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Abstract

Antenna selection reduces the system cost and complexitgdwycing the number of ra-
dio frequency (RF) chains while still retaining full divesi Despite extensive research
on receive antenna selection (RAS), the analysis of trarsménna selection (TAS) and
transmit and receive antenna selection (T-RAS) encountebdgms due to statistical diffi-
culties. In this thesis, performance analysis using a @mmasurement known as amount
of fading (AF) is provided. Approximations and bounds foe thF as well as methods
to derive the exact AF calculations for TAS on Rayleigh fadolgnnels are derived. A
simple approximate formula for the relationship betweesn Alr and the coding gain in
a TAS system is achieved. Furthermore, the average bit eater(BER), average sym-
bol error rata (SER), outage probability and ergodic capai derived by utilizing the
characteristic function (CF) of the joint output signalrtoise ratios (SNR) in generalized
T-RAS systems. This approach can be used for both indepeadenarbitrarily corre-
lated Rayleigh, Nakagarmnmiand Rician fading channels. The effects of the antenna array
configuration and the operating environment (fading, asgspread, mean angle-of-arrival
(AOA), mean angle-of-departure (AOD)) on the average BERoperance are illustrated.

The simulation results are provided to validate the nunaédalculations.
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Chapter 1

Introduction

1.1 Motivation

The wireless communication industry has been experienghegomenal growth rates over
the past several years. In many applications, wireless lbamate the high costs of in-
stalling and maintaining traditional wired systems. W8sHd services are accessible even
in the most rural community. However, the largest obstaatenfy designers of wireless
communication systems is the random nature of the wirelegsagation channel. The
wireless channel is non-stationary and noisy due to fadijiaterference. Recent ad-
vances have demonstrated that multiple-input-multiplgpot (MIMO) wireless systems
can significantly improve the system performance. MIMO tetbgy has thus got the
potential to provide the next major leap forward for wirsleemmunications [1].

However, MIMO systems have increased complexity and casipaoed to traditional
single-input single-output (SISO) systems. While addaioantenna elements (patch or
dipole antennas) are inexpensive, the radio frequency (RRjents are expensive. MIMO
systems with\; transmit andN; receive antennas requilg (N;) complete RF chains at the
transmitter and the receiver, respectively, including-tomise amplifiers, downconverters,
and analog-to-digital converters.

Due to this reason, there is an increasing interest in aatealection schemes, where



the ’best’ antenna subset of available antennas are chegbar(at one or both link ends),
downconverted, and processed. This selection reducesuthber of required RF chains,
and thus, leads to significant savings in cost and compléekitg savings come at the price
of a (usually small) performance loss compared to the fofiyplexity system [2].

Several types of antenna selection are possible: Transméma Selection (TAS),
Receive Antenna Selection (RAS), and Transmit and ReceivenAat8election (T-RAS).
Antenna selection attempts to choose the sub-channel$fidhatthe 'best’ performance
in terms of bit error rate (BER) or capacity. When orthogonalcsp@me block codes
(OSTBCs) are used for transmission, the system is guaranteleave full diversity but

with a less system cost [2].

1.2 Contributions

In this thesis, we analyze MIMO antenna selection with OSTB@$eu both independent

and correlated fading channels.

e The amount of fading (AF) is derived for general MIMO systemih independent
and identically distributed (i.i.d.) Rayleigh fading cham Methods of deriving the
exact AF for MIMO TAS systems are provided. Upper bounds amekl bounds are

derived. A simple approximate AF formula is derived.

e Upper bounds and lower bounds on the AF are derived for fadiannels with
correlation. Simple approximation formulas are derivedtfie@ constant correlation

model at the receiver side.

e A simple relationship between the AF and the symbol err@ (8ER) is given under
i.i.d. fading channels and TAS. Correspondingly, a simplati@ship between the

AF and coding gain is provided.

e By utilizing characteristic function (CF), the average BER, SB&age probabil-

ity, ergodic capacity are derived for correlated channel$-RAS MIMO systems.



Results are extended to Rayleigh, Nakagamaind Rician fading channels.

e The effects of the antenna array configuration and the apgratvironment (fading,
angular spread, mean angle-of-arrival (AOA), mean angigeparture (AOD)) on

the average BER performance are illustrated.

1.3 Thesis Outline

The thesis is organized as follows:

e Chapter 2 provides an overview on general MIMO channels atehaa selection

schemes.

e Chapter 3 deals with AF analysis under both independent amdlated channels in
MIMO TAS systems. A simple relationship between AF, SER aadirg gain is

also provided.

e In Chapter 4, a general framework for analyzing antenna sefers introduced. It
allows the derivation of SER, BER, outage probability as welkkagpdic capacity.
The effects of antenna array configuration and the operanmwionment are also

illustrated. Numerical results are given to validate dedlivesults.

e Conclusions and future work are given in Chapter 5.



Chapter 2

MIMO Systems with Antenna Selection

In this chapter, MIMO systems with antenna selection areflyroverviewed. Statistical
assumptions and correlation models are presented in 8étfo In Section 2.3, common
performance measures are discussed. Different anteretiealschemes are introduced

in Section 2.4, along with a general system model under OSTBC.

2.1 Introduction

MIMO wireless systems, also known as multiple-antennaesyst have multiple antenna
elements at both the transmitter and receiver [3]. They Westeanalyzed in the 1980s and
1990s [4—6]. The interest in MIMO systems has exploded awees They are now being
used for the third-generation cellular systems and forreutigh-performance modes of
the highly successful IEEE 802.11 standard for wirelesallapea networks [7].

Obtaining the full benefits of multiple transmit antennas/rhawever require the use
of space-time signaling schemes such as OSTBCs, a class lgfé&sbdable space-time
codes that achieves the full diversity order [8]. The fanofyYDSTBCs simplifies the max-
imum likelihood (ML) decoding. However, a major limitingder in the deployment of
MIMO systems is the cost of multiple RF chains (each RF chaiwireg an amplifier,
mixer, analog-to-digital converters and so on) at both esfds wireless link. A power-

ful solution is to select a subset of the available antenrf@keweeping the advantages of
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using all antennas [1]. This results in a limited number of RR&ios being dynamically
multiplexed between several transmit/receive antenmelgerature, RAS is a traditionally
well-researched topic [1, 9] and the study of TAS is more mefE0-12].

2.2 System Models

2.2.1 Statistical Models of MIMO Fading Channels

Consider a wireless communication system wthransmit and\, receive antennas. The

guasi-static flat fading MIMO channel can be representedhmatiix form as [13]:

hi1 hi2 - hin
h h ... h
H— 2,1 2,2 2,Ny (2.1)
I vt B2 o0 B

whereh; j (1 <i <N, 1< j <N)is the channel gain between tireh transmit antenna
and thei-th receive antenna. Note thht; is the composite channel impulse response
inclusive of the pulse-shaping filter at theth transmitter, the propagation channel and
thei-th receiver matched-filter. The special case in which tieenehtsh; j are i.i.d. zero
mean circularly symmetric complex Gaussian (ZMCSCG) with uariance is called the
spatially white channet,, [13].

The squared Frobenius normidf i.e., E is defined as

H]

Nr N
IH[IE = Tr(HH") = >3 hi jI2. (2:2)
i=1j=1

Due to the randomness &f, HHH% is also a random variable. The statistics”cbﬂ\%
determines the diversity performance. When= H,, the probability density function
(PDF) of ||H||Z is given by [14]

xNeNe—1

f(x) = me—X. (2.3)



Therefore||H H,Z: IS a chi-squared random variable witN:&, degrees of freedom [15].

The channel gaih; j for all i, j is commonly described using several different statistical
models. Usually, to analyze the performance of MIMO syste¢hescumulative distribution
function (CDF), PDF and the moment generating function (MGfhe fading amplitudes

are often required.

Rayleigh Distribution

In urban and suburban areas, when fading is caused by thepssfi®n of a large number
of independent scattered components, the envelope of teesegel signal can be modeled
as a Rayleigh distribution [13]. L&t = 4 /X12 + X22 whereX; andX; are independent zero-
mean Gaussian random variables with common variarfgée. X, Xo ~ N(0, g?). Thus,

X is Rayleigh distributed with the PDF given by

X 2
fx(X) = ;e 202 x>0. (2.4)

The squared-envelope is central chi-square distributdll twio degrees of freedom, i.e.
X? ~ x2(0,02) or exponentially distributed, whose CDF, PDF and MGF arergiespec-

tively by [14]
y

Fea(y) =1— exp(—@), y>0 (2.5)
1 y
fya(y) = TﬂeXp(_Tﬂ)’ y>0 (2.6)
1
My2(8) = 175528 552 (2.7)

Rician Distribution

In rural regions, on the other hand, the received signalatost direct line-of-sight (LOS)
component; thus the envelope of received signal followsRiwgan distribution [13]. Let

X = /X12 + X22 whereX; andX; are independent Gaussian random variables with non-zero
meansmy, m and common varianc€[(X; — mp)?] = &[(Xo — mp)?)] = a2 and & (x) rep-

resents the expectation of the random variabiee. X; ~ N(my, 62) andX, ~ N(mp, 02).



Then X is Rician distributed with the Rician factét = mi;n% the average poweR =

EX?)=m+mB+20%,i.e. X~ % (%ﬁ,mﬁ+m§+202), and its PDF is given by

me2
. iexp{_M] . (_M%> 0 @s

02 2072 0?
wherelp(x) is the zero-th order modified Bessel function of the first kemlgiven by
T
lo(x) = 5/ X004, 2.9)
TtJjo

The squared-envelope of a Rician random variable is norralechi-square distributed
with two degrees of freedom, i.&? ~ xo(, /lf—fl, 0?), whose CDF, PDF, MGF are given
respectively by [14]

Feo(y) =1— 2 (\/ZK, Z(KQLDV) L y>0 (2.10)
K+1 (K+1)y K(K+1)y
_ K — — 7 > .
fy2(y) ) exp[ K 3 }Io (2 a , y>0 (2.11)
1+K sKQ 1+K
Myals) = mew(—m)’ > (2-12)
whereZ2(a,b) is the first order Marcum Q-function. Thme-th order Marcum Q-function is
given by .
® rxym-1 X+ a
Dn(a,b) = /b X (a) exp{— . } Im_1(ax) dx (2.13)

whereln(x) is them-th order modified Bessel function of the first kind. As expdcta the
absence of a direct patiK = 0), the Rician PDF reduces to a Rayleigh PDF, confirming
that the Rayleigh distribution is a special case of the Riciatmidution [16, Apprendix B].

