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Abstract

Multiple-Input Multiple-Output (MIMO) systems with appropriate space-time (ST)

codes can significantly improve the signal transmission’s reliability and data rate

without power or bandwidth increase. Most ST codes have been designed by as-

suming that the receiver knows the channel state information (CSI). However, ob-

taining up-to-date and accurate CSI is not always possible, especially in fast-fading

MIMO channels. In this case, unitary space-time modulation (USTM) and differen-

tial USTM (DUSTM) can be employed to exploit the benefits of the MIMO. These

techniques require a fixed codebook of unitary matrices known a priori to both

the receiver and transmitter. The design measure and optimum codebook, which

may vary with the MIMO system characteristics, are of interest in this disserta-

tion which introduces two new unitary constellations and proposes a general design

criterion applicable to any MIMO characteristic. Genetic-algorithm search and ex-

haustive search are used to find the optimum codebooks since analytic solutions

are intractable. The performance of the Maximum Likelihood (ML) and Non-ML

receivers is investigated for all types of MIMO channels. Due to the benefits of

antenna selection in terms of reducing the number of RF chains, the performance

of the USTM with antenna selection over a correlated Rayleigh channel is studied.

The influence of the correlation coefficient and Ricean K-factor on the system bit

error rate (BER) performance is quantified.
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Chapter 1

Introduction

1.1 Motivation

Wireless networks and devices are ubiquitous and the ultimate goal of wireless

communication is to facilitate any-place any-time communications. To achieve this

desired goal, future wireless systems must provide higher bandwidth efficiency and

data rates. This requirement is particularly challenging for systems that are power,

bandwidth and complexity limited.

In 1999, the use of multiple transmit and/or receive antenna was proposed and

shown to be very effective in reaching to the upper bound of capacity (Shanon ca-

pacity). Previously, wireless engineers treated multipath propagation as a problem

to be mitigated whereas MIMO wireless technology exploits multipath propagation

to improve the quality of service measures such as the bit error rate (BER) or the

data rate (bits/sec). In other words, MIMO effectively takes advantage of random

fading and multipath delay spread to increase the data transfer rate [5].

Exploiting the benefits of MIMO channels requires the use of Space-Time (ST)

codes. The ST code design, a major challenge in MIMO systems, involves finding

an optimal way of encoding and transmitting multiple copies of a data stream across

multiple antennas to improve the rate and reliability of data transfer.

Fig. 1.1 shows a MIMO system model. A binary data stream after tradi-

tional operations such as error-control coding and interleaving are mapped to com-

plex modulation symbols (for instance, quaternary phase-shift keying [QPSK]), and

these symbols are transmitted over multiple antennas. The receiver captures the

3
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Figure 1.1: A MIMO wireless system with multiple TX and RX antennas.

multiple received antenna signals and extracts the transmitted data by using ST de-

coding techniques.

The theoretical analysis in [5] shows that the capacity of a MIMO system in-

creases linearly with the minimum number of transmitter and receiver antennas.

Fig. 1.2 depicts how the capacity of a MIMO system varies with a minimum of M

transmit and N receive antennas for different values of SNR(ρ).

Figure 1.2: Capacity (in normalized Shannon capacity) vs. r = min (M, N) for
0dB < ρ < 35dB in 5dB increments, Source: [3]

The initial work on ST code design has studied the case where the receiver

knows the channel state information (CSI) between each transmit and receive an-

tenna. If an accurate and up-to-date CSI is not available, USTM and DUSTM (in-

troduced by Hochwald et. al in [6] and [7]) can be employed to exploit the benefits

of the MIMO systems’ properties.
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1.2 Contributions

In this thesis, we provide a coherent analysis of USTM and DUSTM and examine

their performance with respect to the data rate and error probability under different

practical assumptions. The contributions of this thesis can be divided into three

main parts:

• A new structure of unitary matrices is introduced, and the optimal codebook

of DUSTM is searched based on minimizing union bound for the case of

the Rayleigh fading channel. A good and easy-to-compute approximation of

union bound on symbol error probability is derived that can be applied to any

unitary constellation of any size. By introducing a genetic algorithm (GA),

the design parameters, which used to be integers in the case of an exhaustive

search, can be relaxed to real parameters. The simulation results show that

this relaxation result in a better performance.

• The performance analysis of a MIMO system employing differential USTM

is carried out under the assumption of a spatially correlate-fading channel,

and a design criterion to construct the differential codebook of unitary ma-

trices is presented. Based on minimizing union bound, we search for the

optimum constellation parameters. In simulation section, the performances

of the ML and and Non-ML decoders for this case are investigated.

• Antenna selection and USTM are extended into correlated Rayleigh or Ricean

fading channels. Antenna selection in the USTM case is performed based on

the maximum norm criterion. The Chernoff bound on PEP is derived for the

selection of a single antenna. The analytical results as well as simulation

results indicate that the full diversity is preserved for both correlated and

Ricean channels. However, in the correlated channel case, there is a loss

in the coding gain.

1.3 Thesis Outline

This thesis is organized as follows:

5



• Chapter 2 briefly reviews different mathematical models of a MIMO system

and introduces some required concepts in MIMO such as diversity, pairwise

error probability, ST code design and antenna selection.

• Chapter 3 introduces the two new constellations of unitary matrices and presents

an accurate and easy-to-compute approximation of union bound on the sym-

bol error probability (SEP) as the ST design criterion. By using an exhaustive

search and a genetic search, the optimum codes with integer and real param-

eters are found, and their performance are examined and compared through

the simulations.

• In Chapter 4, the DUSTM design criterion under the assumption of a transmit

correlated-fading channel is presented. Considering the unitary matrix con-

stellations introduced in Chapter 3, we search for the constellation parameters

to minimize the union bound on SEP by taking into account the number of

receive and transmit antenna.

• Chapter 5 investigates the performance of the USTM by employing single

antennas selection in the non-independent fading channels. The Chernoff

bound on the PEP is derived for the case selecting the ’best’ single antenna,

and the diversity order and coding gain are obtained for the both correlated

and Ricean channel cases.

6



Chapter 2

Preliminaries and Background

This chapter provides a general introduction to multiple-input multiple-output (MIMO)

systems and space time coding. Important MIMO concepts and definitions, such as

space time (ST) codes, spatial rate, diversity order and coding gain, are presented

in Section 2.1. The MIMO system model, design criteria and ST codes are dis-

cussed in Section 2.2.1. MIMO channel models are described in Section 2.3. Uni-

tary space time modulation (USTM) and differential unitary space time modulation

(DUSTM) schemes are briefly reviewed in Section 2.4. Antenna selection tech-

niques along with different decoding techniques are presented in Sections 2.5 and

2.6, respectively.

2.1 Space Time Code, Spatial rate and Diversity

The general structure of an ST code can be represented by an M × T matrix:

S =




s1,1 . . . s1,T
... . . .

sM,1
... sM,T


 , (2.1)

where si,j is the modulation symbol transmitted in time slot j from antenna i, T is

the number of time slots, and M is the number of transmit antennas. Each column

represents a time slot, and each row stands for one antennas’s transmissions over

T time slots. The number of independent symbols in S divided by T is called the

spatial rate.

In wireless channels, the probability of signal fading decreases when the num-

ber of independent antenna elements is increased. The diversity order relates to

7



the number of uncorrelated spatial branches available at the transmitter or receiver.

The diversity order is mathematically defined as follows: at asymptotically high

signal-to-noise ratio (SNR) denoted by ρ, if the symbol error rate (SER) Pe can be

approximated as

Pe ≈ (Gcρ)−Gd , (2.2)

then Gc and Gd represent the diversity order and diversity gain, respectively. That

is, the diversity order is defined as the magnitude of the slope of the SER vs. the

SNR graph on a log-log scale. MIMO systems should be designed to achieve the

maximum diversity order. Since the diversity order of a MIMO system depends on

the type of coding and modulation scheme as well as the number of transmit and

receive antennas, diversity issues have been widely investigated. Besides improv-

ing error performance by maximizing the diversity order, the coding gain, which

depends on the minimum distance of the ST code, should also be improved.

In the literature, a variety of ST coding schemes support different tradeoffs be-

tween rate, diversity order and coding/array gain. The details of ST code designs

and MIMO model are described next.

2.2 MIMO Systems

2.2.1 MIMO System Model

Consider a MIMO system with M transmit and N receive antennas operating over

a frequency-flat channel that remains constant for at least T signaling intervals.

From (2.1), the information bit stream is encoded into a ST codeword of dimension

T × M . The ST codeword is defined by S = [s1, s2, . . . , sT ]T , where st is the

transmitted vector symbol over the tth time slot. In this time slot, the complex

symbols st,i are transmitted over antennas i = 1, . . . , M , and yt,j is received on

receiver antennas j = 1, . . . , N . As well, hi,j is denoted as the fading coefficient

from the ith transmit antenna to the jth receive antenna. The input-output relation

is given by

yt,j =

√
ρ

M

M∑
i=1

hi,jst,i + wt,j t = 1, . . . , T, j = 1, . . . , N, (2.3)

8



where the additive noise at time t in the receive antenna j denoted by vt,j is in-

dependently, identically distributed (i.i.d.) CN (0, 1). The average signal-to-noise

ratio (SNR) per receive antenna is ρ. Eq. (2.3) can be written in a matrix form as

Yt =

√
ρ

M
StHt + Wt, (2.4)

where Yt is the T × N complex received signal matrix, and St is the T × M

complex transmitted signal matrix at the time index t. Ht is the M × N channel

transfer function, and Wt denotes a T×N additive noise matrix with i.i.d. CN (0, 1)

elements.

2.2.2 Maximum Likelihood (ML) Detection

Different detection techniques are available to recover the transmitted data. In

Maximum Likelihood (ML) detection, the receiver uses perfect CSI to estimate

the transmitted signal matrix. The ML detection rule can be expressed as

SML = arg min
S
‖Yt −

√
ρ

M
SHt‖2

F = arg min
S

T∑
t=1

‖yt −
√

ρ

M
stHt‖2

F (2.5)

where the minimization is performed over all admissible codewords S. An error

occurs when the detector output (2.5) is not same as the transmitted matrix. In this

case, the receiver mistakes a transmitted codeword for another codeword from the

set of possible codewords.

2.2.3 ST Code Design

ST code design is an active area of research in MIMO systems. Design may depend

on many parameters such as the signaling scheme, the availability of the CSI at

the receiver, the rate of data transmission and the method of detection. However, a

general formula to derive ST code design criteria has been proposed by Tarokh et

al. in [8]. They showed that in the high SNR regime (ρ >> 1), the upper bound on

pairwise error probability of mistaking transmitted codeword Si for another code-

word Sj is expressed as

P (Si → Sj) ≤ 1

det(Gi,j)

( ρ

4M

)−r(Gi,j)N

, (2.6)

9



where Gi,j = (Si−Sj)(Si−Sj)
H . From (2.6), two important criteria can be derived

for ST code construction. First, the rank criterion aims to maximize the diversity

order, i.e. to maximize r(Gi,j)N . Hence, to extract the maximum diversity, one

should maximize the minimum rank of the difference matrix between any pair of

codewords Si and Sj and possibly make it full rank (r(Gi,j) = M ) by designing a

proper ST codebook . Second, the determinant criterion deals with the optimization

of the coding gain for the ST code. To obtain a high coding gain, one should max-

imize the minimum of the determinant of Gi,j over all possible codewords Si and

Sj . Both these criteria lead ultimately to the minimization of the error probability.

In the literature, a variety of ST codes support different tradeoffs among the rate,

diversity order and coding gain. Orthogonal space time block code (OSTBC) is one

of the well-known classes of ST codes with spatial rate rs ≤ 1 because it not only

provides a full diversity order, but also leads to very simple and low-complexity

ML receiver. OSTBC’s are based on orthogonal design. A simple form of OSTBC

is the Alamouti code with spacial rate rs = 1, which can be expressed as [9]

S =

[
s1 −s∗2
s2 s∗1

]
. (2.7)

The codeword difference matrix between any pair of codewords Si and Sj in this

case is an orthogonal matrix with two non-zero eigenvalues, leading to full 2N order

diversity. Due to the orthogonal structure of OSTBC’s, the complex vector ML

detection problem in (2.5) decouples into a set of simpler scalar detection problems

with significantly less computational complexity. A question may arise: Whether

an Orthogonal ST code necessarily exists for any number of transmit antennas with

spatial rate 1? In fact, it has been shown at least one orthogonal ST codeword

can be found to transmit real symbols for a system with any number of transmit

antenna [10]. For instance, one orthogonal design for M = 4 with spatial rate 1 is

given by

S =




s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

s4 s3 −s2 s1


 , (2.8)

where symbols s1, s2, s3 and s4 are drawn from a real constellation. In the complex-

symbol case, it has been proved that no orthogonal ST code exists with spatial rate

10



1 for systems with more than two transmit antenna [8]. However, it has been shown

that at least one orthogonal design exists for rates equal or less than 1
2

[10]. For

instance, when M = 3, a rate 1
2

orthogonal design is:

S =




s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4
s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3
s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2


 . (2.9)

So far, ST codes with spatial rate rs ≤ 1 with full diversity order MN have

been discussed. Notice that in order to decode this class of ST codes, the CSI is

required by the receiver. We will later consider USTM that enables the decoding

without having CSI at the receiver. Different types of wireless channel models are

described next.

