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Part 1. Definitions and Results

1.1. Convergence for deterministic scalar/matrix
sequence

Def. A scalar sequence x1, x2, ∙ ∙ ∙ , xM , ∙ ∙ ∙ , or simply {xM},
converges to a number x if for any ε > 0, there exists a positive
integer m such that for all M ≥ m, |xM − x| < ε holds.

This is also denoted as
lim

M→∞
xM = x.

Remarks:
• xM is deterministic.
• xM can be either real-valued or complex-valued.
• x is a deterministic value independent of M .
• | ∙ | is the absolute value or modulus, which is a size measure.

Examples:
• limM→∞

(−1)M

M = 0.
• limM→∞(−1)M does not exist.
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Def. A K × N matrix sequence X1,X2, ∙ ∙ ∙ ,XM , ∙ ∙ ∙ , or simply

{XM}, converges to a matrix X if for any ε > 0, there exists a

positive integer m such that for all M ≥ m, ‖Xm − X‖ < ε holds.

This is also denoted as

lim
M→∞

XM = X.

Remarks:

• XM is deterministic meaning that all entries are deterministic.

• Elements of XM can be either real-valued or complex-valued.

• X is a deterministic K × N matrix independent of M .

• K and N are finite integers independent of M .

• ‖ ∙ ‖ denotes matrix norm, which is a size measure.
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Review on matrix norm (for a K × N matrix A)

• Frobenius norm: ‖A‖F =
(∑K

i=1

∑N
j=1 |aij |2

)1/2

, where aij

is the (i, j)-th entry of A.

• p-norm induced from vector norm:

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p
, where 1 ≤ p ≤ ∞.

– 1-norm: ‖A‖1 = maxj=1,∙∙∙ ,N
∑K

i=1 |aij |.
– ∞-norm: ‖A‖∞ = maxi=1,∙∙∙ ,K

∑N
j=1 |aij |.

– 2-norm: ‖A‖2 = σmax(A), the largest singular value of A.

• Entry-wise matrix p-norm:

‖A‖p,vec = ‖vec(A)‖p =




K∑

i=1

N∑

j=1

|aij |
p





1/p

, 1 ≤ p < ∞.

– Max-norm (for p = ∞): ‖A‖max = maxi,j |ai,j |.

• All equivalent in the convergence definition.
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The convergence definition on Page 4 is also equivalent to the
entry-wise convergence given below.

Def. A K × N (where K and N are fixed) matrix sequence XM

converges to a matrix X if every entry converges, i.e.,

lim
M→∞

[XM ]ij = [X]ij , for all i = 1, ∙ ∙ ∙ , K, j = 1, ∙ ∙ ∙ , N.

Remarks:
• When the dimensions are unlimited, e.g., K = M → ∞,

limM→∞ XM = X is not well-defined.
• Possibilities for the case of unlimited dimensions.

– Approximate XM by a simpler matrix sequence YM .
For example, if limM→∞ ‖XM − IM‖ = 0, we may say
limM→∞ XM is the identity (map).
Note that the convergence is in the sense of norm.

– Treat XM as a sequence of operators: More generally,
one can define convergence in the sense of operators
(strong/weak convergence etc.).
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1.2. Convergence for random variable/matrix
sequence [1]

• Multiple definitions: convergence in different senses

• Have slight difference

Def. A sequence of random variables {XM} converges almost

surely or almost everywhere or with probability 1 or

strongly towards the random variable X if

P
(

lim
M→∞

XM = X
)

= 1.

• Notation: XM
a.s.
−→ X when M → ∞ or XM

a.s.
−→

M→∞
X.

• P ({w ∈ Ω : limM→∞ XM (ω) = X(ω)}) = 1.

• Meaning: Events for which XM does not converge to X have

zero-probability.
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• The strong law of large numbers is concerned with almost

sure convergence.

If Y1, Y2, ∙ ∙ ∙ , YM , ∙ ∙ ∙ is an infinite sequence of i.i.d. random

variables with expected value μ, the sample average converges

almost surely to the expected value, i.e.,

1
M

M∑

m=1

Ym
a.s.
−→

M→∞
μ.

– The limit μ in the above is a deterministic value. Therefor this

is a special case of the almost sure convergence definition.

– Widely used in research on massive MIMO.
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• In the study of the SINR or capacity or a signal/interference
component, it is important to know when a sequence of
random variables becomes deterministic in the limit. Such
behavior is often referred to as asymptotic determinicity.

• Many work interpret it mathematically as the almost sure
convergence of the random variable sequence to a deterministic
value.

