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Abstract

Wireless communication networks have recently attracted significant research atten-

tion. As a critical issue for improving network performance, efficient and intelligent

resource allocation strategies have been intensively studied.

This thesis consists of two studies on resource allocation strategy, specifically, joint

bandwidth and power allocation strategy, for wireless communication networks where both

bandwidth and power are constrained resources. In the first study, joint bandwidth and

power allocation strategy is proposed for wireless multi-user networks without relaying and

with decode-and-forward relaying based on three system-wide objectives. It is shown that

the formulated resource allocation problems are convex and, thus, the optimal solutions can

be obtained efficiently using convex optimization techniques. Admission control based on

the joint bandwidth and power allocation strategy is further considered. A greedy search

algorithm is developed for solving the admission control problem efficiently, and the opti-

mality conditions of the greedy search algorithm are derived and shown to be mild. In the

second study, joint bandwidth and power allocation strategy is presented for maximizing the

sum ergodic capacity of secondary users under fading channels in cognitive radio networks.

Optimal bandwidth allocation is derived in closed-form for any given power allocation. The

structure of optimal power allocation under each combination of four types of power con-

straints is derived. Using these structures, efficient algorithms are developed for finding the

optimal power allocations. In summary, this thesis has proposed, analyzed and solved joint

bandwidth and power allocation problems in wireless communication networks.
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Chapter 1

Introduction

Recently, wireless communication networks have attracted a lot of research efforts. The

main interest concerns developing efficient and intelligent resource allocation strate-

gies. This thesis focuses on the resource allocation in wireless communication networks.

1.1 Motivation

Wireless communication networks serve as essential means to carry out data communica-

tions among multiple users. One of the critical issues in wireless communication networks

is the efficient allocation of available radio resources in order to improve network perfor-

mance. Future wireless networks, such as cellular and ad hoc networks, are expected to

provide users with reliable data transmissions at high rates. Thus, it is a challenging task

to achieve a system-wide goal for the network, while users’ individual Quality of Service

(QoS) requirements also need to be satisfied. Intelligent resource allocation schemes should

capture the tradeoff between user-centric constraints and a particular network-centric ob-

jective. Moreover, there exists a conflict between the increasing demand for wireless services

and the availability of radio resources, including both bandwidth and power resources. The

overly crowded spectrum allocation charts given by Federal Communications Commission

(FCC) indicates that the radio spectrum available for emerging wireless applications is

scarce. Transmission power is also a constrained resource at wireless devices due to their

finite battery energy and hardware constraints. Therefore, there is a strong motivation for
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the research on effective resource management and distribution that can make the best use

of limited radio resources. Furthermore, efficient resource utilization is desirable for exploit-

ing the dynamics and diversity nature of wireless multi-user networks. Since conventional

fixed resource allocation schemes are designed regardless of the time-varying characteristic

of wireless channel conditions, they certainly can not achieve high efficiency. On the con-

trary, a dynamic resource allocation scheme can take full advantage of the channel diversity

among users by distributing resources adaptively according to their available channel state

information (CSI) and, thus, enhance the performance substantially.

Numerous works have been conducted on the resource allocation of wireless communi-

cation networks. Power allocation strategies have been a research focus for both energy

efficiency and interference management. Power control techniques for interference-limited

networks, such as cellular networks, have been studied intensively in the literature (see, for

example, [1]- [6]), and aimed at achieving optimal network performance while guaranteeing

a target signal-to-interference-plus-noise ratio (SINR) for each user. On the other hand,

joint bandwidth and power allocation strategy has received much less attention [10]- [12].

In fact, the joint allocation of bandwidth and power is especially critical in practical wireless

networks, where both the available transmission power of individual nodes and the total

available bandwidth for all users are limited. Due to the limited resources in wireless net-

works, there are situations where not all users can be satisfied with their QoS requirements

and, therefore, admission control should be carried out to determine which users can be ad-

mitted into the network. Power allocation with admission control have been investigated for

interference-limited networks [1], [3], [13], [14], where a removal approach has been proposed

for removing users until the remaining users in the network are feasible.

1.2 Contribution

Motivated by the need to improve the efficiency of the conventional disjoint allocation

strategies for bandwidth and power resources, this thesis aims at studying the fundamental

performance limits of joint bandwidth and power allocation strategy for wireless communi-

cation networks where both bandwidth and power are constrained resources. In particular,

the joint bandwidth and power allocation strategy is studied for two setups.
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In the first setup, joint bandwidth and power allocation strategy is proposed for wire-

less multi-user networks without relaying and with decode-and-forward relaying based on

(i) sum capacity maximization; (ii) worst user capacity maximization; and (iii) total network

power minimization. The formulated resource allocation problems are shown to be convex

and, thus, can be solved efficiently using convex optimization techniques. Due to limited

resources, the network may not be able to support all users with their QoS requirements.

Therefore, admission control based on the joint bandwidth and power allocation strategy

is further considered, which aims at maximizing the number of users that can be admitted

into the network. Since finding the optimal solution to the admission control problem has

high complexity, a suboptimal greedy search algorithm is developed for solving it efficiently.

The optimal conditions of the greedy search algorithm are derived and shown to be mild.

In the second setup, joint bandwidth and power allocation strategy is presented for

maximizing the sum ergodic capacity of secondary users (SUs) under fading channels in

cognitive radio networks. Optimal bandwidth allocation is derived in closed-form for any

given power allocation. The structures of the optimal power allocation under all possi-

ble combinations of four types of power constraints are derived, which indicate the possible

numbers of users that transmit at nonzero power but below their corresponding peak power,

and show that other users do not transmit or transmit at their corresponding peak power.

Efficient algorithms are developed based on these structures for finding the optimal power

allocations. The solutions and algorithms obtained in both works achieve significant per-

formance improvements compared to conventional methods, which is verified by numerical

results provided in simulations.

1.3 Mathematical Background

In this section, we briefly introduce convex optimization preliminaries, which serve as the

main mathematical tool for studying the resource allocation problems in this thesis.

The modeling, design, and optimization of wireless communication networks rely on op-

timization theory, which has found a wide range of applications in wireless communications

and networking. Convexity and non-convexity is the great watershed in optimization the-

ory. It is recognized that non-convex optimization problems are computationally difficult
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to solve and, thus, have received limited attention [5]- [7]. Convex optimization, however,

is much more appealing [15]- [18], since many problems can be identified or formulated as

convex optimization problems and their optimal solutions can be computed reliably and

efficiently through established techniques such as interior point methods [8], even if they

involve nonlinear objectives and constraints. Apart from computational efficiency, convex

optimization also offers theoretical advantages by giving insightful interpretations for opti-

mal solutions such as, for example, Lagrange duality. The availability of software packages

for solving convex optimization problems, such as [9], further enhances the popularity of

convex optimization.

1.3.1 Convex functions

Consider a function f : Rn → R defined on a convex set D. We say f is a convex function

if for any two x,y ∈ D, the following inequality holds for any α ∈ [0, 1]

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (1.1)

A geometric interpretation of (1.1) is that the plot of f along the linear interval from x to

y is below the line segment connecting (x, f(x)) and (y, f(y)). We say f is concave if −f

is convex.

Suppose f is first-order differentiable. The first-order convexity condition states that f

is convex if and only if the following inequality holds for any two x,y ∈ D

f(y) ≥ f(x) +∇f(x)T (y − x). (1.2)

Suppose f is second-order differentiable, i.e., the second-order derivative exists. The

second-order convexity condition states that f is convex if and only if the second-order

derivative is positive semidefinite, i.e.,

∇2f(x) ≽ 0. (1.3)

Some basic convex functions include linear functions, exponential and logarithmic func-

tions, and power functions. There are some operations that preserve the convexity of convex

functions, including addition, nonnegative scaling, and pointwise maximum.
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1.3.2 Convex optimization problems

Mathematically, an optimization problem can be written in the following standard form

min
x∈D

f0(x) (1.4a)

subject to (s.t.) fi(x) ≤ 0, i = 1, · · · ,m (1.4b)

hi(x) = 0, i = 1, · · · , l (1.4c)

where f0 denotes the objective function, fi denotes the i-th inequality constraint function, hi

denotes the i-th equality constraint function, and D denotes the domain of the optimization

problem.

A point x ∈ D is feasible if it satisfies the constraints (1.4b) and (1.4c). The problem

(1.4a)-(1.4c) is feasible if there exists at least one feasible point, and is infeasible if there does

not exist any feasible point. A feasible point is optimal, denoted by x∗, if f0(x) ≥ f0(x
∗)

holds for any feasible point x. The optimal value of the problem (1.4a)-(1.4c), denoted by

v∗, is defined as the value of the objective function at the optimal point, i.e., v∗ = f0(x
∗).

The problem (1.4a)-(1.4c) is a convex optimization problem if the objective function

and inequality constraint functions are convex, and the equality constraint functions are

linear.

1.3.3 Lagrange duality and Karush-Kuhn-Tucker conditions

The Langrangian L : Rn × Rm × Rl → R associated with the problem (1.4a)-(1.4c) is

defined as

L(x,λ,µ) = f0(x) +

m∑
i=1

λifi(x) +

l∑
i=1

µihi(x) (1.5)

where λ , [λ1 · · ·λm], µ , [µ1 · · ·µl], λi is the Lagrange multiplier associated with the

ith inequality constraint, and µi is the Lagrange multiplier associated with the ith equality

constraint. The Lagrange dual function is defined as

g(λ,µ) = inf
x∈D

L(x,λ,µ) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

l∑
i=1

µihi(x)

)
. (1.6)

It can be seen that the optimal value v∗ of the problem (1.4a)-(1.4c) is lower bounded by

the dual function, i.e., g(λ,µ) ≤ v∗, for any λ ≽ 0 and any µ. The tightest lower bound
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for v∗ can be obtained by solving the dual problem defined as follows

max
λ,µ

g(λ,µ) (1.7a)

s.t. λ ≽ 0. (1.7b)

Note that the dual problem (1.7a)-(1.7b) is always convex regardless of the convexity of the

original problem (1.4a)-(1.4c). The original problem (1.4a)-(1.4c) is also called the primal

problem in this context.

Let d∗ denote the optimal value of the dual problem (1.7a)-(1.7b). Then v∗ − d∗ is

defined as the optimal duality gap between the primal problem (1.4a)-(1.4c) and the dual

problem (1.7a)-(1.7b). If the primal problem (1.4a)-(1.4c) is convex, the optimal duality

gap is zero, i.e., v∗ − d∗ = 0, and we say that strong duality holds. Using the property of

strong duality, if the primal problem (1.4a)-(1.4c) is convex, it can be solved equivalently

by solving the dual problem (1.7a)-(1.7b).

Suppose the objective function f0 and the inequality functions fi, i = 1, · · · ,m are dif-

ferentiable. The optimal solution of the primal problem (1.4a)-(1.4c) and the dual problem

(1.7a)-(1.7b), denoted by x∗ and (λ∗,µ∗), respectively, satisfy the following Karush-Kuhn-

Tucker (KKT) conditions

fi(x
∗) ≤ 0, i = 1, · · · ,m (1.8a)

hi(x
∗) = 0, i = 1, · · · , l (1.8b)

λ∗
i ≥ 0, i = 1, · · · ,m (1.8c)

λ∗
i fi(x

∗) = 0, i = 1, · · · ,m (1.8d)

∇f0(x
∗) +

m∑
i=1

λ∗
i∇fi(x

∗) +
l∑

i=1

µ∗
i∇hi(x

∗) = 0. (1.8e)

In general, the KKT conditions are only necessary conditions for the optimal solutions x∗

and (λ∗,µ∗). However, if the primal problem (1.4a)-(1.4c) is convex, the KKT conditions

are both necessary and sufficient conditions for the optimal solutions and, therefore, solving

for the KKT conditions is equivalent to solving the primal problem (1.4a)-(1.4c).
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1.3.4 Solving convex optimization problems

Although intensive study has been done on analyzing the properties of various classes of

optimization problems and developing algorithms for solving them, optimization problems

are generally computationally difficult to solve, even if the objective and constraint functions

are smooth. The efficiency of computing the optimal solutions of general optimization

problems depends on different factors, including the particular forms and structures of

the objective and constraint functions, and the numbers of the variables and constraints.

However, there exist few classes of optimization problems that can be reliably and efficiently

solved by effective algorithms, even if the problems involve a large number of variables and

constraints. Convex optimization problems can serve as an example of such problems.

Analytical solutions of convex optimization problems can be obtained, if possible, using

Lagrange duality or the KKT conditions. However, general analytical formulas for the opti-

mal solutions are not available and, therefore, effective methods like interior-point methods

should be used. Interior-point methods can solve a convex optimization problem in an al-

most constant number of iterations regardless of the structure of the problem. In practice, a

convex optimization problem with hundreds or even thousands of variables and constraints

can be solved efficiently on a desktop computer in a few tens of seconds. Therefore, once

we can recognize and formulate a research problem as a convex optimization problem, we

can claim that we have found a method to solve this research problem.

1.4 Thesis Outline

This thesis studies resource allocation, specifically, bandwidth and power allocation in wire-

less communication networks. The outline of each chapter is given below.

Chapter 1 provides the motivation, contribution, and outline of the thesis, and intro-

duces basic convex optimization theory.

Chapter 2 presents joint bandwidth and power allocation strategy for wireless multi-

user networks without relaying and with decode-and-forward relaying by taking into account

three network performance measures, i.e., the sum capacity, the worst capacity, and the total

network power consumption. The admission control problem based on the joint bandwidth

and power allocation strategy is further considered. A greedy search algorithm is developed
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to solve the admission control problem efficiently. The complexity and optimality conditions

of the greedy search algorithm are investigated.

Chapter 3 proposes joint bandwidth and power allocation strategy for the sum ergodic

capacity maximization of SUs under fading channels in cognitive radio networks. Optimal

bandwidth allocation is derived first in terms of any given power allocation. Then optimal

power allocation is obtained subject to each combination of four types of power constraints.

Chapter 4 summarizes the results of the thesis and proposes future work directions.
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Chapter 2

Joint Bandwidth and Power

Allocation with Admission Control

in Wireless Multi-User Networks

With and Without Relaying

Equal allocation of bandwidth and/or power may not be efficient for wireless multi-user

networks with limited bandwidth and power resources. Joint bandwidth and power

allocation strategies for wireless multi-user networks with and without relaying are proposed

in this chapter for (i) the maximization of the sum capacity of all users; (ii) the maximiza-

tion of the worst user capacity; and (iii) the minimization of the total power consumption of

all users subject to rate requirements. It is shown that the proposed allocation problems are

convex and, therefore, can be solved efficiently. Moreover, the admission control based joint

bandwidth and power allocation is considered. A suboptimal greedy search algorithm is de-

veloped to solve the admission control problem efficiently. The conditions under which the

greedy search is optimal are derived and shown to be mild. The performance improvements

offered by the proposed joint bandwidth and power allocation are demonstrated by simula-

tions. The advantages of the suboptimal greedy search algorithm for admission control are

also shown.

The rest of this chapter is organized as follows. Section 2.1 gives the overview of the
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related literature and summarizes the contributions. System models of multi-user net-

works without relaying and with decode-and-forward relaying are given in Section 2.2. In

Section 2.3, joint bandwidth and power allocation problems for the three aforementioned

objectives are formulated and solved for both types of networks with and without relaying.

Admission control problem based on joint bandwidth and power allocation is formulated in

Section 2.4, where the greedy search algorithm is also developed and investigated for both

types of systems with and without relaying. Numerical results are reported in Section 2.5,

followed by concluding remarks in Section 2.6.

2.1 Introduction

It has been shown that the efficiency of wireless communications can be improved by us-

ing relays [19]- [20]. In a relay-assisted communication system, the data transmitted from

a source is forwarded via relaying to the corresponding destination. Since relay-assisted

communication has significant advantages such as extended coverage and enhanced com-

munication quality, relay networks are considered promising candidates for future wireless

networks. One critical issue in relay networks is the efficient allocation of available radio re-

sources to enhance the performance of relaying. Therefore, numerous works have been done

on the resource allocation for relay networks (see, for example, [21]- [33]). Note that [22]- [30]

as well as most of the existing works consider a single user, i.e., a single source-destination

pair, while only a few works have studied resource allocation for multi-user relay networks.