2.3 Communication Channel Models

In the classical Rayleigh fading channel, all entries of channel matrix H in (2.4) are

assumed to be i.i.d. complex Gaussian RV CN (0, 1). In reality, however, insuffi-

cient antenna spacing, angle spread or the lack of rich scattering may cause spatial

correlation among antennas, particularly at the transmit side [11]. Moreover, chan-

nel measurements reveal that propagation environment have a fixed [possibly line of

sight(LoS)] component. Those cases are modeled as the Ricean channel, in which

the mean of the elements in the channel matrix model is not zero. In the following,

we present the mathematical models of spatially correlated and Ricean channels.

2.3.1 Spatially fading correlation

The effects of spatial fading correlation for a Rayleigh flat fading channel can be

modeled as

H = R
1/2
T HwR

1/2
R , (2.10)

where the matrices RT and RR denote the transmit and receive correlation matri-

ces, respectively. RT and RR, which are positive-definite Hermitian matrices, are

normalized so that [RT ]i,i = 1(i = 1, · · · ,M), and [RR]i,i = 1 (i = 1, · · · , N),

resulting in E{|hi,j|2} = 1.
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Several transmit/receive correlation models are available in the literature. The

first model is the exponential correlation model [12]. This model may hold for the

practical case of the equispaced linear array of antennas. The correlation matrix

and corresponding eigenvalues of this model are given by [12]

RT =




1 γ · · · γM−1

γ 1 · · · γM−2

...
... . . . ...

γM−1 γM−2 · · · 1


 (2.11)

and

λi =
1− γ2

1− 2γ cos(θi) + γ2
i = 1, 2, . . . ,M,

where θi’s are the solutions of
{

sin(M+1
2

θ) = γ sin(M−1
2

θ),
cos(M+1

2
θ) = γ cos(M−1

2
θ).

The constant correlation matrix is another practical model frequently used for

an array of three antennas placed on an equilateral triangle or closely spaced anten-

nas [13]. The correlation matrix in this case is written as

RT =




1 γ · · · γ
γ 1 · · · γ
...

... . . . ...
γ γ · · · 1


 . (2.12)

In this case, RT has only two eigenvalues λ1 = 1 + γ(M − 1) of order one and

λ2 = 1− γ of order M − 1.

Similarly, these models can also be applied to model the receive correlation

matrix. The correlation matrices have a degradation effect on the capacity of the

MIMO channel [14]. This issue is explored in Chapter 4.

2.3.2 Ricean Channel

The M × N random channel matrix H in this case is decomposed into the sum of

a fixed component and a variable component. The channel realization would be

H =

√
K

K + 1
H +

√
1

K + 1
Hw, (2.13)
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where the first and second term in (2.13) represent the mean value (called the line

of sight component) and the variable part (called the diffuse component) of the

communication channel, respectively. The Ricean factor K measures the relative

strength of the LOS component, a link-quality indicator ( [15]). The elements of Hw

are i.i.d. complex Gaussian random variables, i.e., CN (0, 1). K = 0 corresponds to

the pure Rayleigh fading case while K = ∞ indicates a non-fading channel. As an

example for a typical matrix of H, we can use the following matrices for a MIMO

channel with M = N = 2 [10]:

H1 =

[
ejθ1 0
0 ejθ2

] [
1 1
1 1

] [
ejθ3 0
0 ejθ4

]

H2 =

[
ejθ1 0
0 ejθ2

] [
1 −1
1 1

] [
ejθ3 0
0 ejθ4

]
, (2.14)

where θi’s are phase factors determined by the array geometry model and orienta-

tion. Note that the fixed component of the channel matrix plays a critical role in

channel capacity at a high K-factor. For instance, at an SNR of 10dB and K = 20,

the outage capacity of H2 is almost twice the outage capacity of H1 due to the

orthogonal property of H2. The Ricean channel is treated in Chapter 5

2.4 USTM and DUSTM

As mentioned before, USTM is an important technique for transmitting data and

achieving capacity in a MIMO system at high SNR when the CSI is unavailable.

This technique can be seen as a multiple antenna extension of phase-shift keying

(PSK) for scalar channels. Similarly, the differential USTM is also a generalization

of differential PSK in a MIMO system [16], [6]. The rest of this section explains

exactly how this modulation technique operates and examines its performance in

terms of the pairwise error probability (PEP) and data rate.

2.4.1 USTM

Assume that a data sequence of integers d1, d2, . . . with dt ∈ {0, . . . , L− 1} is to

be transmitted. Each dt is mapped to a matrix Φdt drawn from a codebook, say

13



V = {Φl|l = 0, . . . , L − 1}, where each T ×M matrix Φl satisfies ΦH
l Φl = IM

(unitary property). The positive integer L ≥ 2, which denotes the constellation

size, should be L = 2RM in order to reach to the data rate R [bits/channel]. In the

USTM scheme, to send data dzt , the associated transmitted signal St =
√

TΦzt is

transmitted over multiple antennas. The scaling factor
√

T ensures that the signals

satisfy the energy constraint.

We consider the ML reception of this scheme, and its performance is presented

when H is unknown to the receiver. Due to the unitary property of the transmitted

signal, the received signal is complex Gaussian. As a result, conditioned on Sl, the

conditional probability density of Y is obtained as [6]

p(Y|Sl) =
exp

(− tr[YR−1
l Y]

)

πTN det(Rl)
, (2.15)

where Rl = (ρT/M)ΦlΦ
H
l is the T × T received covariance matrix. According

to [6], by using matrix inversion lemma and showing that the denominator of (2.15)

is independent of Φl, the ML decoding rule becomes

Φml = arg max
φl∈V

p(Y|Φl) = arg max
φl∈V

tr{YHΦlΦ
H
l Y}. (2.16)

Since the receiver is aware of the codebook V , it performs ML detection of (2.16)

over all unitary matrices Φl and extracts the most likely transmitted signal. Note that

in (2.16), no CSI is needed to detect the transmitted matrix. Assuming a Rayleigh

fading channel remains constant during T consecutive symbol periods, the PEP of

mistaking Φl′ for Φl or vice versa is derived in [6]

Pl,l′ =
1

4π

∫ ∞

∞
dω

1

ω2 + 1/4
×

M∏
m=1

[
1 +

(ρT/M)2(1− d2
llm)(ω2 + 1/4)

1 + ρT/M

]−M

(2.17)

where 1 ≥ dll′1 ≥ · · · ≥ dll′M ≥ 0 are the singular value of the M ×M correlation

matrix ΦH
l Φl′ . Further results for USTM will be presented later.

2.4.2 DUSTM

In DUSTM [2], dzt is mapped to an M×M distinct unitary matrix Φzt . As a result,

the transmitted signal St at time t is given by

St =

{
ΦztSt−1 t = 1, 2 . . . ,
IM t = 0.

(2.18)
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We combine two consecutive received signal matrices by using (2.18) and (2.3)

and assume that the channel coefficients are almost constant for two signaling

blocks; i.e., Ht ' Ht−1. As a result, the fundamental differential system relation is

given by

Yt = ΦztYt−1 +
√

2W′
t, (2.19)

where W′
t = (1/

√
2)(Wt − ΦztWt−1) is an M × N additive independent noise

matrix with CN (0, 1). It is shown in [6] that the ML detection rule would be

d̂t = arg min ‖Yt −ΦlYt−1‖, (2.20)

and the exact PEP for a Rayleigh fading channel may be expressed as

Pll′ = p(Φl −→ Φl′) =
1

π

∫ π
2

0

M∏
i=1

(1 +
γλi

4 sin(θ)2
)−Ndθ (2.21)

where γ = ρ2

1+2ρ
and {λi} is the ith eigenvalue of the matrix ∆ll′ = (Φl−Φl′)(Φl−

Φl′)
H .

As described in [2], the DUSTM scheme can be viewed as a special case of the

general USTM scheme by defining an equivalent T ×M unitary matrix Φ̃zt of the

form Φ̃zt = 1/
√

2[IM ,Φzt ]. In this case, T = 2M .

The antenna selection technique and its performance in a MIMO system will be

briefly investigated in the next section.

2.5 Antenna Selection

The main drawback of any MIMO system with M transmit and N receive antennas

is the increased complexity and cost since this system requires complete transceiver

hardware such as transmit amplifiers and D/A converters for each antenna. A

promising strategy that can significantly reduce this complexity and simultaneously

keep almost all the benefits of a MIMO system is to select a subset of antennas at the

transmitter and/or receiver. This strategy has been considered by many researchers

during the past five years, and different criteria and effective algorithms to select

the best antennas have been proposed as well [17], [18] and [19].
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Figure 2.1: Transmit/Receive antenna switching schematic

Fig. 2.1 depicts a system with antenna selection at the transmitter and receivers

sides. Assuming we want to choose P transmit and L receive antennas, there are
(

M
P

)× (
N
L

)
distinct sub-channel choices where the channel corresponding to the ith

choice is denoted by Hi. T the dimension of Hi for any i is P × L comprising the

P selected columns and L selected rows of H.

Depending on the signaling schemes and the availability of the CSI at the trans-

mit and receiver sides, several different optimization criteria for antenna selection

may be present. However, two main approaches for antenna selection are available:

(1) maximizing the mutual information rate (capacity) and (2) minimizing the error

rate. A detailed discussion of these criteria is beyond the scope of this thesis. How-

ever, a brief explanation is provided here, since they will later be used in Chapter

5.

2.5.1 Maximizing information rate criterion

The capacity (maximum data rate) of a MIMO system employing all antenna ele-

ments is given by [3]

C = log2

[
det

(
IM +

ρ

M
HHH

)]
, (2.22)

where ρ is the average SNR per receiver. If both the transmitter and receiver have

CSI, they select those antennas that allow a maximization of the capacity. That is,

Csel = max
i

log2

[
det

(
IL +

ρ

P
HiHi

H
)]

, (2.23)

where His are created by deleting M − P columns and N − L rows from H.

The optimal algorithms involve an exhaustive search over all possible combinations
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S(H̃). Due to the difficulty of providing CSI to the transmitter, antenna selection is

done in the receiver side. It is shown in [19] that the upper bounds on the capacity

of a system with receive antenna selection approach the full-complexity system’s

capacity if the number of selected antennas is equal to or greater than M . The

search space grows exponentially with N even if antennas selection is employed

in the receiver side. Consequently, Gorokhov [20] proposed a suboptimal selection

algorithm that a significantly decreases of the computational complexity.

2.5.2 Minimizing Error rate approach

Assuming OSTBC transmission over the antennas, Gore et al. [18] have shown

that the SER depends on the received SNR. Since the received SNR relates to the

normal Frobenious norm of the selected sub-channel matrix, the optimal antenna

sub-set would be

H̃opt = arg max
i
‖Hi‖2

F . (2.24)

Note that in this case, exact CSI or statistical channel knowledge is available at

the transmitter or receiver. In [21] and [22], the authors extended this work to any

type of space time codes and presented an approximate analysis of the PEP for

antenna selection. These authors showed that by selecting an antenna sub-set based

on (2.24), the diversity order is maintained whereas the coding gain is reduced.

In some specific cases where the channel rapidly varies, estimation of the chan-

nel is either too costly or almost impossible. Therefore, a technique that does not

require the CSI either at the receiver or at the transmitter is needed for selecting

antennas. Without CSI, the authors of [23] proposed an interesting technique for

antenna selection at the receiver. Based on this technique, a subset of receive anten-

nas with the largest received signal powers are chosen. For single antenna selection,

the rule is given by

nopt = arg max
n=1,··· ,N

zn, (2.25)

where zn = yH
n yn is the norm of the received signal at the nth receive antenna

(yn). The authors of [23] further applied this rule to USTM and proved the full

diversity order can be achieved by this selection criterion. In Chapter 5, this scheme

is comprehensively reviewed, and several extensions are provided.

17



2.6 Decoding Techniques

Along with designing ST codes and analyzing MIMO system capacity, decoding

techniques for ST codes have received much attention. As mentioned in (2.5), when

the channel matrix H is known to the receiver, Ŝ is the ML solution if it minimizes

Λ(S) = ‖Y −HS‖2
F (Y is the received matrix) over all possible transmitted code-

words. Since no explicit analytic solution exists for this problem, an exhaustive

search is required on all possible transmitted matrices. Nevertheless, because of its

computational complexity, an exhaustive search is computationally prohibitive in

most cases.

Fast decoding is another possible way to find transmitted codeword by relaxing

the entries of S and first using the inverse (or pseudo inverse) of the channel matrix

H to calculate S̃ = H−1Y and then mapping each entry of S̃ to the nearest point in

the signal constellation [24], [25]. This method leads to a sub-optimum decoding

technique called the Zero-Forcing (ZF) decoder or Decorrelator. Although the ZF

decoder is much less complex than the ML decoder and can be implemented easily,

it suffers from weak performance. The ZF decoder can be modified to find the

inverse channel matrix by using more reliable and stable numerical methods and

also to improve the system performance [26], [27]. For OSTBCs [28], ML decoding

can be decoupled into an individual search on each element of S.

Another popular decoding strategy proposed along with V-BLAST is known as

nulling and canceling, which gives a reasonable tradeoff between complexity and

performance. The matrix inversion process in nulling and canceling is performed

in layers: one estimates a row from S, subtracts the symbol estimates from Y , and

keeps on decoding successively [24]. Full details and analysis of this approach are

provided in [29].

