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Using Power-Normalized SNR
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Abstract

In this paper, we adopt a novel efficiency measure, namely the received signal to noise ratio

(SNR) per unit power, in amplify-and-forward (AF) based relay networks. The measure is addressed

as the power-normalized SNR (PN-SNR). For several relay network scenarios, we solve the PN-SNR

maximization problems and analyze the network performance. First, for single-relay networks, we find

the optimal relay power control scheme that maximizes the PN-SNR for a given transmitter power. Then,

for multi-relay networks with a sum relay power constraint, we prove that the PN-SNR optimization

problem has a unique maximum, thus the globally optimal solution can be found using a gradient-

ascent algorithm. Finally, for multi-relay networks with an individual power constraint on each relay,

we propose an algorithm to obtain the globally optimal solution and a low complexity suboptimal

solution. Our results show that with the same average relay transmit power, the PN-SNR maximizing

scheme is superior to the fixed relay power scheme not only in the PN-SNR but also in the outage

probability for both single and multi-relay networks. Compared with SNR-maximizing scheme, it is

significantly superior in PN-SNR with moderate degradation in outage probability. Our results show the

potential of using PN-SNR as efficiency measure in network design.
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I. INTRODUCTION

Wireless communication networks are in consistently increasing demands for higher date

rates without sacrificing reliability. One way to improve the date rate and/or the reliability of a

wireless link is to use cooperative schemes in the network [1]–[8]. Power control and network

performance optimization are among hot topics in cooperative relay network design in recent

years. There have been numerous results on the global performance optimization such as signal-

ro-noise ratio (SNR) maximization, throughput maximization, and error rate minimization for

fixed transmit power [9]–[14]. Specifically, [9] and [10] dealt with the received SNR optimization

in single-user multi-relay networks under sum relay power constraint and separate relay power

constraints, respectively. In [11] and [12], the same model in [9] and [10] was considered, while

the goal was to maximize the capacity of the network. The authors of [13] and [14] focused on

two-way relay networks where either minimum SNR or sum-rate was optimized. In [15], the

authors proposed relay selection schemes that maximize the received SNR and used block error

rate as performance measure.

As the popularity of wireless users and wireless traffic rapidly multiply, the drastic increase in

energy consumption in wireless infrastructure leads to the increase of greenhouse gas emission,

causing severe environmental depredation. As a result, green communication design has attracted

significant attention in recent years [16], [17].

Popular efficiency measures include spectral efficiency (or capacity if the bandwidth is fixed)

and energy efficiency. There has been a significant volume of literature addressing these two

efficiency measures for various network configurations, e.g., [11], [12], [18]–[21]. Spectral

efficiency is defined as the achievable transmission bit-rate and its maximization guarantees

the highest amount of information flow for a fixed transmit power. But it does not consider

how efficient the power is used in achieving the maximum. Energy efficiency is defined as the

number of transmitted bits per unit energy or power. It is thus a natural efficiency measure.

However, for most communication systems, energy efficiency is maximized when the transmit
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power approaches 0, i.e., when the system works in the low SNR regime. To see this, we consider

the simple point-to-point single-antenna system with transmit power P , unit-variance noise, and

channel gain λ. The energy efficiency of the system is given as [log(1 + λP )]/P , which takes

its maximum λ when P → 0. Hence, an energy-efficiency-optimal scheme will trap the system

in the low SNR regime, where the communication bit-rate and reliability can be low.

In this work, the aforementioned limitations of spectral efficiency and energy efficiency

measures has inspired us to study new efficiency metric, namely SNR-per-unit-power or power-

normalized SNR (PN-SNR), to design network beamforming algorithms and to evaluate the

network efficiency. For a single-user network, the PN-SNR is defined as

η , SNR

Ptotal

(1)

where SNR is the end-to-end received SNR and Ptotal is the total power consumed in the network.

The parameter η represents the achievable received SNR per unit transmit power. If the received

noise has a unit variance, Ptotal can also be seen as the transmit SNR. In this sense, η represents

the received SNR the system provides per unit transmit SNR.