Power allocation aiming at optimizing the sum capacity of multiple users for four different

relay transmission strategies has been studied in [31], while an AF based strategy in which

multiple sources share multiple relays using power control has been developed in [32], [33].

In practical wireless networks where both the available transmission power of individual

nodes and the total available bandwidth of the network are limited, joint bandwidth and

power allocation should be considered [10]– [12]. It is worth noting that most of the works

mentioned above on the resource allocation for relay networks have assumed equal and

fixed bandwidth allocation for the one-hop links from a source to a destination. In fact,

it is inefficient to allocate the bandwidth equally when the total available bandwidth is

limited. Therefore, joint bandwidth and power allocation is important for both networks
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with and without relaying.

Various performance metrics for resource allocation in multi-user networks have been

considered. System throughput maximization and the worst user throughput maximization

are studied using convex optimization in [15]. Sum capacity maximization is taken as

an objective for power allocation in [31], while max-min SNR, power minimization, and

throughput maximization are used as power allocation criteria in [32].

In some applications, certain minimum transmission rates must be guaranteed for the

users in order to satisfy their quality-of-service (QoS) requirements. For instance, in real-

time voice and video applications, a minimum rate should be guaranteed for each user to

satisfy the delay constraints of the services. However, when the rate requirements can not

be supported for all users, admission control is adopted to decide which users to be admitted

into the network. The admission control in wireless networks typically aims at maximizing

the number of admitted users and has been recently considered in several works. A single-

stage reformulation approach for a two-stage joint resource allocation and admission control

problem is proposed in [34], [35], while another approach is based on user removals [1], [3],

[13], [14], [36]. To the best of our knowledge, admission control based on joint bandwidth

and power allocation has never been considered.

In this chapter1, the problem of joint bandwidth and power allocation for wireless multi-

user networks with and without relaying is considered, which is especially efficient for the

networks with both limited bandwidth and limited power. The joint bandwidth and power

allocation are proposed to (i) maximize the sum capacity of all users; (ii) maximize the

capacity of the worst user; (iii) minimize the total power consumption of all users. The

corresponding joint bandwidth and power allocation problems can be formulated as opti-

mization problems that are shown to be convex. Therefore, these problems can be solved

efficiently by using convex optimization techniques. The joint bandwidth and power alloca-

tion together with admission control is further considered, and a greedy search algorithm is

developed in order to reduce the computational complexity of solving the admission control

problem. The optimality conditions of the greedy search are derived and shown to be mild.

1This work has been presented in [37], [38] and [39].
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2.2 System Model

Without Relaying

Consider a wireless network, which consists ofM source nodes Si, i ∈ M = {1, 2, · · · ,M},

and K destination nodes Di, i ∈ K = {1, 2, · · · ,K}, as shown in Fig. 2.1. The network

serves N users Ui, i ∈ N = {1, 2, · · · , N}, where each user represents a one-hop link from

a source to a destination. The set of users which are served by Si is denoted by NSi .

NSi
= {j − 1, j, j + 1}

S1 Si SM

D1 DK

. . . . . .

U1
U2

Uj−1

Uj

Uj+1

UN−1

UN

. . . . . .

Fig. 2.1. Wireless multi-user network without relaying.

A spectrum of total bandwidthW is available for the transmission from the sources. This

spectrum can be divided into distinct and nonoverlapping channels of unequal bandwidths,

so that the sources share the available spectrum through frequency division and, therefore,

do not interfere with each other.

Let P S
i and W S

i denote the allocated transmit power and channel bandwidth of the

source to serve Ui. Then the received SNR at the destination of Ui is

γDi =
P S
i h

SD
i

W S
i N0

(2.1)

where hSDi denotes the channel gain of the source–destination link of Ui and W S
i N0 stands

for the power of additive white Gaussian noise (AWGN) over the bandwidth W S
i . The

channel gain hSDi results from such effects as path loss, shadowing, and fading. Due to the

fact that the power spectral density (PSD) of AWGN is constant over all frequencies with

the constant value denoted by N0, the noise power in the channel is linearly increasing with

the channel bandwidth. It can be seen from (2.1) that a channel with larger bandwidth

introduces higher noise power and, thus, reduces the SNR.
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Channel capacity gives an upper bound on the achievable rate of a link. Given γDi , the

source–destination link capacity of Ui is

CSD
i = W S

i log(1 + γDi ) = W S
i log

(
1 +

P S
i h

SD
i

W S
i N0

)
. (2.2)

It can be seen that W S
i characterizes channel bandwidth, and log(1 + γRi ) characterizes

spectral efficiency and, thus, CSD
i characterizes data rate over the source–destination link

in bits per second. Moreover, for fixed W S
i , C

SD
i is a concave increasing function of P S

i . It

can be also shown that CSD
i is a concave increasing function of W S

i for fixed P S
i , although

γDi is a linear decreasing function of W S
i . Indeed, it can be proved that CSD

i is a concave

function of P S
i and W S

i jointly [11], [12].

With Relaying

Consider L relay nodes Ri, i ∈ L = {1, 2, · · · , L} added to the network described in the

previous subsection and used to forward the data from the sources to the destinations, as

shown in Fig. 2.2. Then each user represents a two-hop link from a source to a destination

via relaying. To reduce the implementation complexity at the destinations, single relay

assignment is adopted so that each user has one designated relay. Then the set of users

served by Ri is denoted by NRi . The relays work in a half-duplex manner due to the

practical limitation that they can not transmit and receive at the same time. A two-

phase decode-and-forward (DF) protocol is assumed, i.e., the relays receive and decode the

transmitted data from the sources in the first phase, and re-encode and forward the data

to the destinations in the second phase. The sources and relays share the total available

spectrum in the first and second phases, respectively. It is assumed that the direct links

between the sources and the destinations are blocked and, thus, are not available. Note

that although the two-hop relay model is considered in the paper, the results are applicable

for multi-hop relay models as well.

Let PR
i and WR

i denote the allocated transmit power and channel bandwidth of the

relay to serve Ui. The two-hop source–destination link capacity of Ui is given by

CSD
i = min{CSR

i , CRD
i } =

{
W S

i log

(
1 +

P S
i h

SR
i

W S
i N0

)
, WR

i log

(
1 +

PR
i hRD

i

WR
i N0

)}
(2.3)

where CSR
i and CRD

i are the one-hop source–relay and relay–destination link capacities of

Ui, respectively, and hSRi and hRD
i denote the corresponding channel gains.
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NSi
= {j − 1, j, j + 1}

S1 Si SM

D1 DK

. . . . . .

U1

U2

Uj−1

Uj

Uj+1

UN−1

UN

. . . . . .

. . . . . .R1 Ri
RL

NRL
= {2, j + 1, N}

1st phase

2nd phase

Fig. 2.2. Wireless multi-user network with relaying.

It can be seen from (2.3) that if equal bandwidth is allocated to W S
i and WR

i , CSR
i and

CRD
i can be unequal due to the power limits on P S

i and PR
i . Then the source–destination

link capacity CSD
i is constrained by the minimum of CSR

i and CRD
i . Note that since all users

share the total bandwidth of the spectrum, equal bandwidth allocation for all one-hop links

can be inefficient. Therefore, the joint allocation of bandwidth and power is necessary.

2.3 Joint Bandwidth and Power Allocation

Different objectives can be considered while jointly allocating bandwidth and power in

wireless multi-user networks. The widely used objectives for network optimization are (i) the

sum capacity maximization; (ii) the worst user capacity maximization; and (iii) the total

network power minimization. In this section, the problems of joint bandwidth and power

allocation are formulated for the aforementioned objectives for both considered systems

with and without relaying. It is shown that all these problems are convex and, therefore,

can be efficiently solved using standard convex optimization methods.

2.3.1 Sum capacity maximization

In the applications without delay constraints, a high data rate from any user in the network

is preferable. Thus, it is desirable to allocate the resources to maximize the overall network

performance, e.g., the sum capacity of all users.
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Without Relaying

In this case, the joint bandwidth and power allocation problem aiming at maximizing

the sum capacity of all users can be mathematically formulated as

max
{PS

i ,W
S
i }

∑
i∈N

CSD
i (2.4a)

s.t.
∑

i∈NSj

P S
i ≤ PSj , j ∈ M (2.4b)

∑
i∈N

W S
i ≤ W. (2.4c)

The nonnegativity constraints on the optimization variables {P S
i ,W

S
i } are natural and, thus,

omitted throughout the paper for brevity. In the problem (2.4a)–(2.4c), the constraint (2.4b)

stands that the total power at Sj is limited by PSj , while the constraint (2.4c) indicates

that the total bandwidth of the channels allocated to the sources is also limited by W .

Note that since CSD
i is a jointly concave function of P S

i and W S
i , the objective function

(2.4a) is convex. The constraints (2.4b) and (2.4c) are linear and, thus, convex. Therefore,

the problem (2.4a)–(2.4c) itself is convex. Using the convexity, the closed-form optimal

solution of the problem (2.4a)–(2.4c) can be found as it is shown below. It is worth noting

that the optimal solution demonstrates that for a set of users served by one source, the sum

capacity maximization based allocation strategy allocates all the power of each source only

to one user, that is, the user with the highest channel gain. Therefore, it results in highly

unbalanced resource allocation among the users. The following proposition describes the

result formally.

Proposition 2.1: The optimal solution of the problem (2.4a)–(2.4c), denoted by {P S
i
∗
,

W S
i
∗|i ∈ N}, is P S

i
∗
= P S

i
⋆
, W S

i
∗
= WhSDi P S

i
⋆
/
∑

j∈I h
SD
j P S

j
⋆
, ∀i ∈ I, and P S

i
∗
= W S

i
∗
= 0,

∀i /∈ I, where P S
i
⋆
is the total power of the source serving Ui, i.e., P

S
i
⋆
= PSk

for i ∈ NSk
,

and I = {i | i = argmaxj∈NSk
hSDj , k ∈ M}.

Proof: We first give the following lemma.
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Lemma 2.1: The optimal solution of the problem

max
{pi,wi}

∑
i∈N

wi log

(
1 +

hipi
wi

)
(2.5a)

s.t.
∑
i∈N

pi ≤ p (2.5b)∑
i∈N

wi ≤ w (2.5c)

which is denoted by {p∗i |i ∈ N}, is p∗k = p, w∗
k = w, and p∗i = w∗

i = 0, ∀i ̸= k, where

k = arg maxi∈N hi.

Proof of Lemma 2.1: Consider if N = {1, 2}. Then the problem (2.5a)–(2.5c) is equiv-

alent to

max
p1≤p, w1≤w

g(w, p) = w log

(
1 +

h1p1
w1

)
+ (w − w1) log

(
1 +

h2(p− p1)

w − w1

)
. (2.6)

Assume without loss of generality that h1 > h2. Consider if the constraints 0 ≤ p1 ≤ p

and 0 ≤ w1 ≤ w are inactive at optimality. Since the problem (2.6) is convex, using the

Karush-Kuhn-Tucker (KKT) conditions, we have

log

(
1 +

h1p
∗
1

w∗
1

)
− h1p

∗
1

w∗
1 + h1p∗1

− log

(
1 +

h2(p− p∗1)

w − w∗
1

)
+

h2(p− p∗1)

w − w∗
1 + h2(p− p∗1)

= y

(
h1p

∗
1

w∗
1

)
− y

(
h2(p− p∗1)

w − w∗
1

)
= 0 (2.7a)

h1w
∗
1

w∗
1 + h1p∗1

− h2(w − w∗
1)

w − w∗
1 + h2(p− p∗1)

= 0. (2.7b)

where y(x) , log(1 + x)− x/(1 + x). Since y(x) is monotonically increasing, it can be seen

from (2.7a) that
h1p

∗
1

w∗
1

=
h2(p− p∗1)

w − w∗
1

. (2.8)

Combining (2.7b) and (2.8), we obtain h1 = h2, which contradicts the condition h1 > h2.

Therefore, at least one of the constraints 0 ≤ p1 ≤ p and 0 ≤ w1 ≤ w is active at optimality.

Then it can be shown that p∗1 = p and w∗
1 = w. Note that this is also the optimal solution

if h1 = h2 is assumed. Furthermore, this conclusion can be directly extended to the case of

N > 2 by induction. This completes the proof. �
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Now we are ready to show Proposition 2.1. It can be seen from Lemma 2.1 that P S
i
∗
=

P S
i
⋆
, ∀i ∈ I, and P S

i
∗
= 0, ∀i /∈ I. Then the problem (2.4a)–(2.4c) is equivalent to

max
{WS

i }

∑
i∈I

W S
i log

(
1 +

P S
i
⋆
hSDi

W S
i N0

)
(2.9a)

s.t.
∑
i∈I

W S
i ≤ W. (2.9b)

Since the problem (2.9a)–(2.9b) is convex , using the KKT conditions, we have

log

(
1 +

P S
i
⋆
hSDi

W S
i
∗
N0

)
− P S

i
⋆
hSDi

W S
i
∗
N0 + P S

i
⋆
hSDi

− λ∗ = y

(
P S
i
⋆
hSRi

W S
i
∗
N0

)
− λ∗ = 0, i ∈ I (2.10a)

W −
∑
i∈I

W S
i
∗
= 0 (2.10b)

where λ∗ denotes the optimal Lagrange multiplier, and y(x) , log(1+x)−x/(1+x). Since

y(x) is monotonically increasing, it follows from (2.10a) that

P S
i
⋆
hSRi

W S
i
∗
N0

=
P S
j
⋆
hSRj

W S
j
∗
N0

, ∀i, j ∈ I1, i ̸= j. (2.11)

Solving the system of equations (2.10b) and (2.11), we obtainW S
i
∗
= WhSDi P S

i
⋆
/
∑
j∈I

hSDj P S
j
⋆
,

i ∈ I. This completes the proof. �
With Relaying

The sum capacity maximization based joint bandwidth and power allocation problem

for the network with DF relaying is given by

max
{PS

i ,W
S
i ,P

R
i ,WR

i }

∑
i∈N

CSD
i (2.12a)

s.t.
∑

i∈NSj

P S
i ≤ PSj , j ∈ M (2.12b)

∑
i∈NRj

PR
i ≤ PRj , j ∈ L (2.12c)

∑
i∈N

W S
i ≤ W (2.12d)∑

i∈N
WR

i ≤ W. (2.12e)
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Introducing new variables {Ti|i ∈ N}, the problem (2.12a)–(2.12e) can be equivalently

rewritten as

min
{PS

i ,W
S
i ,P

R
i ,WR

i ,Ti}
−
∑
i∈N

Ti (2.13a)

s.t. Ti − CSR
i ≤ 0, i ∈ N (2.13b)

Ti − CRD
i ≤ 0, i ∈ N (2.13c)

the constraints (2.12b)–(2.12e). (2.13d)

Note that the constraints (2.13b) and (2.13c) are convex since CSR
i and CRD

i are jointly

concave functions of P S
i , W

S
i and PR

i , WR
i , respectively. The constraints (2.13d) are linear

and, thus, convex. Therefore, the problem (2.13a)–(2.13d) itself is convex. It can be seen

that the closed-form optimal solution of the problem (2.13a)–(2.13d) can not be obtained

due to the coupling of the constraints (2.13b) and (2.13c). However, the convexity of the

problem (2.13a)–(2.13d) allows to use standard numerical convex optimization algorithms

for solving the problem efficiently [8].

Intuitively, the sum capacity maximization based allocation for the network with DF

relaying should not result in as unbalanced resource allocation as that for the network with-

out relaying. It is because the channel gains in both transmission phases for the networks

with relaying affect the achievable capacity of each user. Below we give the conditions under

which the sum capacity maximization based resource allocation strategy for the network

with relaying does not allocate any resources to some users. In particular, if two users are

served by the same source and the same relay, and one user has lower channel gains than

the other user in both transmission phases, then no resource is allocated to the former user.

The result can be formally stated in terms of the following proposition.