Instead of exhaustive search on all possible transmitted matrices, ML decod-

ing can be implemented by efficiently searching the solution space. This method

is called sphere decoding and has recently been discussed extensively in the litera-

ture [30] and [31]. Sphere decoding is based on the enumeration of the lattice points

located within a hypersphere of some radius centered at a target, e.g., the received
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signal point. This methods’ complexity depends on the method used for determin-

ing the subset of the signal matrices in particular and the SNR of the system in

general.

2.7 Summary

This chapter defined some important concepts of a MIMO system such as space

time codes, diversity order, coding gain and spatial rate. Three different channel

models that are frequently assumed in the literature were presented along with an

introduction to USTM and DUSTM. Antenna-selection techniques and selection

rules for different transmission schemes were briefly reviewed. Finally, some well-

known decoding techniques including ML and Non-ML techniques for ST codes

were discussed.
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Chapter 3

Differential Unitary Space-Time
Code design

This chapter begins with a brief introduction to unitary ST code design. Two new

constellations of unitary matrices and an approximation of union bound on the sym-

bol error probability (SEP) as a design criterion are introduced in Section 3.2. By

using an exhaustive search, the optimum codes with integer parameters are found

and in Section 3.4 their performance is examined in terms of the SER. By using the

Genetic Algorithm technique, a powerful global optimization method, the optimum

codes with real parameters are found. The simulation results for these codes’ error

rate performance are presented in Section 3.5.

3.1 Introduction

As mentioned before, DUSTM has been proposed for use with an unknown, slow,

flat-fading MIMO channel [7], [16]. The signal constellation consists of a set of uni-

tary matrices, and the design objective is to maximize the diversity product among

all the members of the unitary constellation. Achieving this design goal leads to the

minimization of the block error probability in the high signal-to-noise ratio (SNR)

region.

Based on maximizing the diversity product, several unitary constellations have

been proposed [2], [32], [33]. (Due to space limitation, other references are omit-

ted). The design in [2] results in cyclic diagonal matrices with M parameters, where

M is the number of transmit antennas. The parameters are numerically optimized
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to maximize the diversity product. In [32] and [33], the cyclic design is augmented

with additional multiplying matrices and the design of [32] is limited to three to six

transmit antennas. Instead of maximizing the diversity product, Wang et al. [34]

minimized the union bound on the block error probability by taking into considera-

tion the number of receive and transmit antennas and the operating SNR.

In Section 3.2, two new unitary signal constellations are derived: a simple gen-

eralization of [32] and a constellation based on [35]. When M is even, the first is

a special case of the second. An approximate union bound on PEP is derived. Op-

timal codes with integer parameters are searched and found to minimize the union

bound. For larger MIMO dimensions or higher data rate, finding the optimum code

by exhaustive search over all possible integer design-parameters might be almost

impossible. In Section 3.5, the relaxation of the design parameters to the real num-

bers is investigated and the genetic algorithm method is used to solve the resulting

optimization problem. The simulation results show that by relaxing the design pa-

rameters, better codes for DUSTM are found.

3.2 Code Design Criteria and Approximate Union Bound

In Section 2.2.1 and 2.4, the system model and the DUSTM scheme are described.

To transmit a data sequence of integers d1, d2, . . . with dt ∈ {0, . . . , L− 1}, each

dt is mapped to a distinct unitary matrix signal Φdt drawn from a unitary space-

time matrix constellation V; i.e., V = {Φ1,Φ2, · · · ,ΦL}. The data rate is given by

R = log2 L/M .

Assuming that the channel remains constant for at least two block intervals (i.e.,

Ht = Ht−1), the pairwise error probability (PEP) is given by [34]

Pll′ = p(Φl → Φl′) =
1

π

∫ π
2

0

M∏
i=1

(
1 +

γλi

4 sin2 θ

)−N

dθ, (3.1)

where γ = ρ2

1+2ρ
, and {λi} is the i-th eigenvalue of the matrix ∆ll′ = (Φl −

Φl′)(Φl −Φl′)
H .

For asymptotically high SNR, [7] and [36] show that the design criterion is to
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maximize the diversity product ζ to minimize PEP; i.e.,

ζ(V) =
1

2
min
l 6=l′

| det(Φl −Φl′)| 1
M . (3.2)

On the other hand, for low SNR, the design criterion is to maximize the trace

product, which is called diversity sum [34] which is defined as

ξ = min
l 6=l′

||Φl −Φl′||2. (3.3)

In [34], instead of the diversity product, the union bound on the block error

probability is the design objective. To help to achieve this objective, an easy-to-

compute approximation of the PEP is derived for the rapid evaluation of the union

bound.

By substituting sin θ = t in (3.1) and using the Gaussian quadrature rules [37],

the PEP (3.1) may be expressed as

Pll′ =
1

2n

n∑
i=1

1

det[I + γ
4x2

i
∆ll′ ]N

+ Rn (3.4)

where xi = cos(2i−1)π/2n and Rn is a reminder term. Our numerical experiments

showed that the choice of about 9 terms (n = 9) is sufficient for the remainder term

to be negligible. Since the above PEP is very accurate, it can be combined with the

union bound on the overall block error probability. For all equally-likely Φl, the

union bound becomes

PUB ' 1

18L

L−1∑

l=0

L−1∑

l 6=l′

9∑
i=1

1

det[I + γ
4x2

i
∆ll′ ]N

. (3.5)

Unlike the diversity product, which ignores the SNR, (3.5) takes into account

the operational SNR and the number of receive antennas. Thus, minimizing the

union bound (3.5) may be a useful design objective.

3.3 Unitary Constellation Design

The two new signal constellations are developed next, and several of their properties

are described. Consider the rotation matrix given by

RFM(kθ) =




RF2(k1θ) . . . 0
... . . .
0 . . . RF2(kM

2
θ)




M×M

, (3.6)
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where

RF2(kiθ) =

(
cos kiθ sin kiθ
− sin kiθ cos kiθ

)
,

and k = {k1, k2, . . . , kM
2
} is a set of different rotation factors. Our proposed

DUSTM constellation V = {Φl|l = 0, . . . , L− 1} consists of the following unitary

matrices:

Φl =




ejθLµ1 . . . 0
... . . . ...
0 . . . ejθLµM




l

.[RFM(kθL)]l, (3.7)

where l = 0, . . . , L − 1, and θL = 2π
L

. Clearly, a M × M unitary matrix can be

parameterized by 3M
2

parameters. When all kis are the same, our proposed constel-

lation reduces to the cyclic rotated design, which was proposed in [33]. When all kis

are set to zero, (3.7) reduces to the cyclic diagonal design in [2]. Since our constel-

lation has more parameters, a better performance than that of the previous designs

is expected. For example, our constellation outperforms those in [33] and [2] in

terms of the maximum diversity product. In comparison to [32], our constellation

is simple and is available for any even number of transmit antennas M (not limited

to M ≤ 6). However, like the constellation in [33], it is restricted to the MIMO

systems with an even number of transmit antennas.

In our proposed designs, we need to find the optimum set of parameters µ =

{µ1, · · · , µM} and k = {k1, · · · , kM
2
} that yield the largest diversity product (3.2)

or the smallest union bound (3.5), depending on the case. Since analytical determi-

nation of the optimums appears intractable, either an exhaustive computer search

or genetic algorithms are used to find the optimum parameters. We first introduce

a general unitary matrix constellation based on [35] that can successfully handle

both an even or odd number of transmit antennas, and also include (3.7) as a special

case. Note that the unitary signals in (3.7) and the proposed constellation in [33]

are limited to an even number of transmit antennas. This constellation has M phase

angles µ1, · · · , µM and M − 1 rotation angles k1, · · · , kM−1 and is given by

Φl =




ejθLµ1 . . . 0
... . . . ...
0 . . . ejθLµM




l

.[J1,2(k1θL)]l

.[J2,3(k2θL)]l · · · [JM−1,M(kM−1θL)]l

(3.8)
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, where

Ji,i+1(kiθL) =




Ii−1 0 · · · 0
0 cos(kiθL) − sin(kiθL) 0
... sin(kiθL) cos(kiθL)

...
0 · · · 0 IM−i−1


 , (3.9)

θL = 2π
L

, and l = 0, . . . , L− 1. When all ki are set to zero, (3.8) is exactly the same

as the diagonal cyclic constellation of [2], and in the case of even transmit antenna,

if all k2j , j = 1, . . . , M−2
2

, are set to zero, (3.9) is an extension of the constellation

(3.7).

3.4 Exhaustive Computer Search

Here, an exhaustive computer search is employed to find the optimum parameters.

To reduce the computational complexity, all design parameters are restricted to inte-

ger numbers. Thus, candidates for the best set of µ and k are exhaustively generated

and examined for performance ( maximum ζ or minimum PUB) and hold if they act

better than previous best candidate set. Since the computational complexity grows

exponentially with increases of M and L, one can reduce the search complexity by

applying the following theorems.

Theorem 3.4.1 For an even number of transmit antennas, the diversity product

between the lth and l′th unitary matrices in (3.7) depends only on (l′ − l) mod L.

Proof 3.4.1 By substituting constellation (3.7) in formula (3.2), the diversity prod-

uct can be written as

ζll′ =
1

2
| det(Φl −Φl′)| 1

M

=
1

2

∏
i

|1− (ej∆lΘLµi + ej∆lΘLµi+1) cos(ki∆lΘL)

+ ej∆lΘL(µi+µi+1)| 1
M

, (3.10)

where 1 ≤ i ≤ M − 1, i is odd, and ∆l = l′ − l. It is clear, therefore, that

ζll′ depends only on the difference between l and l′. As a result, it is sufficient to

consider ζ0l′ for l′ = 1, 2, · · · , L − 1 to find the diversity product for a particular

sets of parameter µ and k.
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Theorem 3.4.2 Assume all the conditions of theorem 5.16, µ and k should be in

either of the following forms:

1. All µi’s are even numbers, while all ki’s are odd numbers.

2. All µi’s are odd integers number, and all ki’s are even integer numbers.

Proof 3.4.2 See [33]. The same argument is applied here by taking into account

the different rotation angles instead of just one rotation angle.

Note that the above theorems cannot be extended to the constellation (3.8).

However, by invoking the following theorem, the search complexity can be reduced.

Theorem 3.4.3 For a proposed unitary matrix Φl in (3.8), if L is an even num-

ber, at least one parameter must be an odd number among all parameters µ =

{µ1, · · · , µM} and k = {k1, · · · , kM−1}.

Proof 3.4.3 Suppose that all parameters k and µ are even integer numbers. Thus,

we observe that Φ0 and ΦL
2

are viewed as the same at the receiver and,consequently,

the receiver will not be able to identify whether Φ0 or ΦL
2

was transmitted. Conse-

quently, this set of parameters does not result in the minimum upper bound on PEP

or the maximum diversity product.

In order to further reduce the search space, one can decrease the number of in-

dependent parameters in the constellation (3.8). Of course, the achievable diversity

product may decrease as well. Following an idea from [33], if M is even,

µ̃k =

{
µ1 + 2(k − 1) 1 ≤ k ≤ M

2
,

µ2 + 2k −M − 2 M
2

< k ≤ M
(3.11)

and when M is odd,

µ̃k =





µ1 + 2(k − 1) 1 ≤ k ≤ M−1
2

,

µ2 k = M+1
2

,

µ3 + 2k −M − 1 M+1
2

< k ≤ M.

(3.12)

The maximum diversity products of our proposed codes in (3.8), the codes in

[33], and the cyclic diagonal codes in [2] are presented in Table 3.1 for a system
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M L ζ(proposed) ζ(in [33]) cyclic
16 0.5946 0.5946 0.5066

6 32 .5577 .5069 0.448
16 0.5946 0.5946 0.5623

10 32 .5655 .5137 0.5131

Table 3.1: Diversity Product of the optimum codes with different constellation
scheme M = 6, N = 1, L = 16, 32

Scheme/criterion µ k PUB

Diag./ min PUB [1, 3, 7] [−,−] 5.746e−4
Rot./ max ζ [10, 10, 9] [3, 12] 2.310e−4

Rot./ min PUB [7, 7, 10] [12, 4] 1.799e−4

Table 3.2: Comparison of constellation parameters and Union bound for rotated and
diagonal signal , M = 3, N = 2, L = 16

with 6 or 10 transmit and single receive antennas. and a constellation size of 16

and 32. As we expected, our proposed constellation has an equal or higher diversity

product relative to the other constellations.

Table 3.2 presents the optimum codes found the from search based on optimiz-

ing the diversity product and minimizing the upper bound for our proposed con-

stellation (3.8) and the diagonal cyclic scheme in [2]. The system parameters are

M = 3 transmit antennas and N = 2 receive antennas and the operating SNR= 12.

Note that reference [33] does not provide any code for 3 transmit antenna systems.

Due to continuity, the optimum code in a particular SNR is either optimum or near

optimum code within a range of SNR. To show the coding advantage of our design,

we list the PUB of the all the optimum codes. We observe that the union bound of

our proposed constellation is less than that of the original designs.

3.4.1 Simulation Results and Discussion

Codes in Table 3.2 and optimum codes for constellation size L = 8 are simulated.