Compared with the spectral efficiency metric, the PN-SNR is a more natural efficiency measure

as it shows the performance per unit power. Compared with the energy efficiency metric, the

PN-SNR does not trap the network in the low power regime. To see this, we revisit the same

point-to-point single-antenna system with transmit power Ptotal, unit-variance noise, and channel

gain λ. The PN-SNR of the system is η = (λPtotal)/Ptotal = λ, which is independent of the

transmit power. For a point-to-point direct communication system without relaying (e.g., multi-

antenna system), the PN-SNR is equal to the array gain of the system, independent of the

transmit power. Thus, the maximization of PN-SNR in such systems is trivial. For cooperative

relay networks, however, the maximization can be involved, as will be seen later in this paper.

The PN-SNR was first proposed as an efficiency measure in [15], where it was called power

efficiency. It was later used in [22], [23], and [24], where the term PN-SNR was introduced.

While the PN-SNR was employed for numerical performance evaluation in [15], [22], [23], its
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properties and optimal designs using this measure have yet to be investigated. For asynchronous

two-way multi-relay networks, [24] investigated the joint subcarrier transceiver power loading

and relay beamforming optimization that maximizes the minimum SNR of the two users across

all subcarriers, where, on each subcarrier, the subproblem of the SNR-maximization for given

subcarrier power vectors was proved to result in PN-SNR optimization. But this work focused

on SNR optimization and PN-SNR was not considered as an energy efficiency measure.

In this paper, adopting the PN-SNR as an efficiency criterion for designing power-efficient relay

networks, we propose a PN-SNR-optimal relay power control scheme. We analyze the properties

of the proposed scheme and then compare these properties with those of the SNR-maximizing

scheme and the fixed relay power scheme. For single-relay networks, we find the optimal relay

power that maximizes the PN-SNR for arbitrarily given transmitter power in close-form. We also

study the average received SNR, the outage probability, and the average relay power offered by

the proposed design; and compare them with those of existing schemes. Then, for multi-relay

networks with a total relay power constraint, we prove that the PN-SNR maximization problem

has a unique maximum, thus the globally optimal solution can be found with gradient-ascent

algorithm. Finally, for multi-relay networks with separate power constraints on relays, we propose

a numerical algorithm for the globally optimal solution and a low complexity suboptimal solution.

Our simulation results show that compared with fixed relay power scheme with the same average

relay power, the proposed scheme is superior in both the PN-SNR and the outage probability.

Also, compared with the SNR-maximizing scheme, the proposed scheme has considerably higher

PN-SNR with moderate degradation in the outage probability.

In this introduction section, we have motivated the use of PN-SNR as an efficiency measure and

summarized the main results of our work. The remaining of this paper is organized as follows. In

Section II, we introduce the system model and the underlying communication protocol. Section

III considers a single-relay network, where a closed-form solution to the PN-SNR maximization

problem is obtained and the network performance is analyzed. In Sections IV and V, we study the
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Fig. 1. Multi-relay network.

PN-SNR maximization problems for multi-relay networks under a sum relay power constraint

and under separate relay power constraints, respectively. Section VI provides our simulation

results. Section VII concludes the paper. Involved proofs are included in the appendices.

Notation: For a matrix A, AT denotes the transpose of A. For a complex scalar α, |α| and ∠α

represent the amplitude and phase of α, respectively. For a vector a, ∥a∥ stands for its Euclidean

norm. For two vectors a and b of the same dimension, a ◦b is the Schur-Hadamard product of

the two vectors. erf(·) is the error function, tan−1(·) is the inverse tangent function, and K1(·)

is the first order modified Bessel function of second kind. ln(·) and log(·) denote the natural

logarithm function and common logarithm function, respectively. P(·) stands for the probability.

II. SYSTEM MODEL

We consider a general distributed network with one transmitter, one receiver and R relays,

as depicted in Fig. 1. Each relay has only one single antenna which can be used for both

transmission and reception. We denote the channel from the transmitter to the ith relay as fi

and the channel from the ith relay to the receiver as gi. We assume that there is no direct link

between the transmitter and the receiver. We assume that fi and gi are i.i.d. complex Gaussian

with zero-mean and unit-variance, so the channel magnitudes follow Rayleigh distribution. All

channels are assumed to be flat-fading channels. We also assume that each relay knows its own

channels, i.e., the ith relay knows fi and gi, and the receiver knows all channels. The required
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channel state information at the receiver can be obtained via channel estimation and feedback

[25]–[28]. The ith relay can obtain fi by training and gi by feedback. Let f , [f1 f2 . . . fR]
T

and g , [g1 g2 . . . gR]
T , which are the transmitter-relay and relay-receiver channel vectors. We

define the effective end-to-end channel vector between the transmitter and receiver as h , f ◦g.

