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Part 1. Definitions and Results

1.1 Complex random variable/vector/matrix

• Real-valued random variable

• Real-valued random vector

• Complex-valued random variable

• Complex-valued random vector

• Real-/complex-valued random matrix
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Real-valued random variable

Def. A map from the sample space to the real number set Ω → R.

• A sample space Ω;

• A probability measure P (∙) defined on Ω;

• An experiment on Ω;

• A function: each outcome of the experiment 7→ a real number.

Notation : random variable X; sample value x.

Outcomes of the experiment: In Ω. ”Invisible”. Does not matter.

What matters: The values value x assigned by the function.

Examples:

Flip a coin and head → 0, Tail → 1.

A random bit of 0 or 1.

Roll a die and even → 0, odd → 1.
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How to describe a random variable?

Def. The cumulative distribution function (CDF) of X:

FX(x) = P (ω ∈ Ω : X(ω) ≤ x) = P (X ≤ x).

Def. The probability density function (PDF) of X:

fX(x) =
dFX(x)

dx
.

Keep in mind: A random variable though the result of an

experiment, can be separated to the physical experiment. The

values matter, not the outcomes of the experiment.

In other words, ω is invisible, all one can see is x.
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Common concepts, models, and properties of random variables.

• Discrete random variable, continuous random variable, mixed

random variable

• Mean, variance, moments

• Multiple random variables: Joint CDF/PDF, marginal

CDF/PDF, conditional CDF/PDF, etc.

• Multiple random variables: Independence and correlation
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(Real-valued) random vector.

X =








X1

...

XK








, value x =








x1

...

xK








• K dimensional.

• Each Xi: random variable;

• Describe through joint PDF:

fX(x) = fX1,X2,∙∙∙ ,XK (x1, x2, ∙ ∙ ∙ , xK)
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Mean vector and Covariant Matrix

• Mean vector.

m = E(X) =








E (X1)
...

E (XK)








=








m1

...

mK








,

• Covariance matrix.

Σ = E{(X − m)(X − m)T } =







∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ E [(Xi − mi)(Xj − mj)] ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙





 ,

Σ � 0 (positive semidefinite matrix).
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Complex-valued random variable.

X = Xr + jXs.

Equivalent to 2-dimensional real-valued random vector:

X̂ =



Xr

Xs



 .

To describe X̂, use joint PDF of (Xr, Xs) ⇐⇒ joint PDF of the

random vector X̂.

fX̂(x̂) = fXr,Xs(xr, xs).
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Complex-valued random vector
Equivalent to real-valued random vector with twice

dimension:

X = Xr + jXs ⇐⇒ X̂ =



Xr

Xs



 .

To describe X, use the joint PDF of (Xr,Xs) (twice the dimension

of X):

fX̂(x̂) = fXr,Xs
(xr,xs)

= fXr,1,∙∙∙ ,Xr,K ,Xs,1,∙∙∙ ,Xs,K
(xr,1, ∙ ∙ ∙ , xr,K , xs,1, ∙ ∙ ∙ , xs,K).
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Real-/complex-valued random matrix:

X = [xij ] : M × N matrix.

Each entry xij is a real-/complex-valued random variable.

Also use X for a sample or a realization.

⇐⇒ an (MN)-dimensional real-/complex random vector.

To make the difference between random vector and random

variables, use x for both a random vector and its realization.

Reserve X for both a random matrix and its realization.
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The vectorization operation for X = [xij ].

By columns:

vec(X) =




















x11

...

xM1

...

x1N

...

xMN




















=








xcol,1

...

xcol,N








By rows:

vecrow(X) =
[
x11 ∙ ∙ ∙ x1N ∙ ∙ ∙ xN1 ∙ ∙ ∙ xMN

]

=
[
xrow,1 ∙ ∙ ∙ xrow,M

]
.
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Remarks on the vectorization operation

• To describe the real-/complex-valued random matrix

X is to describe the real-/complex-valued random

vector vec(X).

• For real-valued random matrix: joint PDF of entries of vec(X).

• For complex-valued random matrix: two ways.

– Vectorize first, then separate. v̂ec(X) =



vec(X)r

vec(X)s



.

vec(X)r and vec(X)s: real and imaginary parts of vec(X).

– Separate first, then vectorize. vec(X̂) = vec







Xr

Xs







.

Equivalent. The difference is a permutation of indices, i.e., a

linear transformation with a permutation matrix.
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1.2. Circularly symmetric complex Gaussian (CSCG)

matrix

• Real-valued Gaussian random variable

• Real-valued Gaussian random vector and random matrix

• Complex-valued Gaussian random vector and CSCG random

vector

• CSCG random matrix
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Real-valued Gaussian random variable

Gaussian/normal distribution: X ∼ N (m, σ2).

m: mean, σ2: variance.