The proposed constellation in (3.7) with different rotation angles (2 rotation angles

for M = 3) performs better than the previously proposed constellations. Fig 3.1

shows that by applying new constellation and union-bound criteria, a coding gain
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Figure 3.1: Symbol Error Rate of two different constellation with M = 3, N = 2
for Differential receiver.

about 1.5 dB is achieved over the code designed in [2] at an SER of 10−4. A slow

fading channel with Jakes’ fading model is assumed in which normalized fading

parameters fdTs = 1.5× 10−3. fd is the Doppler frequency and Ts is the sampling

period. The union-bound based design generally has better performance than the

design based on the diversity product in both constellations.

3.5 Genetic Algorithm Search method

The design parameters µ and k are obtained based on the criteria mentioned in Sec-

tion 3.2. Without loss of generality, we assume that a set of parameters should be

optimized by minimization of a cost function. Previously, when the design param-

eters were restricted to integers, an exhaustive computer search or random search

for optimum parameters was employed since analytical determination of the opti-

mum appeared to be intractable. Moreover, because the computational complex-

ity increases exponentially with M and L, using an exhaustive search to find the

optimum parameters for large L and M is difficult. A random search, does not

guarantee that the final outputs even is close to an acceptable neighborhood of the

optimum parameters.

To handle these problems, we employ a genetic algorithm to extract the optimal

parameters. Although it does not guarantee the global optimality of its answers,
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the cost of genetic solutions are better than the optimum values from an exhaus-

tive search. This seemingly contradictory result is obtained by relaxing the design

parameters to be real in the genetic search rather than to be integer parameters as-

sumed in the exhaustive search. This extension embeds the integer parameter space

in a much larger real parameter space, improving the likelihood of finding better

codes. In the following sections, the genetic algorithm is described and the experi-

mental results are provided.

3.5.1 Genetic Algorithms

The genetic algorithm [38] is an exceptional search technique for finding approxi-

mate solutions to optimization and search problems based on natural selection, the

process that drives biological evolution. To use a genetic algorithm, a method of

representing a solution (encoding the solution) is required such that it can be ma-

nipulated by the algorithm. Usually, solutions are represented as binary strings of

0s and 1s, but different encodings are also possible. Additionally, we require the

fitness function (cost function) to measure the quality of any solution.

The algorithm begins by creating a random initial population and then making

a sequence of new populations/generations. In each generation, the fitness of the

whole population is evaluated, and a score is assigned to each member of the current

population. Each member with higher associated fitness value is given a higher

score. A selection mechanism based on the given scores is applied to the population

and the individuals strive for survival. The fitter individuals have more chance to be

selected to produce the next generation by means of genetic transformations such as

crossover and mutation. Because the entire population participates in the search, the

genetic algorithm is less likely than many search procedures to get stuck at a local

minimum. As the algorithm continues, and newer and newer generations evolve,

the quality of solutions improves.

In general, the next generation is composed of three types of children as follows:

Elite Children: Children in the current generation are selected for the next gen-

eration based on their fitness values. Since the selection rule here is probabilistic,

not deterministic, fitter solutions (measured by a fitness function) are typically more

28



Figure 3.2: one-point crossover technique

Figure 3.3: two-points crossover technique

likely to be selected. The non-determined rule helps to keep the diversity of the

population large and also avoids convergence to a poor solution as well.

M L ζ (genetic) ζ(exhaustive) cyclic
16 0.6602 0.6083 0.5066

6 32 0.5678 0.5069 0.448
16 0.6601 0.6153 0.5623

8 32 0.5827 0.5453 0.5221

Table 3.3: Diversity products of DUST codes obtained by genetic algorithm and
exhaustive search.

Crossover Children: These are created by combining pairs of parents in the

current population. Typically, the new solution shares many characteristics of the

’parents.’ Generally, the crossover operation recombines the selected solutions (par-

ents), by swapping part of them, producing divergent solutions to explore the search

space. Many crossover techniques exist to produce a child of a pair of parents [39].

However, all of them are surprisingly simple to implement, involving random num-

ber generation and partial string exchanges. Figures 3.2 and 3.3 illustrate the two

different techniques used in crossover generation.

The scattered crossover function is another technique usually used in crossover

generation. This method first creates a random binary vector with the same size of

parents. Then if the ith bit is 0, the corresponding gene is selected from the first

parent; otherwise, this gene is selected from the second parent. Ultimately, all the

selected genes are combined to form the child. For example, if p1 and p2 are the
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parents, p1 = [a, b, c, d, e, f, g, h], p2 = [1, 2, 3, 4, 5, 6, 7, 8], and the binary vector is

[1, 1, 0, 0, 1, 0, 0, 0], the function returns the following child:

child = [a, b, 3, 4, e, 6, 7, 8]

.

Mutation Children: The algorithm generates mutation children by randomly

changing the bits (genes) of an individual parent in the current generation. This

process can be carried out by adding a random vector from a Gaussian distribution

to the parent. The aim of mutation is to allow the algorithm to avoid local optima

by preventing the population from becoming too similar to each other, thus slowing

or even stopping evolution.

As a result, new mutated members along with new crossover members and the

rest of those selected from the previous population form the new generation. The

genetic algorithm uses the following conditions to terminate:

• A solution is found that satisfies the criteria(Fitness limit).

• Allocated time is reached (Time limit).

• The specified number of generations is reached.

• No improvement occurs in the objective function for a specific number of

successive iterations.

Table 3.3 shows the parameter search results and their corresponding diversity

product for the signal constellation in [33] for L = 16 and 32, and M = 6 and

8, obtained from the genetic algorithm. For comparison, the diversity product of

the obtained codes in [33] and [2], obtained from the exhaustive integer search, are

included in Table 3.3. With the use of parameter relaxation and genetic search, al-

most all results are better than those from the exhaustive search. Clearly, to find the

optimum parameters in our proposed constellations in (3.7) and (3.8), the genetic

algorithm can be used as well.
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Figure 3.4: Symbol Error Rate performance of cyclic and cyclic rotated design
when L = 16, M = 6 and N = 1. The dashed line curves are for exhaustive search
and solid lines are for genetic search.

Remark: In some cases, the extracted parameters from the exhaustive search

seem to be the global optimum answer. However, to our knowledge, the literature

provides no proof for this conclusion.

3.5.2 Simulation Results and Discussion

For comparison, the performance results for DUSTM codes from genetic algo-

rithms and the exhaustive integer search are given.

Fig. 3.4 displays the SEP for the proposed constellations in [2] and [33] with the

integer parameters obtained from the exhaustive search along with the real parame-

ters obtained from the genetic search. In our simulations, the Rayleigh fading chan-

nel was used with Jakes’ model with a normalized fade rate of fdTs = 2.5× 10−3.

The performance was for a MIMO system with M = 6 and N = 1 for L = 16

and 32. Fig. 3.4 clearly shows that the codes extracted by the genetic search out-

performed the previous results obtained by an exhaustive search. The performance

improvement is about 0.4 dB for the cyclic group design and 0.6 dB for the cyclic-

rotated design, at a 10−5 error rate.
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3.6 Summary

This chapter introduced the two new constellations of unitary matrices for DUSTM

and searched for the optimum parameters based on minimizing the union bound on

the SEP. A closed-form approximation of the union bound which is much easier to

compute was derived. Although the number of independent parameters involved in

our proposed constellation (3.8) is more than those of cyclic rotated and diagonal

constellations, its error performance is considerably better. In addition, our pro-

posed unitary constellation, unlike cyclic rotation, can be employed in any MIMO

system with an arbitrary number of transmit antennas. In Section 3.5, by using

the Genetic algorithm and relaxing the parameters to the real numbers rather than

integers, the performance of the cyclic rotated and diagonal codes in terms of max-

imizing the diversity product or minimizing the union bound was improved.
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Chapter 4

Optimum Design DUSTM for
Transmit-Correlated Channel

In this chapter, a DUSTM design criterion for the transmit-correlated Rayleigh fad-

ing channel is presented. Using the unitary matrix constellations introduced in Sec-

tion 3.3, in Section 4.3 we search for the constellation parameters to minimize the

union bound on SEP by taking into account the number of receive and transmit

antennas, the operational SNR, and the correlation matrix. Section 4.4 examines

the performance of the ML (optimal) receiver and differential (suboptimal) receiver

and quantifies the influence of the correlation coefficient on the coding gain.

4.1 Introduction

As mentioned before, DUSTM is suitable for use where neither the transmitter nor

the receiver knows the wireless channel [6]. A design for unitary space-time con-

stellation for independent fading channels has been proposed in [2], [33]. However,

a few works address the performance analysis of unitary space time modulation

(USTM) scheme in general and the DUSTM scheme in particular, operating over

spatially correlated channels. The pairwise error probability (PEP) and error per-

formance of USTM has been derived for correlated channels [40]. In this present

work, we assume that a correlation exists between any pairs of only transmit an-

tennas. This assumption is realistic since in many practical multiantenna system

with sufficient antenna spacing, the channel gain associated with different transmit

antennas exhibit strong correlations whereas correlation between receive antennas
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is negligible [11]. Reference [41] shows that the channel correlation matrix is in-

dependent of the operation environment and is just a function of the mobile angular

position with respect to the transmitter. As a result, the knowledge of the corre-

lation matrix can be estimated at the receiver even though the channel coefficients

vary rapidly.

In this chapter, a design criterion to construct the differential codebook of uni-

tary matrices is presented for the spatially-correlated channel case. Using the unitary-

matrix constellations introduced in the previous chapter, we search for the optimum

constellation parameters that minimize the union bound on SEP by taking into ac-

count the number of receive and transmit antenna, the operational SNR, and the

correlation matrix. In the simulation section, the performance of the ML (optimal)

decoder and differential (suboptimal) decoder is investigated. The simulation re-

sults show that the suboptimal decoders’s performance approaches the optimal’s

performance at the high region of SNRs. Because of the availability of the corre-

lation knowledge at the receiver, both optimal and suboptimal decoders can be im-

plemented. However, due to the lower complexity of the differential (suboptimal)

decoder, this decoder is more desirable for use than the optimal decoder, especially

at medium or high SNRs.

4.2 DUSTM over Transmit Correlation

Consider a MIMO system introduced in Section 2.2.1 with M transmit and N re-

ceive antennas signaling over a correlated flat-fading channel. As described in Sec-

tion 2.4, DUSTM is a special case of unitary modulation obtained by rewriting

Y = [YT
t−1Y

T
t ], Φ̃zt = 1/

√
2[IM ,ΦT

zt
]T and W = [WT

t−1W
T
t ]T . Hence, the input-

output relationship in this case reduces to

Y =
√

2ρΦ̃H + W. (4.1)

Note that T = 2M is chosen to derive the equation (5.1). To model the cor-

relation between antennas, the spatially transmit-correlation model is employed,

H = R
1/2
T Hw where Hw is an M × N matrix composed of i.i.d. CN (0, 1) RVs,

and the matrix RT specifies transmit correlation matrix (2.3.1). The ML decoder in
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this case would be

z̃t = arg max
0≤l<L

tr

{
YHΦ̃l(

1

2ρ
R−1

T + IM)−1Φ̃H
l Y

}
. (4.2)

On the other hand, by using the fundamental differential receiver equation given

in [2], the differential estimator regardless of the channel type would be

z̃t = arg min
0≤l<L

‖Yt −ΦlYt−1‖2
F . (4.3)

Neither estimator (4.2) nor estimator (4.3) requires the CSI. However, the former

estimator, which needs the correlation matrix RT to extract the data, is actually a

ML decoder while the latter decoder is not. We will investigate the performance of

these two estimators in terms of the SEP and the system complexity.

4.2.1 Pairwise Error Probability in case of DUST Code

The exact pairwise error probability of USTM under the correlated fading channel

assumption has been derived in [40]. Generally, the PEP is a function of the oper-

ational SNR, N , M and the channel correlation matrix RT in a very complicated

manner. By using RH = IN ⊗RT , the PEP of DUSTM may be expressed as

P{Φl → Φl′} = −
∑

Re(rk)<0

Ress=1/rk

{
1

s
∏2M

k=1 (1− rks)N

}
, (4.4)

where r1, . . . , r2M are the eigenvalues of

Cl,l′ =
(
I2M + 2ρΦ̃l′RT Φ̃H

l′

)−1

(Φ̃lRT Φ̃H
l − Φ̃l′RT Φ̃H

l′ )

= 2ρ
[
−I2M + (I2M + 2ρΦ̃l′RT Φ̃H

l′ )
−1(I2M + 2ρΦ̃lRT Φ̃H

l )
]
. (4.5)

In (4.5), Φ̃l = 1√
2
[IM ,ΦT

l ]T and Φ̃l′ = 1√
2
[IM ,ΦT

l′ ]
T . Note that the probability of

mistaking Φl for Φl′ is not necessarily equal to the probability of mistaking Φ′
l for

Φl in a correlated channel.

4.3 Code Design

Reference [42] argues the optimum DUST codes for the Rayleigh channel case must

yield the minimization of the union bound on PEP. Similarly, the same approach can
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be drawn and applied to the correlated channel case. Hence, if Φls are equally likely

to be transmitted, a good criterion for a code design is to minimize the union bound

PUB =
1

L

L−1∑

l=0

∑

l′ 6=l

P{Φl → Φl′}, (4.6)

which is obtained by summing the Chernoff bounds of all the PEPs divided by L.