We herein consider a two-step amplify-and-forward (AF) relaying protocol with relay beam-

forming, where the relays adjust the amplitudes and the phases of their received signals before

forwarding them. During the first step, the transmitter sends α0

√
P0s, where the information

symbol s is randomly selected from the codebook S . We assume that s in the codebook are

normalized as E{|s|2} = 1. Thus, the average power used at the transmitter is α2
0P0, where P0

is the maximum power of the transmitter and the coefficient 0 ≤ α0 ≤ 1 is introduced to adjust

the power of the transmitter. The signals received at the relays can be represented as

x = α0

√
P0fs+ z, (2)

where x is the R×1 complex vector of the signals received by relays and z is the R×1 complex

vector of the relay noises. We assume that all noises are i.i.d. complex Gaussian random variables

with zero-mean and unit-variance.

In the second step, the ith relay multiplies its received signal by a complex weight wi to

adjust the phase and magnitude of the signal and transmits the adjusted signal. All relays share

the same channel and are assumed to be perfectly synchronized. The R × 1 complex vector t

of the transmitted signals of all relays can then be expressed as

t = w ◦ x, (3)

where w , [w1 w2 . . . wR]
T is referred to as the relay beamforming vector. Denoting the ith

entry of t as ti, the power consumed on the ith relay, denoted as Pi, can be calculated, using

(3), as

Pi = E{|ti|2} = (1 + α2
0P0|fi|2)|wi|2, (4)
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The signal received at the receiver, denoted as y, can be written as

y = α0

√
P0w

Ths+wT (g ◦ z) + n .

where the noise n at the receiver is assumed to be independent of z1, . . . , zR and is Gaussian

distributed with zero mean and unit variance. With straightforward calculation, the end-to-end

received SNR can be expressed as

SNR =
α2
0P0(w

Th)2

1 + ∥w ◦ g∥2
. (5)

Recalling the power consumed by the ith relay is given as in (4). The total transmit power

consumed on all relays is
∑R

i=1(1 + α2
0P0|fi|2)|wi|2 = P0∥w ◦ a∥2, where

a ,
[√

1

P0

+ α2
0|f1|2 · · ·

√
1

P0

+ α2
0|fR|2

]
.

The total transmit power consumed in the whole network is thus PT = α2
0P0 + P0∥w ◦ a∥2.

According to our definition in (1), the PN-SNR of the relay network is

η , SNR

PT

=
α2
0P0(w

Th)2

(1 + ∥w ◦ g∥2)(α2
0P0 + P0∥w ◦ a∥2)

. (6)

Denote the amplitude and the phase of wi as αi and θi, respectively, i.e., wi = αie
jθ. Let

α , [α1 · · · αR]
T and θ , [θ1 · · · θR]T . Note that both ∥w ◦g∥2 and ∥w ◦a∥2 are independent

of the phase vector θ. Thus, the denominator of η given in (6) is independent of θ. It is obvious

that the numerator is maximized when θi = −∠hi for any given α, where hi = figi is the ith

entry of h. We can also see that η is an increasing function of α0. Thus, it is optimal to choose

α0 = 1, which means that the transmitter should always transmit with its maximum power.

With the maximum power consumed at the transmitter (α0 = 1) and the optimal phase

adjustment at the relays, the end-to-end received SNR in (5) reduces to

SNR =
P0(α

Tb)2

1 + ∥α ◦ d∥2
, (7)

and the PN-SNR in (6) reduces to

η =
(αTb)2

(1 + ∥α ◦ d∥2)(1 + ∥α ◦ a∥2)
, (8)
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where b , [|f1g1| · · · |fRgR|], d , [|g1|, · · · , |gR|] and a =
[√

1
P0

+ |f1|2 · · ·
√

1
P0

+ |fR|2
]

when α0 = 1.

Our design problem is thus finding the relay power control vector α such that the PN-SNR in

(8) is maximized. In the subsequent sections, we will first analyze the PN-SNR in single-relay

networks, then solve the PN-SNR maximization problem for multi-relay networks under a sum

relay power constraint and under separate relay power constraints.