Nakagami-m Distribution

The Nakagamm distribution is a versatile statistical distribution whican accurately
model a variety of fading environments. It has greater fiéibin matching some em-

pirical data than the Rayleigh, Rician distributions. It s the Rayleigh distribution as
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a special case and can closely approximate the Rician distib[17]. The PDF for this

distribution is given by Nakagami [18]:

fx(r) = 2 (%)"‘rzrn*le*”“rz/Q (2.14)

where the average envelope powers defined as
Q= &(X?) (2.15)

[ (m) is the Gamma function which is defined Byx) = [;’t* et and the parameten,

known as the fading figure, is defined as the ratio of moments

QZ
S — >1/2. :
m =) m>1/2 (2.16)
Whenm =1 Eq. (2.14) reduces to the Rayleigh distribution. The sqitareselope of
a Nakagamim random variable is Gamma distributed with CDF, PDF, and MGlemi

as [14]

sz(y)zl—ﬁs/(m,%v), y>0 (2.17)
he) = s ()Y exe =), y>0 (2.18)
My2(s) = (mrsﬂ)m, s> —g (2.19)

wherey(a, x) is the complementary incomplete gamma function as defined by

y(n,x):/ t"le7tdt, n>o0. (2.20)
X

2.2.2 Spatial Fading Correlation

In Hy no correlation between different entries of the channetim@tassumed. In practice,

H can deviate significantly frorfl,y, due to a variety of reasons. For example, inadequate
antenna spacing and scattering lead to spatial correl§i®n Thus, the entries of the
channel matrix are no longer i.i.d.. Therefore, analysismfelated fading channels has

pratical significance.



TheN:N; x NiN; correlation matrixR is defined as
R = &{veqH)veqH)"} (2.21)

where ve¢A) stacksA into a vector column and superscript” is the Hermitian operator.

The correlated channels can be expressed in terms of thalspathite channel:
veqH) = RY?veqHy) (2.22)

whereH,, is the spatially whité\; x Ny MIMO channel described earlier ad)/2 denotes
the square root of matriA.

Note thatR is a positive semi-definite Hermitian matrix. B = Inn,, thenH = Hy,.
When the correlation properties at the transmitter are iadéent of those at the receiver,

a simpler model is given by [13]
H =RY2HuRY? (2.23)

whereR; is theN; x N; receive correlation matrixR; is the N x Ny transmit correlation
matrix. Note thaR, andR; are positive semi-definite Hermitian matrices. Since the to
tal correlation matrix is decomposed into transmit and ikecparts, this model has fewer
degrees of freedom than the model in Eq. (2.22). In this mdkelreceive antenna correla-
tion R, is equal to the correlation of té x 1 receive vector when excited by any transmit
antenna, and is therefore the same for all transmit antefimés condition holds when the
angle spectra of the scatterers at the receive array foalsigmriving from any transmit
antennas are identical and happens if all the transmit aateare closely located and have
identical radiation patterns [13]. The conditions can &gy over to the case of transmit
antenna correlatioR;.

The three matriceR, R, andR; are related as
R=R{ @R, (2.24)

where superscrift)T is the transpose operator agds the Kronecker product. Thus, the
total channel correlation can be expressed as the Kronectduct of the transmitter and

the receiver correlation matrices.



In the presence of receive or transmit correlation, the @ is reduced from full
rank to mir(r(Ry),r(Rt)), wherer (A) is the rank ofA.
For Rayleigh fading, the MGF of the Frobenius norm of the clehdanoted bWIHH”% (s)
can be given [19]:
1 NN
detlyn, +SR) ﬂ 1+sh(R)

My 2 () = (2.25)

where defA) is the determinant oA andAi(R) (i =1,2,--- ,NiN;) is theith eigenvalue of
R.

2.3 Performance Measures

To characterize the performance of diversity systems wwv gliad flat fading channels, per-
formance measures, such as the average SER, the average B&&Rathe probability, and
the AF, are commonly used in the literature [14, 15]. Morepfeg MIMO systems, there

are two other key measures, known as diversity gain and gagim.

2.3.1 Average Error Rate

The average error rate is one of the most commonly used peaifare criteria, which eval-

uates the effectiveness of different diversity schemesimeless fading channels. It is
obtained by averaging the conditional error probabilitemothe statistics of the fading
amplitudes. Many approaches have been proposed to evéheasyerage error rates of
MIMO systems under different fading assumptions. One ofntlost popular is the PDF-

based approach, which averages the conditional error pilapaver the PDF of the output

signal-to-noise ratio (SNR):

Po= [ Ruy)p()dy (2.26)
0

wherePs(y) is the conditional probability of error given the output S¥Ror a specific

modulation scheme amly) is the PDF of the output SNR in a specified fading channel.

10



Due to the difficulties of getting closed-form expressiohthe infinite integral, the MGF-
based approach has been widely used to evaluate the ereopegbrmance of various
coherent diversity schemes recently. The basic idea is tbdmexponential-type repre-
sentation for the conditional probabilities so that therage error rates can be expressed
strictly in terms of the MGF of the output SNR [20-23].

2.3.2 Outage probability

In addition to the average error rate, outage probabilitgristher standard performance
criterion of diversity systems, which is defined as the pbilig that the instantaneous
output SNRYy falls below a certain given thresholg. Outage probability is a useful
statistical measure of the radio link performance in thespnee of interferences. The
outage thresholgr is determined by many factors, such as the receiver steiciod the
propagation environment.

The outage probability of a diversity combiner relates ® @DF ¢ (x)) of the combiner
output SNR as follows [24]:

P(yr) =R (O0<y<yr)=F(y). (2.27)

2.3.3 Diversity Gain

Diversity schemes at transmit and/or receive ends proweledceiver with multiple copies
(or branches) of the transmitted signal. With the increastné number of independent
branches, the probability that all branches fade simutiasly reduces significantly. Thus
diversity techniques stabilize the wireless link whichlwelad to a reduction of the error
rate.

To leverage diversity, the transmitter can send the saméalyatross all links. With
frequency flat fading across all branches, the receiver metsiple independently faded

versions of the transmit symbslwhich are given by

yi:\/%his—f-ni, =1 N (2.28)

11



wherey; is the received signal corresponding to itiediversity branches/N; is the symbol
energy available to the transmitter for each of Myediversity branched; is the channel
response of théh diversity branch, and; is additive ZMCSCG noise with variandé,.
The additive noise samples are uncorrelated with each.dimegn the multiple versions of
s at different receive antennas, the SifRould be maximized by the so-called maximum
ratio combining (MRC). Let the average SNR at the receive awaten a single fading
channel be) = Es/No. Assuming perfect channel knowledge at the receiver, tbeived

SNRy after MRC combiners is given:

1N
:W-Zmil n. (2.29)

Using ML detection at the receiver, the probability of syréaor is given by [15]:

whereNe anddpi, are the number of nearest neighbors and the minimum distzrtoe
underlying signal constellation, respectively, a@¢) denotes the Gaussian Q-function.

Applying the Chernoff boun@(x) < e/2, B, can be upper-bounded by

N r’dmln
pesmee_g‘h' P . (2.31)

Averaging the probability of symbol error over the statistof h; which are independent

ZMCSCG random variables with unit variandg,is upper-bounded by

2.32
ﬂ T @32
In the high SNR region, i.eEs/No > 1, the upper bound can be simplified as
D r’dmln
B<N ( N ) . (2.33)

Eq. (2.33) relates to the Chernoff upper bound on the prababflthe symbol error for the
additive white Gaussian noise (AWGN) channel [25]. On a log4$cale, the magnitude
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of the slope of the SER versus SNR)(curve will demonstrate the effect of diversity. The
diversity order is the magnitude of the slope. Diversityngay can be defined as

logPs

Gy—
4= e log(n)

. (2.34)

2.3.4 Coding Gain

If the average SER, of an uncoded (or coded) MIMO system at high SNR is approxaéahat
by the expression
Pe~ ¢(Ge-n) Cd (2.35)

wherec is a scaling constant dependent on the modulation type andhthnnel statistics,
thenG represents the coding gain, aBg represents the diversity order. While diversity
gain manifests itself in increasing the magnitude of thpelof the error rate curve, coding

gain G¢) shifts the error rate curve to the left.

2.3.5 Moments

An alternative to the average error rate is to use momentseodtitput SNR as the perfor-
mance measures. A single moment, such as the average obigul8ne does not reveal
enough information and the higher order moments can furadghtional information for
system design. For example, if the variance of the outpuiialls large fades from the
average is not likely. The moments of the combiner output SR be obtained by the
output MGF M(s)) as

0 (n)
M=) = [ VPdy=" 1V (236)

2.3.6  Amount of Fading (AF)

In evaluating the performance of diversity systems, sameiit is difficult to get closed-
form results especially for BER, SER since statistical anslyequires averaging the in-

stantaneous results over the fading distribution. In sades, a frequently used approach
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is to take advantage of the transformed domain (e.g. by it&=M& order to obtain a
computational resolve. The amount of fading (AF), as a measithe severity of fading,
directly utilizes the moments of the fading distributiosellf. Thus it becomes a simple but
effective way to quantify fading in both single and MIMO sgists. For a single channel
model, AF is defined by [26, eq. (2)]:

2
A T

wherea is the instantaneous fading amplitude of a complex fadiranokl, Vaf-} is the

(2.37)

statistical variance. For a single Rayleigh fading chandEl= 1. In Nakagamim fading

channels, A= 1/m[18], where the range of the AF is given by the interval [0, 2].

2.4 Antenna Selection

The MIMO systems provides higher data rates and the rababiithout any additional
bandwidth [27]. Higher data rates are achieved by transmithultiple data streams si-
multaneously using spatial multiplexing techniques. éased reliability is achieved by
exploiting spatial diversity to significantly reduce theagrprobability caused by signal
fading.

Although MIMO technology has many advantages, they comleea¢xpense of higher
hardware cost, higher signal processing complexity, mowvesp consumption, and bigger
component size at the transmitter and the receiver. For pbeegnery extra transmit/receive
antenna pair requires its own dedicated RF chain (power &arpliow noise amplifier
(LNA), analog to digital (A/D) convertors, digital-to-alog convertor (D/A), etc.) [27].
The increase in complexity has inhibited the widespreagbtolo of MIMO systems. For
example, the third-generation cellular system speciboa8GPP) currently supports only
an optional two antenna space-time transmit diversity mehand does not require the
handsets to have more than one antenna element [28]. Theredst-effective implemen-
tation of MIMO technology remains a major challenge. Antmselection is a possible

solution for the complexity drawbacks of MIMO systems. Iduees the hardware com-
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plexity of transmitters and receivers by using fewer RF ch#nan the number of antenna
elements. The idea s that, while the antenna elementsgoatly cheap, the RF chains are
considerably more expensive and therefore must be rediibedransmission/reception is
performed through a subset of the available antenna elasreamd selection helps in reduc-
ing the implementation cost while retaining most of the igmef MIMO technology [29].

In antenna selection, a subset of the available antennaeatens adaptively chosen by a
switch, and only signals from the chosen subset are progésger by the available RF

chains.

2.4.1 Antenna Selection Scheme

A block diagram representation of antenna selection atrresinitter and the receiver is
given in Fig. 2.1.