In order to construct the unitary codebook, along with a design measure, an uni-

tary constellation is required. An elegant constellation of unitary matrices for the

DUSTM systems was proposed in Section 3.3. These codes not only yield better

performance than other codes in terms of lower SEP but also can be applied to a

MIMO system with an arbitrary number of transmit antennas. For the given code-

book size L ≥ 2, M , N and the operational SNR, an exhaustive search is performed

to obtain the best set of integer parameters µ = µ1, · · · , µM ∈ {0, . . . , L − 1} and

k = k1, . . . , kM−1 ∈ {0, . . . , L− 1} that minimizes the PUB . Since to the best of

our knowledge, no explicit solution exists for this problem, an exhaustive computer

search is employed. Candidates for the best set of µ and k are exhaustively gener-

ated and tested in a performance measure (4.6) and kept if they are better than the

previously best candidate set. Below, it is shown that by using the following the-

orems, the search-space complexity of our proposed constellation as well as some

other constellations can be significantly reduced. We then compare the error per-

formance of the optimum codes obtained from our proposed scheme with the codes

resulting from other available constellations in the literature.

Theorem 4.3.1 Considering the diagonal constellation in [2], the eigenvalues of

matrix Cl,l′ are the same as the eigenvalues of C0,k where k = (l′ − l) mod L. As

a result, it is sufficient to compute C0,l and Cl,0 for l = 1, 2, · · · , L− 1 to calculate

the union bound in (4.6).

Proof 4.3.1 Let’s define eig(Cl,l′) as the set of eigenvalues of the matrix Cl,l′ . From

(4.5), we have

eig(Cl,l′) =
1

2ρ

(
[−1, · · · ,−1]T +eig

[
(I2M + 2ρΦ̃lRT Φ̃H

l )−1(I2M + 2ρΦ̃l′RT Φ̃H
l′ )

])
.

(4.7)
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By using the matrix inversion and determinant Lemmas, i.e., (A + BCD)−1 =

A−1 −A−1B(C−1 + DA−1B)−1DA−1 and eig(AB) = eig(BA), equation (4.7)

can be rewritten as

eig(Cl,l′) =
1

2ρ

(
[−1, · · · ,−1]T +eig

[
(I2M − 2ρ(Λ−1 + 2ρI2M))−1(I2M − 2ρPΛPH)

] )
,

(4.8)

where P = UH(IM + ΦH
l′ Φl), and U and Λ result from the SVD decomposition

of RT = UΛUH . Due to the orthogonal structure of Φl and Φl′ , we have P =

UH(IM + ΦH
k Φ0), where k = (l′ − l) mod L. Therefore, eig(Cl,l′) = eig(C0,k).

Theorem 4.3.2 For the general unitary matrix Φl in (3.8), if L is an even number,

among all parameters µ = {µ1, · · · , µM} and K = {k1, · · · , kM−1}, at least one

parameter must be an odd number.

Proof 4.3.2 Proof by contradiction; Consider C0, L
2

, when ki = even for i =

1, · · · ,M and µj = even for j = 1, · · · ,M − 1, then C0, L
2

= 02M×2M . In this

case, Φ0 and ΦL
2

are viewed as the same at the receiver, and, consequently, the

receiver will not be able to identify whether Φ0 or ΦL
2

was transmitted. This set of

parameters definitely does not result in the minimum upper bound on SEP.

In constellation (3.8), 2M−1 parameters should be determined. The computational

complexity and, accordingly, the time needed for finding the optimum parameters

grows exponentially with the increase of M and L. Following an idea from [33],

we further reduce the search space by decreasing the number of independent pa-

rameters in the diagonal matrix of (3.8), if M is even:

µ̃k =

{
µ1 + 2(k − 1) 1 ≤ k ≤ M

2
,

µ2 + 2k −M − 2 M
2

< k ≤ M,
(4.9)

and when M is odd,

µ̃k =





µ1 + 2(k − 1) 1 ≤ k ≤ M−1
2

,

µ2 k = M+1
2

,

µ3 + 2k −M − 1 M+1
2

< k ≤ M.

(4.10)

In the next section, the performances of some optimized DUST codes based

on different constellations for a spatial correlated channel are presented. We also
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L Our code PUB Cyclic group code PUB

8 µ = [2, 2, 2], k = [4, 5] 0.02027 µ = [2, 7, 3] 0.02247

16 µ = [7, 7, 10], k = [4, 5] 0.0607 µ = [1, 12, 9] 0.0625

Table 4.1: Optimum codes and their corresponding union upper bound based on
proposed constellation in (3.8) and diagonal (cyclic) constellation in [2], M =
3, N = 1, SNR = 14dB

investigate how the correlation coefficient between each two antennas affects the

coding gain. The correlation model considered in this section is the exponential

correlation model introduced in Section 2.3.1.

For illustration purposes, we present an example of a MIMO system with M =

3 N = 1 γ = .9 and then construct the different unitary codebooks associated with

each unitary constellations. Note that, RT should be normalized so that E{|hi,j|2} =

1. Table 4.1 shows the obtained parameters of the proposed unitary constellation

in (2.3.1) along with the optimum parameters of the diagonal unitary constellation

for codebook size L = 8, 16. Their corresponding union bounds for each group of

codes are also presented for comparison purpose.

Note that the optimum codes which lead to the minimum upper bound might

change for different SNRs. However, due to continuity, we expect that a code with

minimum PUB in a particular SNR is still the optimum code or very close to the

optimum code within a range of SNR.

4.4 Simulation Results

By using the obtained codes in Table 4.1, the symbol error rate (SER) performance

of the ML receiver (4.2) and Non-ML (Differential) receiver is shown in Fig. 4.1

as a function of the received SNR. Moreover, this figure depicts the performance of

the proposed codes in (2.3.1), the diagonal codes that optimized the union bound in

(4.6) and the diagonal code in [2] designed for the Rayleigh-fading channel when

M = 3, N = 1, L = 16. By taking into account the channel correlation model,

we observe that the new design of the diagonal constellation achieves a coding

advantage of about .4 dB at the SER range 10−2−10−3 over the code designed in [2]
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Figure 4.1: Symbol Error Rate of two different constellation with M = 3, N = 1
for ML receiver and Non-ML(Differential) receiver.

where the correlation was not considered . By using our proposed constellation

in (3.3) to construct the codebook, a better performance compared to the others

is obtained such that, for instance, this improvement is approximately 1 dB at an

SER of 2 × 10−3. As SNR increases, the performance of the differential (Non-

ML) decoder approaches the performance of the ML decoder. This point in more

obvious in Fig. 4.2, which depicts the SER performance of the optimum codes

with a different correlation matrix assumption for M = 2, N = 2, L = 8 and

RT =

[
1 γ
γ 1

]
.

Fig. 4.2 illustrates the SER performance of the optimum codes for different

values of the correlation coefficient (γ), assuming M = 2, N = 2, L = 8 and

RT =

[
1 γ
γ 1

]
.

Both ML and Non-ML detectors perform identically when no correlation exist

between the transmit antennas (γ = 0). This result was expected because in [2], it

is proved that in the case of the Rayleigh-fading channel ( no spatially correlation),

differential detection is actually equivalent to ML detection. We notice that even

though the correlation coefficient is not zero, e.g., γ = 0.5, the performances of

the ML and differential decoders are very similar. This fact implies that a differ-

ential decoder with so much less complexity can be used instead of a ML decoder

in a practical system and that a differential decoder exhibits the same error rate
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Figure 4.2: Performance comparison of ML and Non-ML receivers on the optimum
code in constellation (2.3.1) when M = 2, N = 2 and L = 8.

performance.

4.5 Summary

In this chapter, we investigated the error rate performance of the DUSTM scheme

operating over a transmit-correlated fading channel. In such a system, to construct

the best unitary codebook, we introduced a design measure that minimizes the union

bound. As expected, our optimum codes showed a better performance than thoe of

the existing codes for the correlated channel case. In the simulation section, the

performance of ML and differential decoders was studied, and it was observed that

the differential decoder’s performance approaches the ML’s performance at high

SNR.
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Chapter 5

Antenna Selection for USTM over
Correlated and Ricean Channels

In this chapter, Section 5.2 describes the system model and presents a brief overview

of USTM and DUSTM. In Section 5.3, the ML decoder and Chernoff bound on

PEP are derived for antenna selection and USTM over the correlated fading chan-

nel. For two transmit correlation models, the diversity order and coding gain are

derived. The extension of our performance analysis to the Ricean channel is pre-

sented in Section 5.4. The numerical results are shown in Section 5.5, and con-

cluding remarks are given Section 5.6. Lastly, in Appendix A.2, we investigate the

convergence behavior of some available CDFs of the quadratic forms and compare

them with our derived formula in terms of the Minimum Square Error (MSE).

5.1 Introduction

Most previous USTM studies assumed that all the available antennas are utilized

for signal transmission and reception [34], [17], [43]. However, each active trans-

mit/receive antenna pair requires an RF (radio frequency) chain, which is expen-

sive. Consequently, antenna selection, where a subset of all available antennas are

selected at the transmitter and/or receiver, has been extensively studied [19], [44],

[45]. However, most previous research on antenna selection considers coherent

multi-antenna systems in which perfect CSI is available at the receiver [46, 47].

The only study that deals with USTM and receive antenna selection (RAS) with-

out CSI is [23]. Its main contribution is the derivation of the diversity order and
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coding gain via the Chernoff bound on the PEP for USTM and RAS. It is shown

that a MIMO system employing USTM and RAS achieves full spatial diversity.

However, [23] considers only independent Rayleigh fading MIMO channels. In re-

ality, insufficient antenna spacing, angle spread or the lack of rich scattering may

cause spatial correlation among antennas, particularly at the transmit side [11], [48].

Moreover, channel measurements reveal that in some propagation environments, a

fixed (possibly line of sight (LoS)) component [10] is present. In this case, the mean

of the channel matrix is not zero, and the channel is modeled by the Rician fading

channel.

In this chapter, the analysis of [23] is extended to independent Ricean chan-

nels and correlated Rayleigh fading channels. RAS is based on the instantaneous

received signal power. The optimal decoders for both channel assumptions are pre-

sented, and then the associated Chernoff bounds on the PEP are derived based on

the optimal decoders when a single antenna is selected. Both the exponential and

constant correlation models are considered in our work. Since our performance

analysis is for the high-SNR region, the most important contribution in this work is

to derive the most dominant term of the CDF’s power series of the received signal

power at any receiver with respect to SNR. We further show that the convergence

behavior of our CDF expression is much better than that of the other CDF expres-

sions available in other studies such as [1] or [49], [50].

Our analytical results indicate that the full diversity is preserved in both corre-

lated and Ricean fading channels for USTM and RAS. However, the correlations

result in a loss in the coding gain while a higher K-factor improves the performance.

5.2 System Model and USTM Scheme

Consider a MIMO system with M transmit and N receive antennas signaling over a

frequency flat-fading channel. As described in Section (2.2.1), the received matrix

signal is written as [6]

Yτ =

√
ρ

M
SτH + Wτ , (5.1)
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where Yτ = [y1, . . . ,yN ] is a T×N complex received signal matrix, Sτ is a T×M

complex transmitted signal matrix, and Wτ denotes a T ×N additive noise matrix

with i.i.d. CN (0, 1) elements, and the block-time index is τ . Moreover, the M ×N

random channel matrix H consists of a fixed (line of sight [LOS]) component and

a random (diffuse) component. The channel may be represented as

H =

√
K

K + 1
H +

√
1

K + 1
R

1/2
T Hw. (5.2)

The Ricean factor K indicates the relative strength of the LoS component over the

diffuse component, providing an indication of link quality [15].

Two special cases of (5.2) are investigated below. The correlated channel model

without a LOS component (K = 0 and RT 6= IM ) is considered next, and the

Ricean channel model without a correlation (K 6= 0 and RT = IM ) will be treated

in Section 5.4.

5.3 Error Probability of USTM RAS in Correlated
Fading

In this section, the performance of the USTM RAS in a correlated channel is ana-

lyzed. The antenna selection rule and the decoding algorithm are described. The

Chernoff bound on the PEP is derived for the case selecting the ’best’ single an-

tenna.

The selection rule here is a commonly used way of selecting a receive antenna

by using a simple maximum-norm detection circuit. This rule does not require

the receiver to know the the CSI or even the correlation matrix. The rule is that

an antenna whose received signal norm is the largest among all the antennas is

selected [23]; i.e,

n̂ = arg max
n=1,2,...,N

zn, (5.3)

where zn = ‖yn‖2.

For this selection rule, the Chernoff bound on the PEP of mistaking Φl for Φl′

is expressed as [23]

PCB(µ) =
1

2

∫

CT

NFz(y
Hy)N−1

det (πRl)
1−µ det (πRl′)

µ × exp
{− yH{µR−1

l′ + (1− µ)R−1
l︸ ︷︷ ︸

Ω(µ)

}y}
dy,
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where 0 ≤ µ ≤ 1 is a free parameter that is chosen to minimize PCB(µ). Fz(.)

denotes the cumulative density function (CDF) of ‖y‖2, and Rl and Rl′ are the

T × T covariance matrices at any particular receive antenna (say, the nth antenna)

conditioned on Φl and Φl′ transmitted, respectively. The correlation matrix Rl

conditioned on Φl is given by

Rl = IT +
ρT

M
ΦlRTΦH

l . (5.4)

Note that each antenna at the receiver observes independently correlated fading

gains from the transmitter antennas provided that the receiver antennas are not spa-

tially correlated. Therefore, all the columns of the received signal Y are i.i.d. Using

the matrix inversion and determinant lemmas in [6], one can derive

R−1
l = IT −Φl

(
IM + (

ρT

M
RT )−1

)−1
ΦH

l (5.5)

and

det(Rl) = det(IM +
ρT

M
D), (5.6)

where the diagonal matrix D = diag{λ1, . . . , λM} is obtained from the singular

value decomposition of RT .

