measure.

In [51], closed-form expressions for the AF of the MIMO diversity systems are given for

identically-distributed spatially-correlated Nakagami-m fading channels. In [52], the AF

is obtained for the output of the equal gain combiner (EGC) in equally correlated fading

channels.

In this chapter, we present AF analysis results for both regular MIMO and TAS systems

operating on Rayleigh fading channels. Our research is basedon the assumption of identi-

cally distributed but possibly correlated channels. Rigorous derivation of the AF generally

leads to cumbersome results. Therefore in our work, only themethods for deriving the

exact AF under different conditions are produced and detailed derivation will be omitted

here. Besides that, we provide simple approximations and bounds in order to gain insights

into the degree of fading. Lower bounds and upper bounds of the AF are derived under

three different fading cases: independent distributed, receiver correlated and generally cor-

related fading channels. Also, simplified approximations of the AF are derived for both

independent distributed and constant-receiver-correlated fading channels. By utilizing the

OSTBC for the selected transmit antennas, the lower and upperbounds for the SER at high

SNR are derived. An approximate calculation for SER is also given for the independent

fading channels, which is more general than [10]. Based on theSER expression, the AF

and SER at high SNR are shown to have a simple relationship. With the approximation, the

coding gain can be easily obtained for constant correlated fading channels given the AF.

Major results are presented in our paper of [53].
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3.2 Order Statistics and System Model

Suppose there aren independent random variablesXi, i = 1,2, · · · ,n, each having the same

PDF f (x) and corresponding CDFF(x). If they are arranged in ascending order of mag-

nitude asX(1) ≤ X(2) ≤ ·· · ≤ X(n), thenX(i), i = 1,2, · · · ,n is called thei-th order statistic.

WhenXi are i.i.d., the PDF of ther-th order statistic is given by [54]:

f(r)(x) =
n!

(r−1)!(n− r)!
f (x)Fr−1(x)[1−F(x)]n−r (3.1)

and the CDF is

F(r)(x) =
n

∑
i=r

(
n
i

)
F i(x)[1−F(x)]n−i (3.2)

where
(n

i

)
= n!/(i!(n− i)!).

To perform TAS,Mt antennas are selected out ofNt transmit antennas. Define the

random vectorsh j = (h1 j,h2 j, · · · ,hNr j)
T ,1≤ j ≤ Nt . The corresponding square Frobenius

norm ofh j is h j = ||h j||2H = ∑Nr
i=1 |hi j|2. h j are i.i.d. chi-squared variables with 2Nr degrees

of freedom and the PDF ofh j is given by [15]:

fh j(h) =
1

(Nr −1)!
hNr−1e−h, h ≥ 0 (3.3)

and the CDF is given by

Fh j(h) = 1− e−h
Nr−1

∑
k=0

hk

k!
, h ≥ 0. (3.4)

We arrange the differenth j in descending order and denote them byh(1) ≥ h(2) ≥ ·· · ≥
h(Nt), whereh( j) is the jth largest. TheMt selected transmit antennas correspond to the 1

to Mt-th largesth(1), · · · ,h(Mt). Let H̃ = (h(1),h(2), · · · ,h(Mt))
T represent theMt selected

columns ofH. From the theory of order statistics, the joint PDF ofh(1),h(2), · · · ,h(Mt) is

given by [54]:

fh(1),··· ,h(Mt )
(h1, · · · ,hMt ) =

Nt !
(Nt −Mt)!

fh1(h1) · · · fhMt
(hMt )(FhMt

(hMt ))
Nt−Mt

=
Nt !

(Nt −Mt)!{(Nr −1)!}Mt

( Mt

∏
j=1

h j

)Nr−1(
e−∑Mt

j=1 h j
)(

1− e−hMt

Nr−1

∑
k=0

hMt
k

k!

)Nt−Mt
(3.5)
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whereh(1) ≥ h(2) · · · ≥ h(Mt) ≥ 0.

Consider a MIMO system withNt transmit andNr receive antennas. Correlation prop-

erties can be modeled as the Kronecker product of the transmitter and receiver correlation

described in Section 2.1.2, when the receive antenna correlation is the same for all transmit

antennas and vice versa [55].

With OSTBC, the output SNR (per symbol) may be written as

γ =
Es

N0MtRs
‖H̃‖2

F =
Es

N0MtRs
C (3.6)

whereC = h(1) + · · ·+h(Mt). Thus, the selection criterion maximizes the output SNR, i.e.,

yields the largest received signal power. According to the definition of the AF in Eq. (2.37)

and Eq. (3.6), the AF is independent ofEs
N0MtRs

and can be written as

AF =
Var{γ}
(E {γ})2 =

Var{C}
(E {C})2 . (3.7)

In the remainder of this chapter,(Nt ,Mt ;Nr) denotes a MIMO system withMt (Mt < Nt)

transmit antennas selected. In contrast,(Nt ;Nr) denotes a regular MIMO system without

antenna selection, in which all theNt transmit andNr receive antennas are used.

3.3 AF for i.i.d. Rayleigh Fading Channels

This section analyzes the AF expressions for(Nt ;Nr) and (Nt ,Mt ;Nr) systems when the

channel elementshi j are independent of each other. An upper bound, a lower bound and an

approximate calculation for AF in(Nt ,Mt ;Nr) systems are also derived. The results will be

verified by simulation.

3.3.1 (Nt ;Nr) with i.i.d. Rayleigh Fading Channels

With a regular MIMO system (i.e., without antenna selection), the AF may be written

as [51] (the case whenm = 1):
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AF =

NrNt

∑
i=1

λ 2
i

(NrNt

∑
i=1

λi

)2
(3.8)

where{λi}NrNt
i=1 are the eigenvalues of theNrNt ×NrNt channel correlation matrix. When all

the channels are independent, the correlation matrixR reduces to an identity matrix; thus,

all theλi are equal to 1. Therefore, the AF in the i.i.d. case (denoted as AFiid) is

AFiid =
NrNt

(NrNt)2 =
1

NrNt
. (3.9)

3.3.2 (Nt ,Mt ;Nr) with i.i.d. Rayleigh Fading Channels

By using the joint PDF in Eq. (3.5), the general moments ofE {ha1
1 · · ·haMt

Mt
} can be calcu-

lated as a finite sum (Appendix A). The exact AF in i.i.d. fading channels with TAS can be

expressed as

AFiid&ts =
Var{(h1

1 · · ·h0
Mt−1h0

Mt
)+ · · ·+(h0

1 · · ·h0
Mt−1h1

Mt
)}

(E {(h1
1 · · ·h0

Mt−1h0
Mt

)+ · · ·+(h0
1 · · ·h0

Mt−1h1
Mt

)})2
. (3.10)

By expressing the variance as a sum of moments of the form ofE {ha1
1 · · ·haMt

Mt
}, the AF is

expressed as

AFiid&ts =
E {(h2

1 · · ·h0
Mt−1h0

Mt
)+ · · ·+(h0

1 · · ·h0
Mt−1h2

Mt
)+ΣL

i, j=1h1
i h1

j}
(E {(h1

1 · · ·h0
Mt−1h0

Mt
)+ · · ·+(h0

1 · · ·h0
Mt−1h1

Mt
)})2

−1. (3.11)

By using the results in Appendix A, and substituting all the moments into Eq. (3.11), the

exact AF can be derived. However, this process is too cumbersome to provide any direct

insight.

The AF is a measure of the severity of fading. More generally,the AF is a measure of

the randomness of a random variable, so that, the higher the AF, the larger the spread of

the fading distribution [56]. Therefore, the more i.i.d.|hi j|2 included inC in Eq. (3.6), i.e.,

the more randomness contained inC, the smaller the AF will be. This result is due to the

multiplication of the denominator while the numerator remains largely unchanged. As a
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result, the AF should decrease with the increasing of the number of the receive antennasNr

and the selected transmit antennaMt . WhenMt reaches to the largestNt , the AF reaches

the lowest value. Based on the analysis, the upper bound and lower bound of the AFiid&ts

are

1
NrNt

≤ AFiid&ts ≤ 1
NrMt

. (3.12)

Thus, the approximate value of AFiid&ts (denoted as AFapp) is given by

AFapp=
1

Nr(Mt +(Nt −Mt)α)
(3.13)

where 0≤ α ≤ 1. Whenα = 0, AFapp reaches the lower bound, and whenα = 1 AFapp

reaches its upper bound.
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Fig. 3.1. AFiid&ts for an i.i.d.(8,Mt ;4) system

Fig. 3.1 shows the upper bound, the lower bound and the approximate value for the AF,

obtained by using Eq. (3.12) and Eq. (3.13) where settingα = 0.6, for MIMO systems with
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8 available transmit antennas and 4 receive antennas. The simulation results are shown for

comparison. The AF approaches the lower bound whenMt increases, as expected. The AF

is closer to the lower bound than to the upper bound. This result shows that antenna selec-

tion does not degrade much of the system’s behavior in terms of the AF. WhenMt ≥ 1
3Nt ,

the lower bound can be viewed as the approximation of the AF. The values of parameter

α are determined for differentNr andNt in Fig. 3.2. As long asMt is fixed, α does not

change under the same available antenna numbers. Therefore, Mt is set equal to 2. Fig.