• One disadvantage of such interpretation is the limited
availability of mathematical tools for almost sure convergence,
as it cannot be quantified through a norm or even a metric,
resulting in great challenges in derivations.

• In fact, almost sure convergence is not topological. There is no
topology on the space of random variables such that the almost
surely convergent sequences are exactly the converging
sequences with respect to that topology.
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Def. A sequence of random variables {XM} is said to converge in
probability towards the random variable X if for all ε > 0,

lim
M→∞

P (|XM − X| > ε) = 0.

• Notation: XM
p

−→ X when M → ∞ or XM
p

−→
M→∞

X.

• The | ∙ | operation can be generalized to any distance measure.
• The weak law of large numbers is concerned with

convergence in probability.

If Y1, Y2, ∙ ∙ ∙ , YM , ∙ ∙ ∙ is an infinite sequence of i.i.d. random
variables with expected value μ, the sample average converges
in probability to the expected value, i.e.,

1
M

M∑

m=1

Ym
p

−→
M→∞

μ.

• The i.i.d. assumption can be greatly relaxed, for example to
Y1, . . . , YM independent, and Var (YM ) = σ2 for all M .
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Def. A sequence of random variables {XM} is said to converge in
distribution, or converge weakly, or converge in law to a
random variable X if

lim
M→∞

FM (x) = F (x)

at all x where F (x) is continuous. Here FM (x) is the cumulative
distribution functions (CDF) of XM and F (x) is the CDF of X.

• Notation: XM
d

−→ X when M → ∞ or XM
d

−→
M→∞

X.

• In contrast to almost sure convergence, convergence in
probability and convergence in distribution can be defined
through the Lévy-Prokhorov and Ky Fan metrics, respectively.

• On the other hand, many seemingly innocent properties do not
hold for convergence in distribution. For example, in general

XM
d

−→ X and YM
d

−→ Y do not necessarily imply

XM + YM
d

−→ X + Y or XMYM
d

−→ XY .
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• Central limit theorem is concerned with convergence in

distribution.

If Y1, Y2, ∙ ∙ ∙ , YM , ∙ ∙ ∙ is an infinite sequence of i.i.d. random

variables with expected value μ and variance σ2, as M → ∞,

the random variable sequence
√

M
(

1
M

∑M
m=1 Ym − μ

)

converges in distribution to the normal distribution N (0, σ2),

that is,
√

M

(
1
M

M∑

m=1

Ym − μ

)
d

−→
M→∞

N (0, σ2).

– Application: For large M , the distribution of 1
M

∑M
m=1 Ym is

approximated as Gaussian whose mean is μ and variance is σ2

M ,

i.e., 1
M

∑M
m=1 Ym ∼ N

(
μ, σ2

M

)
.
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Def. A sequence of random variables {XM} is said to converge in

mean square (m.s.) to a random variable X if

lim
M→∞

E (|XM − X|2) = 0.

• Notation: XM
m.s.
−→ X when M → ∞ or XM

m.s.
−→

M→∞
X, or

XM
L2

−→
M→∞

X.

• Convergence in the rth-mean: changing the square to the

rth-power.

• The definition is based on expectation, not probability,

leading to easier calculations in most situations.
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Discussions.

• Connections and differences.

– a.s. convergence ⇒
m.s. convergence ⇒ convergence in probability.

– convergence in probability ⇒ convergence in distribution.

– a.s. convergence 6⇒
6⇐ m.s. convergence.

• Convenience in application.

– m.s. convergence: can be defined by a norm; In fact, the

norm can be defined through an inner product.

– convergence in probability/distribution: can be defined

by a metric;

– a.s. convergence: not topological.

• The m.s. convergence is at the same time the strongest and

the most convenient to use.
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Properties.

Convergence a.s. p d m.s.

Linearity X X × X

Continuous function X X X ×

Product X X × ×

• Linearity:
If XM

a.s.
−→ X and YM

a.s.
−→ Y , then for any a and b,

aXM + bYM
a.s.
−→ aX + bY .

Also holds for convergence in probability, convergence
in m.s., but not for convergence in distribution.

• Continuous function:
If XM

a.s.
−→ X, for any continuous function h, h(XM )

a.s.
−→ h(X).

Also holds for convergence in probability, convergence
in distribution but not for convergence in m.s.
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• For the reciprocal function h(XM ) = 1/XM :

If XM
a.s./p
−→ X and P (X = 0) = 0, we have XM

a.s./p
−→ X.