An input bit stream is sent through an encoder and modulalte space-time en-
coder converts a single bit stream into symbol streams girauproper mapping and then
converts the complex symbol vector inkh parallel streams of symbols. Each of these
streams is sent through a RF chain to produce signal for tigegm through each trans-
mit antennas. However, the number of RF chains are smallartthasmit antennas (i.e.
M; < N), thus the RF switch chooses the ’belgk antennas out of;. At the receiver,
the RF switch chooses the 'bedff, out of N; receive antennasvy < N;). The channel
seen by the selected subset of transmit and receive antisrthassub-matridd € MM
which is obtained by selecting the rows and columns of thencblbmatrixH that corre-
spond to the selected receive and transmit antennas, WHere is am x n-dimensional
complex matrix space. There a(r%‘t) (,\N,lfr) possible sub-matrices &f. The various selec-
tion criteria include the system capacity maximization, 80}, SNR maximization [32],
or union-bound on error rate minimization [33]. In this wovke do not propose new cri-
teria or new methods for selecting antennas. Instead, wigzmtne performance of such

systems.
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Fig. 2.1. Antenna Selection Scheme

2.4.1.1 Receive Antenna Selection (RAS)

Several receive antenna selection (RAS) algorithms to fiekbest antenna subset have
been proposed [2, 30, 33-36]. Performance analysis for RASespme coded systems
under both uncorrelated and correlated channels has bperteé in [2, 34] where only
performance bounds were derived. In [30], Molisch et aldigtd the effect of antenna se-
lection from a channel capacity perspective. It was showhdhly a small loss in capacity

is suffered when the receiver uses a good subset of the lalaiteceive antennas.

2.4.1.2 Transmit Antenna Selection (TAS)

Just as RAS, TAS is implemented to reduce the complexity afrémsmitter. The idea of
using transmit diversity is motivated by the difficulty anakt of placing multiple antennas
on small mobile handsets. Therefore, multiple antennapr@ferably placed at the base
station for downlink transmission. Since TAS requires feak from the receiver side,
limited feedback methods are used to improve capacity arfdrpgance [37].

TAS has been studied recently. A TAS schematic diagram isngin Fig. 2.2. Joint
transmit/receive antenna selection algorithms were ptedan [9]. In [38], the authors
proposed a new scheme that involves using hybrid selenteximal-ratio transmission
where the transmitter uses a good subset of the availabdmread and the receiver uses

MRC. They investigated this scheme in terms of SNR, BER, and dgpddiey demon-
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strated the effectiveness of their scheme relative to @jrexisting schemes. The same
scheme was also treated in [39] but the transmitter selbetbest single antenna. Other
schemes that use hybrid selection/MRC were also consided@+43]. A nice overview

of antenna selection for MIMO systems can be found in [7].

2.4.2 Orthogonal Space-time Block Codes (OSTBCs)

Space-time coding [13, 44] is a coding technique designe@xploiting diversity when
multiple transmit antennas are in use. Coding is performdabth spatial and temporal
domains to jointly modulate signals transmitted from vasi@ntennas at various time pe-
riods. The spatial-temporal modulation is used to exph@tMIMO channel fading and to
minimize transmission errors at the receiver. Space-timaéng can achieve transmit diver-
sity and power gain over spatially un-coded systems witkaatificing the bandwidth [45].
Among all types of space-time codes, space-time block catitesorthogonal designs are
the major focus in this thesis.

The Alamouti scheme is the first space-time block code toigedull transmit diversity
for systems with two transmit antennas [46]. Tarokh et al] gxtended the Alamouti’s
2-transmit diversity scheme to more than two antennas. Aesfiene block code is defined
by the mapping of th€-tuple input signak to the set of signals to be transmitted fréutn

antennas over time intervals, represented il x T transmission matriX as
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X11 X120 XLT
X21 X2 0 X2T
X = (2.38)

i XMl XMg,2 o XM, T
wherexit,1 <i < M;,1<t <T are functions of th&-tuple input sequence and their
complex conjugates. At time slotx; is transmitted from antennaSinceQ information
symbols are transmitted ov&rtime intervals, the rate of the code is definedRas- Q/T.

If the condition

Q
XXH = <;|s|2>l (2.39)

holds, wherd is the identity matrix, then the code is called an OSTBC. If tharmel
coefficients are constant over thesymbols, the orthogonality properties of OSTBC allow
simple linear ML decoding by decomposing the MIMO enhancgd @ SISO channels.
The OSTBC codeword is formed from a set@Bymbolss;, s, - - - , g all taken from
the same signal constellation. Space-time block codes eaostructed for any type of

signal constellation.

2.4.3 0OSTB-Coded MIMO Systems with Antenna Selection

The MIMO system model with antenna selection employing OST8@lven in Fig. 2.1.

The received signals are expressed as

E< ~
Y=/ —=HX+N (2.40)
M

where the matrixy € ¥M*T is the complex received matrixH is a submatrix ofH,
X € €M*T is the complex transmitted matrix ahtle €M *T is the additive noise matrix
consisting of i.i.d. entries with zero mean aNg variance. If we denote a circularly
symmetric complex Gaussian variable with mgaand variances? asz ~ €./ (i, d?),

then each element & is denoted a¥’. 4" (0,Np). The coefficient %j ensures that the
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total transmitted power at each receiveEisand is independent of the number of transmit
antennas.

As shown in [13], if theQ symbols{s,,--- ,so} with the unit average power are used
for transmission, the ML decoder can be simplified to a syrflyesymbol decoder of the
following form:

Es 1, ~
Zg=/31 (RIHIE)sa+ng,p=1,-.Q (2.41)
t Ns

whereng ~ €.4(0, & [IH[|2No). The OSTBC MIMO system is then equivalent@ande-
pendent SISO systems [32].

2.5 Summary

In this chapter, MIMO antenna selection is briefly review&datistical assumptions, per-
formance measures are introduced. Different antennatggleschemes are summerized,

and the general system model with OSTBC is provided.
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Chapter 3

Amount of Fading Analysis in MIMO
Systems with TAS

This chapter is organized as follows. The background isigea/in Section 3.1. Section
3.2 introduces the system and the channel model based onstatistics. In Section 3.3,
the AF is analyzed for i.i.d. Rayleigh fading channels. Byizitig the Kronecker model,
the AF is analyzed for receiver correlation channels in i8ec8.4. In Section 3.5, the
average SER at high SNR is expressed in terms of the AF. Thenesults are summarized

in Section 3.6.

3.1 Introduction

Recently, MIMO TAS systems have received much interest [8258]. In [48], the au-
thors analyzed the performance of space-time coded MIM@syswith antenna selection
by deriving explicit upper bounds on the pairwise error jiaibty (PEP) for quasi-static
Rayleigh flat fading. The authors also described code desigaiples suitable for antenna
selection schemes. Zhang et al. [49] proposed a geomefirgcaework for theoretically
analyzing the diversity order achieved by TAS under spatiatiplexing systems. Further-

more, the approach can be used to evaluate the diversitypiexing tradeoff in spatial
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multiplexing systems with TAS. In [12] and [50], the authadlexrived the exact BER and
capacity expressions for OSTB-coded TAS systems, respéctidowever, the aforemen-
tioned works provide considerably complex analysis and @tgponovide insights into the
performance of the proposed systems. This motivates ouk Wwouse a simpler perfor-
mance metric known as amount of fading (AF) [51, 52]. The @anince measurements
such as SER, BER, diversity, and coding gain can also be qudntiyi¢he AF measure.
In [51], closed-form expressions for the AF of the MIMO disity systems are given for
identically-distributed spatially-correlated Nakagamfading channels. In [52], the AF
is obtained for the output of the equal gain combiner (EGC)qunadly correlated fading
channels.

In this chapter, we present AF analysis results for bothleeddiIMO and TAS systems
operating on Rayleigh fading channels. Our research is b@séte assumption of identi-
cally distributed but possibly correlated channels. Rigsrderivation of the AF generally
leads to cumbersome results. Therefore in our work, onlymieéhods for deriving the
exact AF under different conditions are produced and d=taikerivation will be omitted
here. Besides that, we provide simple approximations anddsoun order to gain insights
into the degree of fading. Lower bounds and upper boundseofAth are derived under
three different fading cases: independent distributezbiver correlated and generally cor-
related fading channels. Also, simplified approximatiohshe AF are derived for both
independent distributed and constant-receiver-cogeél&tding channels. By utilizing the
OSTBC for the selected transmit antennas, the lower and ugmperds for the SER at high
SNR are derived. An approximate calculation for SER is algergfor the independent
fading channels, which is more general than [10]. Based oiSHEiR expression, the AF
and SER at high SNR are shown to have a simple relationshith tAé approximation, the
coding gain can be easily obtained for constant correladah@ channels given the AF.

Major results are presented in our paper of [53].
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3.2 Order Statistics and System Model

Suppose there areindependent random variabl¥si = 1,2, --- ,n, each having the same
PDF f(x) and corresponding CDF(x). If they are arranged in ascending order of mag-
nitude asX(y) < Xz) < -+ < X(n), thenX),i = 1,2,--- ,nis called thei-th order statistic.
WhenX; are i.i.d., the PDF of the-th order statistic is given by [54]:

FOOF (0 [L— F ()™ (3.)
and the CDF is

Z( ) )L —F(x)" (3.2)

i=t
where(7) =n!/(i'(n—i)!).

To perform TAS,M; antennas are selected out Nf transmit antennas. Define the
random vectorfj = (hyj,hyj, -, thJ-)T 1< j < N;. The corresponding square Frobenius
norm ofh; ishj = ||hj||4 = S, |hj|2. hj arei.i.d. chi-squared variables withi2degrees
of freedom and the PDF dij is given by [15]:

fir; () = 1 !thfle*h, h>0 (3.3)

and the CDF is given by
N1k
Fry()=1-¢€" zkl, > 0. (3.4)

We arrange the differerit in descending order and denote therhby > h) > --- >
hin)» wherehgj) is the jth largest. Thevi; selected transmit antennas correspond to the 1
to Mi-th largesthy),---,hgy,)- Let H= (hay,he), ,h(Mt))T represent thé/; selected
columns ofH. From the theory of order statistics, the joint PDFgf),h2), -+, hoy,) is
given by [54]:

N!
(Ne—My)!
Ny —1

k — Vit
" (N Mt) }Mt<|1h> ( Ry )(1 e M k;“%)“" . (3.5)
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Whereh(l) > h(2) N h(Mt) > 0.

Consider a MIMO system withl transmit and\; receive antennas. Correlation prop-
erties can be modeled as the Kronecker product of the trétesrand receiver correlation
described in Section 2.1.2, when the receive antenna atioelis the same for all transmit
antennas and vice versa [55].

With OSTBC, the output SNR (per symbol) may be written as

(3.6)

whereC = h(y) +--- +hyy,). Thus, the selection criterion maximizes the output SNR, i.e
yields the largest received signal power. According to giendtion of the AF in Eq. (2.37)
and Eq. (3.6), the AF is independentﬁ)ﬁ and can be written as

_ Var{y}  Var{C}
(&{yh?  (&{CcH?*
In the remainder of this chaptgi\;, M;; N;) denotes a MIMO system with; (M; < N;)

AF

(3.7)

transmit antennas selected. In contréisk; N;) denotes a regular MIMO system without

antenna selection, in which all tiNg transmit and\; receive antennas are used.