Proposition 2.2: If hSRi ≥ hSRj and hRD
i ≥ hRD

j where {i, j} ⊆ NSk
and {i, j} ⊆ NRl

,

then P S
j
∗
= W S

j
∗
= PR

j
∗
= WR

j
∗
= 0.

Proof: It can be seen that

CSD
i + CSD

j = min{CSR
i , CRD

i }+min{CSR
j , CRD

j } ≤ min{CSR
i + CSR

j , CRD
i + CRD

j } (2.14)

When P S
j = W S

j = PR
j = WR

j = 0, it follows from Lemma 2.1 that the maximum value of

the right hand side of (2.14) is achieved and equals to CSD
i and, on the other hand, the left
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hand side of (2.14) also equals to CSD
i . Therefore, the maximum value of CSD

i + CSD
j is

achieved when P S
j = W S

j = PR
j = WR

j = 0. This completes the proof. �

2.3.2 Worst user capacity maximization

Fairness among users is also an important issue for resource allocation. If the fairness

issue is considered, the achievable rate of the worst user is commonly used as the network

performance measure. In this case, the joint bandwidth and power allocation problem for

the network without relaying can be mathematically formulated as

max
{PS

i ,W
S
i }

min
i∈N

CSD
i (2.15a)

s.t. the constraints (2.4b)–(2.4c) . (2.15b)

Similar, for the networks with relaying, the joint bandwidth and power allocation problem

can be formulated as

max
{PS

i ,W
S
i ,P

R
i ,WR

i }
min
i∈N

CSD
i (2.16a)

s.t. the constraints (2.12b)–(2.12e) . (2.16b)

Introducing a variable T , the problem (2.16a)–(2.16b) can be equivalently written as

min
{PS

i ,W
S
i ,P

R
i ,WR

i ,T}
−T (2.17a)

s.t. T − CSR
i ≤ 0, i ∈ N (2.17b)

T − CRD
i ≤ 0, i ∈ N (2.17c)

the constraints (2.12b)–(2.12e). (2.17d)

Similar to the sum capacity maximization based allocation problems, it can be shown that

the problems (2.15a)–(2.15b) and (2.17a)–(2.17d) are convex. Therefore, the optimal solu-

tions can be efficiently obtained using standard convex optimization methods.

The next proposition indicates that the worst user capacity maximization based allo-

cation leads to absolute fairness among users, just the opposite to the sum capacity maxi-

mization based allocation. The proof is intuitive from the fact that the total bandwidth is

shared by all users, and is omitted for brevity.
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Proposition 2.3: In the problems (2.15a)–(2.15b) and (2.16a)–(2.16b), the capacities

of all users are equal at optimality.

Proof: Consider the problem (2.15a)–(2.15b). Assume that the capacity of one user is

larger than the minimum capacity among the capacities of other users at optimality. Then

we can always take an arbitrary small amount of bandwidth allocated to this user and

reallocate it to the user(s) with the minimum capacity such that the minimum capacity of

all users is increased. This contradicts the optimality assumption. Thus, the capacities of

all users are equal at optimality in the problem (2.15a)–(2.15b). Similarly, it can be shown

that all users achieve the same capacity at optimality in the problem (2.16a)–(2.16b). This

completes the proof. �

2.3.3 Total network power minimization

Another widely considered design objective is the minimization of the total power con-

sumption of all users. This minimization is performed under the constraint that the rate

requirements of all users are satisfied. The corresponding joint bandwidth and power allo-

cation problem for the network without relaying can be written as

min
{PS

i ,W
S
i }

∑
i∈N

P S
i (2.18a)

s.t. ci − CSD
i ≤ 0, i ∈ N (2.18b)

the constraints (2.4b)–(2.4c) (2.18c)

where ci is the minimum acceptable capacity for Ui, while the same problem for the network

with relaying is

min
{PS

i ,W
S
i ,P

R
i ,WR

i }

∑
i∈N

(P S
i + PR

i ) (2.19a)

s.t. ci − CSR
i ≤ 0, i ∈ N (2.19b)

ci − CRD
i ≤ 0, i ∈ N (2.19c)

the constraints (2.12b)–(2.12e) (2.19d)

where the constraints (2.19b) and (2.19c) indicate that the one-hop link capacities of Ui

should be no less than the given capacity threshold. Similar to the sum capacity maxi-

mization and worst user capacity maximization based allocation problems, the problems
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(2.18a)–(2.18c) and (2.19a)–(2.19d) are convex and, thus, can be solved efficiently as men-

tioned before.

2.4 Admission Control Based on Joint Bandwidth and Power

Allocation

In the multi-user networks under consideration, admission control is required if a certain

minimum capacity must be guaranteed for each user. Thus, we next consider admission

control problem for both systems with and without relaying.

Without Relaying

The objective of admission control is to maximize the number of users whose capacity

requirements can be satisfied subject to the bandwidth and power constraints of the net-

work. The admission control problem based on joint bandwidth and power allocation in

the network without relaying can be mathematically expressed as

max
{PS

i ,W
S
i },I⊆N

|I| (2.20a)

s.t. ci − CSD
i ≤ 0, i ∈ I (2.20b)

the constraints (2.4b)–(2.4c) (2.20c)

where |I| stands for the cardinality of I.

Note that the problem (2.20a)–(2.20c) can be solved using exhaustive search among all

possible subsets of users. However, the computational complexity of the exhaustive search

can be very high since the number of possible subsets of users is exponentially increasing

with the number of users, which is not acceptable for practical implementation. Therefore,

we develop a suboptimal greedy search algorithm that significantly reduces the complexity

of solving the admission control problem (2.20a)–(2.20c).
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2.4.1 Greedy search algorithm

Given that all power constraints and capacity requirements are satisfied, the minimum total

bandwidth required to support a set of users I can be defined as G(I), where

G(I) , min
{PS

i ,W
S
i }

∑
i∈I

W S
i (2.21a)

s.t. ci − CSD
i ≤ 0, i ∈ I (2.21b)

the constraint (2.4b). (2.21c)

The following proposition provides a necessary and sufficient condition for the admissibility

of a set of users.

Proposition 2.4: A set of users I is admissible if and only if G(I) ≤ W .

Proof: It is equivalent to show that there exists a feasible point {P S
i ,W

S
i |i ∈ I} of the

problem (2.20a)–(2.20c) if and only if G(I) ≤ W . If {P S
i ,W

S
i |i ∈ I} is a feasible point of

the problem (2.20a)–(2.20c), then since it is also a feasible point of the problem (2.21a)–

(2.21c), we have G(I) ≤
∑

i∈I W
S
i ≤ W . If we have G(I) ≤ W , then the optimal solution

of the problem (2.21a)–(2.21c) for I, denoted by {P S
i
∗
,W S

i
∗|i ∈ I}, is a feasible point of

the problem (2.20a)–(2.20c) since
∑

i∈I W
S
i
∗
= G(I) ≤ W . This completes the proof. �

Proposition 2.4 is instrumental in establishing our greedy search algorithm, which re-

moves users one by one until the remaining users are admissible. The ‘worst’ user, i.e., the

user whose removal reduces the total bandwidth requirement to the maximum extent, is

removed at each greedy search iteration. In other words, the removal of the ‘worst’ user

results in the minimum total bandwidth requirement of the remaining users.2 Thus, the

removal criterion can be stated as

n(t) , arg max
n∈N (t−1)

(G(N (t− 1))−G(N (t− 1) \ {n})) = arg min
n∈N (t−1)

G(N (t− 1) \ {n})

(2.22)

where n(t) denotes the user removed at the t-th greedy search iteration, N (t) , N (t− 1) \

{n(t)} denotes the set of remaining users after t greedy search iterations, and the symbol

‘\’ stands for the set difference operator.

Note that, intuitively, N (t) can be interpreted as the ‘best’ set of N − t users that

requires the minimum total bandwidth among all possible sets of N − t users from N , and

2Note that the approach based on user removals appears in different contexts also in [1], [3], [13], [14], [36].
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G(N (t)) is the corresponding minimum total bandwidth requirement. Thus, the stopping

rule for the greedy search iterations should be finding such t∗ that G(N (t∗ − 1)) > W and

G(N (t∗)) ≤ W . In other words, N − t∗ can be interpreted as the maximum number of

admissible users.

2.4.2 Complexity of the greedy search algorithm

It can be seen from Proposition 2.4 that using the exhaustive search for finding the maximum

number of admissible users is equivalent to checking G(I) for all possible I ⊆ N and,

therefore, the number of times of solving the problem (2.21a)–(2.21c) is upper bounded

by
∑N

i=d∗
(
N
i

)
, where d∗ denotes the optimal value of the problem (2.20a)–(2.20c). On the

other hand, it can be seen from (2.22) that using the greedy search, the number of times

of solving the problem (2.21a)–(2.21c) is upper bounded by
∑t∗−1

i=0 N − i. Therefore, the

complexity of the proposed greedy search is significantly reduced as compared to that of

the exhaustive search, especially if N is large and d∗ is small. Moreover, the complexity of

the greedy search can be further reduced. Then the lemma given below is in order.

Lemma 2.2: The reduction of the total bandwidth requirement after removing a certain

user is only coupled with the users served by the same source as this user, and is decoupled

with the users served by other sources. Mathematically, it means that G(I)−G(I \ {n}) =

G(I ∩ NSi)−G(I ∩ NSi \ {n}) for n ∈ NSi , ∀I ⊆ N .

Proof: This lemma follows directly from the decomposable structure of the problem

(2.21a)–(2.21c), that is, G(I) =
∑

i∈MG(I ∩ NSi). This completes the proof. �
Let NSi(t) , NSi ∩ N (t) denote the set of remaining users served by Si after t greedy

search iterations. Then the following proposition is of interest.

Proposition 2.5: The user to be removed at the t-th greedy search iteration according

to (2.22) can be found by first finding the ‘worst’ user in each set of users served by each

source, i.e.,

n∗
Si
(t− 1) , arg max

n∈NSi
(t−1)

(G(NSi(t− 1))−G(NSi(t− 1) \ {n}))

and then determining the ‘worst’ user among all these ’worst’ users. Mathematically, it

means that n(t) = n∗
Si∗

(t− 1) where

i∗ , argmax
i∈M

(
G(NSi(t− 1))−G(NSi(t− 1) \ {n∗

Si
(t− 1)})

)
.
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Proof: This proposition follows from applying Lemma 2.2 directly to the removal cri-

terion in (2.22). This completes the proof. �
Proposition 2.5 can be directly used to build an algorithm for searching for the user to be

removed at each greedy search iteration. It is important that such algorithm has a reduced

computational complexity compared to the direct use of (2.22). As a result, although the

number of times that the problem (2.21a)–(2.21c) has to be solved remains the same, the

number of variables of the problem (2.21a)–(2.21c) solved at each time is reduced, and is

upper bounded by 2maxi∈MNSi .

2.4.3 Optimality conditions of the greedy search algorithm

We also study the conditions under which the proposed greedy search algorithm is optimal.

Specifically, the greedy search is optimal if the set of remaining users after each greedy

search iteration is the ‘best’ set of users, i.e.,

N (t) = N ∗
N−t,∀1 ≤ t ≤ N (2.23)

where N ∗
i , argmin|I|=iG(I) is the ’best’ set of i users.

Let us apply the greedy search to the set of users NSi served by the source Si. The

’worst’ user, i.e., the user n̄Si(t) , argmaxn∈N̄Si
(t−1)

(
G(N̄Si(t− 1))−G(N̄Si(t− 1) \ {n})

)
is removed at the t-th greedy search iteration, where N̄Si(t) , N̄Si(t− 1) \ {n̄Si(t)} denotes

the set of remaining users in the set NSi after t greedy search iterations. Also let N ∗
Si,j

,
argminI⊆NSi

,|I|=j G(I) denote the ‘best’ set of j users in NSi . The following theorem

decouples the optimality condition (2.23) into two equivalent conditions C1 and C2 per each

set of users NSi and, therefore, allows us to focus on equivalent problems in which users

are subject to the same power constraints. Specifically, the condition C1 of the theorem

indicates that the set of remaining users in NSi after each greedy search iteration is the

‘best’ set of users, while the condition C2 of the theorem indicates that the reduction of the

total bandwidth requirement is decreasing with the greedy search iterations.

Theorem 2.1: The condition (2.23) holds if and only if the following two conditions

hold:

C1: N̄Si(t) = N ∗
Si,NSi

−t, ∀1 ≤ t ≤ NSi, ∀i ∈ M;

C2: G(N̄Si(t− 2))−G(N̄Si(t− 1)) > G(N̄Si(t− 1))−G(N̄Si(t)), ∀2 ≤ t ≤ NSi, ∀i ∈ M.
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Proof: We first show that C1 and C2 are sufficient conditions.

Define V (n) , G(N (t− 1))−G(N (t)) for n = n(t), 1 ≤ t ≤ N . It follows from C2 that

V (n̄Si(1)) > V (n̄Si(2)) > · · · > V (n̄Si(NSi)), ∀i ∈ M. Then using Proposition 2.2, we have

n(t) = argmaxn∈N (t−1) V (n), 1 ≤ t ≤ N . Therefore, we obtain

V (n(1)) > V (n(2)) > · · · > V (n(N)). (2.24)

It can be seen from C1 that N \ N ∗
N−t ∩ NSi = argminI⊆NSi

,|I|=ti G(NSi \ I) =

{n̄Si(j)|1 ≤ j ≤ ti}, ∀i ∈ M, where ti , |N \ N ∗
N−t ∩ NSi |. Then we have N \ N ∗

N−t =

{n̄Si(j)|1 ≤ j ≤ ti, i ∈ M} and G(N ) − G(N ∗
N−t) =

∑
i∈M

∑ti
j=1 V (n̄Si(j)). There-

fore, we obtain {ti|i ∈ M} = argmax{ki};
∑

i∈M ki=t

∑
i∈M

∑ki
j=1 V (n̄Si(j)). Since it fol-

lows from C2 that V (n̄Si(1)) > V (n̄Si(2)) > · · · > V (n̄Si(NSi)), ∀i ∈ M, we have

N \ N ∗
N−t = argmaxI∈N ,|I|=t

∑
n∈I V (n) = {n(i)|1 ≤ i ≤ t} = N \ N (t), where the

second equality is from (2.24). This completes the proof for sufficiency of C1 and C2.

We next show that C1 and C2 are necessary conditions by giving two instructive counter

examples.

Consider if C1 does not hold. Assume without loss of generality that M = {1}. Then

it can be seen that C1 is equivalent to the condition (2.23) and, therefore, the condition

(2.23) does not hold, either.

Consider if C2 does not hold. Assume without loss of generality that M = {2}, NS2 = 1

and G(N̄S1(1)) − G(N̄S1(2)) > G(NS2) − G(N̄S2(1)) > G(NS1) − G(N̄S1(1)). Then we

have N ∗
N−2 = N \ {n̄S1(1), n̄S1(2)}, while it follows from Proposition 2.2 that N (2) =

N \ {n̄S1(1), n̄S2(1)}. Therefore, N ∗
N−2 ̸= N (2). This completes the proof for necessity of

C1 and C2. �
Let hi , hSDi /N0 denote the channel gain normalized by the noise PSD. Recall that ci

is the minimum acceptable capacity for Ui. Define Fi(p) as the unique solution for w in the

equation

ci = w log

(
1 +

hip

w

)
(2.25)

given hi and ci for any p > 0, which represents the minimum bandwidth required by a user

for its allocated transmit power. Then the problem (2.21a)–(2.21c) for the set of users NSi
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can be rewritten as

G(NSi) = min
{pi}

∑
i∈NSi

Fi(pi) (2.26a)

s.t.
∑
i∈NSi

pi ≤ PSi . (2.26b)

The following proposition stands that the condition C2 of Theorem 2.1 always holds,

which reduces the study on the optimality of the proposed greedy search only to checking

the condition C1 of Theorem 2.1.

Proposition 2.6: The condition C2 of Theorem 2.1 always holds true.

Proof: The proof of this proposition is built upon the following two lemmas. It suffices

to show that C2 holds for i = 1.