In particular, if XM converges to a deterministic value x,

XM
a.s./p
−→ x 6= 0 ⇒

1
XM

a.s./p
−→

1
x

.

• Product:
If XM

a.s.
−→ X and YM

a.s.
−→ Y , then XMYM

a.s.
−→ XY .

Also holds for convergence in probability, but not for
convergence in distribution or convergence in m.s.

• Ratio:
If XM

a.s./p
−→ X, YM

a.s./p
−→ Y , and P (Y = 0) = 0, then

XM/YM
a.s./p
−→ X/Y .

Particularly, if XM , YM converge to deterministic values,

XM
a.s./p
−→ x, YM

a.s./p
−→ y 6= 0 ⇒

XM

YM

a.s./p
−→

x

y
.

This is useful in massive MIMO analysis.
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Def. The squared coefficient of variance (SCV) of a random

variable is defined through:

SCV(X) =
Var [X]
E [X]2

.

• For a sequence of random variables {XM} with E [XM ] → x,

– When x 6= 0, SCV(XM ) → 0 is equivalent to XM
m.s.
−→

M→∞
x.

– When x = 0, SCV(XM ) → 0 implies XM
m.s.
−→

M→∞
x. But the

converse does not hold.

• One can give random variables with positive (or negative)

mean a fibre bundle structure and generalize coefficient of

variance to a Riemannian metric on it.
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• The concept of asymptotic determinicity of a random

sequence {XM} can be defined through SCV(XM) → 0 and

E [XM ] → x .

– Compared to the definition using a.s. convergence (Page 9), the

definition through SCV is based on expectation, thus more

convenient in applications and manipulations.

– One could also define asymptotic determinicity through

m.s. convergence. However, the SCV one is advantageous since

it avoids, through normalization, mistakes caused by scaling.

For example, XM may be re-scaled to XM/Mn, which converges

in m.s. to 0, while SCV(XM/Mn) = SCV(XM ).
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Generalization to convergence definitions of random
matrix sequence
• The convergence definitions for a random scalar sequence can

be naturally applied to a random vector/matrix sequence via
combining with the entry-wise convergence on Page 6.

Def. A sequence of K × N (where K and N are fixed) random
matrices XM converges almost surely to a random matrix
X if for each entry, the sequence of random variables converges
almost surely to the correspondence entry of X, i.e.,

[XM ]ij
a.s.
−→

M→∞
[X]ij , for all i = 1, ∙ ∙ ∙ , K, j = 1, ∙ ∙ ∙ , N.

Remarks:

– Though usually not explicitly given, this definition has been
widely used in massive MIMO research.

– It is important that K and N are fixed, not increasing
unboundedly with M .
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The combination with the norm-based convergence on Page 4 is

straightforward for the case of fixed K and N .

Def. A sequence of K × N (where K and N are fixed) random

matrices XM converges almost surely to a random matrix X if

‖XM − X‖ converges almost surely to 0, i.e.,

‖XM − X‖
a.s.
−→

M→∞
0.

Remarks:

• ‖ ∙ ‖ denotes any matrix norm. Note that all norms are

equivalent as long as K, N are both fixed.

• When K and/or N increases with M , the limit can be studied,

similarly to Page 6, when ‖XM − YM‖
a.s.
−→

M→∞
0 for some

deterministic sequence YM .
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Part 2. Examples and Applications in MIMO and
Massive MIMO Analysis

Simplest models to show the usage of the convergence definitions.

2.1. Channel hardening and distribution of MIMO capacity -

convergence in distribution and more

2.2. Achievable rate analysis for single-cell massive MIMO uplink

under MRC - almost sure convergence

2.3. Outage probability analysis for massive MIMO downlink -

convergence in distribution

2.4. Power scaling law for single-cell massive MIMO downlink -

convergence in mean square and SCV determinicity
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2.1. Channel hardening and distribution of MIMO
capacity [4]
A point-to-point MIMO system

• M transmit antennas

• N receive antennas.

• Channel matrix H (N × M) with i.i.d. CN (0, 1) entries [2].
Average transmit SNR: ρ.

• Gaussian signals; CSI at the receiver not the transmitter.

• Mutual information (capacity): I = log(I + ρ
M HHH).

Goals

• To compute the distribution of I: use central limit theorem
and more to approximate I as Gaussian.

• Asymptotic analysis for large M and/or N .
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Review of results on MIMO ergodic capacity [3]: E [I].

• If M is fixed and N → ∞,

E [I] ≈ M log

(

1 +
Nρ

M

)

.