3.3 AF fori.i.d. Rayleigh Fading Channels

This section analyzes the AF expressions(f&r; N;) and (N, M¢; N;) systems when the
channel elements; are independent of each other. An upper bound, a lower bawhdra
approximate calculation for AF ifN;, M;; N ) systems are also derived. The results will be

verified by simulation.

3.3.1 (Ni;Ny) with i.i.d. Rayleigh Fading Channels

With a regular MIMO system (i.e., without antenna selectidhe AF may be written

as [51] (the case whem = 1):
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Nr N

(30)

where{A; }Nf'\'t are the eigenvalues of titgN; x N;N; channel correlation matrix. When all

AF = (3.8)

the channels are independent, the correlation m&nigduces to an identity matrix; thus,
all the A; are equal to 1. Therefore, the AF in the i.i.d. case (denatediRy) is

NNe 1
(NeNDZ — NeNe

AFiq = (3.9)

3.3.2 (N, M; Ny) with i.i.d. Rayleigh Fading Channels

By using the joint PDF in Eg. (3.5), the general moments R - ..h:/l“:'t} can be calcu-
lated as a finite sum (Appendix A). The exact AF in i.i.d. fagehannels with TAS can be
expressed as

Var{(h%"'hl(\)/ltflhl(\)/lt) e (h(l) "hl(\)/ltflh%/lt)}
(5{(hi“'hﬁ)ﬂt—1h?ﬂt) N (hC1>. ..hgﬂt_lh%ﬂt)})z

AFiidats = (3.10)

By expressing the variance as a sum of moments of the for&{bf* - -- hf,,“f‘ }, the AF is

expressed as

E{(NF---h_ah%) + -+ (0 -y k) + 2 _jhthl}
(E4(NT- -y gh) + - (9 By 5 ) )2

AFiidets = -1 (3.11)

By using the results in Appendix A, and substituting all thenmeaits into Eq. (3.11), the
exact AF can be derived. However, this process is too curabergo provide any direct
insight.

The AF is a measure of the severity of fading. More genertily, AF is a measure of
the randomness of a random variable, so that, the higher Eh¢h& larger the spread of
the fading distribution [56]. Therefore, the more i.i|tlj|? included inC in Eq. (3.6), i.e.,
the more randomness containeddnthe smaller the AF will be. This result is due to the

multiplication of the denominator while the numerator rémsdargely unchanged. As a
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result, the AF should decrease with the increasing of thebaurof the receive antennbls
and the selected transmit anterila WhenM; reaches to the largeBt, the AF reaches
the lowest value. Based on the analysis, the upper bound amd libund of the Afgasts

are

1
NN = iid&ts > N My ( )
Thus, the approximate value of ffzts (denoted as Alpp) is given by
1

Nr(Mt + (Nt - Mt)a)
where 0< a < 1. Whena = 0, AFypp reaches the lower bound, and when= 1 AFapp

reaches its upper bound.
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Fig. 3.1. ARjgets for ani.i.d. (8,M; 4) system

Fig. 3.1 shows the upper bound, the lower bound and the appate value for the AF,
obtained by using Eq. (3.12) and Eq. (3.13) where settirg0.6, for MIMO systems with
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8 available transmit antennas and 4 receive antennas. ifiudasion results are shown for
comparison. The AF approaches the lower bound wieimcreases, as expected. The AF
is closer to the lower bound than to the upper bound. Thidtrekaws that antenna selec-
tion does not degrade much of the system’s behavior in tefriieecAF. WhenM; > %N[,

the lower bound can be viewed as the approximation of the AE.Vialues of parameter
a are determined for differemd, andN; in Fig. 3.2. As long adV is fixed, a does not
change under the same available antenna numbers. Thergfoieset equal to 2. Fig.
3.2 shows thatr is smaller for largeN:. This result means that the AF decreases with an
increase in the number of the available transmit antennasn\hincreases above 4

remains relatively the same.
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3.4 AF for Fading Channels with Correlation

First consider the case where the channel is correlatedabihe receiver side. This corre-
lation implies that the elements within the columngHoére correlated but are uncorrelated
between columns. Thubj,1 < j <N are i.i.d.. By utilizing this property, the exact value
and bounds for bottiN;; Ni) and(N;, Mt; Ny ) systems are derived. The analysis is extended
to the most general case where the correlation exists inthettransmit and receive anten-

nas.

3.4.1 (Ni;Ny) with Receiver Antenna Correlation

Under the Kronecker model Eq. (2.24), lt(i = 1,--- ,N;N;) denote the eigenvalues of
the NNt x NNt matrixR. ThenA; = /\tj X Ars Where)\tj andA,, are the eigenvalues f@t;
andRy,andi=1,--- NN; tj=1,--- ,N; rg=1,--- N

Under the assumption of receive antenna correlaipns an identicaN; x N; matrix,
and aII)\tj equal 1. Therefore, thiN; of eigenvalues); constituteN; of A, i.e., the
multiplicity of each A is N;.. From Eg. (3.8), the AF in the receiver correlation case

(denoted as Ak) can be expressed as

(3.14)

In Appendix B, proof of the lower bound for the AF in the genamidrelation case Afe
asﬁ is given, which is the value for independéif; N;) systems. This bound is also
a lower bound for the specific receiver correlation caseyaedl here. The correlation be-
tween each column of the decreases the randomnes€ah Eq. (3.6) and thus increases
the value of the AF. Under the worst correlation scendiaf A; equalsN; and the other
N:(Nr — 1) eigenvalues equal 0. According to Eq. (3.14), thg/Afan be upper bounded
by ﬁ Therefore, the AF in the receiver correlation case coulddper and lower bounded

as
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1 1
<AF < —. 3.15
SN SAFeS (3.15)

Furthermore, the lower bound can be tightened accordingdaank of the receiver

correlation matrix. Ifr(R,) = rr, the lower bound can then be expressed by

1
AFc > )
re= Nery

Constant correlation is used as the model for the receiveeladion matrix to illustrate

(3.16)

the relationship in Eq. (3.15). Constant correlation is majple for an array of three
antennas placed on an equilateral triangle or for closedgeg antennas other than linear

arrays [51]. The correlation matrRR,; can be written as

1 p - p
£ q
R —|P" P (3.17)
| o P 1|

wherep is the correlation coefficient. Under the constant cori@tanodel, the eigenval-

ues are given by [51]

Alz---:)\Nr_]_:l—p
AN =14 (Nr—1) x p. (3.18)
For constant correlation at the receiver side of the MIM lithe AR is expressible

as [51]
AFic= — : (3.19)

Fig. 3.3 presents the simulation results and inequality(Bd.6) of AR with different
p in constant receiver correlation, where the channel ma@ssumed fully ranked. Thus
Eqg. (3.16) is essentially the same as Eq. (3.15). As expgeatad equalsﬁ whenp =0

and increases witp.

28



I
03k —A— Upper Bound |
—#— Simulation

—— Lower Bound

=}

N
T
|

Amount of Fading

o
[
al
T
I

0.05 L L L L L L

Fig. 3.3. AR with different correlation coefficients in @, 3) system
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3.4.2 (N, Mt; Ny ) with Receiver Antenna Correlation

Define the receiver correlation matri¥ = &'(hy,hi') = ... = &(hy,hf). The PDF of
h¢j1,0 < j <M is given in Appendix C by using the inverse Z transform. Theegel
moments ofé"{hi‘1 e hf,l“ft} can be calculated by using a finite sum based on the joint PDF
in Eq. (3.5) (see Appendix C for derivation). By following tlsame procedure as in
the (N, Mi; Nr) i.i.d. case, the exact AF can be derived by using Eq. (3.1he dxact
calculation is again tedious. The approximation and bododthe AF are thus analyzed
first, and the simulation results are given for verification.

The best situation will occur when no correlation existsigsn the receive antennas,
and every antenna is used; thus, the lower bound for the ARisrcase is stillﬁ. The
largest AF occurs when one #f,_equalsN; and the otheA,, equal 0, i.e.r (R;) = 1. In this
situation, the AF reaches an upper bOLﬁ?cby canceling\; in the right side of Eq. (3.12).
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The range foM; is [1, Ni]; thus, we could tighten the upper bound toﬁﬁﬁ(r\ltl——mt)a' where
0< a <1. Whena =1, the inequality reduces to that for the regulsy; (N;) system with
the receiver correlation expressed in Eq. (3.15). WinenO, the upper bound corresponds
to the worst case q@l—t Now the AF in the receiver correlation case with the TAS (ted

as ARcsts) can be bounded by

1 1
< AFycgts < ., 0<a<l. 3.20
NrNt >~ rc&ts > Mt‘f‘(Nt—Mt)a ( )

Similarly, for the constant correlation model at the reeeiside of the MIMO link, the

approximation for the AF (denoted as &Jprd is given by substituting the right side of Eq.
(3.20) into Eq. (3.19):

1 1+[p[*(Ne — 1)
M + (Nt — My) o N, '
Fig. 3.4 shows the simulation results and approximatiosfs by using Eq. (3.21)

AFappre~ (3.22)

with different correlation coefficients in the constantredation model wheiN; = 4, N, =
3. The approximation of the AF in the worst case (whes: 1) is well bounded by the
upper bound. As with the case @f;; N;), the AF also increases wifhhwhenM; is fixed.
This result again shows that the AF illustrates the sevefitading.

The analysis for the case with correlation at the transrdé sind no correlation at the
receiver side is similar to that for the derivation abovee Bounds for the AF have similar

forms simply substitutingN, for N;.