PDF:

fX(x) =
1

√
2πσ

e
−

(x − m)2

2σ2 .

Standard Gaussian distribution: N (0, 1).

Q-function: If X ∼ N (0, 1),

Q(x) , P (X > x) =
∫ ∞

x

1
√

2π
e−

t2

2 dt.
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Real-valued Gaussian random vector and random
matrix

Random vector: x =








X1

...

XK








.

Def. The random vector x is a Gaussian random vector if
X1, X2, ∙ ∙ ∙ , XK are jointly Gaussian.

Joint Gaussian RVs:

• X1, X2 are jointly Gaussian if both Gaussian and
X1|X2, X2|X1 are Gaussian.

• Can be generalized to more Gaussian RVs, e.g., X1, X2, X3 are
jointly Gaussian if each two are jointly Gaussian and
(X1, X2)|X3, (X1, X3)|X2, (X2, X3)|X1 are jointly Gaussian.

• Independent Gaussian RVs are jointly Gaussian.

• Linear combinations of jointly Gaussian RVs are Gaussian.
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• The PDF of x (joint PDF of X1, ∙ ∙ ∙ , XK) is:

fx(x) =
1

(√
2π
)K

det
1
2 (Σ)

e−
1
2 (x−m)T Σ−1(x−m),

where m is the mean vector and Σ is the covariance matrix.

• Notation: x ∼ N (m,Σ).

• Several special cases.

– i.i.d.∼ N (0, 1)

fx(x) =
1

(√
2π
)K e−

‖x‖2
2

2 =
1

(√
2π
)K e−

1
2

∑K
i=1 x2

i

– Independent only

fx(x) =
1

(√
2π
)K

σ1 ∙ ∙ ∙ σK

e
−
∑K

i=1
(xi−mi)

2

2σ2
i

– Zero-mean

– Other cases ...
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For a random matrix X which is M × N , conduct
vectorization to have vec(X), which is an MN-random
vector.

• Work on the M × N matrix X ⇐⇒ work on the
(MN)-dimensional vector vec(X).

• Thus the mean vector is MN-dimensional and the
covariance matrix is (MN) × (MN).

• X is a Gaussian matrix if vec(X) is a Gaussian random vector.

• Matrix norm distribution: if the PDF has the following
format:

fX(X) =
e−

1
2 tr[V−1(X−M)T U−1(X−M)]

(
√

2π)MN (
√

det(U))N (
√

det(V))M
,

for some M × M matrix U and N × N matrix V.

Equivalently, vec(X) ∼ N (vec(M),V ⊗ U).

18



Lecture series - CSCG Matrix

• If columns of X are i.i.d. each following N (m,Σ), the

mean vector of vec(X) is m̃ = [mt, ∙ ∙ ∙ ,mt]t and the covariance

matrix is Σ̃ = diag {Σ, ∙ ∙ ∙ ,Σ} = I ⊗ Σ.

– Notice that m is M -dimensional and Σ is M × M .

– PDF:

fX(X) = fvec(X)(vec(X))

=
1

(√
2π
)MN

det
1
2 (Σ̃)

e−
1
2 (vec(x)−m̃)T Σ̃−1(vec(x)−m̃)

=
N∏

n=1

1
(√

2π
)M

det
1
2 (Σ)

e−
1
2 (xcol,n−m)T Σ−1(xcol,n−m)

=
1

(√
2π
)MN

det
N
2 (Σ)

e−
1
2 tr[(X−M)T Σ−1(X−M)],

where M = [m, ∙ ∙ ∙ ,m].

19



Lecture series - CSCG Matrix

– For this special case,

Σ =
1
N
E [(X − M)(X − M)T ].

– For zero-mean (m = 0), Σ = 1
NE [XXT ] and

fX(X) =
1

(√
2π
)MN

det
N
2 (Σ)

e−
1
2 tr[XT Σ−1X].

– Many work use the simplified notation X ∼ CN (m,Σ)

for this case.

∗ Cannot use this for the general case.

∗ Understand what it really means.

∗ Rigorously speaking, Σ is not the covariance matrix of X.

∗ For the general case, the right-hand-side of the top formula is

the average covariance matrix of the columns of X.
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• If rows of X are i.i.d. each following N (m,Σ),

– Notice that m is N -dimensional (column vector) and Σ is

N × N .

– PDF:

fX(X) =
1

(√
2π
)MN

det
M
2 (Σ)

e−
1
2 tr[(X−MT )Σ−1(X−MT )T ].