– Cannot be put in simple limit form.

– Approximation by keeping the most dominant term.

• If N is fixed and M → ∞,

lim
M→∞

E [I] = N log(1 + ρ).

• If M, N → ∞ and β = N/M is fixed,

E [I] ≈ min{M, N}F (β, ρ),

where

F (β, ρ) = log
[
1 + ρ(

√
β + 1)

2
]

+ (β + 1) log

(
1 +

√
1 − a

2

)

− (log e)
√

β
1 −

√
1 − a

1 +
√

1 − a

+(β − 1) log

(
1 + α

α +
√

1 − α

)
, a =

2ρ
√

β

1 + ρ(
√

β + 1)2
, α =

√
β − 1

√
β + 1

.
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Main results on the distribution of I

• If M is fixed and N → ∞,

√
N

[

I − M log

(

1 +
Nρ

M

)]
d
→ N

(
0, M log2 e

)
. (1)

Approximate distribution for large N :

I ∼ N

(

M log

(

1 +
Nρ

M

)

,
M log2 e

N

)

.

• If N fixed and M → ∞,

√
M [I − N log (1 + ρ)]

d
→ N

(

0,
Nρ2 log2 e

(1 + ρ)2

)

.

Approximate distribution:

I ∼ N

(

N log (1 + ρ) ,
Nρ2 log2 e

M(1 + ρ)2

)

.
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• If M, N → ∞,

– for low SNR,

lim
ρ→0

1
ρ log e

√
M

N
[I − Nρ log e]

d
→ N (0, 1) .

Approximate distribution: I ∼ N
(
Nρ log e, N

M ρ2 log2 e
)
.

For the special case of fixed β = N/M , approximation
distribution: I ∼

(
Nρ log e, βρ2 log2 e

)
.

– for high SNR,

lim
ρ→∞

1
σMN

[I − μMN ]
d
→ N (0, 1) ,

where μMN = k log(ρ/M) + k log 2




K−k∑

i=1

1

i
− γ



 + log e

k−1∑

i=1

i

K − i
,

σ
2
MN = log2 e




k−1∑

i=1

i

(K − k + i)2
+ k




π2

6
−

K−1∑

i=1

1

i2







 , K = max{M, N}, k = min{M, N}.

Approximate distribution: I ∼ N
(
μMN , σ2

MN

)
.

For the special case of fixed β = N/M , simplified
approximations can be obtained.
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Proof of (1). (for the first case: M is fixed and N → ∞)

I = log(I +
ρ

M
HHH) =

M∑

m=1

log

(

1 +
ρN

M
λm

)

, (2)

where λ1, ∙ ∙ ∙ , λM are the eigenvalues of 1
N HHH.

Define W , HHH, an M × M Wishart matrix.

• From the law of large numbers,
1
N W

a.s.
−→I, following which λ̃m , λm − 1

a.s.
−→0.

• With Taylor expansion of (2),

I = M log

(

1 +
ρN

M

)

+
M∑

m=1

log

(

1 +
ρN
M λ̃m

1 + ρN
M

)

= M log

(

1 +
ρN

M

)

+
ρN
M log e

1 + ρN
M

M∑

m=1

λ̃m + O

(
M∑

m=1

λ̃2
m

)

.

Denote the last term in the above as X, for the convenience.
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• From properties of Wishart matrix, it can be shown that

E

[
M∑

m=1

λ̃m

]

= E

[
1
N

tr(HHH) − M

]

= 0, Var

[
M∑

m=1

λ̃m

]

=
M

N
,

E

[
M∑

m=1

λ̃2
m

]

= E

[
M∑

m=1

(λm − 1)2
]

=
M2

N
, Var

[
M∑

m=1

λ̃2
m

]

= O

(
1

N2

)

.

Thus, E [X] ∼ O
(

1
N

)
, X − E [X] ∼ Op

(
1

N2

)
, where Op

represents the scaling in the probability sense (with probability

1).

As
∑M

m=1 λ̃m ∼ Op

(
1
N

)
, the effect of X diminishes in the sense

of both probability and average when N → ∞.
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• Notice that
√

N
√

M

M∑

m=1

λ̃m =
1

√
MN

(

N

M∑

m=1

λm − MN

)

=
1

√
MN

(trW − MN)
d

−→CN (0, 1),

where the last step is due to central limit theorem.

• By combining with the observation that

ρN
M

1 + ρN
M

= 1 + O

(
1
N

)

,

the capacity distribution result in (1) is obtained.
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Discussions

• Convergence in distribution

• In addition, the mean of the capacity converges to a constant,

the variance of the capacity diminishes to 0.