3.4.3 (N, Ny) and (N, M;; Ny ) with general correlation

In the most general case, the channel is correlated at betihahsmitter and the receiver.
The AF can be calculated from Eq. (3.7). The lower bound is ﬁjﬁ( which is the best
situation for all cases. Since the AF increases with theetation severity, the AF can be

bounded as

NN, < AI:gc < AFgc&ts <1l (3.22)
r
If r(R) =r is given, the lower bound can also be tightened:

1
AFgc&’[s Z F. (3.23)
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Fig. 3.4. ARt With different correlation coefficients in@, M;; 3) system with constant

receiver correlation

Fig. 3.5 shows how the AF changes with a differdfjtand different correlation co-
efficient p, when both the transmitter and receiver correlations ardeteol as constant
correlation. Here, a MIMO system wit, = 3,N; = 4 is considered. Whep is less than
0.5, the AF decreases wittl;. However, wherp is larger than 0.5, the more transmit
antennas are selected, the larger the AF is. This resultamhats our intuition that when
the correlation is strong, more transmit antennas areteeleand the system will perform
worse in terms of the index AF. To explain this scenario, én@ems to be an optimum
number of antennas to select when the correlation is sevéne &ransmitter. However, as
assumed, wheM is fixed, the AF decreases with the numbers of available mn&rend

receive antennas.
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3.5 Relationship Between AF and the Average SER at High
SNR

In this section, the average SER at high SNR is derived as pleigxpression for an
(N, M;; Ny ) system operating on i.i.d. Rayleigh fading channels, wherQBTBC is used
for the transmission over thd; x N; link. First, the relationship between the AF and the
approximate SER is analyzed. As stated in Eq. (2.35), thersity order determines the
slope of the average SER curve at high SNR in the log-log sediereas the coding gain
determines the shift of the curve in the SNR relative to a berark SER curve given by

c(y)~C [51].
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3.5.1 (Ni;Ny) with i.i.d. Fading Channels

First, reconsider &\;; N;) system operating on i.i.d. Rayleigh fading channels. The cor
responding instantaneous SER is given by Eq. (2.30) asguamnVIL receiver is used.
Here,yis determined by using Eq. (3.6), makiﬁlg: H. By applying the Chernoff bound,

x2
Q(x) < e~ z, P. can be expressed as

Z|

1 Esjy2
Pe < Nee s IMIF. (3.24)

To determine the value of the diversity, the instantane®R Should be averaged over the
statistics of fadindPe = &{P:}. Given the correlation matriR, the MGF of the random
variable||H||Z, denoted arMHHH%(s), is given in Eq. 2.25. Th® can be upper bounded
by settings = fﬁé in Eq. (2.25); that is,

Nt Rs No
r(R) d2. E ~1
P.<N min_ =S y. ) ]
Pe<Ne[] (1+ MR NO/\.(R)> (3.25)
As assumed, when channels are i.i.d. Aakqual 1. Thus, at the high SNR, tRg can be
simplified by
— s d% Es\ NN
< Ne( -min_—2 : 3.26
€= e<4NtRSNo> (3.26)
Thus, the diversity ordeBy equalsN;N;, and the coding gaifs. equalsj,ﬁ“}gs. Compared
with Eq. (3.9) in the i.i.d. case, the AF equals the inversthefdiversity order
1
AFiq = G_d (3.27)

3.5.2 (N, Mt;Ny) with i.i.d. Fading Channels
In a (N, M¢; Nr) system the largeddl; of hj are selected, the following inequality holds:

IHIE _ IFIE _ [HIE
N — M & M

(3.28)

If Eq. 3.28 is combined with the definition ¢fin Eq. (3.6),y is bounded by

IHIBEs _ _[HIEEs

: 3.29
NeRs No — ° — MiRs No (3.29)
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With the definition of the average SER in Eq. (3.26), the erate is bounded as

s d® EN-NNe s d2 By —NN
N ( min —S> <P.<N (ﬂ—s) . 3.30
*\AMR Ny = =P UANR N (3.30)

This result clearly shows that this, M¢; N; ) system can achieve full diversity as i (Ny)
although only part of the transmit antennas are selectetlgnsmission. As X My < N;,
the P is approximated as

d2 E 7NTNY
D ~N min S
Pe Ne<4Rs(Mt+(Nt—Mt)B) N0> (3:31)

where 0< 3 < 1. That is, the coding gain is approximatedzs Wl—l\/lt)ﬁi%' Com-
pared with theAFggs for the (Ni, M;; Ny ) system under i.i.d. fading channels in Eq. (3.13),
the coding gain can also be approximated as a function of the A
G ~ ﬁAF. (3.32)
4ARsN,

Fig. 3.6 shows the upper bound, the lower bound and the ajppatx value of SER,
obtained by using Eqg. (3.31) and Eq. (3.32), compared toithelation results from using
the Alamouti scheme with a 4-QAM signal constellation wingr= 1, N; = 4 and3 = 0.5.
With the increasing oN; andN;, the upper bound and the lower bound converge, and the
approximateG. becomes more accurate. Whiglhh = N;, the upper bound and the lower
bound converge to the same value, which can be used as thexapate value for the SER.
When only one transmit antenna is selected, the system iscaabpase of the OSTBC,
with Rs= 1 andM; = 1.

Fig. 3.7 compares the average SER with the coding gain giveBd (3.31) and
Eq. (3.32) withNy = 4, N, = 1 andM; = 1, 3, respectively. The simulation results of the
average SER are also shown as a reference. The diversityafrteth cases is 4. Thus,
the diversity order depends on the number of the availaliEnaas at the transmitter side
and not on the number of the antennas selected. In both figineespproximations Eq.
(3.31) and Eq. (3.32) overlap with the simulation resultthilarge SNR. Thus, a simple
relationship between the AF and coding gain is achieved hy(Bc2) in the high SNR

region.
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3.5.3 (N;;Ny) with Receiver Correlation Fading Channels
In this case, thé®, can also be upper bounded by Eqg. (3.30). Further, at a high BAR,
can be simplified to

Pe < m(%gj—(j) o T‘T ()\i(R)) - (3.33)
L

Under the Kronecker model, the eigenvaldesf the correlation matriR equal the eigen-
value A, of the receiver correlation matrik,, and the multiplicity of each eigenvalue is
N:. The best situation occurs with no correlation at the regedide. The worst situation
occurs when only one of th&, is N;. Thus, the lower bound and the upper boundPef

are provided as

2

—sd2 Egy\-MNe o d2 o Eg\ M
N.( —min_ = < Pa < Naof —min_ =5 NN 34
e<4MRSN0> - &= e<4MRSN0> " (3.34)
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If r(Ry) =ry, the lower bound can also be tightened to

_ g d2 Eg\ N (R N
PeZNe<ﬁN—O) rDl(mk(Rr)) . (3.35)

3.5.4 (N, Mt;N;) with Receiver Correlation Fading Channels

Here, the analysis is similar to that in Section 3.4.3 extiegitthe best case will bd; = N,
and the worst situation occurs whisth = 1. By using Eqg. (3.28), the lower bound and the

upper bound oP, are

_sd2 Eq\-MN . d2 Eg
N.( —min_ =S < Po < Na(—min_ =Sy—=Nen—Ne _
e<4MRSN0> = &= e(4MtRSN0) " (3.36)

Specially, when the receiver correlation is modeled as ataoi correlation, the rank
is Ny, and the eigenvalue is given in Eq. (3.18). In this case, Hlegage SER can be

approximated by
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d2 _

min

Es\ —
e(4Rs<Mt +(Ne— M) B) No

) NTNr<(1_p>N'_1(1+(Nr—1)p)) Y @3

Pe~ N

3.6 Conclusion

The AF is a simple measure to quantify the severity of fadirigwever, exact AF cal-
culations usually involve tedious formulas in TAS systenis.this chapter, the AF of
TAS systems under both independent and correlated chaisnafealyzed. Approxima-
tions and bounds are provided for different cases, and difieajrelation between the AF
and coding gain is derived. The simulation results showith#te high SNR region, the

approximations are accurate.

3.7 Appendix A
General moments for i.i.d. Rayleigh fading channels

The closed-form solution fof {h3* - -- hﬁ,l“f‘} is now obtained wheray, - - - , ay, are arbitrary

indexes. Rewrite the joint PDF in Eqg. (3.5) as follows:

N!
(Nt Mt)!

T I_Lh JNe=1(1 — e z Nt Mo (3.38)

fhl,“',hMt(hla"' shmy) = fhy (1) -- tht(hMt)(FhMt(hMt))Nt_Mt

T (N Mt)'{ Nr

wherehy > hy--- > hy, > 0. Then

Ay / /h . hal g e g (N, g )dhg -~ dhyg. (3.39)
Mt —

In the firstM; — 1 integrals, summations are applied as

a bj
ha e Pigh; = %— h, e o, (3.40)

h|+1

37



In the integral with respect toy,, the following part is binomially expanded:

_ (N —1)|
- Ztht Ne—Me _ Z (Nt Mt)elhmt Z BklhK/It (3.41)

k=0

where the coefficienBy in Eq. (3.41) is computed by using [57]

K Bin-1) ,
Bin = Z (k—i)! lio,(n-1) (mi—1)) (1) (3.42)
i=k—M;+1 )

Here,Boo = Pon = 1, Bz = 1/K!, B1n =N, and

. 1, a<i<b
lap (i) = (3.43)
0, otherwise

Substituting Eq. (3.38) into Eq. (3.39) and using Eq. (3aid Eq. (3.42) we will get:

1 aM (N)! ig+ag+N —1 igtag+Ne—1  im—1+aw - 1+N—1
g ha h t ..

M

Ne— My (Nr—1)|(_1)| N; — Mt B (i34 a4+ Ny — 1)! (ix+ax+ Ny —1)!
=0 k=0 | N io! QiatagtNr gl

(i +am—1+N =) (im +am + N —1)!

.. (Mt — l)th71+aMt*1+Nf th! (Mt +|)th+aMt+Nr (344)
wherei; = 0. For the special case whéh = 1, Eq. (3.44) can be simplified as
al au i1+ay ir+ap |Mtfl+aMtfl Ny — Mg
t
&{hy---hy } |\|t |\/|t I Z Z Z Z)
12 Mg I=
(_1)| N; — M i (iz+ap)!
I ip! 2i2tatl
(-Mt +am— ) (th+aMt)
. (Mt _1)'Mt 1+am— 1+1|M (Mt+|) ime ey +1° (3.45)
WhenM; reduces to 1, the simplified expression is
&1 = N, S Ne—Mey__au (3.46)
z I (Mg +1)aat+1” '
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3.8 Appendix B
The lower bound of AF for correlated Rayleigh fading

Proposition: Assume a Rayleigh fading channel with a gergenaielation withN; receive
antennas anb transmit antennas. The AF could be lower bounded a&éﬁﬁ.

Proof: For the general correlation, we rewrite Eq. (3.8):

Nr Ne

Ny Nt '
(};AOZ

Under the assumption of the Knockner model, for the summatiothe eigenvalueg;

of the correlation matribR, we haveziNfN‘)\i = N; x N;. Minimizing the AF reduces to
minimizing the numerator of Eq. (3.47). The Lagrange metisagsed with the condition

thatziNrN‘)\i =N; x N and
V=224 Ad N — QA+ + Ay — Nex Ny). (3.48)

Partially differentiate/ with respect to\y, - - - ,An,n, @nd set them to be zero:

ov
_— = 2A —_ =
d)\l 1—a 0,
(3.49)
ov
=2AnN —a =0. 3.50
Mnn NN — O (3.50)
The minimal AF is then achieved wheén = - -- = An.n, = 1, and the minimum of the AF

is i+ The proof is complete.
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3.9 Appendix C
General moments for receiver-correlated Rayleigh fad-
ing channels

The closed-form expression faf{h* - -- hf,l“f‘} is obtained when correlation exists at the
receiver side. The MGF dfij, whereh; represents the sum of magnitude squargtbf

column ofH, can be written as

1 1

r
= — 3.51
det{lmxm+ RS} uEll 1+ Ay ( )

Py (s) = E{e "%} =

wherer, is the rank ofR;, 1 <r, <N, andAy is the eigenvalue of the correlation matrix
of the receiver.