Let us define pyn̂
(yn̂|Φl) as the probability density function (PDF) of the signal

in selected antenna n̂. By considering the selection rule , the ML detection rule is

given by

ΦML = arg max
Φl∈{Φ1,...,ΦL}

pyn̂
(yn̂|Φl). (5.7)

Using the theory of order statics in [51] and considering the fact that Fz(‖y‖2) is

independent of the transmitted signal Φl (this independence will be proved shortly),

the decision rule (5.7) can be simplified as

ΦML = arg max
Φl∈{Φ1,...,ΦL}

{
ŷHΦl

(
IM + (

ρT

M
D)−1

)−1

ΦH
l ŷ

}
. (5.8)

If we assume that the receiver knows the correlation matrix, ML detection re-

quires searching over the codebook V in order to choose the optimum signal by

maximizing (5.8). Note that although the RAS criterion in (5.7) does not require

the correlation matrix RT , the optimal detection rule in (5.8) requires RT in order

to extract the most likely transmitted signal.
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To compute PCB in (5.4), Fz(‖y‖2) is required. This CDF can be obtained by

inversing the Laplace transform or the moment generating function (MGF) of ‖y‖2

given by [52, page 595]:

G(s) =
1

det(IT + sRF)
, (5.9)

where F = IT and R = IT + ρT
M

ΦRTΦH is the receive covariance matrix. The

transmit correlation matrix can take several forms. Two popular correlation models

for RT are considered in Section 2.3.1. Extensive use is made of the eigenvalues of

the correlation matrices in (2.11) and (2.12) in the following.

5.3.1 Exponential Correlation Case

For the exponential correlation model, the CDF of zn = ‖yn‖2, denoted by Fz(a)

throughout the paper, is derived here. The CDF is used to derive the performance

of USTM and RAS in terms of the diversity order and coding gain. We will use

some of the results in [23], [6], and the rotational property of the Vandermonde

matrix [53].

First, we will briefly outline the derivation procedure. The diversity order and

coding gain are meaningful only in the asymptotically high SNR region. Typically,

to find these, the Chernoff bound on the error probability is derived as a power series

of the SNR. The diversity order and coding gain are then extracted from this power

series. For example, at asymptotically high SNRs, if the following relation [54],

PCB = (Gcρ)−Gd + o(ρ−Gd), (5.10)

holds for the error probability or the Chernoff bound, then Gd and Gc represent the

diversity order and coding gain, respectively. In order to evaluate PCB at high SNR

(ρ → ∞), the dominant term in the power series expansion of Fz(a) in terms of ρ

is required.
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With the use of partial fractions, one can expand (5.9) to

G(s) =
1

(1 + s)T−M
∏M

i=1

[
1 + s(

ρT

M
λi + 1

︸ ︷︷ ︸
ri

)

]

=
T−M∑

k=1

Ak

(1 + s)k
+

M∑

k=1

Bk[
1 + s(

ρT

M
λk + 1

︸ ︷︷ ︸
rk

)

] , (5.11)

where

AT−M−k =
1

k!

∂k

∂sk

(
M∏
i=1

[1 + sri]
−1

)∣∣∣∣
s=−1

(5.12a)

Bk =

(
1

1− 1
rk

)T−M M∏

i=1,i 6=k

(
1− ri

rk

)−1

. (5.12b)

The PDF of zn can be obtained by taking the inverse Laplace transform of (5.11) as

follows:

fz(u) = L−1{G(s)}

=
T−M∑

k=1

Ak
1

(k − 1)!
uk−1e−u +

M∑

k=1

Bk

rk

e−u/rk . (5.13)

By integrating (5.13), the CDF of zn is obtained as

Fz(a) =
T−M∑

k=1

Ak

(
1− e−a

K−1∑
i=0

ai

i!

)
+

M∑

k=1

Bk

(
1− e−a/rk

)
. (5.14)

By inserting (5.12b) into (5.14) and after some manipulations, the second term of

the right side of (5.14) can be approximated by

M∑

k=1

Bk

(
1− e−a/rk

) → −
∞∑

j=1

(−aM)j

(ρT )jj!
×

M∑

k=1

λ−j
k

M∏

i=1,i6=k

(
1− λi

λk

)−1

. ρ →∞.

(5.15)

Upon cursory examination of (5.15), one might conclude that the dominant term

occurs at j = 1 as ρ → ∞. However, the most dominant term in the power series

of Fz(a) is the term ρ−M because the coefficient of any power term ρj , j < M , is

zero.
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Theorem 5.3.1 For any M distinct eigenvalues λ1, . . . , λM and 0 < j < M , the

following holds:
M∑

k=1

(λk)
−j+M−1

M∏

i=1,i 6=k

(λk − λi)
−1 = 0. (5.16)

Proof 5.3.1 With the common denominator
∏

1≤i<j≤M(λi − λj), the numerator of

the left side of (5.16) would be

M∑

k=1

(−1)k−1λ−j+M−1
k

∏
1≤i<j≤M

i,j 6=k

(λi − λj) =

det




λ−j+M−1
1 λ−j+M−1

2 · · · λ−j+M−1
M

1 1 · · · 1
λ1 λ2 · · · λM

λ2
1 λ2

2 · · · λ2
M

...
... · · · ...

λM−2
1 λM−2

2 · · · λM−2
M




.

(5.17)

The right side of (5.17) arises from the use of the rotational properties of the Vander-

monde Matrix (see Section 6.1 [53]) and the general definition of the determinant

as well. The left side of (5.17) is now equal to zero for all integers 1 ≤ j ≤ M − 1

because if j is in this interval, the introduced matrix (5.17) has two equal rows, so

its determinant clearly must be zero.

Thus, the second term of (5.14) is expanded as

M∑

k=1

Bk

(
1− e−a/rk

)
= − (−aM)M

ρMTMM !

M∑

k=1

λ−M
k ×

M∏
i=1
i6=k

(
1− λi

λk

)−1

+o(ρ−M). (5.18)

Similarly, the dominant term of the first term of (5.14) is ρ−M as ρ →∞.

Theorem 5.3.2 For any integer k, and for large ρ, the following holds:

∂k

∂sk

(
M∏
i=1

[1 + sri]
−1

)∣∣∣∣
s=−1

= Ckρ
−M + o(ρ−M), (5.19)

where Ck is a constant value, independent of ρ, and uniquely determined for each

k. In other words, the left side of (5.19) behaves as Ckρ
−M when ρ is sufficiently

large.
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Proof 5.3.2 See Appendix A.1.

In the high-SNR regime, Fz(a)N−1 can be approximated by retaining the first term

in the power series expansion of Fz(a); thus,

Fz(a)N−1 =
1

ρM(N−1)

[ T−M∑

k=1

Dk(1− e−a

K−1∑
i=0

ai

i!
) + aME

]N−1

+ o(ρ−M(N−1)),

(5.20)

where

Dk = CT−M−k
(−1)T−M−k

(T −M − k)!

E =




M∑

k=1

(−1)M+1 MM

TMM !λM
k

M∏
i=1
i6=k

(
1− λi

λk

)−1


 . (5.21)

Therefore, by substituting (5.6) and (5.20) in (5.4), we obtain

PCB(µ) =
1

2

N

πT
∏M

i=1

(
1 + ρT

M
λi

)
∫

CT

[
e−yHΩ(µ)y × 1

ρM(N−1)

( T−M∑

k=1

Dk(1− e−yHy

K−1∑
i=0

(yHy)i

i!
) + (yHy)ME

)N−1]
dy + o(ρ−MN). (5.22)

From (5.5), Ω(µ) may be rewritten as

Ω(µ) = IT − µΦl′(IM + (
ρT

M
RT )−1)−1ΦH

l′ − (1− µ)Φl(IM + (
ρT

M
RT )−1)−1ΦH

l ,

which reduces to

lim
ρ→∞

Ω(µ) = IT − µΦl′Φ
H
l′ − (1− µ)ΦlΦ

H
l . (5.23)

For all Φl and Φl′ drawn from the unitary constellation V , rank(Ω(µ)) = T

for all l 6= l′ (i.e. the full diversity constellation). By using the singular value de-

composition Ω(µ) = Q diag{α1, . . . , αT}QH in (5.23) and changing the variables

xt = |yt|2, where yt is the t-th element of vector QHy, the Chernoff bound on PEP

(5.22) is obtained. Therefore, the diversity and coding gain of USTM and RAS are

Gd = MN (5.24)

Gc =

(
NMM

2TM det (RT )

∫ ∞

0

· · ·
∫ ∞

0

[
e−

PT
t=1 αtxt

( T−M∑

k=1

Dk

(
1− e−

PT
t=1 xt

k−1∑
i=0

(∑T
t=1 xt

)i

i!

)

+ (
T∑

t=1

xt)
ME

)N−1]
dx1 · · · dxT

)−1/(MN)

. (5.25)
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As the final result of PCB implies, for high SNR and full rank space-time codes, the

diversity order remains the same as that of the full complexity system. However,

some loss in the coding gain occurs, depending on the determinant of RT .

5.3.2 Constant Correlation Case

The analysis here is similar to that in the rest of the the exponential correlation case.

G(s) and F (·) will be calculated as follows:

G(s) =
T−M∑

k=1

Ak

(1 + s)k
+

B

1 + s

{
ρT/M [(M − 1)γ + 1] + 1

}

︸ ︷︷ ︸
r1

+
M−1∑

k=1

Ck[
1 + s (ρT/M(1− γ) + 1)︸ ︷︷ ︸

r2

]k
, (5.26)

where

AT−M−k =
1

k!

∂k

∂sk

(
1

(1 + sr1)(1 + sr2)M−1

) ∣∣∣∣
s=−1

= rk
1

(1− r2)
−M

(r1 − 1)k
×

k∑
i=0

(
M+i−2

i

)(
r2

r1

)i (
1− r1

1− r2

)i−1

(5.27a)

B =

(
1− 1

r1

)−1 (
1− r2

r1

)1−M

(5.27b)

Ck =

(−r1

r2

)M−1−k (
1− r1

r2

)k−M (
1− 1

r2

)M−T

×
M−1−k∑

i=0

(
T−M+i−1

T−M−1

) [(
1− r1

r2

)−1 (
1− 1

r2

)
r1

]−i

. (5.27c)

By taking the inverse Laplace transform of (5.26) and then integrating it with re-

spect to u over [0, a], the final CDF will be given by

Fz(a) =
T−M∑

k=1

Ak

{
1− e−a

k−1∑
i=0

ai

i!

}
+ B

(
1− e−a/r1

)
+

M−1∑

k=1

Ck

{
1− e−a/r2

k−1∑
i=0

(a/r2)
i

i!

}
.

(5.28)
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Notice that as we expected before both (5.14) and (5.28) are independent of the

transmitted signal Φl. This condition was necessary to derive the ML decoder in-

troduced in (5.8). As we claimed in exponential correlation case, we first claim

here that the dominant term in the power series expansion of Fz(a) shown in (5.28)

occurs at the ρ−M term.

Theorem 5.3.3 For a characteristic function Fz(a) in (5.28), the asymptotic/dominant

term in the power series expansion occurs at order of ρ−M ; i.e., the first M−1 terms

of the asymptotic series for Fz(a) are zero.

Proof 5.3.3 The argument in the previous correlation matrix case is applied herein

as well. The alternative proof for this theorem can be drawn from Eq.(24) of Refer-

ence [1].

What remains is to determine the coefficient of ρ−M in the asymptotic series of

Fz(a) in order to present the best approximation of it. As ρ asymptotically goes

to infinity and if we substitute (5.27a) in (5.28), the first term in the right side of

equation (5.28) reduces to

T−M∑

k=1

Ak

{
1− e−a

k−1∑
i=0

ai

i!

}
= ρ−M (1− γ)−M+1(−M)M

TM [(M − 1)γ + 1]

×
T−M∑

k=1

T−M−k∑
i=0

(
M+i−2

i

) {
1− e−a

k−1∑
i=0

ai

i!

}
+ o(ρ−M), (5.29)

which indicates that the power series of the left side of formula (5.29) starts with

the ρ−M term. This statement does not apply to the other expressions left in equa-

tion (5.28). The second and third terms of Fz(a) might apear to contain M − 1

first terms in the power series as well such as ρ−i, i = 1, 2, . . . , M − 1. In fact,

from Theorem 5.3.3, we know in advance that the significant term in Fz(a) is ρ−M ;

therefore, all ρ−i, i = 1, 2, . . . , M − 1 disappear in the power series.

By using the two following identities (5.30) and (5.31),

M∑
j=0

(−x)j

j!

k−1∑
i=0

xi

i!
= 1−

M−k∑
j=0

(
j∑

i=0

(−1)j+i

(k + i)!(j − i)!