– For zero-mean,

Σ =
1
M
E [XT X]

and

fX(X) =
1

(√
2π
)MN

det
M
2 (Σ)

e−
1
2 tr[XΣ−1XT ].

– Difference to the i.i.d. column case is a (∙)T -operation.

– Be careful with the position of (∙)T and understand why.
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Complex-valued Gaussian random vector and
circularly symmetric complex Gaussian vector

Def. A K-dimensional complex-valued random vector

x = xr + jxs is a complex Gaussian random vector if

x̂ =



xr

xs



 is a real-valued Gaussian random vector.

Def. The complex-valued Gaussian random vector x is circularly

symmetric if

Σx̂ = E{(x̂ − E[x̂])(x̂ − E[x̂])T } =
1
2



Re{Q} −Im{Q}

Im{Q} Re{Q}





for some K × K (Hermitian and) positive-semi-definite matrix Q,

i.e., Q � 0.
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• Notation for x being CSCG: x ∼ CN (m,Q), where m is the

mean vector and Q is the covariance matrix, both are complex

in general.

• Notation: ˆ̂Q =



Re{Q} −Im{Q}

Im{Q} Re{Q}



.

• Real part and imaginary part must be jointly Gaussian.

• Real part and imaginary part have the same covariance matrix.

• Since ˆ̂Q � 0 implies Hermitian, Re{Q} must be symmetric and

Im{Q} must be anti-symmetric (skew-symmetric).

23



Lecture series - CSCG Matrix

Before more details on general CSCG random vector, consider a

1-dimensional random variable: X ∼ CN (m, Q).

• Q is a non-negative real number.

• Xr and Xs are independent and have the same variance, which

equals Q/2.

• X ∼ CN (0, 1) means that the real part and imaginary part of

X are i.i.d.∼ N (0, 1/2).

• PDF of X ∼ CN (m, Q):

fX(x) =
1

πQ
e−

|x−m|2

Q .
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Back to the general K-dimensional CSCG random vector:
x ∼ CN (m,Q).

• PDF:
fx(x) =

1
πK det(Q)

e−(x−m)HQ−1(x−m).

Can be derived from the PDF of the real-valued case.

• Some identities related to the mappings: x → x̂ and Q → ˆ̂Q.

– C = AB ⇔ ˆ̂
C =

ˆ̂
A

ˆ̂
B.

– C = A−1 ⇔ ˆ̂
C =

ˆ̂
A−1.

– det(
ˆ̂
A) = det(AAH) = | det(A)|2.

– y = Ax ⇔ ŷ =
ˆ̂
Ax̂.

– Re(xHy) = x̂H ŷ.

– Q � 0 ⇔ ˆ̂
Q � 0.

– U is unitary if and only if
ˆ̂
U is orthonormal.

• For zero-mean, i.e., x ∼ CN (0,Q), the PDF is

fx(x) =
1

πK det(Q)
e−xHQ−1x.
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Lemma. If x ∼ CN (m,Σ) for any A, then

y = Ax + b ∼ CN (Am + b,AΣAH): Any linear transformation

(affine function) of a CSCG random vector is also a CSCG random

vector.

Lemma. If x and y are independent CSCG random vectors, then

z = x + y is CSCG.

Lemma. If x ∼ CN (0, I) and Φ is a random unitary matrix that is

independent of x, then y = Φx also follows CN (0, I) and is

independent of Φ. x and y are equivalent in distribution.

Lemma. Let x be a zero-mean complex-valued random vector,

and E[xxH ] = Q, then the entropy of x satisfies

H(x) ≤ log det(πeQ)

with equality if and only if x is CSCG, i.e., x ∼ CN (0,Q).
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Circularly symmetric complex Gaussian random
matrix

• By following previous slides, a complex-valued random matrix

X is Gaussian if vec(X) is a complex-valued Gaussian random

vector.

• A complex-valued random matrix X is CSCG if vec(X) is a

CSCG random vector.

• Fundamentally, work on vec(X) using previous definitions and

results.

fvec(X)(vec(X)) =
1

πK det(Q)
e−(vec(X)−m)HQ−1(vec(X)−m),

where m is (MN)-dimensional and Q is (MN) × (MN).
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• If columns (or rows) of X (M × N) are i.i.d.∼ CN (0, I),

meaning that all entries of X are i.i.d.∼ CN (0, 1), X is a CSCG

matrix and its PDF is

fvec(X)(vec(X)) =
1

πMN
e−vec(X)Hvec(X)

or equivalently, fX(X) =
1

πMN
e−‖X‖2

F =
1

πMN
e−tr(XHX),

where ‖X‖F is the Frobenius norm of X.