• The SCV of the capacity converges to 0 and the convergence

rate is linear in 1/N .

• The capacity distribution results have many applications,

including the analysis of the outage probability, the user

scheduling gain, required feedback rate, and the number of

users needed for scheduling gain. More details are in [4].
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2.2. Achievable rate analysis for single-cell multi-user
massive MIMO Uplink with MRC

• M antennas at the base station (BS), K single-antenna users

• Channel matrix (M × K): G = HD1/2.
– H = [h1, ∙ ∙ ∙ ,hK ]: small-scale fading channel matrix. A

circularly symmetric complex Gaussian matrix [2].
– D = diag {[d2, ∙ ∙ ∙ , dK ]}.

– gk =
√

dkhk: M × 1 channel vector of User k.
– hk ∼ CN (0, I): the small-scale Rayleigh fading of User k.
– hi’s are independent.
– dk: large-scale fading coefficient of User k.
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• Estimated channel matrix: Ĝ = ĤD.

– Model 1: H = Ĥ + ΔH, where Ĥ and ΔH are independent,

ΔH ∼ CN (0, σ2
eI), Ĥ ∼ CN (0, (1 − σ2

e)I).

∗ σ2
e represents the power of channel estimation error,

depending on the training length and training power.

∗ Applies to MMSE channel estimation.

– Model 2: Ĥ = H + ΔH, where H and ΔH are independent,

ΔH ∼ CN (0, σ2
eI), and thus Ĥ ∼ CN (0, (1 + σ2

e)I).

∗ 1/σ2
e represents the average SNR during training, depending

on the training length and training power.

∗ Applies to channel estimation by scaling the received signals

during training.

• Use Model 1 here. Similar analysis applies to Model 2.
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Uplink with maximum-ratio combining (MRC)

• Users send information vector s with per-user power pu.
Entries of s are i.i.d. with zero-mean and unit-variance.

• Received signal vector at the BS:

x =
√

puGs + w,

where w ∼ CN (0, I) is the noise vector at the BS.

• MRC at the BS to obtained processed vector y (K × 1):

y = ĜHx =
√

puD
1
2 ĤHHD

1
2 s + D

1
2 ĤHw

=
√

puD
1
2 ĤHĤD

1
2 s +

√
puD

1
2 ĤHΔHD

1
2 s + D

1
2 ĤHw.

The kth element of yk (to decode User k’s information):

yk =
√

pudkĥ
H
k ĥksk +

√
pu

∑

j 6=k

√
dkdjĥ

H
k ĥjsj

+
√

pu

∑

j

√
dkdjĥ

H
k Δhjsj +

√
dkĥ

H
k w.
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Signal-to-interference-plus-noise-ratio (SINR) analysis

From the yk formula on the previous slide, we have

SINRk

M
=

pudk

(
1
M ĥH

k ĥk

)2

pu

∑

j 6=k

dj
1
M

∣
∣
∣ĥH

k ĥj

∣
∣
∣
2

+ puσ2
e

∑

j

dj

(
1
M ĥH

k ĥk

)
+
(

1
M ĥH

k ĥk

)

(3)

The scalings with M is for each term to have non-zero & bounded

average or limit.
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• a.s. convergence to deterministic values of some terms
in the SINR formula (3) from law of large numbers. When
M → ∞, for fixed K: As columns of Ĥ are uncorrelated with
zero-mean,

1
M(1 − σ2

e)
ĤHĤ

a.s.
−→ IK ⇐⇒

1
M(1 − σ2

e)
ĥH

i ĥj
a.s.
−→ δij . (4)

– Signal term: From (4) and properties on Pages 15-16,

pudk

(
1
M

ĥH
k ĥk

)2
a.s.
−→ pudk(1 − σ2

e)2.

– Channel error and noise terms: From (4) and Pages 15-16,

puσ2
e

∑

j

dj

(
1
M

ĥH
k ĥk

)
a.s.
−→ puσ2

e(1 − σ2
e)
∑

j

dj .

(
1
M

ĥH
k ĥk

)
a.s.
−→ (1 − σ2

e).
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• However, for the interference term, we cannot claim

a.s. convergence or m.s. convergence to a deterministic

value.

– Via straightforward calculations.

E

[
1
M

∣
∣
∣ĥH

k ĥj

∣
∣
∣
2
]

= 1, Var

[
1
M

∣
∣
∣ĥH

k ĥj

∣
∣
∣
2
]

= 1 −
1
M

.