By using the inverse Laplace transforma; (s), the PDF of théh; is given by

I r v—1
d t _t
fn(t) = C e, t>0. (3.52)
uzlvgl UV(V_l)!
Thus, the CDF ofj is
| ry v—1(AL)k

Fat) = Z)\&’Cu\,-(l—e_/\tukz) L), t>0 (3.53)
u=1lv=1 = '

wherery, is the multiplicity of each eigenvalue, = Zluzlrw and

1 d(ru*V)
ry—Vv)! {ds(VU*V

w=¢ JF(S)(5— )" Josy (354)

Note that the summation in Eq. (3.52) has a similar form to¢fhithe MGF of a chi-square
distribution. By using the same integral as Appendix&hs*- - hﬁ,l“ft} can be written as

Ny!
((Nr = )HM (N — My)!

SR hgh) = lg-Ime-- I (3.55)

where,

- L L imtVmba-l oo (im+Vm+a —1)!
m Z Z Z (Vm_1>!(A_ll+"‘+ﬁ)im+vm+al'(im+1>!

I1<m<M -1

(3.56)
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I ra Ne—Mg I .

= UZ_1VM2_1 t;) (-1 (M ) ZZAVC JN—Me— Z z

u=1v=1 X1=1y1=12=0

I ' Wt Cth Vi CX1y1 e Cxlyt AX]_
h — l...zl
%=1y1=1z=0 (v, — D'z!--- 7!
1 (imt+vwtam+z+---+z-1)

ke ke 1 40 1 i vivetaw etz
Aug - Ay <)\u1 Tt Aupg )

(3.57)
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Chapter 4

Performance Analysis of T-RAS with
OSTBC

This chapter is organized as follows. Overviews of the eglditerature and the motivation

of the proposed work are summarized in Section 4.1. The JBRRAS system model is
briefly described in Section 4.2. An illustrative examplgigen in Section 4.3 to highlight
the difficulties in analyzing the T-RAS systems. The CF foré¢hygpes of channel models,
i.e., Rayleigh, Nakagamm and Rician, are also given in Section 4.3. Section 4.4 derives
the MGF of the output SNR, the average SER, the average BER, opitalgability and
ergodic capacity. Numerical results are presented to atdithe theory and address the
effects of various parameters on the BER performance in@edtb, followed by conclu-

sions drawn in Section 4.6.

4.1 Introduction

Both RAS and TAS have been analyzed in detail. In particular, R&$ormance in var-
ious channel/correlation models has been comprehengnegied. Among many others,
theoretical analysis for generalized selection combinagiver, an RAS scheme, with

nonidentical fading was presented in [58]. Other contrdng include [59—-61]. For TAS,
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performance of TAS was analyzed for selecting one antenthe atansmitter in [39]. Ref-
erences [10] and [38] analyzed TAS for Alamouti-coded MIM@tems. The SER and
BER of TAS were derived in [11, 12]. The exact capacity expoesswere given in [50]

for TAS with OSTBCs.

In performance analysis of antenna selection, one needsatigtical distribution of the
maximum of a set of branch SNRs or the sum of some of the largastb SNRs. If the
branch SNRs are statistically independent, then thoseststatare readily derivable [54].
This is actually the case for both TAS and RAS if the actual deagains are independent.
Consequently, many analytical studies focus on indeperfdéinig channels. However,
with T-RAS, the branch SNRs are not independent even if thexgadnannels are i.i.d..
Although order statistics is a well-established branchatistics, there is surprisingly few
available analytical results on correlated random vaes[84]. For this reason, the analysis
is often made tractable by selection at either the tranemdit receiver — but not both
simultaneously [32].

To the best of our knowledge, there is only one paper anayZiRAS to date. Cai
and Giannakis [62] analyzed error rate performance foctiatgone transmit antenna and
arbitrary number of receive antennas in independent Raykiding channels. Thus the
general problem of analyzing the joint selectionvyfout of N; transmit antennas arid,
out of N, receive antennas remains open.

In this chapter, a framework for performance analysis ferghneral T-RAS for an ar-
bitrary number of transmit and receive antennas is predeiitee MIMO channels are not
restricted to independent ones but arbitrarily correld&egleigh, Nakagamin or Rician
fading channels [15]. The analytical framework introdué¢edan arbitrarily correlated
multi-branch selection combining problem presented ir) [§8veraged to solve the prob-

lem. Major work is presented in our paper of [64].
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4.2 System and Channel Model

A MIMO system withN; transmit antennas amd receive antennas is considered here. The
class of OSTBCs provides maximal diversity order in a fadingnectel and are amenable
to low-complexity ML decoding. Assume that the fading chelsrvary slowly and the
feedback delay is sufficiently small to render channel estion errors negligible, and that
the channel state information is perfectly available atrdoeiver. A subset d¥i; transmit
antennas anl¥l; receive antennas is selected and the decision is fed balok toainsmitter
where OSTBC signal matrices are activated for transmission.

By using OSTBC, the MIMO system is decomposed into several St&@rels as dis-
cussed in Section 2.4. In this case, the selection critemaeximize the channel Frobenius
norm will also maximize the received SNR, and thus minimizegtobability of error [32].

Now assume thatl is the actuaM, x M; transmission matrix and the received signals

can be expressed by Eg. (2.40) as

Y:MEﬁR+N. (4.1)
M

To maximize the total received signal power the subset obtrat and receive antennas
that yields the largest instantaneous output SNR is seleGigere ardN = (I\N/Itt) . (I\I\/Ilr,)
alternates of the selections of transmit and receive aagenhetHs (1 < s< N) be the
N channel sub-matrice corresponding to Mh@ossible antenna subsets. Defih?bsHE =
sM sM |hij|?, whereh j is the (m,n)th element oHs and 1< m< M;,1 < n < M;.
Using an OSTBC, the instantaneous output SNR for each antebsatxan be given by

Es

%= NoRM:;

IHs|2,1<s<N 4.2)

whereRs is the symbol rate (symbol/sks is the symbol energy, any, is the one-side
power spectral density of the white Gaussian noise. Thauweatselects antenna subset
with maximum instantaneous output SNR expressed by

y=max{yi, -, W} (4.3)
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hi1 hio hi3

ho 1 ho > ho 3

Fig. 4.1. Two possible antenna selection subsets

When the transmitter side receives the selection informattee selected transmit an-
tennas are connected to the available RF chains and the actual transmission occurs

throughH.

4.3 The CF of T-RAS

In either TAS or RAS, order statistics of independent fadihgrmels can be employed
to get the PDF of the output SNR. However even in the case opentent fading chan-
nels, all possible subsets of transmit and receive antanwalse correlation, where order
statistics of independent variables can no longer be uskst dn illustrative example is
given.

Consider an MIMO system with 3 available transmit antennak2aavailable receive
antennas on independent fading channels and the channet magiven in Fig. 4.1. In
TAS analysis, the output SNR sent from each transmit antentiee transmit SNR mul-
tiplied by the square norm of each column of the channel matrii.e., as for the first
2)Es/Np. Arrangey; wherei = 1,2, 3 in descending order

transmitter,ys = (|hy.1|2 + |1

and denote them by1) > Vo) > V3). If 11, )5, y5 are i.i.d., the joint or individual PDF of
Y can be given by order statistics [54]. The SER or BER can bevetbased on the
known PDF ofyy. On the other hand, the analysis of RAS requires the distoibudf
sorted output SNRs, the statistics of which can also be adddesmmilarly.

Now, in generalized T-RAS scheme, if 2 transmit antennas aretdive antenna are
selected, there arg) - (§) = 6 different choices of antenna subsets. The submatricesof t

possible antenna subsets are shown in Fig. 4.3. The leftnglet corresponds to the 1stand
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2nd transmit antennas and the 1st receive antennas beeweskhnd the output SNR is
given byys = (Jh1.1]2+ |h1.2|?)Es/2NoRs. The right rectangle corresponds to selecting the
2nd and 3rd transmit antennas and the 1st receive antenhae the output SNR is given
by y> = (|12
if the channels are independent with each otlxeandy» are no longer independent since

2+ |hy 3|%)Es/2NoRs. The otherys (3 < s< 6) are defined similarly. Even

there exists a common terim ». Thus, the case of T-RAS does not satisfy the condition
for the theory of order statistics of independent randomatées.

For correlated channels, determination of the statisticg avill become even more
complicated since the correlation between diffengntill be caused by the common terms
as well as the underlying spatial correlation.

To solve this problem, Zhang’s analytical framework sugegsn a multi-branch se-
lection combining problem [63] is utilized, which expressie joint PDF ofys as multiple
Fourier transform of its CF. The CDF and PDF of the maximum SN#ong all possible
Vs are given by [63, eq. (8)] and [63, eq. (9)]

F L[ o 71 (4.4)
- ty, -t T dty---dt _
y(Y) 2" /_m /_oo (ty N)Sﬂ it 1---dtn

and
fy(y) : /w /mdn(t t)N(jt)fl
y = “ e 1, y N S
(27T)N —00 —o0 Q
x N( 1)+ N (4.5)
- vl oty dt - diN :
I; bi+--Fbn=I eXp(JyTN)
(N (N . ~
whereN = v m ) For brevity, we denot@y = bst; +--- + bnty andby, -+, by
t r

are binary variables that take values of O or 1. In Eq. (4™}, -- ,tn) is the joint CF for
¥s, Which solely depends on the channel environment and igemtent of the modulation
scheme.
In general, the joint CF of th possible output SNRg is defined as the function [65,
eg. (7-50)]
Dty ,tn) = & {elatHinal (4.6)
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whereys (1 < s< N) are the output SNRs of each possible antenna selection défikeg
(4.2). The main difficulty in evaluating Eq. (4.6) is thadoes not correspond to one single
fading channel but related to tivg x M, summation of the square norm of the elements of
the sth channel matrisHs. Thus, the CF for the output SNR in [63] is not suitable for
joint antenna selection situation.

In order to overcome this problem, substituting Eq. (4.8) ig. (4.6) and we obtain

POty tn) =& {eai(|h1,1|2Z;'l':lcktﬁ“'ﬂth,Nt\zzwzlcktk)} (4.7)
Es . .
wherea = NV R andcy, - -- ,cy are binary variables that take values of O or 1. The num-
olVitRs
ber of the terms in the summation for evélty ;|2 wherec, = 1 will be Ne = (3 1) (\ _7)

and the order ofy is determined by the arrangement order of diffengntThe CF can be
obtained by evaluating Eq. (4.7) with respecthj\z. By using the vectorization of the
channel expressed &s= vedH]|, Eq. (4.7) can be rewritten as the Hermitian quadratic

form of h as
By, - tn) = & { "N} (4.8)

whereQ is the diagonal matrix with the diagonal elements being thedficients of|hy; j ?
in Eq. (4.7), i.e,,

N N
Q= diag{aj 2 Cili, -+ 2 cktk} . (4.9)
K=1 K=1

Notice that the form o depends on the number of the selected and available traaschit

receive antennas. Examples will be given later to illusttadw to get the diagonal matrix

Q.