Lemma 2.3: If p1 > p2 > ∆p > 0, the following inequality holds

Fi(p1 −∆p)− Fi(p1) < Fi(p2 −∆p)− Fi(p1). (2.27)

Proof of Lemma 2.3: It can be shown that Fi(p) is a strictly convex and decreasing

function of p. Using the first order convexity condition, we have

Fi(p2 −∆p)− Fi(p2) > −F ′
i (p2)∆p (2.28)

and

Fi(p1 −∆p)− Fi(p1) < −F ′
i (p1 −∆p)∆p (2.29)

where F ′
i is the first order derivative of Fi. Consider two cases. (i) If p2 ≤ p1 −∆p, then

F ′
i (p2) ≤ F ′

i (p1 − ∆p) due to the convexity of Fi(p2). Therefore, using ∆p > 0 together

with (2.28) and (2.29), we obtain (2.27); (ii) If p2 ≥ p1 −∆p, using p1 > p2 and a similar

argument as in 1), we can show that Fi(p2)−Fi(p1) < Fi(p2 −∆p)−Fi(p1 −∆p), which is

equivalent to (2.27). This completes the proof. �
G(NS1) can be extended to G(NS1 , PS1) if PS1 is considered as a variable.

Lemma 2.4: p∗i , ∀i ∈ NS1, is increasing with PS1, where {p∗i |i ∈ NS1} denotes the

optimal solution of the problem (2.26a)–(2.26b) for NS1 and PS1.

Proof of Lemma 2.4: The inverse function of w = Fi(p) is p = F−1
i (w) = (eci/w−1)w/hi.
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Then we have

G(NS1 , PS1) = max
wi

∑
i∈NS1

wi (2.30a)

s.t.
∑

i∈NS1

F−1
i (wi) ≤ PS1 . (2.30b)

Since the problem (2.30b)–(2.30b) is convex, using the KKT conditions, the optimal solution

and the optimal Lagrange multiplier of this problem, denoted by {w∗
i |i ∈ NS1} and λ∗,

respectively, satisfy the following equations

1 +
λ∗

hi

(
e

ci
w∗
i

(
ci
w∗
i

− 1

)
+ 1

)
= 0, ∀i ∈ NS1 . (2.31)

It can be shown that (eci/w
∗
i (ci/w

∗
i −1)+1)/hi is monotonically decreasing with w∗

i . There-

fore, w∗
i , ∀i ∈ NS1 , and, correspondingly, p∗i = F−1

i (w∗
i ), ∀i ∈ NS1 , is decreasing and

increasing, respectively, with λ∗. Then it follows from (2.30b) that p∗i , ∀i ∈ NS1 , is increas-

ing with PS1 . This completes the proof. �
We are now ready to prove Proposition 2.6. Let P1 > P2 and N−k

S1
, NS1 \{k} for some

k ∈ NS1 . Let {p⋆i |i ∈ N−k
S1

} denote the optimal solution of the problem (2.26a)–(2.26b) for

N−k
S1

and P2. Using Lemma 2.4, the optimal solution of the problem (2.26a)–(2.26b) for

G(NS1 , P2) can be expressed as {p⋆i −∆pi}, i ∈ N−k
S1

, and p⋆k, respectively, where ∆pi > 0

and
∑

i∈N−k
S1

∆pi = p⋆k. Then we have

G(NS1 , P2)−G(N−k
S1

, P2) =
∑

i∈N−k
S1

(Fi(p
⋆
i −∆pi)− Fi(p

⋆
i )) + Fk(p

⋆
k). (2.32)

Let {p+i |i ∈ N−k
S1

} denote the optimal solution of the problem (2.26a)–(2.26b) for N−k
S1

and

P1. Then we have

G(NS1 , P1)−G(N−k
S1

, P1) = min
{pi};

∑
i∈NS1

pi≤P1

∑
i∈NS1

Fi(pi)−
∑

i∈N−k
S1

Fi(p
+
i )

≤
∑

i∈N−k
S1

(Fi(p
+
i −∆pi)− Fi(p

+
i )) + Fk(p

⋆
k). (2.33)

Since P1 > P2, it follows from Lemma 2.4 that p+i > p⋆i > ∆pi > 0, i ∈ N−k
S1

. Using

Lemma 2.3, we obtain Fi(p
+
i −∆pi)−Fi(p

+
i ) < Fi(p

⋆
i −∆pi)−Fi(p

⋆
i ), j ∈ N−k

S1
. Therefore,

comparing (2.32) with (2.33), we have

G(NS1 , P1)−G(N−k
S1

, P1) < G(NS1 , P2)−G(N−k
S1

, P2). (2.34)
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which can be rewritten as

G(N−k
S1

, P2)−G(N−k
S1

, P1) < G(NS1 , P2)−G(NS1 , P1). (2.35)

Let {p∗i |i ∈ NS1}, denote the optimal solution of the problem (2.26a)–(2.26b) for NS1

and PS1 . Then we have

G(NS1 \ {n̄S1(2)}, PS1)−G(N̄S1(2), PS1) ≤ Fn̄S1
(1)(p

∗
n̄S1

(1)) +G(N̄S1(2), PS1 − p∗n̄S1
(1))

−G(N̄S1(2), PS1)

< Fn̄S1
(1)(p

∗
n̄S1

(1)) +G(N̄S1(1), PS1 − p∗n̄S1
(1))

−G(N̄S1(1), PS1)

= G(NS1 , PS1)−G(N̄S1(1), PS1) (2.36)

where the second inequality follows from (2.35). On the other hand, we have

G(NS1 \ {n̄S1(2)}, PS1)−G(N̄S1(2), PS1) ≥ G(NS1 \ {n̄S1(1)}, PS1)−G(N̄S1(2), PS1)

= G(N̄S1(1), PS1)−G(N̄S1(2), PS1).

(2.37)

Therefore, comparing (2.36) with (2.37), we complete the proof. �
The following lemma gives a condition under which C1 holds for a specific t.

Lemma 2.5: If there exists NSl,k ⊆ NSl
, |NSl,k| = k such that Fi(p) < Fj(p), ∀0 < p <

PSi, ∀i ∈ NSl,k and ∀j ∈ N \ NSl,k, then NSl,k = N ∗
Sl,k

= N̄NSl
(NSl

− k).

Proof: Assume NSl,k ̸= N ∗
Sl,k

. Then there exist a ∈ N ∗
Sl,k

and b ∈ N \ N ∗
Sl,k

such that

Fa(p) > Fb(p). Let {p∗i |i ∈ N ∗
S1,k

} denote the optimal solution of the problem (2.26a)–

(2.26b) for G(N ∗
Sl,k

). Then there always exists N ′
Sl,k

, N ∗
Sl,k

∪ {b} \ {a} such that

G(N ∗
Sl,k

) =
∑

i∈N ∗
Sl,k

, i ̸=a

Fi(p
∗
i ) + Fa(p

∗
a) >

∑
i∈N ∗

Sl,k
, i ̸=a

Fi(p
∗
i ) + Fb(p

∗
a)

≥ min
{pi};

∑
i∈N′

Sl,k
pi≤PS1

∑
i∈N ′

Sl,k

Fi(pi) = G(N ′
Sl,k

)
(2.38)

which contradicts the definition of N ∗
Sl,k

. Then it follows that NSl,k = N ∗
Sl,k

. Using similar

arguments, it can be shown that NSl,k = N̄NSl
(NSl

− k). This completes the proof. �
It can be seen from Lemma 2.5 that since any user in NSl,k has a smaller bandwidth

requirement than any user in N \NSl,k for the same allocated power over the available power
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range, the former is preferable to the latter in the sense of reducing the total bandwidth

requirement. Therefore, NSl,k is the ‘best’ set of k users and the greedy search removes

users in N \NSl,k before NSl,k.

It is worth noting that C1 does not hold in general. Indeed, since the reduction of the

total bandwidth requirement is maximized only at each single greedy search iteration, the

greedy search does not guarantee that the reduction of the total bandwidth requirement is

also maximized over multiple greedy search iterations. In other words, it does not guarantee

that the set of remaining users is the ‘best’ set of users. In order to demonstrate this, we

present the following counter example.

Example 1: Let NS1 = {1, 2, 3}. Also let h1 = 4, h2 = 5, h3 = 6, c1 = 1, c2 =

1.1, c3 = 1.2, and PS1 = 1.1. Then we have G({1, 2}) = 1.3849, G({1, 3}) = 1.3808,

G({2, 3}) = 1.3573, G({1}) = 0.4039, G({2}) = 0.4135, G({3}) = 0.4292 and, therefore,

N̄S1(1) = {2, 3}, N̄S1(2) = {2}, N ∗
S1,1

= {1}. This shows that N̄S1(2) ̸= N ∗
S1,1

.

Example 1 shows that the ‘worst’ user, which is removed first in the greedy search, may

be among the ‘best’ set of users after more users are removed. An intuitive interpretation

of this result is that the bandwidth required by the ‘worst’ user changes from being larger

to being smaller compared to the bandwidth required by other users for the same allocated

power. It is because the average available power to each user increases after some users are

removed in the greedy search.

Using Lemma 2.5, the following proposition that gives a sufficient condition under which

C1 holds is in order.

Proposition 2.7: The condition C1 holds if for any i ∈ NSk
, ∀k ∈ M, there exists no

more than one j ∈ NSk
, j ̸= i, such that

C3: Fi(p) intersects Fj(p) in the interval 0 < p < PSi.

Proof: It suffices to show that C1 holds for i = 1 if for any j ∈ NS1 , there exists

no more than one k ∈ NS1 , k ̸= j, such that C3 holds. It can be seen that for any

1 ≤ k ≤ NS1 , only two cases are under consideration: (i) there exists NS1,k that satisfies the

condition given in Lemma 2.4 and, therefore, N ∗
S1,k

= N (NS1 − k); (ii) there exist NS1,k−1

and NS1,k+1 that satisfy the condition given in Lemma 2.2 respectively and, therefore,

N ∗
S1,k−1 = N (NS1 − k + 1) ⊆ N (NS1 − k − 1) = N ∗

S1,k+1. Then it follows that N ∗
S1,k

=

N (NS1 − k). This completes the proof. �
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It can be seen from Proposition 2.7 that the chance that C1 holds increases when the

chance that C3 holds decreases. Moreover, the chance that C1 holds increases when NSi is

large for all i ∈ M or M is large. The next lemma compares the bandwidth requirements of

two users in terms of the ratio between their minimum acceptable capacities and the ratio

between their channel gains.

Lemma 2.6: If i ̸= j and hj/hi ≥ 1, then

(i) ∀p, Fi(p) intersects Fj(p) at a unique point p′, if and only if 1 < cj/ci < hj/hi;

furthermore, p′ increases as hj/hi increases or cj/ci decreases;

(ii) Fi(p) > Fj(p), ∀p > 0, or Fi(p) = Fj(p), ∀p > 0, if and only if cj/ci ≤ 1;

(iii) Fi(p) < Fj(p), ∀p > 0, if and only if cj/ci ≥ hj/hi.

Proof: Consider if Fi(p) intersects Fj(p) at a point (p′, w′). Then we obtain

cj
ci

=
w′ log

(
1 +

hjp
′

w′

)
w′ log

(
1 + hip′

w′

) = q

(
p′

w′

)
(2.39)

where q(x) = log(1+hjx)/ log(1+hix), 0 < x < ∞. It can be shown that lim
x→0

q(x) = hj/hi,

lim
x→∞

q(x) = 1, and q(x) is monotonically decreasing with x. Therefore, the range of q(x) is

(1, hj/hi). If cj/ci ∈ (1, hj/hi), there exists a unique solution x′ such that q(x′) = cj/ci.

Hence, Fi(p) and Fj(p) have a unique intersection point given by w′ = cj/ log(1 + hjx
′),

p′ = w′x′, and the claim (i) follows. If cj/ci /∈ (1, hj/hi), there is a special case that

Fi(p) = Fj(p), ∀p > 0 if hj/hi = cj/ci = 1. Otherwise, the solution of (2.39) does not exist,

i.e., Fi(p) does not intersect Fj(p) and, therefore, the claims (ii) and (iii) also follow. This

completes the proof. �
It can be seen from Lemma 2.6 that the condition C3 of Proposition 2.7 holds if and only

if the claim (i) of Lemma 2.6 holds with 0 < p′ < PSi . Then it follows from Proposition 2.7

and Lemma 2.6 that the condition C1 of Theorem 2.1 holds if for any pair {i, j} ⊆ NSk
,

∀k, the ratio cj/ci is in the grey range shown in Fig. 2.3. According to Lemma 2.6, the

coordinate x in Fig. 2.3 satisfies 1 ≤ x ≤ hj

hi
and x → hj

hi
as PSk

→ 0. It can be seen that

the grey range in Fig. 2.3 is wide and, therefore, the condition C1 of Theorem 2.1 is, in

fact, a mild condition to hold.

Applying Lemma 2.6, Proposition 2.6, and Proposition 2.7, the next corollary follows

directly from Theorem 2.1.
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Fig. 2.3. The range of cj/ci to satisfy the condition C1.

Corollary 2.1: The proposed greedy search is optimal, i.e., N (t) = N ∗
N−t, ∀1 ≤ t ≤ N ,

if ci = cj, ∀i, j ∈ N , i ̸= j.

In some wireless networks where data transmissions are conducted to support the same

kind of application, e.g., voice application, users have the same capacity requirements and,

thus, Corollary 1 applies.

Note that the optimality condition given in (2.23) is a sufficient condition under which

N (t∗) = N ∗
N−t∗ = N ∗

d∗ . Indeed, the greedy search is optimal if and only if t∗ = N − d∗.

Therefore, even if N (t∗) ̸= N ∗
d∗ , the greedy search still gives the maximum number of

admissible users if G(N ∗
d∗) < G(N (N − d∗)) ≤ W .

With Relaying

The admission control based joint bandwidth and power allocation problem in the net-

work with relaying is given by

max
{PS

i ,W
S
i ,P

R
i ,WR

i },I⊆N
|I| (2.40a)

s.t. ci − CSR
i ≤ 0, i ∈ I (2.40b)

ci − CRD
i ≤ 0, i ∈ I (2.40c)

the constraint (2.12b)–(2.12e). (2.40d)

The proposed greedy search algorithm can also be used to reduce the complexity of solving

the problem (2.40a)–(2.40d). Specifically, the problem (2.40a)–(2.40d) can be decomposed

into

max
{PS

i ,W
S
i },I⊆N

|I| (2.41a)

s.t. ci − CSR
i ≤ 0, i ∈ I (2.41b)

the constraint (2.12b), (2.12d) (2.41c)
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and

max
{PR

i ,WR
i },I⊆N

|I| (2.42a)

s.t. ci − CRD
i ≤ 0, i ∈ I (2.42b)

the constraint (2.12c), (2.12e). (2.42c)

each of which has the same form as the problem (2.20a)–(2.20c). Therefore, the proposed

greedy search can be applied for solving each of these two problems separately. As a result,

the numbers of users removed by the greedy search in each transmission phase can be found

as t∗1 and t∗2, respectively. Let d∗, d∗1, and d∗2 denote the optimal values of the problem

(2.40a)–(2.40d), (2.41a)–(2.41c), and (2.42a)–(2.42c), respectively. Since the feasible set

of the problem (2.40a)–(2.40d) is a subset of those of the problem (2.41a)–(2.41c) and

(2.42a)–(2.42c), we have d∗ ≤ min{d∗1, d∗2}. Therefore, d∗ should be obtained by solving the

problem

max
{PS

i ,W
S
i ,P

R
i ,WR

i },I⊆N ,|I|≤t′
|I| (2.43a)

s.t. ci − CSR
i ≤ 0, i ∈ I (2.43b)

ci − CRD
i ≤ 0, i ∈ I (2.43c)

the constraints (2.12b)–(2.12e) (2.43d)

where d′ , min{N − t∗1, N − t∗2} and the feasible set is reduced as compared to that of the

problem (2.40a)–(2.40d). The problem (2.43a)–(2.43d) can then be solved using exhaustive

search with significantly reduced complexity compared to total exhaustive search over two

transmission phases.