Notice that the variance and the SCV do not converge to 0. The

term does not converge to a deterministic value in m.s.

and is not asymptotically deterministic in SCV sense.

– a.s. convergence to a deterministic value is also untrue,

since it converge to a random variable with Gamma distribution.

From central limit theorem, 1√
M

ĥH
k ĥj

d
−→ CN (0, 1 − σ2

e).

From the continuous function property on Page 15,
1
M

∣
∣
∣ĥH

k ĥj

∣
∣
∣
2 d
−→ Gamma(1, 1), the Gamma-distribution.
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• SINR result (an approximation) for large M :

SINRk

M
≈

dk
∑

j 6=k dj + σ2
e

1−σ2
e

∑
j dj + 1

pu(1−σ2
e)

.

By replacing the interference term with its mean and replace

other terms with their deterministic limits.

• Achievable rate result for large M :

Rk ≈ log



1 +
Mdk

∑
j 6=k dj + σ2

e

1−σ2
e

∑
j dj + 1

pu(1−σ2
e)



 .

From Jensen’s inequality and convexity of log(1 + 1/x), the

above rate-approximation is a lower bound.
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Discussions

• The analysis is for the case of fixed K while M → ∞.

• Similar analysis can be done for the downlink with

maximum-ratio transmission (MRT).

• Many more general models and variations (e.g., multi-cell

systems) have been considered, e.g., [5, 6].

• Can be extended to relay networks with MRT/MRC relaying.

• Analysis for the zero-forcing scheme is more complicated

[10, 11].
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2.3. Outage probability analysis for massive MIMO
downlink [7]

• M antennas at the BS, K single-antenna users

• Channel matrix (K × M): H = [ht
1, ∙ ∙ ∙ ,ht

K ]t.

– hk ∼ CN (0, I): 1 × M channel vector of User k.

– Assume perfect CSI at the BS.

• BS sends sk to User k. sk’s i.i.d. zero-mean and unit-variance.

• Signal vector s = [s1, ∙ ∙ ∙ , sK ]t.

• BS transmit power: Pt.
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• maximum-ratio transmission (MRT) precoding at the BS to

produce the transmitted vector x:

x =

√
Pt

KM
HHs.

• The received signal vector:

y = Hx + n.

where n is the noise vector with i.i.d. CN (0, 1) entries.

The received signal at the kth user:

yk =

√
Pt

KM
hkh

H
k xk +

√
Pt

KM

K∑

j=1,j 6=k

hkh
H
j xj + nk,

where nk ∼ CN (0, 1) is the noise.
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• SINR:

SINRk =
PuMX2

k

1 + PuYk
,

where

Pu =
Pt

K
, Xk ,

1
M

hkh
H
k , Yk ,

K∑

j=1,j 6=k

1
M

|hkh
H
j |

2.

– Pu: transmit power per user.

– Yk: the scaled interference power.

The scaling is for non-zero and bounded mean.

40



MIMO Communications - Convergence

Claim: When M � 1, the probability density function (PDF) of

Yk has the following approximation:

fYk
(y) = (1 − η)

∞∑

i=0

ηiφ

(

y; K + i − 1, 1 −
1

√
M

)

, (5)

where φ(y; α, θ) = yα−1e−y/θ

θα(α−1)! for y > 0 is the PDF of Gamma

distribution with shapa parameter α and scale parameter θ, and

η ,
K − 1

√
M + K − 2

.

With some rewriting, we have

fYk
(y)=

√
M

√
M +K−2

η−(K−2)

[

e
−

√
M√

M+K−2
y− e

−
√

M√
M−1

y
K−3∑

n=0

( √
M

√
M−1

η

)n
yn

n!

]

.

(6)
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Proof.
• When M → ∞, from central limit theorem, for k 6= j,

1
√

M
hkh

H
j

d
→ CN (0, 1)

In this claim, the definition convergence in distribution is
extended to complex random variable [2] via joint CDF.

• From the continuous function property on Page 15,

1
M

|hkh
H
j |2

d
→ Gamma(1, 1),

where Gamma(α, θ) represents the Gamma distribution.

• The correlation coefficient of 1
M |hkhH

j |2 and 1
M |hkhH

l |2 for
j 6= l can be calculated as ρjl = 1/M .