– Many work use the simplified notation for this case:

X ∼ CN (0M×N , IM×M ).

– It implies that columns are independent and each

column has the same covariance matrix IM×M .

– Not true for the general case. May cause confusion or

mistake if taken for granted.
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• If columns of X (M × N) are independent and CSCG, i.e.,
xcol,n ∼ CN (mn,Qn), then X is a CSCG matrix and its
PDF is

fX(X) =
e−

∑N
n=1(xcol,i−mn)HQ−1

n (xcol,i−mn)

πMN det(Q1) ∙ ∙ ∙ det(QN )

=
e
−(vec(X)−mfull)

HQ−1
full

(vec(X)−mfull)

πMN det(Qfull)
,

where mfull = [mT
1 , ∙ ∙ ∙ ,mT

N ]T , Qfull = diag {Q1, ∙ ∙ ∙ ,QN}.

• The case with independent row vectors can be analyzed
similarly.

• Matrix norm distribution for CSCG case: if the PDF has
the following format:

fX(X) =
e−tr[V−1(X−M)HU−1(X−M)]

(π)MN detN (U) detM (V)
,

for some M × M matrix U and N × N matrix V.

Equivalently, vec(X) ∼ CN (vec(M),V ⊗ U).
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1.3. Isotropic distribution, decomposition of CSCG

random matrix and Wishart matrix and related PDFs

• Isotropic distribution and decomposition of CSCG random

matrix

• Wishart matrix and related PDFs
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Isotropic distribution and decomposition of
CSCG random matrix

Def. An n-dimensional random complex unit vector u is

isotropically distributed if its probability density is invariant to

all unitary transformations. That is,

fu(u) = fu(Φu) for any ΦHΦ = I.

• Uniform distribution on the set of unit vectors.

• The PDF depends on the magnitude (length) only, not

direction.

• Elements of u are dependent.
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The PDF of an isotropically distributed unit vector u is

f(u) =
Γ(n)
πN

δ(uHu − 1).

The PDF of any L-elements of u:

f(u(L)) =
Γ(n)

πLΓ(n − L)
δ(1−(u(L))Hu(L)), norm of each element≤ 1.

u(L) is a vector of any L elements of u.
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Def. An n × n unitary matrix U is isotropically distributed if
its probability density is invariant when left-multiplied by any
deterministic unitary matrix, that is,

fU(U) = fU(ΦU) for any ΦHΦ = I.

• Uniform distribution on the set of unitary matrices.
• Same density on all “directions”.
• PDF is also invariant when right-multiplied by unitary matrix.
• The transpose and conjugate of U are also isotropically

distributed.
• Any column of U is a random complex unit vector.
• Columns of U are dependent.

The PDF of an isotropically distributed unitary matrix U is

f(U) =

∏n
i=1 Γ(i)

πn(n−1)/2
δ(UHU − I).

There are general results on moments of elements of U.
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Theorem: Let X be an m × n standard CSCG matrix, i.e.,

X ∼ CN (0, I), where m ≥ n. Let X = ΦR be the

QR-decomposition normalized so that the diagonal elements of R

are positive. Thus

• Φ is an isotropically distributed unitary matrix.

• Elements of R are independent of each other.

• R is independent of Φ.

• The upper diagonal elements of R are CN (0, 1).

• The ith diagonal element of R is a half of a χ2 random variable

with 2(m − i + 1) degrees of freedom: 2rii ∼ χ2
2(m−i+1).

• The case of m < n can be considered similarly.
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Theorem: Let X be an m × n standard CSCG matrix, i.e.,

X ∼ CN (0, I). Let X = UΣVH be the singular value

decomposition (SVD). Thus

• U and V are isotropically distributed unitary matrices.

• U,Σ,V are independent.

• See later parts on the distributions of elements of Σ.
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Theorem: Let X be an m × n standard CSCG matrix, i.e.,

X ∼ CN (0, I), where n ≥ m. Then X is unitarily similar to an

m × n matrix:

1
2











x2n 0 ∙ ∙ ∙ 0

y2(m−1) x2(n−1) 0 0
. . .

. . .
...

...

y2 x2(n−(m−1)) 0 ∙ ∙ ∙ 0











,

where x2
i and y2

i are independent and follows χ2 distribution with i

degrees of freedom.
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Complex Wishart matrix and related PDFs

Def. Let X be an m× n (m ≥ n) random matrix where each row is
a zero-mean CSCG random vector following CN (0,V) and the
rows are independent. The n × n matrix

W = XHX =
m∑

i=1

xH
row,ixrow,i

is a (centralized) Wishart matrix. The probability distribution
of W is called the (centralized) Wishart distribution, denoted as
CWn(V, m).