3.2 shows thatα is smaller for largerNt . This result means that the AF decreases with an

increase in the number of the available transmit antennas. WhenNr increases above 4,α

remains relatively the same.
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Fig. 3.2. The approximate value ofα for differentNt andNr
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3.4 AF for Fading Channels with Correlation

First consider the case where the channel is correlated onlyat the receiver side. This corre-

lation implies that the elements within the columns ofH are correlated but are uncorrelated

between columns. Thus,h j,1≤ j ≤ Nt are i.i.d.. By utilizing this property, the exact value

and bounds for both(Nr;Nt) and(Nt ,Mt ;Nr) systems are derived. The analysis is extended

to the most general case where the correlation exists in boththe transmit and receive anten-

nas.

3.4.1 (Nt ;Nr) with Receiver Antenna Correlation

Under the Kronecker model Eq. (2.24), letλi (i = 1, · · · ,NrNt) denote the eigenvalues of

theNrNt ×NrNt matrixR. Thenλi = λt j ×λrk , whereλt j andλrk are the eigenvalues forRt

andRr, and i = 1, · · · ,NrNt ; t j = 1, · · · ,Nr; rk = 1, · · · ,Nt .

Under the assumption of receive antenna correlation,Rt is an identicalNt ×Nt matrix,

and all λt j equal 1. Therefore, theNrNt of eigenvaluesλi constituteNt of λrk , i.e., the

multiplicity of eachλi is Nt . From Eq. (3.8), the AF in the receiver correlation case

(denoted as AFrc) can be expressed as

AFrc =
1
Nt

Nr

∑
rk=1

λ 2
rk

( Nr

∑
rk=1

λrk

)2
. (3.14)

In Appendix B, proof of the lower bound for the AF in the generalcorrelation case AFgc

as 1
NrNt

is given, which is the value for independent(Nt ;Nr) systems. This bound is also

a lower bound for the specific receiver correlation case analyzed here. The correlation be-

tween each column of theH decreases the randomness ofC in Eq. (3.6) and thus increases

the value of the AF. Under the worst correlation scenario,Nt of λi equalsNr and the other

Nt(Nr −1) eigenvalues equal 0. According to Eq. (3.14), the AFrc can be upper bounded

by 1
Nt

. Therefore, the AF in the receiver correlation case could beupper and lower bounded

as

27



1
NrNt

≤ AFrc ≤
1
Nt

. (3.15)

Furthermore, the lower bound can be tightened according to the rank of the receiver

correlation matrix. Ifr(Rr) = rr, the lower bound can then be expressed by

AFrc ≥
1

Ntrr
. (3.16)

Constant correlation is used as the model for the receiver correlation matrix to illustrate

the relationship in Eq. (3.15). Constant correlation is applicable for an array of three

antennas placed on an equilateral triangle or for closely spaced antennas other than linear

arrays [51]. The correlation matrixRr can be written as

Rr =




1 ρ · · · ρ

ρ∗ 1 · · · ρ

. . . . . . . . . . . . . .

ρ∗ ρ∗ · · · 1




(3.17)

whereρ is the correlation coefficient. Under the constant correlation model, the eigenval-

ues are given by [51]

λ1 = · · · = λNr−1 = 1−ρ

λNr = 1+(Nr −1)×ρ. (3.18)

For constant correlation at the receiver side of the MIMO link, the AFrc is expressible

as [51]

AFrc =
1
Nt

1+ |ρ|2(Nr −1)

Nr
. (3.19)

Fig. 3.3 presents the simulation results and inequality Eq.(3.16) of AFrc with different

ρ in constant receiver correlation, where the channel matrixis assumed fully ranked. Thus

Eq. (3.16) is essentially the same as Eq. (3.15). As expected, AFrc equals 1
NrNt

whenρ = 0

and increases withρ.
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Fig. 3.3. AFrc with different correlation coefficients in a(4,3) system

with constant receiver correlation

3.4.2 (Nt ,Mt ;Nr) with Receiver Antenna Correlation

Define the receiver correlation matrixRr = E (h1,hH
1 ) = · · · = E (hNt ,h

H
Nt

). The PDF of

h{ j},0 ≤ j ≤ Mt is given in Appendix C by using the inverse Z transform. The general

moments ofE {ha1
1 · · ·haMt

Mt
} can be calculated by using a finite sum based on the joint PDF

in Eq. (3.5) (see Appendix C for derivation). By following thesame procedure as in

the (Nt ,Mt ;Nr) i.i.d. case, the exact AF can be derived by using Eq. (3.11). The exact

calculation is again tedious. The approximation and boundsfor the AF are thus analyzed

first, and the simulation results are given for verification.

The best situation will occur when no correlation exists between the receive antennas,

and every antenna is used; thus, the lower bound for the AF in this case is still 1
NrNt

. The

largest AF occurs when one ofλrk equalsNr and the otherλrk equal 0, i.e.,r(Rr) = 1. In this

situation, the AF reaches an upper bound1
Mt

by cancelingNr in the right side of Eq. (3.12).
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The range forMt is [1,Nt ]; thus, we could tighten the upper bound to be 1
Mt+(Nt−Mt)α , where

0≤ α ≤ 1. Whenα = 1, the inequality reduces to that for the regular (Nt ; Nr) system with

the receiver correlation expressed in Eq. (3.15). Whenα = 0, the upper bound corresponds

to the worst case of1Mt
. Now the AF in the receiver correlation case with the TAS (denoted

as AFrc&ts) can be bounded by

1
NrNt

≤ AFrc&ts ≤
1

Mt +(Nt −Mt)α
, 0≤ α ≤ 1. (3.20)

Similarly, for the constant correlation model at the receiver side of the MIMO link, the

approximation for the AF (denoted as AFapprc) is given by substituting the right side of Eq.

(3.20) into Eq. (3.19):

AFapprc≈
1

Mt +(Nt −Mt)α
1+ |ρ|2(Nr −1)

Nr
. (3.21)

Fig. 3.4 shows the simulation results and approximations ofAFrc&ts by using Eq. (3.21)

with different correlation coefficients in the constant correlation model whenNt = 4, Nr =

3. The approximation of the AF in the worst case (whenρ = 1) is well bounded by the

upper bound. As with the case of(Nt ; Nr), the AF also increases withρ whenMt is fixed.

This result again shows that the AF illustrates the severityof fading.

The analysis for the case with correlation at the transmit side and no correlation at the

receiver side is similar to that for the derivation above. The bounds for the AF have similar

forms simply substitutingNr for Nt .

3.4.3 (Nt ,Nr) and (Nt ,Mt ;Nr) with general correlation

In the most general case, the channel is correlated at both the transmitter and the receiver.

The AF can be calculated from Eq. (3.7). The lower bound is also 1
NrNt

, which is the best

situation for all cases. Since the AF increases with the correlation severity, the AF can be

bounded as
1

NrNt
≤ AFgc ≤ AFgc&ts ≤ 1. (3.22)

If r(R) = r is given, the lower bound can also be tightened:

AFgc&ts ≥
1
r
. (3.23)
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Fig. 3.4. AFrc&ts with different correlation coefficients in a(4,Mt ;3) system with constant

receiver correlation .