• So, Yk can be approximated as sum of K−1 correlated Gamma
random variables, whose PDF can be shown as (5). See [7] for
details.
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• With straightforward calculations,

E [X2
k ] = 1 +

1
M

, Var[X2
k ] =

4
M

+ O

(
1
M

)

,

E [Yk] = K − 1, Var[Yk] = K − 1 +
(K − 1)(K − 2)

M
.

• Let γth be the SINR threshold and γ̃th , γth/M .

• When M → ∞ with γ̃th and K remain fixed/bounded,

Pout = P (SINRk ≤ γth) = P

(
PuMX2

k

1 + PuYk
< γth

)

= P

(
Pu(1 + X̃)
1 + PuYk

< γ̃th

)

→ P

(
Pu

1 + PuYk
< γ̃th

)

, (7)

where X̃ , X2
k − 1 and the last step is because both the mean

and variance of X̃ are O(1/M), while Var[Yk] > K − 1.
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test
Outage probability result: By using the approximate PDF in
(6) in (7), for M � 1,

Pout ≈ η−(K−2)e
−

√
M√

M+K−2

(
M+1
γth

− 1
Pu

)

− (1 − η)

K−3∑

n=0

1

n!
ηn−K+2Γ

(

n + 1,

√
M

√
M − 1

(
M + 1

γth
−

1

Pu

))

,

where Γ(z, x) is the incomplete gamma function.

Discussions
• The result is an approximation, not a rigorous limiting result.
• For large M , the variance of X2

k is O(1/M), while the variance
of Yk is O(1). When M → ∞, the signal power becomes
deterministic, the interference power does not and its variance
is significantly larger than that of the signal power.

• The same result can be obtained by approximating X2
k with its

average, but keep Yk as a random variable.
• [12] studied the outage probability for massive MIMO uplink

with mixed ADCs and the ADC resolution profile optimization.
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2.4. Power scaling law for single-cell massive MIMO

downlink

The downlink of single-cell multi-user massive MIMO.

• M antennas at the BS, K single-antenna users

• Channel matrix (K × M) H = [ht
1, ∙ ∙ ∙ ,ht

K ]t.

– hk ∼ CN (0, I): 1 × M channel vector of User k.
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• Estimated CSI: ĥk ∼ CN (0, QI).

– Q , 1/(1 + E−1
t ) representing the quality of the estimated

channel.

– Et is the energy for the training phase, depending on training

length and power.

– Channel error: Δh = h − ĥ, with i.i.d. CN (0, 1 − Q) entries.

• BS transmit power: Pt.

• BS sends sk to User k.

sk’s are i.i.d., zero-mean and unit-variance.

Signal vector: s = [s2, ∙ ∙ ∙ , sK ]t.
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SINR calculations

• MRT precoding at the BS to get the transmitted vector x:

x =

√
Pt

KMQ
ĤHs.

• The received signal vector y = Hx + n, where n is the noise

vector with i.i.d. CN (0, 1) entries.

The received signal at the kth user:

yk =

√
Pt

KMQ
ĥkh

H
k sk +

√
Pt

KMQ

K∑

j=1,j 6=k

ĥkh
H
j sj + nk

=

√
Pt

KMQ
ĥkĥ

H
k sk+

√
Pt

KMQ

∑

j 6=k

ĥkĥ
H
j sj +

√
Pt

KMQ

K∑

j=1

ĥkΔhH
j sj +nk,

where nk ∼ CN (0, 1) is the noise.
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• Define the powers of the (scaled) signal, interference, CSI error,
and noise terms as follows:

Ps =
1

M2

∣
∣
∣ĥkĥ

H
k

∣
∣
∣
2

,

Pint =
1

K − 1

1

M

∑

j 6=k

∣
∣
∣ĥkĥ

H
j

∣
∣
∣
2

,

Pe =
1 − Q

K

1

M

K∑

j=1

ĥkĥ
H
k .

– The normalizations are to have non-zero and bounded means.

– With calculations, we have

E(Ps) = Q2

(

1 +
1

M

)

→ Q2, SCV(Ps) = O

(
1

M

)

;

E(Pint) = Q2, SCV(Pint) = O

(
1

M
+

1

K − 1

)

;

E(Pe) = Q (1 − Q) , SCV{Pe} =
1 − Q

KM
.
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• The SINR of User k can be written as

SINRk = M
Ps

(K − 1) Pint + KPe + KQ
Pt

. (8)

Scaling law analysis

• To understand the effect and tradeoff of system parameters

and the SINR behaviour with respect to M .

• SINR simplification: From the SCVs on the previous slide, Ps

and Pe are asymptotically deterministic in the SCV sense. We

can replace then by there averages without changing the

convergence behaviour of the SINR. Further, by replacing Pint

with its averages, the following SINR approximation is

obtained.