Using the exhaustive search, the number of times that the problem (2.21a)–(2.21c) has

to be solved is upper bounded by 2
∑N

i=d∗
(
N
i

)
. Using the greedy search combined with

the exhaustive search, this number of times significantly reduces and is upper bounded by∑t∗1−1
i=0 N − i+

∑t∗2−1
i=0 N − i+2

∑d′

i=d∗
(
N
i

)
if d′ ≥ d∗ and

∑t∗1−1
i=0 N − i+

∑t∗2−1
i=0 N − i+2

(
N
d′

)
if d′ < d∗. This complexity reduction is especially pronounced when N is large and d′, d∗

are small.

It can be seen from comparing the problem (2.40a)–(2.40d) and (2.43a)–(2.43d) that

the greedy search is optimal if and only if d′ ≥ d∗.
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2.5 Simulation Results

2.5.1 Joint bandwidth and power allocation

Consider a wireless network which consists of four users N = {1, 2, 3, 4}, four sources, and

two relays. The source and relay assignments to the users are the following: NS1 = {1},

NS2 = {2}, NS3 = {3}, NS4 = {4}, NR1 = {1, 2}, and NR2 = {3, 4}. The sources and

destinations are randomly distributed inside a square area bounded by (0,0) and (10,10),

and the relays are fixed at (5,3) and (5,7). The path loss and the Rayleigh fading effects

are present in all links. The path loss gain is given by g = (1/d)2, where d is the distance

between two transmission ends, and the variance of the Rayleigh fading gain is denoted as

σ2. We set PSi = 20, ∀i ∈ {1, 2, 3, 4}, PRi , PR = 40, ∀i ∈ {1, 2}, W = 10, σ2 = 5, and

ci = 1, ∀i ∈ {1, 2, 3, 4} as default values if no other values are indicated otherwise. The

noise PSD N0 equals to 1. All results are averaged over 1000 simulation runs for different

instances of random channel realizations.

The following resource allocation schemes are compared to each other: the proposed op-

timal joint bandwidth and power allocation (OBPA), optimal bandwidth with equal power

allocation (OBEPA), equal bandwidth with optimal power allocation (EBOPA), and equal

bandwidth and power allocation (EBPA). Software package TOMLAB [9] is used to solve

the corresponding convex optimization problems.

In Figs. 2.4 (a) and (b), the performance of the sum capacity maximization based

allocation is shown versus PR and W , respectively. These figures show that the OBPA

scheme achieves significant performance improvement over the other three schemes for all

parameter values. The performance improvement is higher when PR or W is larger. The

observed significant performance improvement for the OBPA can be partly attributed to

the fact that the sum capacity maximization based joint bandwidth and power allocation

can lead to highly unbalanced resource allocation, while bandwidth is equally allocated in

the EBOPA and EBPA, and power is equally allocated in the OBEPA and EBPA.

Figs. 2.5 (a) and (b) demonstrate the performance of the worst user capacity maximiza-

tion based allocation versus PR and W , respectively. The performance improvement for the

OBPA is still significant as compared to the other three schemes for all parameter values.

The improvement provided by the OBPA, in this case, can be attributed to the fact that
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Fig. 2.4. Sum capacity vs PR, W .
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Fig. 2.5. Worst user capacity vs PR, W .

the worst user capacity maximization based allocation results in balanced capacities among

the users, while the EBOPA and EBPA are balanced bandwidth allocation schemes, and

the OBEPA and EBPA are balanced power allocation schemes, respectively.

Figs. 2.6 (a) and (b) show the total power consumption of the sources and relays versus

c and W for the power minimization based allocation, where c1 = c2 = c3 = c4 , c is

assumed. Note that the total power of the OBPA is always less than that of the EBOPA,

and the total power difference between the two tested schemes is larger when c is larger,

or when W is smaller. This shows that more power is saved when the parameters are

unfavorable due to the flexible bandwidth allocation in the OBPA.
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Fig. 2.6. Total network power vs c, W .
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Fig. 2.7 depicts the admission probability versus c, where c1 = c2 = c3 = c4 , c is as-

sumed. The admission probability is defined as the probability that c can be satisfied for all

the users under random channel realizations. The figure shows that the OBPA outperforms

the other two schemes for all values of c, and the improvement is more significant when c is

large. This shows that more users or users with higher rate requirements can be admitted

into the network using the OBPA scheme.

2.5.2 Greedy search algorithm

In this example, the performance of the proposed greedy search algorithm is compared

to that of the exhaustive search algorithm. We consider eight users N = {1, 2, · · · , 8}

requesting for admission. The sources and the destinations are randomly distributed inside

a square area bounded by (0,0) and (10,10). We assume that ci, i ∈ {1, 2, · · · , 8}, is

uniformly distributed over the interval [c0, c0 + 4] where c0 is a variable parameter. The

channel model is the same as that given in the previous subsection. We set W = 10, σ2 = 10

as default values. The results are averaged over 20 random channel realizations.

Without Relaying

We consider the following two network setups.

Setup 1: In this setup, the optimality condition of the greedy search is satisfied. Specif-

ically, there are four sources. The source assignments to the users are the following: NS1 =

{1, 2}, NS2 = {3, 4}, NS3 = {5, 6}, and NS4 = {7, 8}. We set PSi = 40, ∀i ∈ {1, 2, 3, 4}.
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Fig. 2.8(a) shows the number of admitted users obtained by the greedy search and the

corresponding computational complexity in terms of the running time versus c0. The figure

shows that the greedy search gives exactly the same number of admitted users as that of

the exhaustive search for all values of c0. This confirms that the optimal solution can be

obtained when the optimality condition of the greedy search is satisfied. The time consump-

tion of the greedy search is significantly less than that of the exhaustive search, especially

when c0 is large. This shows that the proposed algorithm is especially efficient when the

number of candidate users is large and the number of admitted users is small.

Setup 2: In this setup, the optimality condition of the greedy search may not be satisfied.

There are two sources and the source assignments to the users are the following: NS1 =

{1, 2, 3, 4}, and NS2 = {5, 6, 7, 8}. We set PSi = 80, ∀i ∈ {1, 2}. Fig. 2.8(b) demonstrates

the performance of the greedy search. Similar conclusions can be drawn for this setup

as those for Setup 1. This indicates that the proposed greedy search algorithm can still

perform optimally even if the sufficient optimality condition may not be satisfied.

With Relaying

We also consider two network setups as follows.

Setup 3: In this setup, the optimality condition of the greedy search is satisfied. Specif-

ically, in addition to the Setup 1 given in the case without relaying, four relays are included

with the following user assignments: NR1 = {1, 2}, NR2 = {3, 4}, NR3 = {5, 6}, and

NR4 = {7, 8}. The relays are fixed at (5,2), (5,4), (5,6), and (5,8), and we set PRi = 40,

∀i ∈ {1, 2, 3, 4}. Fig. 2.9(a) shows the number of admitted users obtained by the greedy

search and the corresponding computational complexity in terms of the running time versus

c0. Similar observations can be obtained as those for Setup 1. However, it can be noted as

expected that the time consumption of the greedy search for the network with relaying is

much more than that for the network without relaying.

Setup 4: In this setup, the optimality condition of the greedy search may not be satisfied.

Specifically, in addition to the Setup 2 given in the case without relaying, two relays are

included with the following user assignments: NR1 = {1, 2, 7, 8}, NR2 = {3, 4, 5, 6}. The

relays are fixed at (5,3) and (5,7) and we also set PRi = 80, ∀i ∈ {1, 2}. Fig. 2.9(b)

demonstrates the performance of the greedy search. Similar conclusions can be obtained as

those for Setup 3.
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Fig. 2.8. Greedy search vs exhaustive search: without relaying.
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Fig. 2.9. Greedy search vs exhaustive search: with relaying.
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2.6 Conclusion

In this chapter, joint bandwidth and power allocation has been developed for wireless multi-

user networks with and without relaying to (i) maximize the sum capacity of all users;

(ii) maximize the capacity of the worst user; (iii) minimize the total power consumption

of all users. It has been shown that the corresponding resource allocation problems are

convex and, thus, can be solved efficiently. Moreover, admission control based on joint

bandwidth and power allocation has been considered. Because of the high complexity of the

admission control problem, a suboptimal greedy search algorithm with significantly reduced

complexity has been developed. The optimality conditions of the proposed greedy search

have been derived and shown to be mild. Simulation results demonstrated the efficiency of

the proposed allocation schemes and the advantages of the greedy search.
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Chapter 3

Optimal Bandwidth and Power

Allocation for Sum Ergodic

Capacity under Fading Channels in

Cognitive Radio Networks

This chapter studies a cognitive radio network where multiple secondary users (SUs)

share the licensed spectrum of a primary user (PU) under fading channels using the

frequency division multiple access (FDMA) scheme. The sum ergodic capacity of all the

SUs is taken as the performance metric of the network. Besides all combinations of the

peak/average transmit power constraints at the SUs and the peak/average interference

power constraint imposed by the PU, total bandwidth constraint of the licensed spectrum

is also taken into account. Optimal bandwidth allocation is derived in closed-form for any

given power allocation. The structures of the optimal power allocations are also derived

under all possible combinations of the aforementioned power constraints. These structures

indicate the possible numbers of users that transmit at nonzero power but below their

corresponding peak power, and show that other users do not transmit or transmit at their

corresponding peak power. Based on these structures, efficient algorithms are developed for

finding the optimal power allocations.

The rest of this chapter is organized as follows. Section 3.2 summarizes the system model
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and formulates corresponding sum ergodic capacity maximization problems. Section 3.3 de-

rives the optimal bandwidth allocation for the problems formulated in Section 3.2 subject

to the bandwidth constraint. Section 3.4 obtains the optimal power allocations from the

resultant problems in Section 3.3 under all combinations of the transmit power constraints

and interference power constraints. Numerical results for the maximum sum ergodic capac-

ity under different combinations of the power constraints and the bandwidth constraint are

shown in Section 3.5. Section 3.6 concludes this chapter.

3.1 Introduction

The underutilization of licensed spectrum reported by FCC [40] has motivated intensive

research efforts on improving the efficiency of spectrum access. Cognitive radio is a promis-

ing technology [41] for the implementation of dynamic spectrum access strategies, which

improve spectrum utilization by allowing secondary users (SUs) to communicate over the

licensed spectrum allocated to existing primary users (PUs). In cognitive radio networks,

there exists fundamental tradeoff between enhancing the performance of SUs and reducing

the performance degradation resulted from SUs to PUs. One commonly used spectrum

sharing strategy to protect PUs is referred to as spectrum overlay or opportunistic spec-

trum access (OSA) [42], where SUs are allowed to access licensed spectrum only when the

spectrum is not utilized by PUs. Such a strategy requires spectrum opportunity detection

by employing spectrum sensing techniques [43]. Existing works on spectrum overlay have

mainly studied spectrum sensing and access policies at the medium access control (MAC)

layer [44]- [50].

An alternative strategy, which is known as spectrum underlay [51]- [53], enables PUs

and SUs to transmit simultaneously, provided that the received interference power level by

the PUs is below a prescribed threshold level. A number of works have recently studied

information theoretic limits for resource allocation in the context of spectrum underlay.

In [54], the optimal power allocation which aims at maximizing the ergodic capacity achieved

by an SU is derived for various channel fading models subject to the peak interference power

(PIP) constraint or average interference power (AIP) constraint imposed by a PU. In [55],

the authors derive the optimal power allocation for the ergodic capacity, outage capacity,
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and minimum-rate capacity of an SU under both the PIP and AIP constraints from a

PU. The ergodic capacity, delay-limited capacity, and outage capacity of an SU is studied

in [56] under different combinations of the peak transmit power (PTP) constraint or average

transmit power (ATP) constraint at the SU and the PIP constraint or AIP constraint from

a PU. However, all the papers mentioned above consider the setup of a single SU. The most

recent work [57] studies a cognitive radio network of multiple SUs under multiple access

channel and broadcast channel models, where the optimal power allocation is derived to

achieve the maximum sum ergodic capacity of the SUs subject to various mixed transmit

and interference power constraints. The optimality conditions for the dynamic time division

multiple access scheme are also derived.

In this chapter1, we focus on a cognitive radio network where multiple SUs share the

licensed spectrum of a PU using the frequency division multiple access (FDMA) scheme.

The sum ergodic capacity of the SUs, which is a relevant network performance metric for

delay-tolerant traffics, is studied. Besides the transmit power constraints at the SUs and

the interference power constraint imposed by the PU, which are also considered in [54]-

[57], we also take into account the total bandwidth constraint of the shared spectrum.

Joint bandwidth and power allocation strategies for different applications have been studied

in only a few works [10]– [38]. Thus, in this paper, instead of conventional fixed and

equal bandwidth allocation used in FDMA, we investigate dynamic and unequal bandwidth

allocation, where the bandwidth allocation varies for different SUs at different channel

fading states. Moreover, different from the existing works [54]- [57], all combinations of the

transmit power constraints and the interference power constraints are considered, including

both PTP and ATP constraints combined with both PIP and AIP constraints.

We first derive the optimal bandwidth allocation for any given power allocation, which

results in equivalent problems that only involve power allocation. Using the convexity of

the resultant power allocation problems, we apply dual decomposition which transforms

these problems into equivalent dual problems, where each dual function involves a power

allocation subproblem associated with a specific channel fading state. The dual problems

can be solved using standard subgradient algorithms. For the power allocation subproblem

under all possible combinations of the power constraints, we derive the structures of the

1This work has been presented in [58].
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optimal power allocations. These structures indicate the possible numbers of users that

transmit at nonzero power but below their corresponding peak power, and show that other

users do not transmit or transmit at their corresponding peak power. Based on these

structures, we develop algorithms for finding the optimal power allocations in each channel

fading state.

3.2 System Model

Consider a cognitive radio network of N SUs and one PU, as shown in Fig. 3.1. The

PU occupies a spectrum of bandwidth W for its transmission, while the same spectrum is

shared by the SUs. The spectrum is assumed to be divided into distinct and nonoverlapping

flat fading channels with different bandwidth, so that the SUs share the spectrum through

FDMA to avoid interferences with each other. The channel power gains between the ith SU

transmitter (SU-Tx) and the ith SU receiver (SU-Rx) and between the ith SU-Tx and the

PU receiver (PU-Rx) are denoted by hi and gi, respectively. The channel power gains, i.e.,

g , [g1 g2 · · · gN ] and h , [h1 h2 · · · hN ], are assumed to be drawn from an ergodic and

stationary vector random process. We further assume that full channel state information

(CSI), i.e., the joint probability density function (PDF) of the channel power gains and

the instantaneous channel power gains, are known at the SUs. 2 The noise at each SU-Rx

plus the interference from the PU transmitter (PU-Tx), is assumed to be additive white

Gaussian noise (AWGN) with unit power spectral density (PSD).

We denote the transmit power of the ith SU-Tx and the channel bandwidth allocated

to the ith SU-Tx as pi(g,h) and wi(h, g), respectively, for the instantaneous channel power

gains g and h. Then the total bandwidth constraint can be expressed as

N∑
i=1

wi(h, g) ≤ W, ∀ h, g. (3.1)

The PTP constraints are given by

pi(h, g) ≤ P pk
i , ∀ i,h, g (3.2)

2Note that full CSI assumption is typically in the context of cognitive radio and is also made in other

works, such as [54]- [57]
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Fig. 3.1. Cognitive radio network.

where P pk
i denotes the maximum peak transmit power of the ith SU-Tx. The PIP constraint

is given by
N∑
i=1

gipi(h, g) ≤ Qpk, ∀ h, g (3.3)

where Qpk denotes the maximum peak interference power allowed at the PU-Rx. The ATP

constraints are given by

E {pi(h, g)} ≤ P av
i , ∀ i (3.4)

where the expectation is taken over h and g, and P av
i denotes the maximum average trans-

mit power of the ith SU-Tx. The AIP constraint is given by

E

{
N∑
i=1

gipi(h, g)

}
≤ Qav (3.5)

where Qav denotes the maximum average interference power allowed at the PU-Rx.