Fig. 3.5 shows how the AF changes with a differentMt and different correlation co-

efficient ρ, when both the transmitter and receiver correlations are modeled as constant

correlation. Here, a MIMO system withNr = 3,Nt = 4 is considered. Whenρ is less than

0.5, the AF decreases withMt . However, whenρ is larger than 0.5, the more transmit

antennas are selected, the larger the AF is. This result contradicts our intuition that when

the correlation is strong, more transmit antennas are selected, and the system will perform

worse in terms of the index AF. To explain this scenario, there seems to be an optimum

number of antennas to select when the correlation is severe at the transmitter. However, as

assumed, whenMt is fixed, the AF decreases with the numbers of available transmit and

receive antennas.

31



1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of The Selected Transmitter Antennas M
t
 

A
m

ou
nt

 o
f F

ad
in

g

 

 
ρ=0
ρ=0.2
ρ=0.5
ρ=0.8
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3.5 Relationship Between AF and the Average SER at High

SNR

In this section, the average SER at high SNR is derived as a simple expression for an

(Nt ,Mt ;Nr) system operating on i.i.d. Rayleigh fading channels, when the OSTBC is used

for the transmission over theMt ×Nr link. First, the relationship between the AF and the

approximate SER is analyzed. As stated in Eq. (2.35), the diversity order determines the

slope of the average SER curve at high SNR in the log-log scale, whereas the coding gain

determines the shift of the curve in the SNR relative to a benchmark SER curve given by

c(γ)−Gc [51].
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3.5.1 (Nt ;Nr) with i.i.d. Fading Channels

First, reconsider a(Nt ;Nr) system operating on i.i.d. Rayleigh fading channels. The cor-

responding instantaneous SER is given by Eq. (2.30) assuming an ML receiver is used.

Here,γ is determined by using Eq. (3.6), making̃H = H. By applying the Chernoff bound,

Q(x) ≤ e−
x2
2 , Pe can be expressed as

Pe ≤ Nee
− 1

4Nt Rs
Es
N0

‖H‖2
F . (3.24)

To determine the value of the diversity, the instantaneous SER should be averaged over the

statistics of fadingPe = E {Pe}. Given the correlation matrixR, the MGF of the random

variable‖H‖2
F , denoted asM‖H‖2

F
(s), is given in Eq. 2.25. ThePe can be upper bounded

by settings =
d2

min
4NtRs

Es
N0

in Eq. (2.25); that is,

Pe ≤ Ne

r(R)

∏
i=1

(
1+

d2
min

4NtRs

Es

N0
λi(R)

)−1
. (3.25)

As assumed, when channels are i.i.d., allλi equal 1. Thus, at the high SNR, thePe can be

simplified by

Pe ≤ Ne

( d2
min

4NtRs

Es

N0

)−NrNt
. (3.26)

Thus, the diversity orderGd equalsNrNt , and the coding gainGc equals d2
min

4NtRs
. Compared

with Eq. (3.9) in the i.i.d. case, the AF equals the inverse ofthe diversity order

AFiid =
1

Gd
. (3.27)

3.5.2 (Nt ,Mt ;Nr) with i.i.d. Fading Channels

In a (Nt ,Mt ;Nr) system the largestMt of h j are selected, the following inequality holds:

‖H‖2
F

Nt
≤ ‖H̃‖2

F

Mt
≤ ‖H‖2

F

Mt
. (3.28)

If Eq. 3.28 is combined with the definition ofγ in Eq. (3.6),γ is bounded by

‖H‖2
F

NtRs

Es

N0
≤ γ ≤ ‖H‖2

F

MtRs

Es

N0
. (3.29)
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With the definition of the average SER in Eq. (3.26), the errorrate is bounded as

Ne

( d2
min

4MtRs

Es

N0

)−NtNr ≤ Pe ≤ Ne

( d2
min

4NtRs

Es

N0

)−NtNr
. (3.30)

This result clearly shows that the(Nt ,Mt ;Nr) system can achieve full diversity as in (Nt ;Nr)

although only part of the transmit antennas are selected fortransmission. As 1≤ Mt ≤ Nt ,

thePe is approximated as

Pe ≈ Ne

(
d2

min

4Rs(Mt +(Nt −Mt)β )

Es

N0

)−NtNr

(3.31)

where 0≤ β ≤ 1. That is, the coding gain is approximated asGc ≈ 1
Mt+(Nt−Mt)β

d2
min

4Rs
. Com-

pared with theAFiid&ts for the(Nt ,Mt ;Nr) system under i.i.d. fading channels in Eq. (3.13),

the coding gain can also be approximated as a function of the AF:

Gc ≈
d2

min

4RsNr
AF. (3.32)

Fig. 3.6 shows the upper bound, the lower bound and the approximate value of SER,

obtained by using Eq. (3.31) and Eq. (3.32), compared to the simulation results from using

the Alamouti scheme with a 4-QAM signal constellation whenNr = 1,Nt = 4 andβ = 0.5.

With the increasing ofNt andNr, the upper bound and the lower bound converge, and the

approximateGc becomes more accurate. WhenMt = Nt , the upper bound and the lower

bound converge to the same value, which can be used as the approximate value for the SER.

When only one transmit antenna is selected, the system is a special case of the OSTBC,

with Rs = 1 andMt = 1.

Fig. 3.7 compares the average SER with the coding gain given by Eq. (3.31) and

Eq. (3.32) withNt = 4, Nr = 1 andMt = 1, 3, respectively. The simulation results of the

average SER are also shown as a reference. The diversity order of both cases is 4. Thus,

the diversity order depends on the number of the available antennas at the transmitter side

and not on the number of the antennas selected. In both figures, the approximations Eq.

(3.31) and Eq. (3.32) overlap with the simulation results inthe large SNR. Thus, a simple

relationship between the AF and coding gain is achieved by Eq. (3.32) in the high SNR

region.
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Fig. 3.6. The average SER of 4-QAM using Alamouti Scheme in a (4,2;1) system

3.5.3 (Nt ;Nr) with Receiver Correlation Fading Channels

In this case, thePe can also be upper bounded by Eq. (3.30). Further, at a high SNR,Pe

can be simplified to

Pe ≤ Ne

( d2
min

4NtRs

Es

N0

)−r(R) r(R)

∏
i=1

(
λi(R)

)−1
. (3.33)

Under the Kronecker model, the eigenvaluesλi of the correlation matrixR equal the eigen-

valueλrk of the receiver correlation matrixRr, and the multiplicity of each eigenvalue is

Nt . The best situation occurs with no correlation at the receiver side. The worst situation

occurs when only one of theλrk is Nr. Thus, the lower bound and the upper bound ofPe

are provided as

Ne

( d2
min

4NtRs

Es

N0

)−NtNr ≤ Pe ≤ Ne

( d2
min

4NtRs

Es

N0

)−Nt
N−Nt

r . (3.34)
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If r(Rr) = rr, the lower bound can also be tightened to

Pe ≥ Ne

( d2
min

4NtRs

Es

N0

)−Ntrr
r(Rr)

∏
rk=1

(
λrk(Rr)

)−Nt
. (3.35)

3.5.4 (Nt ,Mt ;Nr) with Receiver Correlation Fading Channels

Here, the analysis is similar to that in Section 3.4.3 exceptthat the best case will beMt = Nt ,

and the worst situation occurs whenMt = 1. By using Eq. (3.28), the lower bound and the

upper bound ofPe are

Ne

( d2
min

4NtRs

Es

N0

)−NtNr ≤ Pe ≤ Ne(
d2

min

4MtRs

Es

N0
)−Nt N−Nt

r . (3.36)

Specially, when the receiver correlation is modeled as a constant correlation, the rank

is Nr, and the eigenvalue is given in Eq. (3.18). In this case, the average SER can be

approximated by
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Pe ≈ Ne

( d2
min

4Rs(Mt +(Nt −Mt)β )

Es

N0

)−NtNr
(
(1−ρ)Nr−1(1+(Nr −1)ρ)

)−Nt
. (3.37)

3.6 Conclusion

The AF is a simple measure to quantify the severity of fading.However, exact AF cal-

culations usually involve tedious formulas in TAS systems.In this chapter, the AF of

TAS systems under both independent and correlated channelsis analyzed. Approxima-

tions and bounds are provided for different cases, and a simplified relation between the AF

and coding gain is derived. The simulation results show thatin the high SNR region, the

approximations are accurate.

3.7 Appendix A

General moments for i.i.d. Rayleigh fading channels

The closed-form solution forE {ha1
1 · · ·haMt

Mt
} is now obtained wherea1, · · · ,aMt are arbitrary

indexes. Rewrite the joint PDF in Eq. (3.5) as follows:

fh1,··· ,hMt
(h1, · · · ,hMt ) =

Nt !
(Nt −Mt)!

fh1(h1) · · · fhMt
(hMt )(FhMt

(hMt ))
Nt−Mt

=
Nt !