• PDF of complex Wishart matrix:

fW(W) =
detm−n(W)

π
n(n−1)

2 Γ(m) ∙ ∙ ∙Γ(m − n + 1) detm(V)
e−tr(V−1W).

• Similar to m < n and column independent CSCG random
matrix.
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Consider the special case of V = I, i.e., X ∼ CN (0, I). Define

W =






XXH m < n

XHX m ≥ n

and N = max{m, n}, M = min{m, n}. The probability distribution
of W is called Wishat distribution with parameters m and n

(notice that N ≥ M and W is M × M).

• PDF of W:

fW(W) =
detN−M (W)

π
M(M−1)

2 Γ(N) ∙ ∙ ∙Γ(N − M + 1)
e−tr(W).

• Joint PDF of ordered eigenvalues λ1 ≥ ∙ ∙ ∙ ≥ λM ≥ 0:

f(λ1, ∙ ∙ ∙ , λM ) = C(M, N) ∙ e−
∑M

i=1 λi

M∏

i=1

λN−M
i

∏

i<j

(λi − λj)
2

for λ1 ≥ ∙ ∙ ∙ ≥ λM ≥ 0, where C is a constant depends on M

and N only.

38



Lecture series - CSCG Matrix

• Joint PDF of unordered eigenvalues

f(λ1, ∙ ∙ ∙ , λM ) =
C(M, N)

M !
∙ e−

∑M
i=1 λi

M∏

i=1

λN−M
i

∏

i 6=j

(λi − λj)
2

for λ1, ∙ ∙ ∙ , λM ≥ 0.

• Marginal PDF of an unordered eigenvalue

fλ =
1

M

M∑

i=1

(i − 1)!

(i − 1 + N − M)!
[LN−M

i−1 (λ)]2λN−M
1 e−λ1 , λ ≥ 0,

where LN−M
k (x) = 1

k!e
xxM−N dk

dxk (e−xxN−M+k) is the
Laguerre polynomial of order k.

• Results on PDFs of the maximum and minimum eigenvalues.

• Inverse Wishart distribution: Y follows inverse Wishart
distribution if its inverse follows Wishart distribution.

• Non-centralized Wishart matrix: when H has non-zero
mean.
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Part 2. MIMO applications

• MIMO channel model

• MIMO capacity

• Diversity analysis of distributed space-time coding with

multiple antennas

• Performance analysis of massive MIMO with ZF
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MIMO channel model

• A wireless link: Multi-path, delay spread, mobility, etc.

• Frequency-flat fading channel: The delay spread in the channel

is negligible compared to symbol interval. The coherence

bandwidth of the channel is much bigger than the signal

bandwidth. Therefore, all frequency components of the signal

will experience the same magnitude of fading.

• Frequency-selective fading channel (the counterpart).

41



Lecture series - CSCG Matrix

testMIMO system with M transmit antennas and N receive antennas:

Transmitter . .
 .

Antenna M

Antenna 1

Antenna N

Antenna 1

. .
 .

...
... Receiver

• At a given time/transmission, for frequency-flat fading over the
bandwidth of interest, the channel can be written as a matrix:

H =











h11 h12 ∙ ∙ ∙ h1M

h21 h22 ∙ ∙ ∙ h2M

...
...

. . .
...

hN1 hN2 ∙ ∙ ∙ hNM











,

where hnm is the channel gain from the m-th TX antenna to
the n-th RX antenna.

• Each hnm is a complex value (quadrature-carrier multiplexing).

• Affected by multi-path fading, path-loss, and shadowing.
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• i.i.d. Rayleigh fading model

– The number of scatters is large, all scattered contributions are

non-coherent and approximately equal energy, (via central limit

theorem)

– Indoor and no line-of-sight

– Enough spacing between antennas (e.g., half-wavelength or

bigger) for independent entries

– Each channel coefficient is modeled as a circularly symmetric

complex Gaussian random variable with zero mean.

– The magnitude of each channel entry (channel gain) follows

Rayleigh PDF. The magnitude-square follows exponential PDF.
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– Channel variance σ2
h depends on the large-scale fading (e.g.,

distance), often normalized as 1.

hnm ∼ CN (0, σ2
h) and i.i.d.

Re(hnm), Im(hnm) ∼ N (0, σ2
h/2) independent

f|hnm|(x) =
2x

σ2
h

e
− x2

σ2
h , for x ≥ 0.

f|hnm|2(x) =
1
σ2

h

e
− x

σ2
h , for x ≥ 0.