III. SNR-PER-UNIT-POWER OPTIMIZATION IN SINGLE-RELAY NETWORKS

In this section, we consider a single-relay network, i.e., R = 1, which is a special case of the

system model in Section II. For a given transmit power P0, we derive the optimal relay power

that maximizes the PN-SNR in closed-form and analytically evaluate the network performance.

We then compare the performance of the proposed PN-SNR-maximizing scheme with that of

the existing schemes.

In single-relay networks, the relay power control vector and channel vectors reduce to scalars,

i.e., α reduces to α, f reduces to f , and g reduces to g. We denote the power constraint on the

relay as PR,lim, and denote the actual transmit power on the relay as P . Thus, P ≤ PR,lim. From

(7), the end-to-end received SNR can be expressed as

SNR =
|fg|2PP0

1 + |f |2P0 + |g|2P
≈ |fg|2PP0

|f |2P0 + |g|2P
. (9)

In the second equality in (9), we have used an approximation which has been shown to be tight

in the high SNR regime [29]. The corresponding PN-SNR of the network is thus

η =
|fg|2PP0

(1 + |f |2P0 + |g|2P )(P + P0)
≈ |fg|2PP0

(|f |2P0 + |g|2P )(P + P0)
. (10)

A. The PN-SNR-Maximizing Solution

In this subsection, we solve the PN-SNR maximization problem. We first consider the ideal

case that the relay power is unlimited, i.e., PR,lim = ∞, then consider the practical case of finite

PR,lim. Infinite power constraint is of course ideal, as any device has a finite power limit. We
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consider this ideal case to better understand the behavior of the PN-SNR efficiency measure.

Studying this ideal case also helps us to find the solution to the finite power constraint case.

Using (10), our PN-SNR maximization problem is thus given as

max
P>0

|fg|2PP0

(1 + |f |2P0 + |g|2P )(P + P0)
. (11)

Differentiating the objective function in (11) with respect to P and equating it to zero, the

optimal relay power, denoted as Popt, is obtained as

Popt =

√
P0(1 + |f |2P0)

|g|
. (12)

When the transmitter power is high (P0 ≫ 1), this solution can be approximated as

Popt ≈ Papprox =
|f |
|g|

P0. (13)

The same result can be obtained if the approximate SNR formula in (9) is used in the PN-SNR

formula. From (12) and (13), we can see that although the relay power constraint is assumed to

be infinity, for the highest PN-SNR, the relay should only use a finite amount of power. This

is different from the SNR-maximizing scheme, where the optimal solution is easily seen to be

P = PR,lim = ∞. Also, we can see that the optimal relay power in (12) and (13) is channel

dependent, meaning that for the highest PN-SNR, the relay should adjust its transmit power

according to the channel qualities. When the ratio of the transmitter-relay channel quality (|f |)

to the relay-receiver channel quality (|g|) is larger, the relay should use more power; and vice

versa. This property complies with the relay noise suppression idea. When this ratio is high, the

transmitter-relay channel has a better quality than the relay-receiver channel, the received signal

at the relay contains a small noise component and it should use a relatively large amount of

power to forward. On the other hand, when the ratio is low, the transmitter-relay channel has

lower quality than the relay-receiver channel, the received signal at the relay is highly noisy and

the relay should use low power to suppress relay noise amplification.

Now, we consider the practical case that PR,lim is finite, i.e., PR,lim < ∞. It is straightforward

to show that dη
dP

> 0 when P ≤ |f |
|g|P0 and dη

dP
< 0 when P ≥ |f |

|g|P0. Thus, the PN-SNR increases
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with P when P ≤ |f |
|g|P0 and decreases with P when P ≥ |f |

|g|P0. So for the finite power constraint

case, the PN-SNR maximizing solution can be easily extended from (13) as

Popt ≈ Papprox = min

(
|f |
|g|

P0, PR,lim

)
. (14)

In the following subsection, performance of the proposed power control in (14) is evaluated.

B. Performance of the PN-SNR-Maximizing Scheme

Now, we analyze the network performance under the proposed PN-SNR-maximizing solution

to further understand the adopted PN-SNR measure. For the performance, we consider the

average relay transmit power, the average PN-SNR, the average end-to-end received SNR, and

the outage probability. We summarize our performance analysis results in the following theorem.