(Nt −Mt)!{(Nr −1)!}Mt
(

Mt

∏
j=1

h j)
Nr−1(1− ehMt

Nr−1

∑
k=0

hMt
k

k!
)Nt−Mt (3.38)

whereh1 ≥ h2 · · · ≥ hMt ≥ 0. Then

E {ha1
1 · · ·haMt

Mt
} =

∫ ∞

0

∫ ∞

hMt−1

· · ·
∫ ∞

h2

ha1
1 · · ·haMt

Mt
fh1,··· ,hMt

(h1, · · · ,hMt )dh1 · · ·dhMt . (3.39)

In the firstMt −1 integrals, summations are applied as

∫ ∞

hi+1

ha
i e−bhidhi =

(a−1)!
ba

a

∑
j=0

b j

j!
h j

i+1e−bhi+1. (3.40)
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In the integral with respect tohMt , the following part is binomially expanded:

(1−
Nr−1

∑
k=0

hMt
k

k!
)Nt−Mt =

Nt−Mt

∑
l=0

(−1)l
(

Nt −Mt

l

)
elhMt

(Nr−1)l

∑
k=0

βklh
k
Mt

(3.41)

where the coefficientβkl in Eq. (3.41) is computed by using [57]

βkn =
k

∑
i=k−Mt+1

βi(n−1)

(k− i)!
I[0,(n−1)(Mt−1)](i). (3.42)

Here,β00 = β0n = 1, βk1 = 1/k!, β1n = n, and

I[a,b](i) =





1, a ≤ i ≤ b

0, otherwise
(3.43)

Substituting Eq. (3.38) into Eq. (3.39) and using Eq. (3.41)and Eq. (3.42) we will get:

E {ha1
1 · · ·haMt

Mt
} =

(Nt)!
(Nt −Mt)!((Nr −1)!)Mt

i1+a1+Nr−1

∑
i2

i2+a2+Nr−1

∑
i3

· · ·
iMt−1+aMt−1+Nr−1

∑
iMt

Nt−Mt

∑
l=0

(Nr−1)l

∑
k=0

(−1)l
(

Nt −Mt

l

)
βkl

(i1+a2+Nr −1)!
i2!

(i2 +a2 +Nr −1)!
2i2+a2+Nr i3!

· · · (iMt +aMt−1 +Nr −1)!

(Mt −1)iMt−1+aMt−1+Nr iMt !

(iMt +aMt +Nr −1)!

(Mt + l)iMt +aMt +Nr
(3.44)

wherei1 = 0. For the special case whenNr = 1, Eq. (3.44) can be simplified as

E {ha1
1 · · ·haMt

Mt
} =

(Nt)!
(Nt −Mt)!

i1+a1

∑
i2

i2+a2

∑
i3

· · ·
iMt−1+aMt−1

∑
iMt

Nt−Mt

∑
l=0

(−1)l
(

Nt −Mt

l

)
i1!
i2!

(i2 +a2)!
2i2+a2+1 i3!

· · · (iMt +aMt−1)!

(Mt −1)iMt−1+aMt−1+1 iMt !

(iMt +aMt )!

(Mt+l)iMt +aMt +1 . (3.45)

WhenMt reduces to 1, the simplified expression is

E {ha1
1 } = Nt

Nt−Mt

∑
l=0

(−1)l
(

Nt −Mt

l

)
a1!

(Mt + l)a1+1 . (3.46)
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3.8 Appendix B

The lower bound of AF for correlated Rayleigh fading

Proposition: Assume a Rayleigh fading channel with a generalcorrelation withNr receive

antennas andNt transmit antennas. The AF could be lower bounded as AFgc ≥ 1
NrNt

.

Proof: For the general correlation, we rewrite Eq. (3.8):

AFgc =

NrNt

∑
i=1

λ 2
i

(
NrNt

∑
i=1

λi)
2

. (3.47)

Under the assumption of the Knockner model, for the summation of the eigenvaluesλi

of the correlation matrixR, we have∑NrNt
i λi = Nr ×Nt . Minimizing the AF reduces to

minimizing the numerator of Eq. (3.47). The Lagrange methodis used with the condition

that∑NrNt
i λi = Nr ×Nt and

V = λ 2
1 + · · ·+λ 2

NrNt
−α(λ1 + · · ·+λNrNt −Nr ×Nt). (3.48)

Partially differentiateV with respect toλ1, · · · ,λNrNt and set them to be zero:

∂V
∂λ1

= 2λ1−α = 0,

... (3.49)
∂V

∂λNrNt

= 2λNrNt −α = 0. (3.50)

The minimal AF is then achieved whenλ1 = · · · = λNrNt = 1, and the minimum of the AF

is 1
NtNr

. The proof is complete.

39



3.9 Appendix C

General moments for receiver-correlated Rayleigh fad-

ing channels

The closed-form expression forE {ha1
1 · · ·haMt

Mt
} is obtained when correlation exists at the

receiver side. The MGF ofh j, whereh j represents the sum of magnitude square ofjth

column ofH, can be written as

Φh j(s) = E{e−h js} =
1

det{Im×m +Rrs}
=

rr

∏
u=1

1
1+λus

(3.51)

whererr is the rank ofRr, 1≤ rr ≤ Nr, andλu is the eigenvalue of the correlation matrix

of the receiver.

By using the inverse Laplace transform ofΦh j(s), the PDF of theh j is given by

fh(t) =
l

∑
u=1

ru

∑
v=1

cuv
tv−1

(v−1)!
e−

t
λu , t > 0. (3.52)

Thus, the CDF ofh j is

Fh(t) =
l

∑
u=1

ru

∑
v=1

λ v
u cuv · (1− e−

t
λu

v−1

∑
k=0

( t
λu

)k

k!
), t > 0 (3.53)

whereru is the multiplicity of each eigenvalue,rr = ∑l
u=1ru, and

cuv =
1

(ru − v)!
{ d(ru−v)

ds(ru−v)
[F(s)(s− su)

ru]}s=su. (3.54)

Note that the summation in Eq. (3.52) has a similar form to that of the MGF of a chi-square

distribution. By using the same integral as Appendix A,E {ha1
1 · · ·haMt

Mt
} can be written as

E {ha1
1 · · ·haMt

Mt
} =

Nt !
((Nr −1)!)Mt (Nt −Mt)!

I1 · · · Im · · · IMt (3.55)

where,

Im =
l

∑
um=1

ru

∑
vm=1

im+vm+a1−1

∑
im+1=0

Cumvm

(vm −1)!
(im + vm +a1−1)!

( 1
λ1

+ · · ·+ 1
λm

)im+vm+a1 · (im +1)!
1≤ m ≤ Mt −1

(3.56)
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IMt =
l

∑
uMt =1

ru

∑
vMt =1

Nt−Mt

∑
t=0

(−1)t
(

Nt −Mt

t

)
(

l

∑
u=1

ru

∑
v=1

λ v
uCuv)

Nt−Mt−t ·
l

∑
x1=1

ru

∑
y1=1

v1

∑
z1=0

· · ·
l

∑
xt=1

ru

∑
yt=1

vt

∑
zt=0

CuMt vMt
Cx1y1 · · ·Cxtyt λ

y1
x1 · · ·λ

yt
xt

(vMt −1)!z1! · · ·zt !

1

λ k1
u1 ·λ kt

ut

(iMt + vMt +aMt + z1 + · · ·+ zt −1)!

( 1
λu1

+ · · ·+ 1
λuMt

)iMt +vMt +aMt +z1+···+zt
(3.57)
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Chapter 4

Performance Analysis of T-RAS with

OSTBC

This chapter is organized as follows. Overviews of the related literature and the motivation

of the proposed work are summarized in Section 4.1. The jointT-RAS system model is

briefly described in Section 4.2. An illustrative example isgiven in Section 4.3 to highlight

the difficulties in analyzing the T-RAS systems. The CF for three types of channel models,

i.e., Rayleigh, Nakagami-m and Rician, are also given in Section 4.3. Section 4.4 derives

the MGF of the output SNR, the average SER, the average BER, outageprobability and

ergodic capacity. Numerical results are presented to validate the theory and address the

effects of various parameters on the BER performance in Section 4.5, followed by conclu-

sions drawn in Section 4.6.