– H is CSCG: H ∼ CN (0, σ2
hI), which is N × M .
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• Correlated Rayleigh channel model

– H (N × M) is CSCG with zero-mean.

– Correlation matrix of H:

RH = E
{
vec(H)vec(H)H

}
,

which is MN × MN .

– Another representation:

vec(H) = R1/2
H vec(H̃), where vec(H̃) ∼ CN (0, IMN ).

– Transmit correlation matrix and receive correlation matrix:

Rt,H =
1
N
E
{
HHH

}
, Rr,H =

1
M
E
{
HHH

}
.
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– Kronecker model: when

1) transmit correlation is independent from the receive antennas

and vice versa; and

2) cross-correlation equals to the Kronecker product of

corresponding transmit and receive correlations,

RH = Rr,H ⊗ Rt,H.

In this case, we have H = R1/2
r,H H̃ R1/2

t,H where H̃ ∼ CN (0, I).

– See previous slides for the PDF.
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MIMO Capacity for CSI at the receiver only

System description.

• Point-to-point multiple-antenna system with M transmit
antennas and N receive antennas, with channel matrix H.

• MIMO transceiver equation:

y = Hx + n,

– x: (M × 1) contains signals sent by M transmit antennas. Its

mth entry is the signal send by the mth antenna.

– E[xHx] ≤ P and P is the maximum transmit power.

– x: (N × 1) contains received signals at the N receive antennas.

Its nth entry is the signal received at the nth antenna.

– n: noise vector. Assume n ∼ CN (0,Σn) independent of H and x.

Problem: To analyze the capacity when the receiver knows H.

• Capacity: C = maxfx(x) I(x;y) = maxfx(x)[H(y) − H(y|x)].
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Sketch of method and result.

• H(y|x) = H(Hx + n|x) = H(n|x) = H(n). From previous
lemma, H(n) = log det(πeΣn).

• From the transceiver equation, Σy = HΣxHH + Σn.

• Zero-mean x saves power and does not hurt the capacity, so
assume E[x] = 0. Therefore, E[y] = 0.

trΣx = E[(x − E[x])H(x − E[x])] ≤ E (xHx).

• For any Σx where trΣx ≤ P , from a previous lemma,
max H(y) = log det(πeΣy) = log det[πe(HΣxHH + Σn)]
achieved when y is CSCG, i.e., when x is CSCG.

• Thus,

CMIMO,H = max
trΣx≤P

E log det(IN + Σ−1
n HΣxH

H)

= max
Σx is diagonal, trΣx≤P

E log det(IN + Σ−1
n HΣxH

H),
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• For any permutation matrix Π, HΠ has the same distribution

as H and log det(X) is concave for X � 0. Thus

E log det(IN + Σ−1
n HΣxH

H)

=
1

M !
E
∑

Π

log det(IN + Σ−1
n HΠΣxΠ

HHH)

≤ E log det

{

IN + Σ−1
n H

[
1

M !

∑

Π

ΠΣxΠ
H

]

HH

}

= E log det

(

IN +
trΣx

M
Σ−1

n HHH

)

with equality when Σx = (trΣx/M)IM . Thus,

CMIMO,H = E log det

(

IN +
P

M
Σ−1

n HHH

)

with equality when Σx = (P/M)IM .
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Special/asymptotic cases and discussions.

• If i.i.d. noises, each follows CN (0, σ2),

CMIMO,H = E log det

(

IN +
P

Mσ2
HHH

)

= E log det
(
IN +

ρ

M
HHH

)
.

• When no CSI at the TX

– No reason to transmit more energy on one antenna than
another; thus, same average energy/power across antennas.

– No reason for correlation or dependence between transmit
signals of different antennas.

• When N is fixed and M → ∞,
1
M

HHH → IN , C → N log(1 + ρ).

• When M fixed and N → ∞,
1
N

HHH → IM , C ≈ M log(1 + ρN/M).
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• General case:

CMIMO,H =
K∑

k=1

E λk
log
(
1 +

ρ

M
λk

)
= KE λ log

(
1 +

ρ

M
λ
)

,

where

– λ1, ∙ ∙ ∙ , λK are eigenvalues of HHH ,

– λ represents one unordered eigenvalue. K = rank (H),

– Use eigen-distributions in previous slides for further

calculations.
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Performance analysis of distributed space-time
coding for MIMO relay networks

System description.

receiver1

tRrR

r1

11g

gR1
gRN

f11

f1R

fM1

fMR

1Ng

  .
  .

  . . .
 .