The objective is to maximize the sum ergodic capacity of the SUs, which can be written

as

max
{wi(h,g),pi(h,g)}∈F

E

{
N∑
i=1

wi(h, g) log

(
1 +

hipi(h, g)

wi(h, g)

)}
(3.6)

where F is a feasible set specified by the bandwidth constraints (3.1) and a particular

combination of the transmit power constraints {(3.2), (3.4)} and the interference power

constraints {(3.3), (3.5)}. Note that the constraints on nonnegativity of the bandwidth and
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power allocations, i.e., wi(h, g) ≥ 0 and pi(h, g) ≥ 0, ∀i,h, g, are natural and, thus, omitted

through out the paper for brevity.

It can be shown that the objective function in the problem (3.6) is concave, since the

function wi(h, g) log (1 + hipi(h, g)/wi(h, g)) is concave with respect to {wi(h, g), pi(h, g)},

∀i,h, g [37] and [38]. It can also be seen that the bandwidth and power constraints (3.1)–

(3.5) are linear and, thus, convex. Therefore, the sum ergodic capacity maximization prob-

lem (3.6) under different combinations of the constraints (3.1)–(3.5) is a convex optimization

problem.

3.3 Optimal Bandwidth Allocation

Given that the power allocation pi(h, g), ∀i,h, g, is fixed, the maximum sum ergodic ca-

pacity can be expressed as E{f0(h, g)}, where f0(h, g) is given by

f0(h, g) , max
{wi(h,g)}

N∑
i=1

Gi (wi(h, g)) (3.7a)

s.t.

N∑
i=1

wi(h, g) ≤ W (3.7b)

where Gi(wi(h, g)) , wi(h, g) log (1 + hipi(h, g)/wi(h, g)) is an increasing and concave

function of wi(h, g). The problem (3.7a)–(3.7b) is similar to the classical water-filling power

allocation problem. Thus, the optimal solution of the problem (3.7a)–(3.7b), denoted by

{w′
i(h, g)}, must satisfy

∂Gi(wi(h, g))

∂wi(h, g)

∣∣∣∣
wi(h,g)=w′

i(h,g)

=
∂Gj(wj(h, g))

∂wj(h, g)

∣∣∣∣
wj(h,g)=w′

j(h,g)

, ∀ i ̸= j. (3.8)

Since we have

∂Gi(wi(h, g))

∂wi(h, g)

∣∣∣∣
wi(h,g)=w′

i(h,g)

= log

(
1 +

hipi(h, g)

w′
i(h, g)

)
− hipi(h, g)

w′
i(h, g) + hipi(h, g)

= Y

(
hipi(h, g)

w′
i(h, g)

) (3.9)

where Y (x) , log(1 + x)− x/(1 + x) is a monotonically increasing function, we can obtain

from (3.8) that
hipi(h, g)

w′
i(h, g)

=
hjpj(h, g)

w′
j(h, g)

, ∀ i ̸= j (3.10)
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It follows from (3.7b) that at optimality we have
∑N

i=1w
′
i(h, g) = W . Furthermore, using

(3.10), we can obtain that

w′
i(h, g) = W

hipi(h, g)
N∑
i=1

hipi(h, g)
. (3.11)

Substituting the optimal wi(h, g) given by (3.11) into (3.6), we can equivalently rewrite

(3.6) as

max
{pi(h,g)}∈F ′

E

{
W log

(
1 +

N∑
i=1

hipi(h, g)

W

)}
(3.12)

where F ′ is a feasible set specified only by a particular combination of the power con-

straints {(3.2), (3.3), (3.4), (3.5)}. Therefore, the optimal power allocation obtained from

the problem (3.6) and denoted by {p∗i (h, g)}, can also be obtained by solving the equivalent

problem (3.12). Then the optimal bandwidth allocation obtained from the problem (3.6)

and denoted by {w∗
i (h, g)}, can be found as

w∗
i (h, g) = W

hip
∗
i (h, g)

N∑
i=1

hip
∗
i (h, g)

. (3.13)

3.4 Optimal Power Allocation

In this section, we study the optimal power allocation obtained from the problem (3.12)

with F ′ specified by different combinations of the power constraints.

3.4.1 Peak transmit power with peak interference power constraints

Consider F ′ = {the constraints (3.2) and (3.3)}. Then the optimal value of the problem

(3.12) can be expressed as E {f1(h, g)}, where f1(h, g) is given by

f1(h, g) , max
{pi(h,g)}

W log

(
1 +

N∑
i=1

hipi(h, g)

W

)
(3.14a)

s.t. pi(h, g) ≤ P pk
i , ∀ i (3.14b)

N∑
i=1

gipi(h, g) ≤ Qpk. (3.14c)

For brevity, we drop the dependence on h and g that specifies instantaneous channel power

gains. Also let {p∗i } denote the optimal solution of the problem (3.14a)–(3.14c). Introducing
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qi , gipi, the problem (3.14a)–(3.14c) can be equivalently rewritten as

max
{qi}

N∑
i=1

hi
gi
qi (3.15a)

s.t. qi ≤ giP
pk
i , ∀ i (3.15b)

N∑
i=1

qi ≤ Qpk. (3.15c)

Let {q∗i } denote the optimal solution of the problem (3.15a)–(3.15c) and (s1, s2, · · · , sN )

denote a permutation of the SU indexes such that hs1/gs1 > hs2/gs2 > · · · > hsN /gsN . It is

assumed that hi/gi ̸= hj/gj , ∀i ̸= j, since hi, gi, hj , and gj are drawn from a continuous-

valued random process. Then the following lemma is in order.

Lemma 3.1: There exists k, 1 ≤ k ≤ N , such that q∗si = gsiP
pk
si , ∀i, 1 ≤ i ≤ k − 1,

0 < q∗sk ≤ gskP
pk
sk , and q∗si = 0, ∀i, k + 1 ≤ i ≤ N .

Proof: Let q∗sj > 0 for some j and let l < j for some l. First we prove that q∗sl = gslP
pk
sl by

contradiction. If q∗sl < gslP
pk
sl , then we can always find ∆q > 0 and define a feasible solution

{q′si} of the problem (3.15a)–(3.15c) q′sj , q∗sj −∆q, q′sl , q∗sl +∆q, q′si , q∗si ,∀i, i ̸= j, i ̸= l

such that the objective function in (3.15a) achieves larger value for {q′si} than for the optimal

solution {q∗i }, since we have

N∑
i=1

hsi
gsi

q′si −
N∑
i=1

hsi
gsi

q∗si =

(
hsl
gsl

−
hsj
gsj

)
∆q > 0. (3.16)

Therefore, it contradicts the fact that {q∗si} is the optimal solution of the problem (3.15a)–

(3.15c).

Let q∗sj < gsjP
pk
sj for some j and let l > j for some l. Using the result obtained above,

it can be proved also by contradiction that q∗sl = 0. This completes the proof. �
Lemma 3.1 shows that for the optimal power allocation under the constraints (3.2) and

(3.3), as demonstrated in Fig 3.2, there exists at most one user that transmits at nonzero

power and below its peak power, while any other user either does not transmit or transmits

at its peak power.

Note that either the constraints (3.15b) or the constraint (3.15c) must be active at

optimality. Using the structure of {q∗i } given in Lemma 3.1, k can be found by Algorithm 1.
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Fig. 3.2. Optimal power allocation under PTP + PIP constraints.

Algorithm 1 Algorithm for finding k in Lemma 3.1

Initialize: k = 1

while
∑k

i=1 gsiP
pk
si < Qpk and k ≤ N − 1 do

k = k + 1

end while

Output: k

Since p∗si = q∗si/gsi , we obtain

p∗si =


P pk
si , 1 ≤ i ≤ k − 1

min{P pk
si , (Q

pk −
k−1∑
i=1

gsiP
pk
si )/gsi}, i = k

0, k + 1 ≤ i ≤ N.

(3.17)

Note that for brevity, we say in this paper that
∑n

i=1 xi = 0 if n = 0 with a little abuse of

notation.

3.4.2 Average transmit power with average interference power constraints

Consider F ′ = {the constraints (3.4) and (3.5)}. Then the dual function of the problem

(3.12) can be written as

f2({λi}, µ) , E
{
f ′
2(h, g)

}
+

N∑
i=1

λiP
av
i + µQav (3.18)
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where {λi|1 ≤ i ≤ N} and µ are the nonnegative dual variables associated with the corre-

sponding constraints in (3.4) and (3.5) and f ′
2(h, g) is given by

f ′
2(h, g) , max

{pi(h,g)}
W log

(
1 +

N∑
i=1

hipi(h, g)

W

)
−

N∑
i=1

γipi(h, g) (3.19)

with γi , λi + µgi. Let {p∗i } denote the optimal solution of the problem (3.19), where we

drop the dependence on h and g for brevity. Also let F ({pi}) denote the objective function

in (3.19). If p∗i > 0 for some i, the following must hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +

N∑
i=1

hip
∗
i

W

− γi = 0. (3.20)

Then the following lemma is of interest.

Lemma 3.2: If hi ≤ γi for some i, then p∗i = 0.

Proof: If p∗j = 0, ∀j, then p∗i = 0. If p∗j ̸= 0 for some j, it can be seen that (3.20) can

not be satisfied since hi ≤ γi. Thus, p
∗
i = 0. �

If p∗i = 0 for some i, the following must hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +

N∑
i=1

hip
∗
i

W

− γi ≤ 0. (3.21)

Then the next lemma is in order.

Lemma 3.3: p∗i = 0, ∀i, if and only if hi ≤ γi, ∀i.

Proof: It can be seen from Lemma 3.2 that if hi ≤ γi, ∀i, then p∗i = 0, ∀i. Moreover,

it can be seen from (3.21) that if p∗i = 0, ∀i, then hi ≤ γi, ∀i. �
Let (s1, s2, · · · , sN ) denote a permutation of the SU indexes such that hs1/γs1 > hs2/γs2 >

· · · > hsN /γsN . Then we can also prove the following lemma.

Lemma 3.4: There exists at most one k such that p∗k > 0. Moreover, k = s1.

Proof: We prove it by contradiction. It can be seen from (3.20) that if p∗i > 0 and

p∗j > 0 for some i ̸= j, the following must hold

hi
γi

=
hj
γj

. (3.22)

Since hi, γi, hj , and γj are independent constants given in the problem (3.19), (3.22) can

not be satisfied. Let p∗k > 0 and p∗i = 0, ∀i, i ̸= k. Then it follows from (3.20) and (3.21)
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that the following must hold
hk
γk

≥ hi
γi
, ∀ i ̸= k. (3.23)

Therefore, we must have k = s1. �
Lemma 3.4 shows that for the optimal power allocation under the constraints (3.4) and

(3.5), as demonstrated in Fig. 3.3, there exists at most one user that transmits at nonzero

power, while any other user does not transmit.

SU1 SU2

. . . . . .

SUi SUN−1 SUN

at most one

Fig. 3.3. Optimal power allocation under ATP + AIP constraints.

Case 1: Consider the case when hi ≤ γi, ∀i. It follows from Lemma 3.3 that p∗i = 0,

∀i.

Case 2: Consider the case when hi ≤ γi does not hold for some i. Using Lemma 3.4, let

p∗k > 0 and p∗i = 0, ∀i, i ̸= k. Substituting {p∗i } into (3.20), we have p∗s1 = W (1/γs1−1/hs1).

Therefore, we obtain

p∗si =

 W (1/ (λs1 + µgs1)− 1/hs1) , i = 1

0, 2 ≤ i ≤ N.
(3.24)

3.4.3 Peak transmit power with average interference power constraints

Consider F ′ = {the constraints (3.2) and (3.5)}. Then the dual function of the problem

(3.12) can be written as

f3(µ) , E
{
f ′
3(h, g)

}
+ µQav (3.25)
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where µ is the nonnegative dual variable associated with the constraint (3.5), and f ′
3(h, g)

is given by

f ′
3(h, g) , max

{pi(h,g)}
W log

(
1 +

N∑
i=1

hipi(h, g)

W

)
− µ

N∑
i=1

gipi(h, g) (3.26a)

s.t. pi(h, g) ≤ P pk
i , ∀ i. (3.26b)

Let {p∗i } denote the optimal solution of the problem (3.26a)–(3.26b) after dropping the

dependence on h and g for brevity. The following cases are of interest.

Case 1: Consider the case when hi ≤ µgi, ∀i. Since the problem (3.26a)–(3.26b)

without the constraints (3.26b) has the same form as the problem (3.19), and pi = 0, ∀i,

satisfies the constraint (3.26b), it can be seen from Lemma 3.3 that p∗i = 0, ∀i.

Case 2: Consider the case when hi ≤ µgi does not hold for some i. The problem

(3.26a)–(3.26b) is equivalent to

max
{qi}

W log

(
1 +

N∑
i=1

hiqi
µgiW

)
−

N∑
i=1

qi (3.27a)

s.t. qi ≤ µgiP
pk
i , ∀ i (3.27b)

where qi , µgipi. Let {q∗i } denote the optimal solution of the problem (3.27a)–(3.27b) and

(s1, s2, · · · , sN ) denote a permutation of the SU indexes such that hs1/µgs1 > hs2/µgs2 >

· · · > hsN /µgsN . Then the following lemma is in order.

Lemma 3.5: There exists k, 1 ≤ k ≤ N , such that q∗si = gsiP
pk
si , ∀i, 1 ≤ i ≤ k − 1,

0 < q∗sk ≤ gskP
pk
sk , and q∗si = 0, ∀i, k + 1 ≤ i ≤ N .

Proof: Consider the following intermediate problem

max
{qi}

N∑
i=1

hi
µgi

qi (3.28a)

s.t. qi ≤ µgiP
pk
i , ∀ i (3.28b)

N∑
i=1

qi = Q (3.28c)

where Q is defined as Q ,
∑N

i=1 q
∗
i and it is unknown since {q∗i } is unknown. Let {q′i} denote

the optimal solution of the problem (3.28a)–(3.28c). If {q′i} ̸= {q∗i }, we have
∑N

i=1 hiq
′
i/µgi ≥∑N

i=1 hiq
∗
i /µgi since {q∗i } is a feasible solution of the problem (3.28a)–(3.28c). Then we have

F
(
{q′i}

)
− F ({q∗i }) = W log

(
1 +

N∑
i=1

hiq
′
i

µgiW

)
−W log

(
1 +

N∑
i=1

hiq
∗
i

µgiW

)
≥ 0 (3.29)
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where F ({qi}) denotes the objective function in the problem (3.27a)–(3.27b). Since {q′i} is

a feasible solution of the problem (3.27a)–(3.27b), it contradicts the fact that {q∗i } is the

optimal solution of the problem (3.27a)–(3.27b). Therefore, it must be true that {q′i} = {q∗i }.

It can be seen from the constraints (3.27b) that
∑N

i=1 q
′
i =

∑N
i=1 q

∗
i = Q ≤

∑N
i=1 µgiP

pk
i .

Then the problem (3.28a)–(3.28c) is equivalent to the following problem

max
{qi}

N∑
i=1

hi
µgi

qi (3.30a)

s.t. qi ≤ µgiP
pk
i , ∀ i (3.30b)

N∑
i=1

qi ≤ Q (3.30c)

since the constraint (3.30c) is active at optimality. Therefore, the problem (3.27a)–(3.27b)

is equivalent to the problem (3.30a)–(3.30c). Since the problem (3.30a)–(3.30c) is similar to

the problem (3.15a)–(3.15c) in Section 3.4.1, we conclude that {q∗i } has the same structure

as that given in Lemma 3.1. �
The result of Lemma 3.5 is similar to that of Lemma 3.1. Specifically, it shows that

for the optimal power allocation under the constraints (3.2) and (3.5), as demonstrated in

Fig. 3.4, there exists at most one user that transmits at nonzero power and below its peak

power, while any other user either does not transmit or transmits at its peak power.

P
pk
1

SU1

P
pk
2

SU2

. . .

P
pk
i

. . .

P
pk
N−1

P
pk
N

SUi SUN−1 SUN

at most one

Fig. 3.4. Optimal power allocation under PTP + AIP constraints.