4.1 Introduction

Both RAS and TAS have been analyzed in detail. In particular, RASperformance in var-

ious channel/correlation models has been comprehensivelytreated. Among many others,

theoretical analysis for generalized selection combiningreceiver, an RAS scheme, with

nonidentical fading was presented in [58]. Other contributions include [59–61]. For TAS,
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performance of TAS was analyzed for selecting one antenna atthe transmitter in [39]. Ref-

erences [10] and [38] analyzed TAS for Alamouti-coded MIMO systems. The SER and

BER of TAS were derived in [11, 12]. The exact capacity expressions were given in [50]

for TAS with OSTBCs.

In performance analysis of antenna selection, one needs thestatistical distribution of the

maximum of a set of branch SNRs or the sum of some of the largest branch SNRs. If the

branch SNRs are statistically independent, then those statistics are readily derivable [54].

This is actually the case for both TAS and RAS if the actual channel gains are independent.

Consequently, many analytical studies focus on independentfading channels. However,

with T-RAS, the branch SNRs are not independent even if the fading channels are i.i.d..

Although order statistics is a well-established branch of statistics, there is surprisingly few

available analytical results on correlated random variables [54]. For this reason, the analysis

is often made tractable by selection at either the transmitter or receiver – but not both

simultaneously [32].

To the best of our knowledge, there is only one paper analyzing T-RAS to date. Cai

and Giannakis [62] analyzed error rate performance for selecting one transmit antenna and

arbitrary number of receive antennas in independent Rayleigh fading channels. Thus the

general problem of analyzing the joint selection ofMt out of Nt transmit antennas andMr

out of Nr receive antennas remains open.

In this chapter, a framework for performance analysis for the general T-RAS for an ar-

bitrary number of transmit and receive antennas is presented. The MIMO channels are not

restricted to independent ones but arbitrarily correlatedRayleigh, Nakagami-m or Rician

fading channels [15]. The analytical framework introducedfor an arbitrarily correlated

multi-branch selection combining problem presented in [63] is leveraged to solve the prob-

lem. Major work is presented in our paper of [64].
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4.2 System and Channel Model

A MIMO system withNt transmit antennas andNr receive antennas is considered here. The

class of OSTBCs provides maximal diversity order in a fading channel and are amenable

to low-complexity ML decoding. Assume that the fading channels vary slowly and the

feedback delay is sufficiently small to render channel estimation errors negligible, and that

the channel state information is perfectly available at thereceiver. A subset ofMt transmit

antennas andMr receive antennas is selected and the decision is fed back to the transmitter

where OSTBC signal matrices are activated for transmission.

By using OSTBC, the MIMO system is decomposed into several SISO channels as dis-

cussed in Section 2.4. In this case, the selection criteria to maximize the channel Frobenius

norm will also maximize the received SNR, and thus minimize the probability of error [32].

Now assume that̃H is the actualMr ×Mt transmission matrix and the received signals

can be expressed by Eq. (2.40) as

Y =

√
Es

Mt
H̃X +N. (4.1)

To maximize the total received signal power the subset of transmit and receive antennas

that yields the largest instantaneous output SNR is selected. There areN =

(
Nt

Mt

)
·
(

Nr

Mr

)

alternates of the selections of transmit and receive antennas. LetH̃s (1 ≤ s ≤ N) be the

N channel sub-matrice corresponding to theN possible antenna subsets. Define||H̃s||2F =

∑Mr
m=1∑Mt

n=1 |hi, j|2, wherehi, j is the(m,n)th element ofH̃s and 1≤ m ≤ Mt ,1 ≤ n ≤ Mr.

Using an OSTBC, the instantaneous output SNR for each antenna subset can be given by

γs =
Es

N0RsMt
‖H̃s‖2

F ,1≤ s ≤ N (4.2)

whereRs is the symbol rate (symbol/s),Es is the symbol energy, andN0 is the one-side

power spectral density of the white Gaussian noise. The receiver selects antenna subset

with maximum instantaneous output SNR expressed by

γ = max{γ1, · · · ,γN}. (4.3)
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h2,1 h2,2 h2,3

h1,1 h1,2 h1,3

Fig. 4.1. Two possible antenna selection subsets

When the transmitter side receives the selection information, the selected transmit an-

tennas are connected to the availableMt RF chains and the actual transmission occurs

throughH̃.

4.3 The CF of T-RAS

In either TAS or RAS, order statistics of independent fading channels can be employed

to get the PDF of the output SNR. However even in the case of independent fading chan-

nels, all possible subsets of transmit and receive antennasinvolve correlation, where order

statistics of independent variables can no longer be used. First an illustrative example is

given.

Consider an MIMO system with 3 available transmit antennas and 2 available receive

antennas on independent fading channels and the channel matrix is given in Fig. 4.1. In

TAS analysis, the output SNR sent from each transmit antennais the transmit SNR mul-

tiplied by the square norm of each column of the channel matrix H, i.e., as for the first

transmitter,γ1 = (|h1,1|2 + |h2,1|2)Es/N0. Arrangeγi wherei = 1,2,3 in descending order

and denote them byγ(1) ≥ γ(2) ≥ γ(3). If γ1,γ2,γ3 are i.i.d., the joint or individual PDF of

γ(s) can be given by order statistics [54]. The SER or BER can be derived based on the

known PDF ofγ(s). On the other hand, the analysis of RAS requires the distribution of

sorted output SNRs, the statistics of which can also be obtained similarly.

Now, in generalized T-RAS scheme, if 2 transmit antennas and 1receive antenna are

selected, there are
(3

2

)
·
(2

1

)
= 6 different choices of antenna subsets. The submatrices of two

possible antenna subsets are shown in Fig. 4.3. The left rectangle corresponds to the 1st and
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2nd transmit antennas and the 1st receive antennas being selected and the output SNR is

given byγ1 = (|h1,1|2 + |h1,2|2)Es/2N0Rs. The right rectangle corresponds to selecting the

2nd and 3rd transmit antennas and the 1st receive antennas, where the output SNR is given

by γ2 = (|h1,2|2 + |h1,3|2)Es/2N0Rs. The otherγs (3≤ s ≤ 6) are defined similarly. Even

if the channels are independent with each other,γ1 andγ2 are no longer independent since

there exists a common termh1,2. Thus, the case of T-RAS does not satisfy the condition

for the theory of order statistics of independent random variables.

For correlated channels, determination of the statistics of γs will become even more

complicated since the correlation between differentγs will be caused by the common terms

as well as the underlying spatial correlation.

To solve this problem, Zhang’s analytical framework suggested in a multi-branch se-

lection combining problem [63] is utilized, which expresses the joint PDF ofγs as multiple

Fourier transform of its CF. The CDF and PDF of the maximum SNRγ among all possible

γs are given by [63, eq. (8)] and [63, eq. (9)]

Fγ(γ) =
1

(2π)N

∫ ∞

−∞
· · ·
∫ ∞

−∞
Φ(t1, · · · , tN)

N

∏
s=1

1− e− jtsγ

jts
dt1 · · ·dtN (4.4)

and

fγ(γ) =
1

(2π)N

∫ ∞

−∞
· · ·
∫ ∞

−∞
Φ(t1, · · · , tN)

N

∏
s=1

( jts)
−1

×
N

∑
l=1

(−1)l+1 ∑
b1+···+bN=l

jTN

exp( jγTN)
dt1 · · ·dtN (4.5)

whereN =

(
Nt

Mt

)
·
(

Nr

Mr

)
. For brevity, we denoteTN = b1t1 + · · ·+ bNtN andb1, · · · ,bN

are binary variables that take values of 0 or 1. In Eq. (4.4),Φ(t1, · · · , tN) is the joint CF for

γs, which solely depends on the channel environment and is independent of the modulation

scheme.

In general, the joint CF of theN possible output SNRsγs is defined as the function [65,

eq. (7-50)]

Φ(t1, · · · , tN) = E
{

e jt1γ1+···+ jtNγN
}

(4.6)
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whereγs (1≤ s ≤ N) are the output SNRs of each possible antenna selection definedin Eq.

(4.2). The main difficulty in evaluating Eq. (4.6) is thatγs does not correspond to one single

fading channel but related to theMt ×Mr summation of the square norm of the elements of

the sth channel matrix̃Hs. Thus, the CF for the output SNRγs in [63] is not suitable for

joint antenna selection situation.