Theorem 1. With the relay power design in (14), the average power consumed by the relay is

Pave = P0 tan
−1

(
PR,lim

P0

)
. (15)

Define ξ , PR,lim

P0
. When P0 ≫ 1 and using the SNR approximation in (9), the average PN-SNR

of the network is given as

ηave ≈
3

8
π − 3

4
tan−1

(
1

ξ

)
− 4ξ3 − 7ξ2 − ξ

4(ξ + 1)(ξ − 1)2
+

2ξ2 ln
(

ξ2+1
ξ(ξ+1)

)
(ξ − 1)3(ξ + 1)

, (16)

and the corresponding average end-to-end received SNR is

SNRave ≈ P0

π
8
− 1

4
tan−1

(
1

ξ

)
− 3ξ3 + 5ξ

4(ξ − 1)2(ξ2 + 1)
− 1

4
ln

(
(ξ + 1)2

ξ2 + 1

)
+

2ξ2 ln
(

ξ2+1
ξ(ξ+1)

)
(ξ − 1)3

 .

(17)

Also, with SNR threshold γth, the outage probability, denoted as O, can be bounded as(
1 +

1

ξ

)
γth
P0

+O
(

1

P 2
0

)
. O .

(
1 +

1

ξ

)
γth
P0

+O

(
1

P
4/3
0

)
. (18)

Proof. See Appendix A.

From (15) in Theorem 1, we can see that, under the PN-SNR-maximizing design, the average

relay power is non-decreasing in P0. But it is always finite, regardless of the relay power
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constraint. It can also be seen from (16) and (17) that ηave and SNRave

P0
are continuous and

non-decreasing in ξ (it can be shown that ξ = 1 is not a singular point). The outage probability

in (18) decreases as ξ increases. We can conclude that increasing the ratio of the maximum

relay power and the maximum transmitter power improves the average PN-SNR, the average

received SNR, and the outage probability. For a given P0, larger ξ means that more power is

available at the relay, which results in better performance. However, the performance is bounded

by the extreme case where ξ is infinity, i.e., the relay power constraint PR,lim is unlimited. The

performance of the extreme case can be summarized in the following corollary.

Corollary 1. When ξ = ∞, with the relay power design in (14) and using the SNR approximation

in (9), the average power consumed on the relay is

Pave =
π

2
P0, (19)

the average PN-SNR of the network is

ηave ≈
3

8
π − 1, (20)

the corresponding average end-to-end received SNR is

SNRave ≈
π

8
P0, (21)

and the outage probability with SNR threshold γth can be bounded as

γth
P0

+O
(

1

P 2
0

)
. O . γth

P0

+O

(
1

P
4/3
0

)
. (22)

Proof. This corollary can be easily obtained from Theorem 1 by setting ξ = ∞. It is also derived

in [30].

C. Comparison with Fixed Relay Power Design

In this subsection, we compare the performance of the proposed scheme with the fixed relay

power scheme, where the relay power P is fixed regardless of the channel quality. The network

performance in fixed relay power scheme can be summarized as follows.
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Lemma 1. When P0 ≫ 1, with the relay transmit power fixed as P for each transmission, the

average PN-SNR of the network is

ηave fix ≈
PP0

(P − P0)2
− 2P 2P 2

0

(P − P0)3(P + P0)
ln

(
P

P0

)
, (23)

the corresponding average end-to-end received SNR is

SNRave fix ≈
PP0(P + P0)

(P − P0)2
− 2P 2P 2

0

(P − P0)3
ln

(
P

P0

)
. (24)

If P has the same scaling as P0, i.e., P = ζP0, the outage probability with SNR threshold γth is

Ofix ≈
(
1 +

1

ζ

)
γth
P0

+O
(
lnP0

P 2
0

)
. (25)

Proof. See Appendix B.

For a given P0, it can be derived from (23) that the channel-independent optimal relay power

that maximizes the average PN-SNR is P0, i.e., the relay power should be the same as the

transmitter power for the highest ηave fix.