Using Lemma 3.5, let q∗si = µgsiP
pk
si , ∀i, 1 ≤ i ≤ k − 1, 0 < q∗sk ≤ µgsiP

pk
si , and q∗si = 0,

∀i, k + 1 ≤ i ≤ N . Then we only need to find k and q∗sk to determine {q∗i }.
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Consider the case when 0 < q∗sk < µgskP
pk
sk , 1 ≤ k ≤ N . Then the following must be

true

∂H(qsk)

∂qsk

∣∣∣∣
qsk=q∗sk

=

hsk
µgsk

1 +

N∑
i=1,i̸=k

hsiq
∗
si

µgsiW
+

hskq
∗
sk

µgskW

− 1 = 0 (3.31)

where

H(qsk) , W log

1 +

N∑
i=1,i ̸=k

hsiq
∗
si

µgsiW
+

hskqsk
µgskW

−
N∑

i=1,i ̸=k

q∗si − qsk . (3.32)

Substituting {q∗si} into (3.31), we obtain q∗sk = W (1 − µgsk/hsk) − µgsk
∑k−1

i=1 hsiP
pk
si /hsk .

Since q∗sk must satisfy 0 < q∗sk < µgsiP
pk
si , it must be true that

k−1∑
i=1

hsiP
pk
si < W

(
hsk
µgsk

− 1

)
<

k∑
i=1

hsiP
pk
si . (3.33)

Consider the case when q∗sk = µgskP
pk
sk , 1 ≤ k ≤ N − 1. Then the following must hold

∂H(qsk)

∂qsk

∣∣∣∣
qsk=q∗sk

=

hsk
µgsk

1 +

N∑
i=1,i̸=k

hsiq
∗
si

µgsiW
+

hskq
∗
sk

µgskW

− 1 ≥ 0 (3.34)

and

∂H(qsk+1
)

∂qsk+1

∣∣∣∣
qsk+1

=q∗sk+1

=

hsk+1

µgsk+1

1 +

N∑
i=1,i ̸=k+1

hsiq
∗
si

µgsiW
+

hsk+1
q∗sk+1

µgsk+1
W

− 1 ≤ 0. (3.35)

Substituting {q∗i } into (3.34) and (3.35), we obtain

W

(
hsk+1

µgsk+1

− 1

)
≤

k∑
i=1

hsiP
pk
si ≤ W

(
hsk
µgsk

− 1

)
, 1 ≤ k ≤ N − 1. (3.36)

If q∗sk = µgskP
pk
sk , k = N , then only (3.34) must be true and it follows that

k∑
i=1

hsiP
pk
si ≤ W

(
hsk
µgsk

− 1

)
, k = N. (3.37)

Lemma 3.6: There exists only one set of values for {q∗i } that satisfies only one of the

necessary conditions (3.31), (3.34) or (3.35).
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Proof: It is equivalent to prove that there exists only one k that satisfies only one of

(3.33), (3.36) or (3.37). Let Lj ,
∑j

i=1 hsiP
pk
si and Mj , W (hsj/µgsj −1) for brevity. Then

it must be true that L0 < L1 < · · · < LN , M1 > M2 > · · · > MN and L0 < M1. It can be

seen that if (3.37) holds, i.e., if Li < Mi, ∀i, 1 ≤ i ≤ N , then (3.33) and (3.36) do not hold.

If (3.37) does not hold, then these exists such l that Li < Mi, ∀i, 1 ≤ i ≤ l − 1

and Li > Mi, ∀i, 1 ≤ i ≤ N . The following two cases should be considered. (i) If

Ll−1 < Ml < Ll, (3.33) holds for k = l. Since Li < Mi, ∀i, 1 ≤ i ≤ l − 1, (3.33) does not

hold for k < l as well. Since Mi < Ml < Ll ≤ Li−1, ∀i, l + 1 ≤ i, (3.33) does not hold

for k > l. Since Li < Li+1 < Mi+1, ∀i, 1 ≤ i ≤ l − 2, (3.36) does not hold for k < l − 1.

Since Ll−1 < Ml, (3.36) does not hold also for k = l − 1. Moreover, since Mi < Li, ∀i,

l ≤ i, (3.36) does not hold for k > l − 1. Therefore, only (3.33) holds for only k = l. (ii) If

Ml < Ll−1 < Ml−1, (3.36) holds for k = l− 1. Similar to the case (i), it can be proved that

only (3.36) holds for only k = l − 1. This completes the proof. �
Using Lemma 3.6, Algorithm 2 is developed to find the unique k in Lemma 3.5. Note

Algorithm 2 Algorithm for finding k in Lemma 3.5

Initialize: k = 0, c = 0

while c = 0 do

k = k + 1

if
∑k−1

i=1 hsiP
pk
si < W (hsk/µgsk − 1) <

∑k
i=1 hsiP

pk
si then

c = 1

end if

if {W (hsk+1
/µgsk+1

− 1) ≤
∑k

i=1 hsiP
pk
si ≤ W (hsk/µgsk − 1) and k ≤ N − 1} or

{
∑k

i=1 hsiP
pk
si ≤ W (hsk/µgsk − 1) and k = N} then

c = 2

end if

end while

Output: k, c

that k satisfies (3.33) and (3.36) or (3.37) if the output of Algorithm 2 is c = 1 and c = 2,
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respectively. Since p∗si = q∗si/µgsi , when c = 1, we obtain

p∗si =


P pk
si , 1 ≤ i ≤ k − 1

W (1/µgsk − 1/hsk)−
∑k−1

i=1 hsiP
pk
si /hsk , i = k

0, k + 1 ≤ i ≤ N

, 1 ≤ i ≤ N (3.38)

and when c = 2, we obtain

p∗si =

 P pk
si , 1 ≤ i ≤ k

0, k + 1 ≤ i ≤ N
, 1 ≤ i ≤ N. (3.39)

3.4.4 Average transmit power with peak interference power constraints

Consider F ′ = {the constraints (3.3) and (3.4)}. Then the dual function of the problem

(3.12) can be written as

f4({λi}) , E
{
f ′
4(h, g)

}
+

N∑
i=1

λiP
av
i (3.40)

where {λi|1 ≤ i ≤ N} are the nonnegative dual variables associated with the corresponding

constraints (3.4) and f ′
4(h, g) is given by

f ′
4(h, g) , max

{pi(h,g)}
W log

(
1 +

N∑
i=1

hipi(h, g)

W

)
−

N∑
i=1

λipi(h, g) (3.41a)

s.t.

N∑
i=1

gipi(h, g) ≤ Qpk. (3.41b)

Let {p∗i } denote the optimal solution of the problem (3.41a)–(3.41b) where the dependence

on h and g is dropped for brevity. The following three cases are of interest.

Case 1: Consider the case when hi ≤ λi, ∀i. Similar to Case 1 in Section 3.4.3, it can

be seen from Lemma 3.3 that p∗i = 0, ∀i.

Case 2: Consider the case when hi ≤ λi does not hold for some i and the constraint

(3.41b) is inactive at optimality. Let (s1, s2, · · · , sN ) denote a permutation of the SU indexes

such that hs1/λs1 > hs2/λs2 > · · · > hsN /λsN . Since the problem (3.41a)–(3.41b) without

the constraint (3.41b) has the same form as the problem (3.19), it can be seen from (3.24)

that p∗s1 = W (1/λs1−1/hs1) and p∗si = 0, ∀i, 2 ≤ i ≤ N , if it satisfies the constraint (3.41b),

i.e.,
∑N

i=1 gsip
∗
si = gs1W (1/λs1 − 1/hs1) < Qpk.
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Case 3: Consider the case when hi ≤ λi does not hold for some i and the constraint

(3.41b) is active at optimality, i.e., gs1W (1/λs1 − 1/hs1) ≥ Qpk. The dual function of the

problem (3.41a)–(3.41b) can be written as f ′′
4 (µ) , f ′′′

4 + µQpk, where µ is the nonnegative

dual variable associated with the constraint (3.41b), and f ′′′
4 is given by

f ′′′
4 , max

{pi}
W log

(
1 +

N∑
i=1

hipi
W

)
−

N∑
i=1

λipi − µ

N∑
i=1

gipi. (3.42)

Let µ∗ denote the optimal dual variable. Also let F ({pi}) denote the objective function in

the problem (3.42). If p∗i > 0 for some i, the following must hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +

N∑
i=1

hip
∗
i

W

− λi − µ∗gi = 0. (3.43)

If p∗i = 0 for some i, the following must hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +
N∑
i=1

hip
∗
i

W

− λi − µ∗gi ≤ 0. (3.44)

Note that since the problem (3.41a)–(3.41b) is convex, the necessary conditions (3.43) and

(3.44) for the optimal solution {p∗i } are also sufficient conditions.

Lemma 3.7: There exists at most two j ̸= k such that p∗j > 0 and p∗k > 0.

Proof: We prove it by contradiction. It can be seen from (3.43) that if p∗i > 0, p∗j > 0,

and p∗k > 0 for some i ̸= j, j ̸= k, i ̸= k, the following must hold

hi
λi + µ∗gi

=
hj

λj + µ∗gj
=

hk
λk + µ∗gk

. (3.45)

Since hi, λi, gi, hj , λj , gj , hk, λk, and gk are independent constants given in the problem

(3.41a)–(3.41b), and only µ∗ is a variable, (3.45) can not be satisfied. �
Lemma 3.7 shows that for the optimal power allocation under the constraints (3.3) and

(3.4), as demonstrated in Fig. 3.5, there exists at most two users that transmit at nonzero

power, while any other user does not transmit.

Then Case 3 can be further divided into the following two subcases.

Case 3.1: Consider the subcase when p∗k > 0 and p∗i = 0, ∀i ̸= k. Since the constraint

(3.41b) is active at optimality, i.e.,
∑N

i=1 gip
∗
i = gkp

∗
k = Qpk, we obtain that p∗k = Qpk/gk.

Then substituting {p∗i } into (3.43) we have

µ∗ =
1

gk/hk +Qpk/W
− λk

gk
. (3.46)
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SU1

. . . . . .

SUi SUN

at most two

SUj

. . .

Fig. 3.5. Optimal power allocation under ATP + PIP constraints.

Note that µ∗ given in (3.46) must satisfy µ∗ ≥ 0. Substituting {p∗i } into (3.44), we can see

that µ∗ given in (3.46) also must satisfy

µ∗ ≥ hi/gi
1 + hkQpk/gkW

− λi

gi
, ∀ i, i ̸= k. (3.47)

Then Algorithm 3 can be used to find k. Note that {p∗i } does not exist in Case 3.1 if the

Algorithm 3 Algorithm for finding k in Case 3.1

k = argmax{i}W log
(
1 + hiQ

pk

giW

)
− λiQ

pk

gi

µ∗ = 1
gk/hk+Qpk/W

− λk
gk

if µ∗ < max{i̸=k}
hi/gi

1+hkQpk/gkW
− λi

gi
or µ∗ < 0 then

k = 0

end if

Output: k

output of Algorithm 3 is k = 0.

Case 3.2: Consider the subcase when p∗j > 0, p∗k > 0, j ̸= k and p∗i = 0, ∀i, i ̸= j, i ̸= k.

It follows from (3.43) that
hj

λj + µ∗gj
=

hk
λk + µ∗gk

. (3.48)

Therefore, we obtain that

µ∗ =
λj/hj − λk/hk
gk/hk − gj/hj

. (3.49)
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Note that µ∗ given in (3.49) must satisfy µ∗ ≥ 0. Using (3.43) and the fact that the

constraint (3.41b) is active at optimality, we have hjp
∗
j + hkp

∗
k = Whj/(λj + µ∗gj)−W

gjp
∗
j + gkp

∗
k = Qpk.

(3.50)

Solving the system of equation (3.50), we obtain

p∗j =
Qpk/gk − a/hk
gj/gk − hj/hk

, p∗k =
a/hj −Qpk/gj
hk/hj − gk/gj

(3.51)

where a , Whj/(λj + µ∗gj)−W . Note that p∗j and p∗k given in (3.51) must satisfy p∗j > 0

and p∗k > 0. Substituting {p∗i } and µ∗ into (3.44), we can see that j and k must satisfy

λj/hj − λk/hk
gk/hk − gj/hj

≥ λj/hj − λi/hi
gi/hi − gj/hj

, ∀ i, i ̸= j, i ̸= k. (3.52)

Then Algorithm 4 can be used to find j and k. Note that {p∗i } does not exist if the output

of Algorithm 4 is j = 0 and k = 0.

3.4.5 Combinations of more than two power constraints

Consider F ′ = {the constraints (3.2), (3.4), and (3.5)} or F ′ = {the constraints (3.3),

(3.4), and(3.5)}. It can be shown that the corresponding dual functions of the problem

(3.12) under these two combinations of the power constraints have the same form as those

in Subsections 3.4.3 and 3.4.4, respectively. Therefore, optimal solutions can be found

similarly therein and, thus, are omitted here.

Consider F ′ = {the constraints (3.2), (3.3), and (3.4)} or F ′ = {the constraints(3.2),

(3.3), and(3.5)} or F ′ = {the constraints (3.2), (3.3), (3.4), and (3.5)}. It can be shown

that the corresponding dual functions of the problem (3.12) under the first two combina-

tions of the power constraints have the same form as that under the third combination.

Therefore, we only focus on F ′ = {the constraints(3.2), (3.3), (3.4), and (3.5)}. Then the

dual function of the problem (3.12) can be written as

f5({λi}, µ) , E
{
f ′
5(h, g)

}
+

N∑
i=1

λiP
av
i + µQav (3.53)
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Algorithm 4 Algorithm for finding j and k in Case 3.2

Initialize: I = ∅

for j = 1, · · · , N − 1 do

for k = j + 1, · · · , N do

µ∗ =
λj/hj−λk/hk

gk/hk−gj/hj

if µ∗ ≥ 0 then

a = Whj/(λj + µ∗gj)−W

p∗j =
Qpk/gk−a/hk

gj/gk−hj/hk
, p∗k =

a/hj−Qpk/gj
hk/hj−gk/gj

if p∗j > 0 and p∗k > 0 then

I = I ∪ {(j, k)}

vj,k = W log
(
1 +

hjp
∗
j+hkp

∗
k

W

)
− λjp

∗
j − λkp

∗
k

end if

end if

end for

end for

(j, k) = argmax{(i,l)∈I} vi,l

if
λj/hj−λk/hk

gk/hk−gj/hj
< max{i ̸=j,k}

λj/hj−λi/hi

gi/hi−gj/hj
then

j = 0, k = 0

end if

Output: j, k

where {λi|1 ≤ i ≤ N} and µ are the nonnegative dual variables associated with the corre-

sponding constraints in (3.4) and (3.5) and f ′
5(h, g) is given by

f ′
5(h, g) , max

{pi(h,g)}
W log

(
1+

N∑
i=1

hipi(h, g)

W

)
−

N∑
i=1

λipi(h, g)−µ

N∑
i=1

gipi(h, g) (3.54a)

s.t.

N∑
i=1

gipi(h, g) ≤ Qpk (3.54b)

pi(h, g) ≤ P pk
i , ∀ i. (3.54c)

Let {p∗i } denote the optimal solution of the problem (3.54a)–(3.54c) where the dependence

on h and g is dropped for brevity. The following cases are of interest.

Case 1: Consider the case when hi ≤ λi+µgi, ∀i. Similar to Case 1 in Subsections 3.4.3
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and 3.4.4, it can be seen from Lemma 3.3 that p∗i = 0, ∀i.

Case 2: Consider the case when hi ≤ λi + µgi does not hold for some i and the con-

straint (3.54b) is inactive at optimality. Since the problem (3.54a)–(3.54c) without the

constraint (3.54b) has the same form as the problem (3.26a)–(3.26b), {p∗i } can be found

using Algorithm 2 and (3.38) or (3.39) if it satisfies the constraint (3.54b).