In order to overcome this problem, substituting Eq. (4.2) into Eq. (4.6) and we obtain

Φ(t1, · · · , tN) = E

{
ea j(|h1,1|2 ∑N

k=1 cktk+···+|hNr ,Nt |2 ∑N
k=1 cktk)

}
(4.7)

wherea =
Es

N0MtRs
andc1, · · · ,cN are binary variables that take values of 0 or 1. The num-

ber of the terms in the summation for every‖hi, j‖2 whereck = 1 will be Nc =
(Nt−1

Mt−1

)(Nr−1
Mr−1

)

and the order oftk is determined by the arrangement order of differentγs. The CF can be

obtained by evaluating Eq. (4.7) with respect to|hi, j|2. By using the vectorization of the

channel expressed ash = vec[H], Eq. (4.7) can be rewritten as the Hermitian quadratic

form of h as

Φ(t1, · · · , tN) = E

{
ehHQh

}
(4.8)

whereQ is the diagonal matrix with the diagonal elements being the coefficients of|hi, j|2

in Eq. (4.7), i.e.,

Q = diag

{
a j

N

∑
k=1

cktk, · · · ,
N

∑
k=1

cktk

}
. (4.9)

Notice that the form ofQ depends on the number of the selected and available transmitand

receive antennas. Examples will be given later to illustrate how to get the diagonal matrix

Q.

4.3.1 Rayleigh fading channels

For correlated Rayleigh fading channels, the channel vectorh follows complex Gaussian

distribution,h ∼ C N (0,ψ), whereψ is the covariance matrix defined by

ψ =
1
2
E [ (h−E {h})(h−E {h})H ]. (4.10)
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Note that the complex covariance matrixψ also equalsψI + jψQI, where

ψI = ψQ = E [ (hI −E {hI})(hI −E {hI})T ]

ψQI = −ψIQ = E [ (hI −E {hI})(hQ −E {hQ})T ] (4.11)

and hI and hQ are the vectors composed by the real part and the imaginary part of the

channel vectorh.

When the variance of each element ofh equals to 1, the covariance matrix equals to

correlation matrixR in Rayleigh fading channels. Note here, the definition of the corre-

lation matrix is the normalized covariance. The MIMO channel correlation matrixR can

be approximated by the Kronecker product of the correlationmatrix at the transmitter and

the receiver Eq. (2.24). Note that the decomposition does not incorporate the most general

case of spatial fading correlation, but yields a reasonablecompromise between analytical

tractability and validity of the channels model.

Several correlation models are available for different antennas configurations. Spe-

cially, constant correlation model may be applicable for closely spaced diversity antennas

or three antennas placed on an equilateral triangle. Circular correlation model applies to

the case when antennas lying on a circle or four antennas placed on a square. Furthermore,

when linear array of antenna elements are equally spaced, exponential correlation can be

used [66]. Although these models are good approximations insome cases, in reality the

correlation matrixR can take on any arbitrary Hermitian structure since it depends not

only on the transmit and receive antenna array configurationbut also on the operating en-

vironment, such as the incident angle of the arrival and departure, and the angular spread,

etc.

The exponential in Eq. (4.7) can be viewed as the CF of Hermitian quadratic forms in

h. From [19] [16, eq.(B-3-14)], the joint CF of outputγs can be derived as

Φ(t1, · · · , tN) = det(I −RQ)−1 (4.12)

where (·)−1 is the matrix inverse operator. An alternative expression to Eq. (4.12) is

obtained by noting that the normalized fading power correlation coefficientρpower is the
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squared amplitude of the complex channel correlation coefficients inR [67], i.e.,ρpower(m,n)=

|R(m,n)|2 whereR(m,n) is the(m,n)-th element ofR. Thus, each element ofR can be

taken by the square root of the power correlation coefficients in Eq. (4.12). Therefore, the

complex component correlation considered here allows the correlation to be evaluated in

terms of the transmit and receive antenna spacing, mean AOA,mean AOD and transmit

and receive angular spread. The correlation of the instantaneous power is more convenient

for the analysis of experimental data, where they can be easily measured from field data.

Next, the methods to obtain the diagonal matrixQ in Eq. (4.12) are provided. There

are two steps. First, theN output SNRγs corresponding to theN possible antenna selec-

tions are defined in a specific arrangement. Second, theγss are substituted into the general

CF function in Eq. (4.6). The diagonal elements ofQ corresponds to the coefficients of

the |hi, j|2. Using the example illustrated before, still consider selecting 2 out of 3 trans-

mit antennas and 1 out of 2 receive antennas, the number of possible antenna selection is
(3

2

)(2
2

)
= 6. If the 6 terms of{γ1, · · · ,γ6} is arranged as

γ1 = a(|h1,1|2 + |h1,2|2), γ2 = a(|h1,1|2 + |h1,3|2),

γ3 = a(|h1,2|2 + |h1,3|2), γ4 = a(|h2,1|2 + |h2,2|2),

γ5 = a(|h2,1|2 + |h2,3|2), γ6 = a(|h2,2|2 + |h2,3|2) (4.13)

substituting Eq. (4.13) into Eq. (4.6) the exponential in Eq. (4.6) becomes

jt1γ1 + · · ·+ jt6γ6 =a
{
|h1,1|2 j(t1 + t2)+ |h1,2|2 j(t1 + t3)+ |h1,3|2 j(t2 + t3)

+ |h2,1|2 j(t4 + t5)+ |h2,2|2 j(t4 + t6)+ |h2,3|2 j(t5 + t6)
}
. (4.14)

Thus, the diagonal matrixQ can be expressed as

Q = diag
{

a j(t1 + t2),a j(t1 + t3),a j(t2 + t3),a j(t4 + t5),a j(t4 + t6),a j(t5 + t6)
}
. (4.15)

Note that the positions of the diagonal elements ofQ are fixed by the position ofhi, j in the

channel vectorh. With the knowledge ofQ, the joint CF for the output SNRγs of T-RAS

can be obtained by Eq. (4.12) with the known correlation matrix R. When the channels are
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i.i.d., the joint CF can be expressed by

φ(t1, · · · , tN) =
1

(1−a(t1 + t2) j)(1−a(t1 + t3) j)(1−a(t2 + t3) j)

× 1
(1−a(t4 + t5) j)(1−a(t4 + t6) j)(1−a(t5 + t6) j)

. (4.16)

4.3.2 Nakagami-m fading channels

For Nakagami-m fading channels, we consider the case when the parametersm are equal

for all Nt ×Nr channels. Recall Eq. (4.6), the exponential term can be looked as MRC with

definingNr ×Nt output SNRs as|hi, j|2. For arbitrary correlated Nakagami-m fading chan-

nels with integerm, the CF of MRC is obtained by using the central Wishart distribution

as [17]

Φ(ω) = det(INr×Nt − jωa
ψ
m

)−m, (4.17)

wherea =
Es

N0MtRS
andψ is the covariance matrix. The variance of eachhi, j is m. Thus,

the ψ
m in Eq. (4.17) equals the correlation matrixR and the joint CF of T-RAS can be

obtained by settingω = 1, i.e.,

Φ(t1, · · · , tN) = det(I −RQ)−m, (4.18)

whereQ is the diagonal matrix we showed before. In [17], Luo et al. have shown that for

Nakagami-m fading channels, the normalized power correlation coefficients is the squared

amplitude of the complex channel correlation. Thus, an alternative expression of CF can

be obtained by substituting in the square root of the normalized power correlations.

4.3.3 Rician fading channels

For correlated Rician fading channels, the channel vectorh follows the complex Gaussian

distribution, h ∼ C N (µ,ψ). The mean vectorµ physically represents the direct-path

component, whereas the signal strengths of the diffused components are specified by the
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diagonal elements of the covariance matrixψ. The Rician factor at theith element ofh can

be given byKi =
|µ i|2

ψ(i, i)
with µi being theith element ofµ .

For Rician fading channels, the correlation matrixR, which depicts the correlation

between the diffused components, can also be approximate bythe Kronecker product of

the transmit correlation matrixRt and receive correlation matrixRr [68]. If the Rician

factorK is the same for all channels, the relationship between the covariance matrixψ and

the correlation matrixR is ψ =
1

1+K
R. When the Rician factorK are different for each

fading channels, the relationship ofψ(i, j) andR(i, j) can be expressed by

ψ(i, j) =
1√

(1+Ki)(1+K j)
R(i, j). (4.19)

The joint CF of outputγs can be obtained with the help of [19] and given as

Φ(t1, · · · , tN) = det(I −RQ)−1exp
[
µH(Q−1−ψ)−1µ)

]
(4.20)

The Rayleigh fading channel can be treated as a special case ofRician fading withµ = 0

or K = 0.