SINRk ≈ SINRk,L =
1

K
MQ − 1

M + K
MQPt

.
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• Define scaling exponents rk, rp, rt for the user number,

transmit power, and training energy as follows:

K = O (Mrk) ,
1
Pt

= O (Mrp) ,
1
Et

= O (Mrt) .

– All exponents take values in [0, 1], i.e., 0 ≤ rk, rp, rt ≤ 1 for

practical massive MIMO systems.

– They represent how the parameters scale with M , the BS

antennas number.

For example, when rk = 0, the user number K is a constant;

and when rk = 1, K increases linearly with M .

• Similarly, define the scaling exponent of the SINR, rs, as

SINRk,L = O (Mrs) ,

which shows the asymptotic scaling of the SINR in M .
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• Scaling law result
For the single-cell massive MIMO downlink with MRT, the
performance scaling law is

rs = 1 − rt − rk − rp. (9)

Proof. Straightforward results from the SINR approximation
and the definition of the exponents.

• Remarks and discussion on typical scenarios.

1. Decreasing performance with increasing M (i.e., rs < 0)
contradicts the motivations of massive MIMO.

The necessary and sufficient condition for the massive MIMO
network to have non-decreasing SINR or favourable SINR is

rt + rk + rp ≤ 1, rt, rk, rp ∈ [0, 1] .

This provides many tradeoff laws. For example, if the training
energy decreases linearly in M (i.e., rt = 1), the transmit power
and the user number must be constants.
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test
2. For the case of rt = 0, i.e., constant training energy, the scaling

law is rs = 1 − (rk + rp).

Notice that 1/Mrk+rp = Pt/K, the per-user transmission power.

The most power-saving design is: the per-user power decreases
linearly with M , i.e., rk + rp = 1, which leads to constant SINR.

With a larger M , the system can serve more users or consume
less power, while maintaining certain SINR performance.
Improvements in both aspects have limits: 1) rk = 1, rp = 0 and
2) rk = 0, rp = 1.

Case 1) means: when K increases linearly with M , to achieve
non-decreasing SINR, Pt must remain constant, and thus the
goal of reducing Pt cannot be achieved.

Case 2) means: when Pt is inversely proportional to M , the goal
of serving more users cannot be achieved.

3. Other scenarios, e.g., decreasing training energy, constant or
linearly increasing user number/transmit power, can be studied
similarly from the scaling law [8, 9].
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Asymptotic determinicity analysis

• Deterministic equivalence has been widely used in massive
MIMO analysis. Many were based on a.s. convergence
(sometime implicitly).

• SCV-based definition for asymptotically determinicity
[8, 9].
Definition. Let {XM} be a random variable sequence with
converging mean. {XM} is said to be asymptotically
deterministic if its SCV sequence decreases at least linearly
with M .

Another possible definition is: {XM} is said to be
asymptotically deterministic if the SCV sequence converges to
0. (without condition on the convergence rate).

For massive MIMO with very large but finite antennas, having
linear or faster convergence rate helps the practicality of the
results.
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• Result on asymptotically deterministic property

With the first definition on the previous slide, a sufficient
condition for the SINR of the massive MIMO downlink to be
asymptotically deterministic is

2rt + rk + 2rp ≥ 1. (10)

Proof. See Appendix B in [9].

• Remarks and discussion on typical scenarios.
1. (10) combined with (9) implies rs ≤ 1/2, meaning that to have

asymptotically deterministic SINR, the SINR scaling is no high
than

√
M .

2. Linearly increasing user number (rk = 1) means asymptotically
deterministic.

3. To achieve both the highest SINR scaling rs = 1/2 and
asymptotically deterministic, the condition reduces to rk = 0
(constant user number) and rt + rp = 1/2 (product of training
energy and transmit power scales as 1/

√
M).

4. More scenarios can be discussed similarly.
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Extensions

• The simple single-cell case is illustrated here to illustrate the

use of SCV, the scaling law framework, and the asymptotically

deterministic concept.

• [8] studied the power scaling law and asymptotic determinicity

for multi-user massive MIMO relay networks.

In addition, the scenario with linearly increasing SINR (not

asymptotically deterministic) was studied, where the outage

probability and error rate expressions were derived.

• [9] studied the power scaling law and asymptotic determinicity

for the multi-cell case with pilot contamination and pilot

contamination elimination, correlated channels, and

zero-forcing precoding.
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