)
xk+j + o(xM+1), (5.30)
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∞∑
i=0

(
α+i

i

)
xi =

1

(1− x)α+1
0 < x < 1, (5.31)

in (5.27c) and (5.28), respectively, it can be shown that Ck goes to

lim
ρ→∞

Ck =

(−r1

r2

)M−1−k (
1− r1

r2

)k−M

×
[
1−

(
T−k−1

T−M−1

)(
1− r1

r2

)M−k (
1

r1

)M−k
]

.

(5.32)

If we insert Ck of (5.32) into (5.28) and consider only the term ρ−M , and given

that this term is the dominant term, the asymptotic Fz(a) in the constant correlation

case is given by (5.33), which appears at the bottom of this page.

In order to verify (5.33), Fig. 5.1 shows the empirically obtained CDF of ‖y2‖
along with the first term in the power series expansion of zn’s CDF presented in

(5.33). Clearly, we are looking for Fz(a) as a function of ρ and a in order to calcu-

late PCB. As Fig. 5.1 depicts, the difference between the approximation and empir-

ical value exponentially approaches zero as SNR gets sufficiently large. The rest of

the procedure to obtain the diversity order and coding gain is the same procedure

we carried out in exponential correlated case; By setting Fz(a) from (5.33) in (5.22)

accordingly, Gc and Gd can be achieved. In general, the error performance depends

on the SNR, the signal constellation and the correlation matrix in a complicated

manner. However, it is noted USTM and RAS achieve full spatial diversity (i.e.,

Gd = MN ) even with transmit correlations.

Fz(a) =
T−M

ρM

[
(1− γ)−M+1(−M)M

[(M − 1)γ + 1]
×

T−M∑

k=1

T−M−k∑
i=0

(
M+i−2

i

){
1− e−a

k−1∑
i=0

ai

i!

}
+

aM(−a/γ)M−1

M ![1 + (M − 1)γ]
− 1− γ

(M − 1)γ + 1
×

M−1∑

k=1

(
(M − 1)γ + 1

Mγ

)M−k (
M

1− γ

)M

×
{ M−1∑

i=0

aM(−1)i+M−k

(K + i)!(M − k − i)!
−

(
T−k−1

T−M−1

)( −Mγ

(M − 1)γ + 1

)M−k

ak

}]
+ o(ρ−M)

(5.33)
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Figure 5.1: Comparison of the approximation and exact curve of Fz(a) assuming
constant correlation matrix with γ = 0.5

5.4 Extension to Ricean-Fading Channels

The performance analysis of USTM and RAS is now extended to Ricean fading

channels. Here, spatial correlation is ignored and, the elements of Hw are assumed

to be i.i.d. circularly symmetric complex Gaussian random variables, i.e., CN (0, 1).

If the received signal Y is formulated again as (5.1), and the LOS component has

equal effect on each receive antenna, Y consists of N i.i.d. columns with the T ×T

covariance matrix Rl as

Rl = IT +
ρT

M(K + 1)
ΦlΦ

H
l . (5.34)

Therefore, the likelihood function of the received signal at the nth antenna, i.e., yn,

can be written as

pyn(y|Φl) =
exp

{−(y − yl)
HR−1

l (y − yl)
}

πT det(Rl)
, (5.35)

where
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yl =

√
ρTK

M(K + 1)
Φlhn

R−1
l = IT − x

x + 1
ΦlΦ

H
l . (5.36)

where x = ρT
M(K+1)

hereafter. After some manipulations of the exponent term of

(5.35), similar to what we did in the correlated channel case, the ML decoding rule

becomes

ΦML = arg max
l=1,...,L

{
ρT

M
‖YHΦl‖2

F + 2

√
ρT

M
K(K + 1) tr

{<(YHΦlH)
}
}

.

(5.37)

By using the same argument used in [23], it is proved that instead of Y and H which

are, respectively, the received block matrix and the channel fixed component. Thus,

we can substitute yn and hn accordingly in (5.37) as the received and LOS vector

at the selected antenna whose signal norm is the highest.

5.4.1 Chernoff Bound and Performance Analysis

In this section, the Chernoff bound on PEP is derived for the Ricean channel. The

Chernoff bound of mistaking Φl for Φl′ is given by

PCB(µ) =
1

2

∫

CT

NFz(y
Hy)N−1

det (πRl)
1−µ det (πRl′)

µ exp[ξ(µ|y)]dy, (5.38)

where

ξ(µ|y) = −µ(y − yl′)
HR−1

l′ (y − yl′)− (1− µ)(y − yl)
HR−1

l (y − yl).

By using the distributive property of matrix algebra, ξ(µ|y) can be rewritten as

ξ(µ|y) = −yH
[
µR−1

l′ + (1− µ)R−1
l︸ ︷︷ ︸

Ω(µ)

]
y + 2<{

yH [µR−1
l′ yl′

+ (1− µ)R−1
l yl]

}− [
µyH

l′ R
−1
l′ yl′ + (1− µ)yH

l R−1
l yl

]
︸ ︷︷ ︸

∆(µ)

. (5.39)
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By using (5.36) in (5.39), at high SNR region (x →∞) which is of interest herein,

the second term of ξ(µ|y) becomes

<{
yH [µR−1

l′ yl′ + (1− µ)R−1
l yl]

}
= <{

yH [

√
xK

1 + x
(µΦl′ + (1− µ)Φl)hn]

} → 0.

(5.40)

Furthermore, Ω(µ) and ∆(µ) are given by

Ω(µ) → IT − [µΦl′Φ
H
l′ + (1− µ)ΦlΦ

H
l ], (5.41a)

∆(µ) = α → K‖hn‖2. (5.41b)

In order to calculate PCB in (5.38), as we did in the correlated channel case, we need

to find the CDF of z = ‖y‖2, i.e., Fz(a), knowing that the mean value of y is not

zero any more. The dominant term of CDF respect to ρ will be inserted into (5.38),

so that we can obtain coding gain and diversity order.

Different methods can be used to derive the CDF of a non-central quadratic

form over circularly symmetric Gaussian vectors. Since we have to integrate such

CDF’s over R+, a fast convergent series is needed. In [1] and [49], three infinite

series for the CDF of non-central quadratic forms in complex normal variables have

been presented. These series are either hard to find a closed form or very poor in

convergence. Below, we propose a new method for calculating the first term in

the power extension series of such a CDF and then show that it converges much

faster than the other series discussed in the literature and is appropriate for our

performance analysis. The convergence properties of these series will be discussed

in Appendix A.2.

In the sequel we invoke two commonly used functions in our derivation, which

are respectively defined as The incomplete Gamma function, i.e., the CDF of the

χ2(2n) distribution defined as

Γ(n, a) =

∫ a

0

un−1e−u

(n− 1)!
du = 1− e−a

n−1∑
j=0

aj

j!
, (5.42)

and the Pochhammer function for any integer i, defined as

(p)i =





Γ(p+i)
Γ(p)

= p(p + 1) · · · (p + i− 1) i > 0,

1 i = 0,
Γ(p+1)

Γ(p+i+1)
= p(p− 1) · · · (p + i + 1) i < 0.

(5.43)
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Proof 5.4.1 See our paper in [55].

We now state the CDF and its associated power series for the squared norm of y.

Theorem 5.4.1 The PDF and CDF of the quadratic form z = ‖yn‖2 over a non-

central circularly symmetric Gaussian vector yn with the covariance matrix of

(5.34) are

fz(a) = (1 + x)−M

∞∑

k=0

(−α)k

k!
×

{ k+M∑
r=1

Ak,r
ar−1e−βa

(r − 1)!
+

T−M∑
r=1

Bk,r
ar−1e−a

(r − 1)!

}

(5.44)

and

Fz(a) = (1 + x)−M

∞∑

k=0

(−α)k

k!
×

{ k+M∑
r=1

Ak,r
Γ(r, βa)

βr
+

T−M∑
r=1

Bk,rΓ(r, a)

}
,

(5.45)

where α = x
1+x

K‖hn‖2, β = 1
1+x

, and the coefficients Ak,r and Bk,r result from

Ak,r = ψk+M−r,k(1, T −M,β) r = 1, 2, . . . , k + M, (5.46a)

Bk,r = ψT−M−r,k(β, k + M, 1) r = 1, 2, . . . , T −M. (5.46b)

Proof 5.4.2 See our proof in [55].

Theorem 5.4.2 The most dominant term in the CDF of Theorem 5.4.1 is ρ−M , i.e.

Fz(a) = ρ−M × (M(K + 1)

T

)M
∞∑

k=0

(−K‖hn‖2)k

k!
×

{ M∑
r=1

A′
k,r

yr

r!
+

T−M∑
r=1

B′
k,rΓ(r, y)

}
+ o(ρ−M). (5.47)

where

B′
k,r = ψT−M−r,k(0, k + M, 1)

A′
k,r =

(−1)M−rΓ(T − r)

(M − r)!× Γ(T −M)
. (5.48)

Proof 5.4.3 See our proof in [55].

55



If (5.39), (5.41a) and (5.41b) are substituted into the PCB expression in (5.38), we

arrive at

PCB(µ) =
e−K‖hn‖2

2πT

∫

CT

NFz(‖y‖2)N−1

(1 + x)M
e−yHΩ(µ)ydy.

Therefore, by using the results of Theorem 5.4.2 and the Lebesgue’s dominated

convergence theorem, the Chernoff bound at the high SNR region is

PCB(µ) = ρ−MN N

2

(M(K + 1)

T

)MN
e−K‖hn‖2

∫ ∞

0

· · ·
∫ ∞

0

e−
PT

t=1 αtxt

( ∞∑

k=0

(−K‖hn‖2)k

k!
×

{ M∑
r=1

A′
k,r

(
∑T

t=1 xt)
r

r!
+

T−M∑
r=1

B′
k,rΓ(r,

T∑
t=1

xt)
})N−1

dx1 · · · dxT + o(ρ−MN),

(5.49)

where α1, . . . , αT are all eigenvalues of the matrix Ω(µ), assuming rank(Ω(µ)) =

T . Note that equation (5.49) is obtained by changing the variable xt = |zt|2 where

zt is the tth element of vector QHy, similar to what occurs in the correlated case.

The diversity gain and coding gain are

Gd = MN,

Gc =

(
N

2

(M(K + 1)

T

)MN
e−K‖hn‖2

∫ ∞

0

· · ·
∫ ∞

0

e−
PT

t=1 αtxt

( ∞∑

k=0

(−K‖hn‖2)k

k!

× { M∑
r=1

A′
k,r

(
∑T

t=1 xt)
r

r!
+

T−M∑
r=1

B′
k,rΓ(r,

T∑
t=1

xt)
})N−1

dx1 · · · dxT

)−1/(MN)

,

(5.50)

respectively.

Since gaining an insight into the obtained coding gain expression (5.25) is inter-

esting, let us consider a simple 2 by 2 differential unitary space-time case (T = 4)

for the transmit correlation matrix RT =

[
1 γ
γ 1

]
and the Ricean channel with
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K = 2 and H =

[
1 1
1 1

]
. The direct calculation of (5.12a) and (5.12b) yields

A1 = − r1

(1− r1)2(1− r2)
− r2

(1− r2)2(1− r1)
→ 2

r1r2

A2 =
1

(1− r1)(1− r2)
→ 1

r1r2

, ρ →∞

B1 =
1

(1− 1/r1)2(1− r2/r1)

B2 =
1

(1− 1/r2)2(1− r1/r2)
, (5.51)

where r1 = 1 + 2(1 + γ)ρ, and r1 = 1 + 2(1 − γ)ρ. By using the final result of

Theorem 5.3.1 and replacing (5.51) and (5.15) into (5.14), Fz(a) in our simple case

will be

Fz(a) =
1

4ρ2(1− γ2)

{
2(1− e−a) +

[
1− (1 + a)e−a

]
+

a2

2
+ 2a

}
+ o(ρ−2),

(5.52)

and eventually from (5.25) and after some simplification, PCB is obtained as

PCB =
1

16ρ4
(1− γ2)−2

∫ ∞

0

e−
P4

t=1 αtxt

[
2(1− e−

P4
t=1 xt)

+ 1−
(

1 +
4∑

t=1

xt

)
e−

P4
t=1 xt +

(
∑4

t=1 xt)
2

2
+ 2

4∑
t=1

xt

]

× dx1 · · · dx4 =
1

16ρ4
(1− γ2)−2

[
−

∑4
t=1(αt + 1)−1 + 3∏4

t=1(αt + 1)

+
1∏4

t=1(αt)

(
3 +

4∑
t=1

1

α2
t

+
∑

1≤t<p≤4

1

αtαp

−
4∑

t=1

2

αt

)]
+ o(ρ−4). (5.53)

As mentioned earlier, αi’s are the eigenvalues of Ω(µ) defined in (5.23). To deter-

mine the optimum µ to minimize PCB, one can use a computer search to find µopt

over interval [0,1]. Note that with transmit correlation, the probability of mistaking

Φl′ for Φl is not necessarily equal to the reverse probability. If they are equal, µ

must be 1/2 in (5.23).
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For the 2× 2 Ricean channel, the Chernoff bound in (5.49) is reduced to

PCB =
e−2K

16ρ4
(K + 1)4

∞∑

k=0

(−2K)k

k!