In conclusion, the joint CF depends on two factors. One factoris the channel environ-

ment, i.e., the channel model and the channel correlation matrix. The other factor is the

numbers of available and selected antennas(Nt ,Mt ;Nr,Mr) together with the order, which

determines the expression of the diagonal matrixQ.

4.4 Performance Analysis

With the CF derived in section III, the PDF of the output SNRγ of T-RAS can be obtained

from Eq. (4.5), which can be further used to evaluate the system performance measure-

ments. In this section, closed-form expressions for the average BER, average SER, outage

performance and ergodic capacity are derived for MIMO systems with OSTBC, T-RAS and

different modulation formats.
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4.4.1 BER Analysis

With the knowledge of the PDF of the output SNRγ and using Eq. (2.26), the average error

rate for a fading wireless system could be obtained as

Pe =
∫ ∞

0
Pe(γ) fγ(γ)dγ (4.21)

wherePe(γ) is the conditional error probability for either BER or SER given instantaneous

output SNRγ. Substituting Eq. (4.5) into Eq. (4.21) yields the average error probability

expression

Pe =
∫ ∞

0
· · ·
∫ ∞

0
Φ(t1, · · · , tN)w(t1, · · · , tN)dt1 · · ·dtN (4.22)

with

w(t1, · · · , tN) =
1

(2π)N

∫ ∞

−∞
Pe(γ)

N

∏
k=1

( jtk)
−1

N

∑
l=1

(−1)l+1 ∑
b1+···+bN=l

jTN

exp( jγTN)
dγ. (4.23)

In Eq. (4.22), the first factorΦ(t1, · · · , tN) in the integrand is the joint CF ofγs de-

pended solely on the channel characters and the number of antennas. The second factor

w(t1, · · · , tN) is the weighting function, which depends only on the modulation scheme.

Such a decomposition makes the analysis of error performance systematic. For a given

modulation scheme operating in a specified environment, these two factors should be de-

termined and Eq. (4.22) is used to obtain the average error probability.

Consider a MIMO system modulated byM-ary square amplitude modulation (M-QAM)

with Gray mapping. From [69, 70], the conditional BER can be represented as a sum of

(
√

M−1) Q functions, expressed by

Pe|MQAM (γ) =

√
M−1

∑
i=1

aiQ(
√

biγ) (4.24)

where the coefficientsai andbi depend on the constellation sizeM. The conditional BER

of the binary phase shift keying (BPSK) and binary frequency shift keying (BFSK) can be

looked as the special cases of Eq. (4.24) withM = 2, a1 = 1,b1 = 2 andM = 2, a1 =
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1,b1 = 1, respectively. Inserting Eq. (4.24) into Eq. (4.23) yields (similar to [71, eq,(12)]),

w(t1, · · · , tN) =

√
M−1

∑
i=1

ai

2(2π)N

N

∏
k=1

( jtk)
−1

(
1+

N

∑
l=1

(−1)l ∑
b1+···+bN=l

√
bi

bi +2 jTN

)
.

(4.25)

After substituting Eq. (4.25) into Eq. (4.22), the average BER of the MIMO systems with

T-RAS and modulated by M-QAM, BPSK, BFSK can be numerically calculated.

4.4.2 SER Analysis

By definingPe(γ) in Eq. (4.21) as the conditional symbol error rate on the statistics of the

output SNR, the average SER can be derived. Here, the MGF-based approach is used to

derive the average SER [72].

From the PDF ofγ in Eq. (4.5), the MGF of the output SNR can be derived as

Mγ(s) =
∫ ∞

0
e−sγ fγ(γ)dγ

=
1

(2π)N

∫ ∞

−∞
· · ·
∫ ∞

−∞
Φ(t1, · · · , tN)

N

∏
k=1

( jtk)
−1

N

∑
l=1

(−1)l+1 ∑
b1+···+bN=l

jTN

l + jTN
dt1 · · ·dtN .

(4.26)

Using the MGF ofγ, the average SER of M-PSK, square M-QAM, and M-ary pulse am-

plitude modulation (M-PAM) can be calculated by

Pe|MPSK(e) =
1
π

∫ (M−1)π
M

0
Mγ

(
gMPSK

sin2θ

)
dθ (4.27)

Pe|MQAM (e) =

(
1− 1√

M

)
4
π

∫ π
2

0
Mγ

(
gMQAM

sin2θ

)
dθ

−
(

1− 1√
M

)2 4
π

∫ π
4

0
Mγ

(
gMQAM

sin2θ

)
dθ (4.28)

Pe|MPAM(e) =
2
π

M−1
M

∫ π
2

0
Mγ

(
gMPAM

sin2θ

)
dθ (4.29)

wheregMPSK = sin2( π
M ), gMQAM = 3/2(M−1), andgMPAM = 3/(M2−1).
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4.4.3 Outage Probability

The conditional capacity on the output SNRγ can be given by [13]

C(γ) = log2(1+ γ). (4.30)

For a given transmission rateRT , the probability that the realized T-RAS can not support

RT with the output SNRγ is [71, eq,(15)]

Pout(RT ) = P{log2(1+ γ) < RT} = Fγ
(
2RT −1

)

=
1

(2π)N

∫ ∞

−∞
· · ·
∫ ∞

−∞
Φ(t1, · · · , tN)

N

∏
k=1

1− e− jtk(2RT −1)

jtk
dt1 · · ·dtN . (4.31)

The outage probability expression can be derived in a similar manner with that of BER.

4.4.4 Ergodic capacity

The ergodic capacity of a MIMO channel is the ensemble average of the information rate

over the distribution of the elements of the channel matrixH [13]. Conditional capacity is

given in Eq. (4.30) and the weighting function is [71, eq,(18)]

w(t1, · · · , tN) =
N

∏
k=1

( jtk)
−1

N

∑
l=1

(−1)l+1 ∑
b1+···+bN=l

jTNΦ(t1, · · · , tN)
∫ ∞

0
C(γ)e− jγTN dγ

(4.32)

whereTN = b1t1 + · · ·+ bNtN is the same as in Eq. (4.5). The ergodic capacity can be

derived by using the same approach as Eq. (4.22).

In general, the calculation of error rate, outage probability and ergodic capacity can

not be simplified and relied on numerical methods. Gaussian quadrature integration was

suggested in [63].

4.5 Numerical Results

In this section, 4-QAM is used for all numerical examples. Fig. 4.2 depicts the simulation

and theory results of the average BER in two T-RAS MIMO systems over independent
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Rayleigh fading environments. Alamouti codes are employed on the selected transmit an-

tennas. One MIMO system choosesMt = 2 out of 3 transmit antennas andMr = 2 out of

2 receive antennas, and the other choosesMt = 2 out of 3 transmit antennas andMr = 1

out of 2 receive antennas. Integrals in Eq. (4.22) are approximated by using truncated

Riemann sum of points with equal space 0.2 between -10 and 10. Extending the summa-

tion limits will not get different values since the integrant is highly concentrated within the

range [−8, 8]. In Fig. 4.2, the derived formulas of both systems matchvery well with the

Monte-Carlo simulation results. The system using both two receive antennas outperforms

the MIMO with one receive antenna selected. This again implies the tradeoff between the

performance and complexity as in [62].

Fig. 4.3 demonstrates the derived formulas of the average SER in a T-RAS MIMO

system whereMt = 2 are chosen out of 3 transmit antennas andMr = 2 out of 2 receive

antennas. Simulation results are shown to compare with the derived results. The outage

probability for this system is shown in Fig. 4.4, where calculation results are obtained by

Eq. (4.31). In both figures, the calculated values match wellwith the simulation results.

The dependence of the bit error performance on the spatial correlation is of interest.

The correlation depends on the antenna configuration and theoperation environment (i.e.,

fading model, the spacing of antenna elements, mean AOA, mean AOD, transmit and re-

ceive angular spread). A series of numerical results are presented to illustrate the effects

of these parameters on the average BER over various fading channels. In the following,

a MIMO system choosingMt = 2 out of 3 transmit antennas andMr = 2 out of 2 receive

antennas is considered.