. .
 .

. .
 .

. .
 .

relays

Step2: time T+1 to 2TStep1: time 1 to T

transmitter t

• One transmitter with M transmit antennas
• One receiver with N receive antennas
• R relay each with single transmit and receive antenna
• Block-fading channels and CSI at the receiver only.
• Transmitter-relay channels: fmr’s. Relay-receiver channels:

grn’s.
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Transceiver protocol and model.

• Two-step transmission each contains T time slots

Step 1. Transmitter → relays. Step 2. Relays → receiver.

• Relay process: distributed space-time coding (DSTC).
Linear transformation on its received singals then transmit:

ti =

√
P2

P1 + 1
Airi,

– ri: received vector at relay in Step 1.

– ti: transmit vector from relay in Step 2.

– Ai: a pre-determined (unitary) T × T matrix.

– P1 transmit power of Step 1.

– P2 transmit power per relay of Step 2.
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• End-to-end transceiver equation:

X =
√

βSH + W,

– X: T × N received signal matrix

– β , αP1T
M where α , P2

P1+1 .

– S ,
[

A1s ∙ ∙ ∙ ARs
]

is the distributed space-time code

depending on Ai’s and information vector

– H ,
[

(f1g1)
t ∙ ∙ ∙ (fRgR)t

]t
is the RM × N equivalent

channel matrix

– W ,
√

α
[ ∑R

i=1 gi1Aivi ∙ ∙ ∙
∑R

i=1 giNAivi

]
+ w is the

equivalent noise term.

vi is noise vector at Relay i and w is the noise at the receiver.
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Result 1. Define

RW = I + αGHG.

Given that sk is transmitted and the corresponding distributed

space-time code is Sk, the rows of X are independently each is

CSCG distributed with the same variance Rt
W .

The conditional PDF of X|Sk is

f(X|Sk) =
1

(πN detRW )−T
e−tr (X−

√
βSkH)R−1

W (X−
√

βSkH)H

.

Sketch of Proof:

• With known CSI, since vi’s and w are independent CSCG, X

is a linear combination of CSCG random matrices and

constants, thus also a CSCG random matrix.
• Straightforward to see that E (X|Sk) =

√
βSkH.

• The rows of X are independent. (The columns are not.)
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xtn =
√

β[SkH]tn +
√

α
R∑

i=1

T∑

τ=1

ginai,tτviτ + wtn.

Cov (xt1n1 , xt2n2) = δt1t2








β
[

g1n1 ∙ ∙ ∙ gRn1

]








ḡ1n2

...

ḡRn2








+ δn1n2








.

By combining the results in matrix form, the covariance matrix

of each row is IN + βGtḠ = Rt
W .

• Therefore, the PDF of the ith row is

f([X]i|Sk) =
(
πN detRt

W

)−T
e−tr [X−

√
αSkH]

i
R−t

W [X−
√

αSkH]t
i

=
(
πN detRW

)−T
e−tr [X−

√
αSkH]

i
R−1

W [X−
√

αSkH]H
i .

• With independent rows, the PDF of X is

f(X|Sk) =
∏T

i=1 f([X]i|Sk).
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Result 2. The maximum-likelihood (ML) decoding is

arg min
S

tr
(
X −

√
αSkH

)
R−1

W

(
X −

√
αSkH

)H
.

With this decoding, the pairwise error probability (PEP) of

mistaking Sk by Sl has the following upper bound:

P (Sk → Sl) ≤ E
H

e−
α
4 tr [(Sk−Sl)

∗(Sk−Sl)HR−1
W HH ].
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Sketch of Proof:

• The ML decoding rule is straightforward to obtain from the

likelihood function.

• Chernoff upper bound: for any λ > 0,

P (Sk → Sl) ≤ E eλ(ln P (X|Sl)−ln P (X|Sk))

= E
H,W

e−λtr[α(Sk−Sl)
H (Sk−Sl)HR−1

W
HH+

√
α(Sk−Sl)HR−1

W
WH+

√
αWR−1

W
(Sk−Sl)H

H ]

= E
H

∫

W

e−λtr[∙∙∙ ]
(
πN detRW

)−T

e−tr (WR−1
W

WH)dW.

• The result can be proved via making sum-of-squares for the

exponent and the integration over CSCG PDF is 1.
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Result 3. With i.i.d. Rayleigh fading channels and fully diverse
space-time code, the diversity order of DSTC is

d =






min{M, N}R if M 6= N

MR
(
1 − 1

M
log log P

log P

)
if M = N

.