{ 2∑
r=1

A′
k,r

∑

l1,...,l4,P4
i=1 li=r

4∏
t=1

α
−(lt+1)
t

+
2∑

r=1

B′
k,r

[ 4∏
t=1

α−1
t −

r−1∑
j=0

∑

l1,...,l4,P4
i=1 li=j

4∏
t=1

(αt + 1)−(lt+1)
]}

+ o(ρ−4). (5.54)

Proof 5.4.4 See our proof in [55]

5.5 Simulation Results

In this section, we examine the correctness of our theoretical analysis by using com-

puter simulation and study the influence of the transmit correlation and K-factor on

the error performance of USTM and RAS. To exploit the benefits of differential

USTM, the optimized parametric codes in [23] are used in our simulations. Al-

though these codes have been designed for the independent fading channels, numer-

ical experiments show that they are either optimum or near to optimum codes for

the correlated/Ricean channel as well. For the sake of simplicity, in our simulation

examples we consider a system with two transmit and one or two receive antennas.

For antenna selection, we select the best receive antenna based on the maximum

received norm. The assumed correlation matrix in our simulation is RT =

[
1 γ
γ 1

]
,

and the fixed channel component in Ricean model is given by H =

[
1 1
1 1

]
.

In Fig. 5.2, we compare the Chernoff bound on PEP presented in (5.53) with

simulated PEP for a differential USTM system with M = 2, N = 2 when a single

antenna is selected, J = 1. Our theoretical bound is almost 1.5dB away from the

exact PEP at PEP equal to 10−5 for both the γ = 0.3 and γ = 0.9 cases, and it

gets tighter at higher SNR. From Fig. 5.3, even for a high level of correlation, e.g.

γ = 0.9. Although some loss occurs in the coding gain, both the full-complexity

system and a system employing antenna selection exhibit the same diversity order

(Gd = 4). To illustrate the advantage of RAS over no antenna selection subject to

the same power consumption, we plot the performance of a system with a single

receive antenna. As expected, its diversity order is equal to 2. Now, we evaluate the
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Figure 5.2: Comparison of the Chernoff bound and the simulated PEP with M = 2,
N = 2 J = 1

formulation of our performance analysis in the case of a Ricean channel. The exact

PEP for K = 1, K = 2 and K = 3 are plotted in Fig. 5.4 along with their associated

Chernoff bounds calculated from equation (5.54). As Fig. Fig. 5.4 shows, the higher

values of K-factor result in a better system performance. Furthermore, the presented

Chernoff bounds get tighter as K increases, such that, for instance, the Chernoff

bound is around 1.5dB away from the exact PEP for K = 0, and this difference

reduces to 0.7dB for K = 2 at PEP 10−6. As occurred in correlation case, as

Fig. 5.5 depicts, the USTM scheme with the use of antenna selection operating on

a Ricean channel exhibits the maximum attainable diversity order (Gd = 4) and

significantly outperforms a system without antenna selection.

5.6 Summary

This chapter analyzed the performance of USTM and RAS over the spatially-correlated

or Ricean fading channels. Two popular correlation models, exponential and con-

stant models were considered. A good approximation to the CDF of a noncentral

quadratic form in complex RV as a function of SNR was provided. Antenna selec-

tion was performed at the receiver, and the selection was based on the instantaneous

received signal power. Our analysis was based on Chernoff bound. The simulations

59



8 10 12 14 16 18 20 22

10
−4

10
−3

10
−2

10
−1

SNR[dB]

B
E

R

 

 

 N=2, J=1 γ=.3
 N=2 γ=.3
 J=1 γ=.9
 N=2 γ=.9
N=1 γ=.9
N=1 γ=.3

Figure 5.3: Performance comparison of parametric codes for the system with or
without antenna selection and M = 2, L = 16 over spatially correlated channel

showed that although the antenna correlation degraded the coding gain of the sys-

tem, the diversity order remained the same as that of a full-complex system as long

as the unitary signals were full rank. The same held for the Ricean channel case

with any K-factor. For a simple 2×2 differential USTM system with single receive

antenna selection, the Chernoff bound expression was simplified and the simulation

results for for both correlated and Ricean cases were presented.
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Figure 5.4: Comparison of the Chernoff bound and the simulated PEP for different
K-factor M = 2, N = 2 J = 1
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Figure 5.5: Performance comparison of parametric codes for the system with or
without antenna selection and M=2, L=16 over a Ricean channel K=2
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Chapter 6

Conclusion and Future Research

This thesis first provided a brief introduction to the MIMO systems and space time

codes in Chapter 2. In Chapters 3, two new structures of unitary matrices were

introduced, a closed-form approximation of union bound on SEP was derived, and

genetic algorithms to find the optimal solution were presented. In Chapter 4, to con-

struct the best unitary codebook for DUSTM over a transmit-correlated channel, a

design measure was introduced that minimizes the Union bound. As expected,

over the correlated channel, our proposed optimum codes showed a better perfor-

mance than those of the previously existing codes. The performances of ML and

differential(Non-ML) decoders were studied. The simulation results confirmed that

both these decoders performed approximately the same at high SNR.

For future research, USTM and DUSTM may be exploited in cooperative net-

works to develop a cooperative diversity scheme which bypasses the need for CSI.

In fact, the sources and relays in such a system form a distributed (virtual) antenna

array to effect spatial diversity gains. Therefore, distributed versions of USTM

and DUSTM should be designed for this scenario. To the best of our knowledge,

only a few works (such as [56]) have recently addressed this issue; however, many

important issues remain relatively unexplored and worthy of future research.

In Chapter 5, the performances of the USTM with single antenna selection was

investigated for the spatially correlated channel, where the single antenna selec-

tion is performed at the receiver, and the selection is based on the instantaneous-

received-signal power. To model the correlation between each pair of transmit an-

tennas, two popular matrix models were used. Our analysis was extended for the
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Ricean channel by providing a good approximation of the CDF of the noncentral

quadratic form (QF) of the complex Gaussian RVs as a function of SNR. Our anal-

ysis as well as our simulations showed that the correlation degraded the coding gain

of the system while the diversity order remained unaffected. Since the derived CDF

expression for the non-central QF of Gaussian RV converged better than existing

CDF expressions, that CDF expression may also have other applications. For in-

stance, to calculate the BER of a differential or non-coherent decode-and-froward

scheme, the distribution of a Gaussian QF is required [57].

Finally, this thesis considered only the case of single antenna selection. Per-

formance analysis for USTM with multiple antenna selection is a possible future

research topic.
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Appendix A

Appendices

A.1 Proof of Theorem 5.3.2

By Induction theorem, let f(s) =
(∏M

i=1[1 + sri]
−1

)
. For k = 0, it is clear that

f(s)

∣∣∣∣
s=−1

= C0ρ
−M + o(ρ−M), (A.1)

where C0 = MM/ det(RT ). Similarly, for k = 1, 2, we find

f ′(s)

∣∣∣∣
s=−1

=
M∑
i=1

ri(1 + ris)
−1f(s)

∣∣∣∣
s=−1

= C1ρ
−M + o(ρ−M) (A.2)

f
′′
(s)

∣∣∣∣
s=−1

=
M∑
i=1

r2
i (1 + ris)

−2f(s)

∣∣∣∣
s=−1

+
M∑
i=1

ri(1 + ris)
−1f ′(s)

∣∣∣∣
s=−1

= C2ρ
−M + o(ρ−M), (A.3)

where C1 = −MC0, and C2 = M(M + 1)C0. Assuming that for all k < n

f (k)(s)
∣∣
s=−1

= Ckρ
−M +o(ρ−M), we show that for k = n this relation is also valid.

i.e. f (n)(s)
∣∣
s=−1

= Cnρ−M +o(ρ−M). By using the same extension procedure used

in (A.3), the nth derivative of f(s) is expressed as a series of lower order derivatives:

f (n)(s) = βn

M∑
i=1

rn
i (1 + ris)

−nf(s) + · · ·+ β1

M∑
i=1

ri(1 + ris)
−1f (n−1)(s),

(A.4)

where β1, . . . , βn are independent of ρ and can be easily calculated as follows for

each n:

βi =
(n− 1)!

(n− i)!
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. In fact, presenting a general-closed form for Ck seems to be difficult; however for

a small k, Ck is very easy to calculate. For instance, C3 = 5C0, and C4 = 16C0

when ρ →∞, and, consequently, ri →∞, i = 1, 2, . . . , M

A.2 Demonstration of Convergence Properties of Pro-
posed Series and [1]

Due to the many application in statistics and communication theory, the CDF and

PDF of quadratic forms have received much attention. Various series expansions

and approximations have been developed [49] and [1]. Most of them except the

power series in [1] are complicated and hard to use in practice. In order to obtain

the most dominant term in the power series, we could rely on and adapt the nu-

merical techniques presented in [1] for either the Ricean or correlated channel case.

Although the obtained formulas for CDFs for both cases seem to be much more

simplified than those we derived in our paper, the radius of convergence for these

series totally depends on the value of y. We will make this point clear shortly. For

comparison, we apply our case to the power series in [1], but first, we give a quick

summary of the approach in [1]. Consider a simplified quadratic form z = yHy,

where y is a T × 1 Gaussian random vector with mean y. The covariance ma-

trix R is assumed to be full rank and to have a factorization R = UΣUH where

Σ = diag{σ1, . . . , σT}, and U is a unitary matrix. Since R is assumed to be full

rank (i.e., δ = 0 c.f. [1]), the CDF function of z for a ≥ 0 is given by [1]

Fz(a) =
∞∑

k=0

ck
aT+k

(T + k)!
, (A.5)

where

c0 =
1

det(R)
exp

(
−

T∑
j=1

|bj|2
σ2

j

)
(A.6)

ck =
1

k

k−1∑
r=0

dk−rcr

dk = (−1)k

T∑
j=1

(
1

σk
j

− k|bj|2
σk+2

j

)
. (A.7)
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Moreover, vector b is defined as b = [b1, . . . , bT ]T = Σ
1
2UHy. By carefully set-

ting up matrix R and vector y from equations (5.34) and (5.36), respectively, we

can evaluate the CDF for the Ricean fading scenario. This formula is applied to

the correlated channel as well considering that y = 0. As mentioned earlier, our

ultimate aim for deriving the CDF function is to determine the first term in (A.5)

with respect to ρ. The exponential term in the right side of (A.6) can be rewritten as

T∑
j=1

|bj|2
σ2

j

= bHΣ−2b = yHR−1
l y =

x

1 + x
K‖h‖2

F → K‖h‖2
F , x →∞

(A.8)

where x = ρT
M(K+1)

. Therefore, (A.6) reduces to

c0 = x−Me−K‖h‖2F + o(x−M). (A.9)

Notice that factor ρ−M has appeared in (A.9), and that since the coefficient ck is

calculated recursively from c0, . . . , ck−1, only the constant term with respect to ρ is

taken into account in dk (A.7); i.e.,

dk = (−1)k[tr(Σ−k)− kbHΣ−(k+2)b]

= (−1)k[T −M + M(1 + x)−k − kyHR
−(k+1)
l y]

(a)
=(−1)k[T −M + M(1 + x)−k − kx(1 + x)−(k+1)K‖h‖2

F ]

= (−1)k(T −M) + o(x−k) ∀k > 1, (A.10)

where (a) results from the following lemma:

Lemma 1 For the covariance matrix of (5.34) and positive integer m, we have

R−m = IT + ΦlΦ
H
l [(1 + x)−m − 1)].

Proof A.2.1 Using the binomial expansion, we obtain

R−m = (IT − x

1 + x
ΦlΦ

H
l )m = IT −ΦlΦ

H
l +

m∑
p=0

(
m

p

)
ΦlΦ

H
l

( −x

1 + x

)p

= IT + ΦlΦ
H
l

[
(1− x

1 + x
)m − 1

]
, (A.11)

which completes the proof.
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The first term in the power series of CDF with respect to ρ is stated as

Fz(a) = ρ−M

∞∑

k=0

ĉk
aK+T

(K + T )!
+ o(ρ−M), (A.12)

where

ĉ0 =

[
M(K + 1)

T

]M

e−K‖h‖2F

d̂k = (−1)k(T −M)

ĉk =
1

k

k−1∑
r=0

d̂k−rĉr. (A.13)

The formula in (A.12) is much more simplified than (5.47). Hence, one may ask

why we did not use this formula in (5.49) to compute the Chernoff bound. Although

this formula seems to be less complex than (5.4.2), formula (A.12), on the other

hand, shows significantly poorer convergence over wider range of a. To clarify the

difference in the convergence behavior, we compare our obtained CDF formulas

and the CDF power series in [1] in terms of the mean square error (MSE1) for

both the correlated and Ricean channel cases. Note that (5.4.2) has been derived

for the Ricean channel case; however, with a small change, it can be applied to

the correlation channel case as well. For 180 uniformly spaced data points in the

interval 2 ≤ a ≤ 20, Fig. A.1 shows that the MSE of Fz(a) as a function of the

number of terms adds up in (5.4.2). As we observe for a particular MSE, (5.4.2)

needs significantly more terms than formula (5.33), which is actually independent

of the number of terms. The convergence behavior of (A.12) even becomes worse

at a higher value of a, such that if we insert it into the PCB expression in (5.38),

computing PCB becomes numerically impossible . Because we are required to take

the integral of Fz(a) over all values of a in (5.38) while the radius of convergence

of the power series is highly dependent on a. We therefore resort to our formulas

for calculating Chernoff bounds.

1See [1] for the definition of MSE
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Figure A.1: Comparison of the convergence properties of the power series expan-
sion and our formula for Fz(a) assuming constant correlation matrix with γ = 0.5
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