4.3.1 Rayleigh fading channels

For correlated Rayleigh fading channels, the channel vdcfollows complex Gaussian

distribution,h ~ €.4°(0, Y), wherey is the covariance matrix defined by
1
g =356 (h—&{hh(h—&{hp™). (4.10)
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Note that the complex covariance matgixalso equalsy; + j{iqi, where

U =o ==& (n—&{h})(h —&{m})T]
Wor = —Pio=&[ (hy—&{M})(hg—&{hg})T] (4.11)

andh; andhg are the vectors composed by the real part and the imaginatyopthe
channel vectoh.

When the variance of each elementtoéquals to 1, the covariance matrix equals to
correlation matrixR in Rayleigh fading channels. Note here, the definition of thees
lation matrix is the normalized covariance. The MIMO chdrowerelation matrixR can
be approximated by the Kronecker product of the correlatiatrix at the transmitter and
the receiver Eq. (2.24). Note that the decomposition doesnorporate the most general
case of spatial fading correlation, but yields a reasonadhepromise between analytical
tractability and validity of the channels model.

Several correlation models are available for differeneants configurations. Spe-
cially, constant correlation model may be applicable fasely spaced diversity antennas
or three antennas placed on an equilateral triangle. Circolaelation model applies to
the case when antennas lying on a circle or four antennasgtata square. Furthermore,
when linear array of antenna elements are equally spacpdnential correlation can be
used [66]. Although these models are good approximatiors®ime cases, in reality the
correlation matrixR can take on any arbitrary Hermitian structure since it ddpemot
only on the transmit and receive antenna array configurdtinralso on the operating en-
vironment, such as the incident angle of the arrival and depg and the angular spread,
etc.

The exponential in Eq. (4.7) can be viewed as the CF of Hermgigadratic forms in
h. From [19] [16, eq.(B-3-14)], the joint CF of outpu can be derived as

®(ty,---,tn) = defl —RQ) ™+ (4.12)

where ()71 is the matrix inverse operator. An alternative expressmiEd. (4.12) is

obtained by noting that the normalized fading power coti@tacoefficientpP®V¢'is the
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squared amplitude of the complex channel correlation aeffis inR [67], i.e.,pP?"¢(m,n) =
IR(m,n)|? whereR(m,n) is the (m,n)-th element ofR. Thus, each element & can be
taken by the square root of the power correlation coeffisienEq. (4.12). Therefore, the
complex component correlation considered here allows dheslation to be evaluated in
terms of the transmit and receive antenna spacing, mean A@an AOD and transmit
and receive angular spread. The correlation of the ingtapizs power is more convenient
for the analysis of experimental data, where they can béyaasiasured from field data.
Next, the methods to obtain the diagonal ma@xn Eq. (4.12) are provided. There
are two steps. First, thd output SNRy; corresponding to th&l possible antenna selec-
tions are defined in a specific arrangement. Secondg$hare substituted into the general
CF function in Eq. (4.6). The diagonal elements@torresponds to the coefficients of
the | j|2. Using the example illustrated before, still consider stig 2 out of 3 trans-
mit antennas and 1 out of 2 receive antennas, the number sib@antenna selection is

(3)(3) = 6. If the 6 terms of y4,- -, y6} is arranged as

vi =a(|hal?+ 2, e =a(lhi?+|hsl?),
ys = a(|hp2>+|h13®), ya=a(lhza|?+|h22)?),
¥s = a(|hza|?+ h23®),  v6 = a(|hz2)?+|h23/?) (4.13)

substituting Eq. (4.13) into Eq. (4.6) the exponential in Eg6) becomes

2j(ty +t2) + |he2|?j (ty +t3) 4 [he.3)%j (t2 + t3)

jtiyr -+ jteys =af|h11
+|h2a|?j(ta+1s) + [Mo2|?j (ta+t6) + N2 3% (ts +t6) ). (4.14)

Thus, the diagonal matri§Q can be expressed as
Q =diag{aj(t1+t2),aj(t1 +13),aj(t2+13),aj (ta+t5),aj (ta+ t6),aj (ts +t6) }.  (4.15)

Note that the positions of the diagonal elementQaire fixed by the position df; j in the
channel vectoh. With the knowledge o), the joint CF for the output SNi of T-RAS

can be obtained by Eq. (4.12) with the known correlation md@&r When the channels are
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i.i.d., the joint CF can be expressed by

1
1-a(ti+t)j)(l-ati+t3)j) (1-a(t+1t3) )

1
“(A-altatts) ) (1-altatte) ) (1-a(tot+16) ) (4.16)

(p(tla"' 7tN) = (

4.3.2 Nakagamim fading channels

For Nakagamm fading channels, we consider the case when the parammetars equal
for all N; x N; channels. Recall Eq. (4.6), the exponential term can be thakdVIRC with
definingN; x N; output SNRs afh; 2. For arbitrary correlated Nakagammifading chan-
nels with integem, the CF of MRC is obtained by using the central Wishart distidou
as [17]

®(w) = detly .y, — jwa) ™ (4.17)

Es

oMt Rs
the% in Eq. (4.17) equals the correlation matfxand the joint CF of T-RAS can be

wherea =

andy is the covariance matrix. The variance of e&ichis m. Thus,

obtained by settingp =1, i.e.,
CD(tl, e ,tN) = dei(l — RQ)fm, (4.18)

whereQ is the diagonal matrix we showed before. In [17], Luo et akenshown that for
Nakagamim fading channels, the normalized power correlation coeffits is the squared
amplitude of the complex channel correlation. Thus, anradiitve expression of CF can

be obtained by substituting in the square root of the nozadlpower correlations.

4.3.3 Rician fading channels

For correlated Rician fading channels, the channel vdctollows the complex Gaussian
distribution, h ~ ¢4 (u, ). The mean vectou physically represents the direct-path

component, whereas the signal strengths of the diffusegoaoents are specified by the
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diagonal elements of the covariance matpixThe Rician factor at thegh element oh can

12
be given byK; — Jfg;'i) with g being theith element ofu.

For Rician fading channels, the correlation matix which depicts the correlation

between the diffused components, can also be approximatieebironecker product of
the transmit correlation matriR; and receive correlation matrik, [68]. If the Rician
factorK is the same for all channels, the relationship between thar@mce matrixy and
the correlation matriR is ) = HLKR' When the Rician factoK are different for each

fading channels, the relationship @fi, j) andR(i, j) can be expressed by

o 1 .
Y(i,j) = ¢(1+Ki)(1+K,-)R("J)' (4.19)

The joint CF of outpuls can be obtained with the help of [19] and given as

P(ta, -, tn) = detl ~ RQ) exp| k! (Q 1 y) 1w (4.20)

The Rayleigh fading channel can be treated as a special c&eiah fading withu =0
orK =0.

In conclusion, the joint CF depends on two factors. One fasttre channel environ-
ment, i.e., the channel model and the channel correlatianxmal he other factor is the
numbers of available and selected anten(tagVii; Ny, M, ) together with the order, which

determines the expression of the diagonal magrix

4.4 Performance Analysis

With the CF derived in section lll, the PDF of the output SMBf T-RAS can be obtained
from Eq. (4.5), which can be further used to evaluate theesygierformance measure-
ments. In this section, closed-form expressions for thes@eBER, average SER, outage
performance and ergodic capacity are derived for MIMO systeith OSTBC, T-RAS and

different modulation formats.
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4.4.1 BER Analysis

With the knowledge of the PDF of the output SiYRnd using Eq. (2.26), the average error

rate for a fading wireless system could be obtained as
Pe= [ RTy(v)dy (4.21)

whereP;(y) is the conditional error probability for either BER or SER@Mnstantaneous
output SNRy. Substituting Eq. (4.5) into Eqg. (4.21) yields the averagereprobability

expression

Pe - / / CD tlv (tla ) N)dtl e dtN (422)

w(t ~--t):i/oo ﬁjt 1)+t > _ TN dy. (4.23)
N [0 DN e

In Eq. (4.22), the first factom(ty,---,ty) in the integrand is the joint CF ofs de-
pended solely on the channel characters and the numbereaireas. The second factor
w(ty,---,tn) is the weighting function, which depends only on the modoktascheme.
Such a decomposition makes the analysis of error perforenapstematic. For a given
modulation scheme operating in a specified environmensgeth&o factors should be de-
termined and Eq. (4.22) is used to obtain the average erobapility.

Consider a MIMO system modulated Brary square amplitude modulation (M-QAM)
with Gray mapping. From [69, 70], the conditional BER can hgresented as a sum of
(vM — 1) Q functions, expressed by

i
Pgmoam (V) = Z aQ(v/biy) (4.24)

where the coefficients; andb; depend on the constellation sikke The conditional BER
of the binary phase shift keying (BPSK) and binary frequerft keying (BFSK) can be
looked as the special cases of Eq. (4.24) With=2,a; = 1,by =2 andM =2, a; =
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1,b; = 1, respectively. Inserting Eq. (4.24) into Eq. (4.23) yse{dimilar to [71, eq,(12)]),
W14 N

_ A | bi
Wiy, - tn) = .; M <1+|;(—1) bﬁ.ZbN:. b 2jTN> .

(4.25)

After substituting Eq. (4.25) into Eq. (4.22), the averageRBH the MIMO systems with
T-RAS and modulated by M-QAM, BPSK, BFSK can be numerically glated.

4.4.2 SER Analysis

By definingPs(y) in Eq. (4.21) as the conditional symbol error rate on thesties of the
output SNR, the average SER can be derived. Here, the MGIé-aggeoach is used to
derive the average SER [72].

From the PDF o¥/in Eq. (4.5), the MGF of the output SNR can be derived as

My () = / “e Ty (ydy

zZ

D(ty, - H (jt) * Yy (-1t I dty ---dty
k=1 = byt oyt | HITN

(4.26)

Using the MGF ofy, the average SER of M-PSK, square M-QAM, and M-ary pulse am-
plitude modulation (M-PAM) can be calculated by

(M-1)m
— 1 r~—w—
Pempsk(€) = 7)o My(i’ﬁ?) o[2] (4.27)
B 1\4 32 OMQAM
Pemoam (€) = (1—\/—M)7—T/0 My(SiQTe)dG
1\?4 % gMQAM)
P —/ M, IMQAM ) g 4.28
( m>no y(sinze (4.28)
_ 2M—-1 (2
Pavoan (€)= == | My(gsl\?:zAg/l)dQ (4.29)

wheregwpsk = SI* (), Gugam = 3/2(M — 1), andguvpam = 3/(M? —1).
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4.4.3 Outage Probability

The conditional capacity on the output SyYRan be given by [13]

C(y) =logy(1+y). (4.30)

For a given transmission rakr, the probability that the realized T-RAS can not support
Rr with the output SNRyis [71, eq,(15)]

Pout(Rr) = P{log,(1+y) < Rr} =F, (2% —1)

Y Y e M 4.31
= (Zn)N/—oom/_oo (tlw“,tN)le it tp---din. (4.31)

The outage probability expression can be derived in a simiknner with that of BER.