4.5.1 Correlated Rayleigh fading channels

The transmit correlation matrixRt and the receive correlation matrixRr are generated by

using the practical channel model presented in [68, 73, 74].The model assumes that there

are uniform linear arrays (ULA) at both the transmitter and receiver, and that the angular

spectrum at both sides follows a Gaussian distribution. Letus denote the relative antenna
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spacing between adjacent antennas asdr at the receiver anddt at the transmitter.dr and

dt are measured in units of wavelengthsλ = c
fc

, where fc is the center frequency of the

narrowband signal. We also definēθr, θ̄t , σr andσt as the mean AOA, mean AOD, receive

angle spread and transmit angle spread, respectively. Thus, the actual random AOA (θr)

and AOD (θt) can be expressed byθr = θ̄r + θ̂r andθt = θ̄t + θ̂t with θ̂r ∼ N (0,σ2
r ) and

θ̂t ∼ N (0,σ2
t ). With these definitions, the(p,q)th entry ofRr andRt can be given by

Rr(p,q) = exp
{
− j2π (p−q)drcos

(
θ̄r
)}

exp

{
−
(

1
2

(2π (p−q)drsin(θr)σr

)2
}

Rt(p,q) = exp
{
− j2π (p−q)dtcos(θ̄t)

}
exp

{
−
(

1
2

(2π (p−q)dtsin(θt)σt

)2
}

. (4.33)

The correlation matrixR is given by the Kronecker product ofRt andRr. As mentioned

in [68], the correlation function is essentially Gaussian with spread inversely proportional

to the product of the antenna spacing and angle spread. This agrees with the intuition

that smaller antenna spacing or angle spreads will generally lead to higher level of spatial

correlation. Substituting the correlation matrixR and the diagonal matrixQ (depends on

the number of selected and available transmit and receive antennas) into the CF Eq. (4.18)

and the average BER Eq. (4.22), the effects of the parameters on the average BER in

correlated Rayleigh fading channels can be observed.

Fig. 4.5 illustrates the effect of transmit antenna spacingdt on the average BER with

fixed receive antenna spacingdr = 1/5λ and 1/3λ , θ̄r = θ̄t = π/2,σr = σt = π/6 for

transmit SNR = 9 dB. Increasing the transmit antenna separation dt between the transmit

antenna elements reduces their correlation and hence improves the bit error performance.

However, once the transmit antenna spacingdt is increased beyondλ , the BER starts ap-

proaching its maximum achievable performance. The systemsalso benefit from increasing

the receive antenna separation.

The effect of angular spread on the bit error performance is also given. Fig. 4.6 shows

the average BER versus the transmit angular spread withdt = 1, dr = 1/4λ , θ̄ = π/2 and

π/6, θ̄r = π/2, σr = π/6 for transmit SNR = 9 dB. Both BERs decrease noticeably as the

transmit angular spread increases but less than 30o. The larger the mean AOA is, the better
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BER performance with the same angular spread will be. If the transmit angular spread is

fixed, BER has similar relationship with receive angular spread and mean AOD. All these

are consistent with the fact that the correlation is inversely proportional to the angle spread.

4.5.2 Correlated Nakagami-m fading channels

For Nakagami-m fading channels, the influence of the fading indexm on the average BER

is demonstrated. Though how to determine the correlation matrix at the transmit or receiver

side are given in literature, to the best of our knowledge, there is no model to describe the

general channel correlationR. The correlation matrix used for the Rayleigh distribution

is hence borrowed here with fixed correlation coefficients obtained bydt = 1, dr = 1/4λ ,

θ̄ = π/2 andπ/6, θ̄r = π/2, andσr = π/6. For numerical calculation, if the error is less

than 10−4, the spacing of the Riemannn summation should be smaller. Here, the error bit

at the transmit SNR = 9 dB and the space decreasing from 0.2 to 0.1 is calculated.

Fig. 4.7 shows the average BER versus the transmit SNR withm = 0.7, 1, 2.1. It is

observed that as the fading parameterm increases, the average BER decreases as expected

since largerm implies less severe fading.

4.5.3 Correlated Rician fading channels

For brevity, the same model Eq. (4.33) is used to generate thetransmit correlation matrix

Rt and receive correlation matrixRr. The correlation matrix, which depicts the correlation

of the diffused component, is also the Kronecker product ofRt andRr. If the Rician factor

K is the same for all channels, the covariance matrixψ =
√

1
1+K R. The ith elements of

mean vectorµ i take the value ofµ i =
√

K
1+K R(i, i). By inserting theµ , ψ and the diagonal

matrix Q into Eq. (4.20) the CF can be obtained. The average BER can be calculated by

inserting the derived CF and Eq. (4.25) into Eq. (4.22).

Fig. 4.8 illustrates the effect of transmit antenna spacingdt on the average BER with

dr = 1/4λ , θ̄r = θ̄t = π/2,σr = σt = π/6 for transmit antenna SNR = 9 dB andK = 0, 4,

10. As in the Rayleigh fading channels, the system benefits from the increasing of transmit
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antenna space. In the figure, a larger Rician factor achieves abetter bit error performance.

A larger antenna spacing is needed for a smaller Rician factor. The reason is that a large

Rician factor corresponds to a large direct-path component.

4.6 Conclusion

This chapter presents a framework to analyze the performance of the MIMO systems with

generalized transmit and receive antenna selection. The main difficulty is the correlation

between the different antenna subsets comes from antenna selection as well as the spatial

channel correlation. The problem can be conquered by expressing the PDF of the max-

imum output SNR as a function of the joint CF of all possible output SNRs. Thus, we

derived several PDF-based performance measures, including average BER, average SER,

outage probability and ergodic capacity. Numerical examples are given to illustrate the

effect of antenna array configuration and the operating environment on the average BER

performance through the correlation coefficient. Our framework can be applied in a wide

range of channel models, such as correlated Rayleigh, Nakagami-m and Rician fading chan-

nels. Furthermore, the conventional RAS and TAS can be calculated as the special cases of

T-RAS.
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Chapter 5

Conclusions and Future Work

Antenna selection reduces the number of RF chains and consequently reduces the cost as

well as the complexity of system without degrading the diversity performance. Therefore,

performance analysis of antenna selection is extensively treated, especially under RAS sys-

tems. For T-RAS systems, the main difficulty comes from the correlation between the dif-

ferent antenna subsets as well as the original channel correlation. Therefore, many previous

work on both TAS and T-RAS systems are limited within independent cases.

In this thesis, the system models of general MIMO and antennaselection schemes are

introduced. Different channel assumptions and statistical measures are given in Chapter 2.

Research on MIMO systems with antenna selection are reviewed.

In Chapter 3, the AF of TAS systems under both independent and correlated channels is

analyzed. We provide approximations and bounds for different cases which could be used

as easy references for different fading channels. A simplified relation between the AF and

coding gain is derived. The SER can be simply related to the AFfor TAS systems with i.i.d.

channels. The simulation results show that in the high SNR region, the approximations are

accurate.

Chapter 4 introduces a framework to analyze the performance of the MIMO systems

with T-RAS. The average BER, average SER, outage probability andergodic capacity are

derived by utilizing the CF of the joint output SNR. This approach can be used not only
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on independent but also arbitrarily correlated Rayleigh, Nakagami-m and Rician fading

channels. Simulation results are provided to validate the numerical calculations. The effect

of antenna array configuration and the operating environment (fading, angular spread, mean

AOA, mean AOD on the average BER performance are investigated. Both RAS and TAS

can be treated as special cases of T-RAS.

Future research topics are as follows:

As an indirect performance measure, AF can offer insights into system performance.

However, the analysis of AF under general correlation case is not easily simplified. Also,

analysis extended to Nakagami-m or rician channels for the most general case of T-RAS

could be worked on.

Although the analysis in Chapter 4 could be applied to any antenna selection schemes

under any fading channels, possible future work about how tosimplify the multi-dimension

integral in Eq. (4.22) should be considered. This is useful because the dimension of the

integral increases with the number of the selected antennas.

There are other aspects in antenna selection system that could also be considered. For

example, in literature performance analysis with imperfect channel estimation is restricted

within independent fading cases. To the best of our knowledge, performance analysis with

imperfect channel estimation is not given in literature forTAS and T-RAS systems.
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