Sketch of Proof:
• First bound RW with either of the following:

RW ≤ (trRW )I =

(

N +
P2

P1 + 1

N∑

n=1

R∑

i=1

|gin|
2

)

IN .

RW ≤

(

1 +
P2R

P1 + 1
λmax

)

IN ,

where λmax is the maximum eigenvalue of G∗G∗/R, whose
properties can be derived from results on Wishart matrix.

• Optimal power allocation with respect to error rate bound:
P1 = P

2 and P2 = P
2R , where P is the total transmit power.
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• Use Chernoff bound in Result 2 and calculate the average over
fmi to get:

P (Sk → Sl) . E
gin

R∏

i=1

(

1 +
PTσ2

min

8MNR

gi

1 + 1
NR

∑R
i=1

∑N
n=1 |gin|2

)−M

.

σ2
min: the minimum singular value of (Sk − Sl)H(Sk − Sl).

• Further conduct the calculations by splitting each integration

range into [0, x) ∪ [x,∞) to split the integration into 2R ones.

• Calculate the order of each term with respect to P , and find a

good/the optimal choice of x to minimize the order with

respect to P .

• Refer to [4] for details.
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Performance analysis of massive MIMO with ZF

Single-cell multi-user massive MIMO system model

• One base station (BS) with M antennas (M � 1)
• K single-antenna users, M ≥ K
• Channel matrix G contains independent Rayleigh fading

coefficients, perfect CSI at the BS.
– Uplink: G = HD1/2 (M × K). The k-th column gk is channel

vector from BS antennas to user k.

– Downlink: G = D1/2H (K × M). The k-th row gk is channel

vector from User k to the BS antennas.

– H ∼ CN (0, I) and D = diag {β1, ∙ ∙ ∙ , βK} containing large-scale

coefficients.
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Models for uplink with ZF

• Users send signals to the BS.

• Transceiver equation:

y =
√

puGs + w.

– s = [s1 ∙ ∙ ∙ sK ]T : vector of information symbols.
normalization: E {ssH} = I.

– pu: average transmit power of each user

– w ∼ CN (0, I): noise vector

– y: Received vector at the BS

• Zero-forcing reception:

A =
√

α(GHG)−1GH =
√

αD−1/2(HHH)−1HH ,

r = Ay =
√

αpus +
√

αD−1/2(HHH)−1HHw.

r (K × 1): the signal vector after ZF reception at the BS.

62



Lecture series - CSCG Matrix

Results on uplink sum-rate

• SNR of User k:

SNRk =
βkpu

[(HHH)−1]kk
.

Coefficient α has no effect since it appears on both signal and
noise as a scaling factor.

• Need the following on CSCG and inverse Wishart distribution:

E {[(HHH)−1]kk} =
1

K
tr{(HHH)−1} =

1

M − K
.

E

{
1

[(HHH)−1]kk

}

= M + 1 − K.

Sketch of proof:

– From the QR-decomposition H = Φ



 R

0



,

[(HHH)−1]KK = [R−1R−H ]KK =
1

([R]KK)2

– Use the result on the distribution of [R]KK on Page 36.
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• Thus

E

{
1

SNRk

}

=
1

βkpu(M − K)
.

E {SNRk} = βkpu(M + 1 − K).

• Capacity approximation and bounds:

Rk ≈ log[1 + E (SNR)] = log[1 + βkpu(M + 1 − K)].

Rk ≥ log

[

1 +
1

E (SNR)

]

= log [1 + βkpu(M − K)] .

Rk ≤ log[1 + E (SNR)] = log[1 + βkpu(M + 1 − K)]
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Models for downlink with ZF

• BS sends signals to all users.

• s = [s1 ∙ ∙ ∙ sK ]T : vector of information symbols.

normalization: E {ssH} = I.

• Zero-forcing precoding at BS:

A =
√

αGH(GGH)−1 =
√

αHH(HHH)−1D−1/2.

– BS transmitted the processed signal: x =
√

pAs.

– Average transmit power of BS: Kp. p is the power per user.

– From E {xHx} = Kp, we have E tr{AHA} = K. By

applying the result on Page 63,

⇒ αE tr{D−1(HHH)−1} = K ⇒ α = β̃(M − K),

where β̃ = 1
K

∑K
k=1 β−1

k .
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• Transceiver equation:

r =
√

pGAs + w =
√

β̃(M − K)ps + w.

– w ∼ CN (0, I): noise vector

– r: received signal vector at the users

• SNR of User k:

SNRk = β̃(M − K)p.

• Achievable rate of User k:

Rk = log[1 + β̃(M − K)p].

The achievable-rate analysis method be generalized to imperfect

CSI, multi-cell, and other more general cases.
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