Case 3: Consider the case when hi ≤ λi+µgi does not hold for some i and the constraint

(3.54b) is active at optimality. The dual function of the problem (3.54a)–(3.54c) can be

written as f ′′
5 (β) , f ′′′

5 + βQpk, where β is the nonnegative dual variable associated with

the constraint (3.54b) and f ′′′
5 is given by

f ′′′
5 , max

{pi}
W log

(
1 +

N∑
i=1

hipi
W

)
−

N∑
i=1

γipi − β

N∑
i=1

gipi (3.55a)

s.t. pi ≤ P pk
i , ∀ i. (3.55b)

where γi , λi + µgi. Let β∗ denote the optimal dual variable and F ({pi}) stands for the

objective function in the problem (3.55a). If P pk
i > p∗i > 0 for some i, the following must

hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +

N∑
i=1

hip
∗
i

W

− γi − β∗gi = 0. (3.56)

If p∗i = P pk
i for some i, the following must hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +

N∑
i=1

hip
∗
i

W

− γi − β∗gi ≥ 0. (3.57)

Moreover, if p∗i = 0 for some i, the following must hold

∂F ({pi})
∂pi

∣∣∣∣
{pi}={p∗i }

=

hi

1 +

N∑
i=1

hip
∗
i

W

− γi − β∗gi ≤ 0. (3.58)

Note that since the problem (3.54a)–(3.54c) is convex, the necessary conditions (3.56), (3.57)

and (3.58) for the optimal solution {p∗i } are also sufficient conditions.

Lemma 3.8: There exists at most two j and k, j ̸= k such that P pk
j > p∗j > 0 and

P pk
k > p∗k > 0.
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Proof: We prove it by contradiction. It can be seen from (3.56) that if P pk
i > p∗i > 0,

P pk
j > p∗j > 0, and P pk

k > p∗k > 0 for some i ̸= j, j ̸= k, i ̸= k, the following must be true

hi
γi + β∗gi

=
hj

γj + β∗gj
=

hk
γk + β∗gk

. (3.59)

Since hi, γi, gi, hj , γj , gj , hk, γk, and gk are independent constants given in the problem

(3.54a)–(3.54c), and only β∗ is a variable, (3.59) can not be satisfied. �
Lemma 3.8 shows that for the optimal power allocation under the constraints (3.2), (3.3),

(3.4) and (3.5), as demonstrated in Fig. 3.6, there exists at most two user that transmit at

nonzero power and below their peak power, while any other user either does not transmit

or transmits at its peak power.

SU1

. . . . . .

SUi SUN

at most two

SUj

. . .

P
pk
i

P
pk
j

P
pk
1

P
pk
N

Fig. 3.6. Optimal power allocation under PTP + PIP + ATP + AIP constraints.

Then Case 3 can be further divided into the following two subcases.

Case 3.1: Consider the subcase when P pk
k > p∗k > 0 and p∗i ∈ {P pk

i , 0}, ∀i ̸= k. Let N1

andN0 denote the sets of SU indexes such that p∗i = P pk
i , ∀i ∈ N1 and p∗i = 0, ∀i ∈ N0. Since

the constraint (3.54b) is active at optimality, i.e.,
∑N

i=1 gip
∗
i = gkp

∗
k +

∑
i∈N1

giP
pk
i = Qpk,

we obtain p∗k = (Qpk−
∑

i∈N1
giP

pk
i )/gk. Note that p

∗
k given here must satisfy P pk

k > p∗k > 0.

Then substituting {p∗i } into (3.56) we obtain

β∗ =
hk/gk

1 +
(
hk(Qpk −

∑
i∈N1

giP
pk
i )/gk +

∑
i∈N1

hiP
pk
i

)
/W

− γk
gk

. (3.60)

Note that β∗ given by (3.60) must satisfy β∗ ≥ 0. Substituting {p∗i } into (3.57) we can see
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that β∗ given by (3.60) must satisfy

β∗ ≤ hi/gi

1 +
(
hk(Qpk −

∑
i∈N1

giP
pk
i )/gk +

∑
i∈N1

hiP
pk
i

)
/W

− γi
gi
, ∀ i ∈ N1. (3.61)

Substituting {p∗i } into (3.58), we can see that β∗ given in (3.60) also must satisfy

β∗ ≥ hi/gi

1 +
(
hk(Qpk −

∑
i∈N1

giP
pk
i )/gk +

∑
i∈N1

hiP
pk
i

)
/W

− γi
gi
, ∀ i ∈ N0. (3.62)

Let S(1)
i ,S(2)

i , · · · ,S(2N−1)
i denote all the subsets of the set N\{i} where \ denotes the set

difference operator. Then Algorithm 5 can be used to find k, N1, and N0. Note that {p∗i }

does not exist if the output of Algorithm 5 is k = 0.

Case 3.2: Consider the subcase when P pk
j > p∗j > 0, P pk

k > p∗k > 0 and p∗i ∈ {P pk
i , 0},

∀i ̸= j, k. Let N1 and N0 denote the sets of SU indexes such that p∗i = P pk
i , ∀i ∈ N1 and

p∗i = 0, ∀i ∈ N0, respectively. It follows from (3.56) that

hj
γj + β∗gj

=
hk

γk + β∗gk
. (3.63)

Therefore, we obtain that

β∗ =
γj/hj − γk/hk
gk/hk − gj/hj

. (3.64)

Note that β∗ given in (3.64) must satisfy β∗ ≥ 0. Following (3.56) and the fact that the

constraint (3.54b) is active at optimality, we have hjp
∗
j + hkp

∗
k = Whj/(γj + β∗gj)−W −

∑
i∈N1

hiP
pk
i

gjp
∗
j + gkp

∗
k = Qpk −

∑
i∈N1

giP
pk
i .

(3.65)

Solving the system of equation (3.65), we obtain

p∗j =
a/gk − b/hk
gj/gk − hj/hk

, p∗k =
b/hj − a/gj

hk/hj − gk/gj
(3.66)

where a , Qpk −
∑

i∈N1
giP

pk
i and b , Whj/(γj + β∗gj)−W −

∑
i∈N1

hiP
pk
i . Note that p∗j

and p∗k given in (3.66) must satisfy P pk
j > p∗j > 0 and P pk

k > p∗k > 0. Substituting {p∗i } and

β∗ given by (3.64) into (3.57), we obtain

γj/hj − γk/hk
gk/hk − gj/hj

≤ γj/hj − γi/hi
gi/hi − gj/hj

, ∀ i ∈ N1. (3.67)
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Algorithm 5 Algorithm for finding k, N1, N0 in Case 3.1

Initialize: I = ∅

for k = 1, 2, · · · , N do

for l = 1, 2, · · · , 2N−1 do

N1 = S(l)
k

p∗k = (Qpk −
∑

i∈N1
giP

pk
i )/gk

if P pk
k > p∗k > 0 then

I = I ∪ {l}

rl = W log

(
1 +

hkp
∗
k+

∑
i∈N1

hiP
pk
i

W

)
− γkp

∗
k −

∑
i∈N1

γiP
pk
i

end if

end for

vk = max{i∈I} ri, t = argmax{i∈I} ri

S∗
k = S(t)

k

I = ∅

end for

k = argmax{i} vi

N1 = S∗
k

N0 = N\N1\{k}

β∗ = hk/gk

1+
(
hk(Qpk−

∑
i∈N1

giP
pk
i )/gk+

∑
i∈N1

hiP
pk
i

)
/W

− γk
gk

if β∗ < 0 or β∗ > hi/gi

1+
(
hk(Qpk−

∑
i∈N1

giP
pk
i )/gk+

∑
i∈N1

hiP
pk
i

)
/W

− γi
gi
,∃i ∈ N1

or β∗ < hi/gi

1+
(
hk(Qpk−

∑
i∈N1

giP
pk
i )/gk+

∑
i∈N1

hiP
pk
i

)
/W

− γi
gi
,∃i ∈ N0 then

k = 0

end if

Output: k, N1, N0
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Moreover, substituting {p∗i } and β∗ given by (3.64) into (3.58), we also obtain

γj/hj − γk/hk
gk/hk − gj/hj

≥ γj/hj − γi/hi
gi/hi − gj/hj

, ∀ i ∈ N0. (3.68)

Let S(1)
i,j ,S

(2)
i,j , · · · ,S

(2N−2)
i,j denote all the subsets of the set N\{i, j}. Then Algorithm 6 can

be used to find j, k, N1, and N0. Note that {p∗i } does not exist if the output of Algorithm 6

is j = 0 and k = 0.

3.5 Simulation Results

Consider a cognitive radio network which consists of one PU and four SUs. For simplicity,

we assume that only Rayleigh fading is present in all links. The variance of the channel

power gain is set to σ2 = 1. We also set W = 1, P pk
i = 10, ∀i, P av

i = 10, ∀i, Qpk = 1, and

Qav = 1 as default values if no other values are specified otherwise. The AWGN with unit

PSD is assumed. We use 1000 randomly generated channel power gains for h and g in our

simulations. The results are compared under the following five combinations of the power

constraints: the PTP with PIP constraints (PTP+PIP), the PTP with AIP constraints

(PTP+AIP), the ATP with PIP constraints (ATP+PIP), the ATP with AIP constraints

(ATP+AIP), the PTP and ATP with PIP and AIP constraints (PTP+ATP+PIP+AIP).

Fig. 3.7 shows the maximum sum ergodic capacity under PTP+PIP, PTP+AIP and

PTP+ATP+

PIP+AIP constraints versus P pk where P pk = P pk
i , ∀i is assumed. It can be seen from the

figure that the maximum sum ergodic capacity achieved under PTP+AIP is larger than

that achieved under PTP+PIP for any given P pk. This is due to the fact that the AIP

constraint is more favorable than the PIP constraint from SUs’ perspective, since the former

allows for more flexibility for SUs to allocate transmit power over different channel fading

states. It is also observed that the performance under PTP+ATP+PIP+AIP is very close

to that under PTP+PIP that is because the PTP constraint dominates over the ATP, PIP,

and AIP constraints for all values of P pk.

Fig. 3.8 shows the maximum sum ergodic capacity under ATP+PIP, ATP+AIP and

PTP+ATP+

PIP+AIP constraints versus P av where P av = P av
i , ∀i is assumed. The maximum achiev-
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Algorithm 6 Algorithm for finding j, k, N1, N0 in Case 3.2

Initialize: I = ∅

for j = 1, 2, · · · , N − 1 do

for k = j + 1, · · · , N do

for l = 1, 2, · · · , 2N−2 do

N1 = S(l)
j,k

β∗ =
γj/hj−γk/hk

gk/hk−gj/hj

if β∗ ≥ 0 then

a , Qpk −
∑

i∈N1
giP

pk
i , b , Whj/(γj + β∗gj)−W −

∑
i∈N1

hiP
pk
i

p∗j =
a/gk−b/hk

gj/gk−hj/hk
, p∗k =

b/hj−a/gj
hk/hj−gk/gj

if P pk
j > p∗j > 0 and P pk

k > p∗k > 0 then

I = I ∪ {l}

rl = W log

(
1 +

hjp
∗
j+hkp

∗
k+

∑
i∈N1

hiP
pk
i

W

)
− γjp

∗
j − γkp

∗
k −

∑
i∈N1

γiP
pk
i

end if

end if

end for

vj,k = max{i∈I} ri, t = argmax{i∈I} ri

S∗
j,k = S(t)

j,k

I = ∅

end for

end for

(j, k) = argmax{(i,l)} vi,l

N1 = S∗
j,k

N0 = N\N1\{j, k}

if
γj/hj−γk/hk

gk/hk−gj/hj
>

γj/hj−γi/hi

gi/hi−gj/hj
,∃i ∈ N1 or

γj/hj−γk/hk

gk/hk−gj/hj
<

γj/hj−γi/hi

gi/hi−gj/hj
,∃i ∈ N0 then

j = 0, k = 0

end if

Output: j, k, N1, N0
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Fig. 3.7. Sum ergodic capacity vs P pk.

able sum ergodic capacity achieved under ATP+AIP is larger than that achieved under

ATP+PIP for all values of P av since the PIP constraint is stricter than the AIP constraint.

The sum ergodic capacity under PTP+ATP+PIP+AIP is much smaller than that under

ATP+PIP and ATP+AIP due to the fact that the PTP constraint is dominant over other

constraints for all values of P av.
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Fig. 3.8. Sum ergodic capacity vs P av.

Fig. 3.9 shows the maximum sum ergodic capacity under PTP+PIP, ATP+PIP and

PTP+ATP+

PIP+AIP constraints versus Qpk. It can be seen from the figure that the maximum sum

ergodic capacity achieved under ATP+PIP is larger than that achieved under PTP+PIP
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for any given Qpk. This is because the power allocation is more flexible for SUs under

the ATP constraint than under the PTP constraint. The sum ergodic capacity under

PTP+ATP+PIP+AIP saturates earlier than that under PTP+PIP and ATP+PIP, because

it is restricted by the AIP constraint.
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Fig. 3.9. Sum ergodic capacity vs Qpk.

Fig. 3.10 shows the maximum sum ergodic capacity under PTP+AIP, ATP+AIP and

PTP+ATP+

PIP+AIP constraints versus Qav. Due to the same reasons as for the results in Fig. 3.9,

the sum ergodic capacity achieved under ATP+AIP is larger than that achieved under

PTP+AIP. The sum ergodic capacity under PTP+ATP+PIP+AIP saturates earlier than

that for PTP+AIP and ATP+AIP because of the presence of the PIP constraint.

Finally, Fig. 3.11 shows the maximum sum ergodic capacity under PTP+PIP, PTP+AIP,

ATP+PIP, ATP+AIP and PTP+ATP+PIP+AIP versus W . Similar performance compar-

ison results as in the previous figures can be observed. One difference is that the sum

ergodic capacities do not saturate with the increase of W .

3.6 Conclusion

A cognitive radio network where multiple SUs share the licensed spectrum of a PU using the

FDMA scheme has been considered. The maximum achievable sum ergodic capacity of all

the SUs has been studied subject to the total bandwidth constraint of the licensed spectrum
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Fig. 3.11. Sum ergodic capacity vs W .

and all possible combinations of the peak/average transmit power constraints at the SUs and

interference power constraint imposed by the PU. Optimal bandwidth allocation has been

derived in each channel fading state for any given power allocation. Using the structures of

the optimal power allocations under each combination of the power constraints, algorithms

for finding the optimal power allocations in each channel fading state have been developed.
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Chapter 4

Conclusion and Future Work

This thesis has studied several resource allocation problems for different wireless com-

munication networks. Each chapter is summarized as follows.

4.1 Conclusion

Chapter 1 has presented the motivation, contribution, and outline of the thesis, and also

the brief overview of convex optimization theory.

Chapter 2 has focused on joint bandwidth and power allocation strategy for wireless

multi-user network without relaying and with decode-and-forward relaying. Joint band-

width and power allocation problems have been formulated and solved to (i) maximize

the sum capacity of all users; (ii) maximize the worst user capacity; (iii) minimize the to-

tal power consumption of all users. It has been shown that the formulated optimization

problems are convex and, thus, optimal bandwidth and power allocation can be efficiently

obtained using convex optimization techniques. Furthermore, admission control for the

joint bandwidth and power allocation strategy has been considered. A greedy search algo-

rithm has been developed to solve the admission control problem efficiently. The optimality

conditions of the greedy search algorithm have been derived and shown to be mild.

In Chapter 3, the sum ergodic capacity of SUs under fading channels in cognitive radio

networks has been investigated based on joint bandwidth and power allocation strategy.

It has been shown that optimal bandwidth allocation can be derived for any given power
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allocation in any channel fading state. Then the structure of optimal power allocation in

any channel fading state has been derived subject to each combination of four types of

power constraints. Efficient algorithms have been developed for finding the optimal power

allocations by employing these structures.

4.2 Future Work

A number of future research directions have been recognized for extending the studies in

this thesis.

In Chapter 2, it has been assumed that only one relay is assigned to each user and the

relay assignment is fixed. Since multiple relays are available in the network, it is interesting

and also challenging to study the case where multiple relays can be employed to assist

one user. Then the related question is also which set of relay assignments for all users

can achieve the optimal network performance? Therefore, resource allocation and relay

selection can be carried out jointly. Note that similar joint strategies have been studied in

other contexts [62].

In Chapter 3, it has been assumed that perfect CSI of all channels is available at a central

point. However, it may be impossible for SUs to obtain perfect CSI of interference channels

from a PU to the SUs, and it is impractical to exchange CSI among all the SUs due to

high complexity. Therefore, imperfect CSI can be taken into account for obtaining optimal

bandwidth and power allocation strategies. Indeed, a distributed resource allocation scheme

that only employs local CSI for each SU is more practically desirable.
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