4.4.4 Ergodic capacity

The ergodic capacity of a MIMO channel is the ensemble aeeoddghe information rate
over the distribution of the elements of the channel matrifd 3]. Conditional capacity is
given in Eq. (4.30) and the weighting function is [71, eq){18

N N o .
Wit ) = [ 07 Y DY ety ,tN)/ C(y)e Vindy
k=1 =1 b1+ Fbon=I 0

(4.32)
whereTy = bit; + - -- + bnty is the same as in Eq. (4.5). The ergodic capacity can be
derived by using the same approach as Eq. (4.22).

In general, the calculation of error rate, outage probigbéind ergodic capacity can
not be simplified and relied on numerical methods. Gaussigdi@ture integration was

suggested in [63].

4.5 Numerical Results

In this section, 4-QAM is used for all numerical examplegy. .2 depicts the simulation

and theory results of the average BER in two T-RAS MIMO systenes cndependent
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Rayleigh fading environments. Alamouti codes are employethe selected transmit an-
tennas. One MIMO system choodds = 2 out of 3 transmit antennas ai} = 2 out of

2 receive antennas, and the other choddes- 2 out of 3 transmit antennas ai} = 1
out of 2 receive antennas. Integrals in Eq. (4.22) are apmated by using truncated
Riemann sum of points with equal space 0.2 between -10 andxténding the summa-
tion limits will not get different values since the integtasmhighly concentrated within the
range -8, 8]. In Fig. 4.2, the derived formulas of both systems matly well with the
Monte-Carlo simulation results. The system using both tveeixe antennas outperforms
the MIMO with one receive antenna selected. This again iespthe tradeoff between the
performance and complexity as in [62].

Fig. 4.3 demonstrates the derived formulas of the averadge iBE T-RAS MIMO
system wherél; = 2 are chosen out of 3 transmit antennas Bhd= 2 out of 2 receive
antennas. Simulation results are shown to compare with ¢hieedl results. The outage
probability for this system is shown in Fig. 4.4, where cétion results are obtained by
Eq. (4.31). In both figures, the calculated values match wigii the simulation results.

The dependence of the bit error performance on the spatie¢lation is of interest.
The correlation depends on the antenna configuration anolthiation environment (i.e.,
fading model, the spacing of antenna elements, mean ACAnAEMD, transmit and re-
ceive angular spread). A series of numerical results argepted to illustrate the effects
of these parameters on the average BER over various fadimmelsa In the following,
a MIMO system choosinyyl; = 2 out of 3 transmit antennas ai} = 2 out of 2 receive

antennas is considered.

4.5.1 Correlated Rayleigh fading channels

The transmit correlation matriR; and the receive correlation matifi are generated by
using the practical channel model presented in [68, 73, 7A¢ model assumes that there
are uniform linear arrays (ULA) at both the transmitter aaedeiver, and that the angular

spectrum at both sides follows a Gaussian distribution.uisedenote the relative antenna
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spacing between adjacent antennaslaat the receiver and; at the transmitterd, and

d; are measured in units of wavelengths= f% where f; is the center frequency of the
narrowband signal. We also defiée GT[ or ando; as the mean AOA, mean AOD, receive
angle spread and transmit angle spread, respectively., Tiisictual random AOA&)
and AOD @) can be expressed 8 = 6; + 6, and& = 6 + 6 with 6 ~ .+ (0,0?) and

6 ~ . (0,0?). With these definitions, thgp, q)th entry ofR, andR; can be given by

i 2
Rr(p,q) = exp{—j2m(p—q) drcos(er)}exp{— <% (2r(p—q) drSin(er)0r> }

_ 2
Rt(p,Q):exp{—jZH(p—q)dtCOS(Br)}exp{—(%(ZH(p—q)dtsin(Gr)m) } (4.33)

The correlation matriR is given by the Kronecker product &; andR,;. As mentioned
in [68], the correlation function is essentially Gaussiathvgpread inversely proportional
to the product of the antenna spacing and angle spread. greesawith the intuition
that smaller antenna spacing or angle spreads will gegdealtl to higher level of spatial
correlation. Substituting the correlation matRxand the diagonal matri®Q (depends on
the number of selected and available transmit and recetemaas) into the CF Eq. (4.18)
and the average BER Eq. (4.22), the effects of the parametetsenaverage BER in
correlated Rayleigh fading channels can be observed.

Fig. 4.5 illustrates the effect of transmit antenna spacingn the average BER with
fixed receive antenna spaciag = 1/5A and 1/3A, 67r = B_t = 11/2,0; = oy = 11/6 for
transmit SNR = 9 dB. Increasing the transmit antenna separdtibetween the transmit
antenna elements reduces their correlation and hencewmegptbe bit error performance.
However, once the transmit antenna spadnts increased beyondl, the BER starts ap-
proaching its maximum achievable performance. The systdsoshenefit from increasing
the receive antenna separation.

The effect of angular spread on the bit error performancéssgiven. Fig. 4.6 shows
the average BER versus the transmit angular spreaddyithl, d, = 1/4A, = /2 and
11/6, 6, = 1/2, 0; = 11/6 for transmit SNR = 9 dB. Both BERs decrease noticeably as the

transmit angular spread increases but less thanTte larger the mean AOA is, the better
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BER performance with the same angular spread will be. If thesimit angular spread is
fixed, BER has similar relationship with receive angular agrand mean AOD. All these

are consistent with the fact that the correlation is indgrgeoportional to the angle spread.

4.5.2 Correlated Nakagamim fading channels

For Nakagamim fading channels, the influence of the fading inde®n the average BER
is demonstrated. Though how to determine the correlatidnxa the transmit or receiver
side are given in literature, to the best of our knowledgetehs no model to describe the
general channel correlatidR. The correlation matrix used for the Rayleigh distribution
is hence borrowed here with fixed correlation coefficientsioled byd: = 1, d, = 1/4A,
6= /2 andrt/6, 6 = /2, ando, = 11/6. For numerical calculation, if the error is less
than 104, the spacing of the Riemannn summation should be smallee, e error bit
at the transmit SNR = 9 dB and the space decreasing from 0.2 ie Balculated.

Fig. 4.7 shows the average BER versus the transmit SNRmwith0.7, 1, 2.1. Itis
observed that as the fading parametancreases, the average BER decreases as expected

since largemimplies less severe fading.

4.5.3 Correlated Rician fading channels

For brevity, the same model Eq. (4.33) is used to generatedahsemit correlation matrix
Rt and receive correlation matrik;. The correlation matrix, which depicts the correlation
of the diffused component, is also the Kronecker produ&:adndR;. If the Rician factor
K is the same for all channels, the covariance matrix ﬁR- Theith elements of
mean vectoy; take the value ofi; = HLKR(i, i). By inserting theu, ¢ and the diagonal
matrix Q into Eq. (4.20) the CF can be obtained. The average BER can balataid by
inserting the derived CF and Eq. (4.25) into Eq. (4.22).

Fig. 4.8 illustrates the effect of transmit antenna spacingn the average BER with
d = 1/4)\,6_r = B_t = 11/2,0; = 0y = 11/6 for transmit antenna SNR = 9 dB aKd= 0, 4,

10. As in the Rayleigh fading channels, the system benefits fh@ increasing of transmit
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antenna space. In the figure, a larger Rician factor achielester bit error performance.
A larger antenna spacing is needed for a smaller Rician fadtoe reason is that a large

Rician factor corresponds to a large direct-path component.

4.6 Conclusion

This chapter presents a framework to analyze the perforenahthe MIMO systems with
generalized transmit and receive antenna selection. The dificulty is the correlation
between the different antenna subsets comes from anteletdice as well as the spatial
channel correlation. The problem can be conquered by esipgethe PDF of the max-
imum output SNR as a function of the joint CF of all possiblepptitSNRs. Thus, we
derived several PDF-based performance measures, inglagiarage BER, average SER,
outage probability and ergodic capacity. Numerical exam@re given to illustrate the
effect of antenna array configuration and the operatingrenment on the average BER
performance through the correlation coefficient. Our frawori can be applied in a wide
range of channel models, such as correlated Rayleigh, Nakagand Rician fading chan-
nels. Furthermore, the conventional RAS and TAS can be abxulibs the special cases of
T-RAS.
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Fig. 4.2. Average BER versus transmit SNR over independeneidnfading channels .
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Fig. 4.3. Average SER versus transmit SNR over independeyieigh fading channels .
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Fig. 4.5. Average BER versus transmit antenna spacing ovezlated Rayleigh fading
channels with transmit SNR=9 dB.
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Fig. 4.6. Average BER versus transmit angular spread oveeleted Rayleigh fading
channels with transmit SNR=9 dB.
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Fig. 4.7. Average BER versus transmit SNR over correlatedcajainim fading channels
withm=0.7,1,2.1.
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channels with transmit SNR=9 dB aid= 0,4, 10.

65



Chapter 5

Conclusions and Future Work

Antenna selection reduces the number of RF chains and cazsygueduces the cost as
well as the complexity of system without degrading the diitgrperformance. Therefore,
performance analysis of antenna selection is extensikedydd, especially under RAS sys-
tems. For T-RAS systems, the main difficulty comes from theatation between the dif-
ferent antenna subsets as well as the original channelatore Therefore, many previous
work on both TAS and T-RAS systems are limited within indepsriccases.

In this thesis, the system models of general MIMO and antsefection schemes are
introduced. Different channel assumptions and statistiegsures are given in Chapter 2.
Research on MIMO systems with antenna selection are reviewed

In Chapter 3, the AF of TAS systems under both independentamelated channels is
analyzed. We provide approximations and bounds for diffecases which could be used
as easy references for different fading channels. A sireglifelation between the AF and
coding gain is derived. The SER can be simply related to thG®oAFAS systems with i.i.d.
channels. The simulation results show that in the high SNjione the approximations are
accurate.

Chapter 4 introduces a framework to analyze the performahtteedVIIMO systems
with T-RAS. The average BER, average SER, outage probabilityeegwtic capacity are
derived by utilizing the CF of the joint output SNR. This apprieaan be used not only
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on independent but also arbitrarily correlated Rayleighkdgamim and Rician fading
channels. Simulation results are provided to validate theerical calculations. The effect
of antenna array configuration and the operating environ(feing, angular spread, mean
AOA, mean AOD on the average BER performance are investig&deth RAS and TAS
can be treated as special cases of T-RAS.

Future research topics are as follows:

As an indirect performance measure, AF can offer insights siystem performance.
However, the analysis of AF under general correlation casmi easily simplified. Also,
analysis extended to Nakagamier rician channels for the most general case of T-RAS
could be worked on.

Although the analysis in Chapter 4 could be applied to anyrar@eselection schemes
under any fading channels, possible future work about haimplify the multi-dimension
integral in Eq. (4.22) should be considered. This is use@gldoise the dimension of the
integral increases with the number of the selected antennas

There are other aspects in antenna selection system thdtalea be considered. For
example, in literature performance analysis with impdré@annel estimation is restricted
within independent fading cases. To the best of our knovdedgrformance analysis with

imperfect channel estimation is not given in literatureTAS and T-RAS systems.
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