In what follows, we compare the performance of the proposed PN-SNR maximizing scheme

with that of the fixed relay power scheme. For fairness, we set the average relay power used in

the two schemes to be the same, i.e., they have the same power resource. Thus, for the fixed

relay power scheme, we have P = Pave = P0 tan
−1 (PR,lim/P0). Recalling that ξ = PR,lim/P0,

we simplify the average PN-SNR, the average SNR, and the outage probability in (23), (24),

and (25), respectively, as

ηave fix ≈
tan−1(ξ)

[tan−1(ξ)− 1]2
− 2 tan−1(ξ)2 ln[tan−1(ξ)]

[tan−1(ξ)− 1]3[tan−1(ξ) + 1]
, (26)

SNRave fix ≈
[
tan−1(ξ)[tan−1(ξ) + 1]

[tan−1(ξ)− 1]2
− 2 tan−1(ξ)2 ln[tan−1(ξ)]

(tan−1(ξ)− 1)3

]
P0, (27)

and

Ofix ≈
[
1 +

1

tan−1(ξ)

]
γth
P0

+O
(
lnP0

P 2
0

)
. (28)

Comparing (16) with (26), we discover that the average PN-SNR in the proposed scheme

is always higher than the fixed relay power scheme. For the extreme case of PR,lim = ∞, our
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scheme is 11.3% better in the average PN-SNR. With respect to the outage probability, comparing

(18) with (28), the proposed scheme has the following gain:

Goutage , 10 log
Ofix

O
= 10 log

[
ξ tan−1(ξ) + ξ

ξ tan−1(ξ) + tan−1(ξ)

]
. (29)

Note that as ξ ≥ tan−1(ξ) for ξ ≥ 0, the numerator in (29) is larger than the denominator,

meaning that Goutage is always non-negative. Thus, our scheme outperforms the fixed relay

power scheme in outage probability. It can also be shown that Goutage ≤ 2.14 dB with equality

when PR,lim = ∞.

We can conclude that our proposed scheme is more power efficient than the fixed relay power

scheme. Furthermore, it also outperforms the fixed relay power scheme in outage probability

with the same relay power consumption. These advantages are due to the PN-SNR measure used

in our scheme, leading to a channel-dependent relay power control.

Another existing scheme is the SNR-maximizing scheme, where the relay uses its maximum

power for the highest received SNR, i.e., P = PR,lim. In fact, the SNR-maximizing scheme can

be viewed as a fixed relay power scheme and its performance can be obtained from (23)-(25) by

setting P = PR,lim and ζ = 1. Compared to our proposed method, the SNR-maximizing scheme

is expected to have better average received SNR but significantly lower average PN-SNR. Its

outage probability (given in (28) with ζ = 1) has the same dominant term as that of the proposed

method, indicating that for high P0, the two schemes have the same outage probability. Thus,

the proposed scheme achieves significantly better efficiency in terms of the PN-SNR with about

the same outage probability.

IV. MULTI-RELAY NETWORKS WITH A SUM POWER CONSTRAINT

In this section, we investigate the PN-SNR maximization problem in general multi-relay

networks with a sum power constraint on relays, where the total power consumed by all relays,

denoted as P , is no larger than PR,lim, i.e., P =
∑R

i=1 Pi ≤ PR,lim. This sum-power constraint

model has been widely used in the literature, e.g., [9], [14], [31]–[33].
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From (4) and (8), the PN-SNR maximization problem can be expressed as

max
α≽0

(αTb)2

(1 + ∥α ◦ d∥2)(1 + ∥α ◦ a∥2)

s. t.
R∑
i=1

(1 + α2
0P0|fi|2)|αi|2 ≤ PR,lim. (30)

The problem in (30) is a non-convex optimization problem since the objective function is non-

convex. In this section, we first simplify the problem into a one-dimensional problem using

the results in [9], then prove that the maximum of the simplified problem is unique. Thus, we

propose to use a gradient-ascent algorithm to find the optimal solution.

To simplify the problem, we can rewrite (30) as follow:

max
P

1

P0 + P

(
max
α≽0

P0(α
Tb)2

1 + ∥α ◦ d∥2

)
(31)

s. t. 0 < P ≤ PR,lim , P = P0∥α ◦ a∥2,

With any fixed sum relay power P , the inner problem in (31) is an SNR optimization problem

with a sum relay power constraint. This problem is solved in [9] where the optimal power

coefficient of the ith relay is

αi =
|figi|

|fi|2P0 + |gi|2P + 1

√
P∑R

i=1
|fi|2|gi|2(|fi|2P0+1)
(|fi|2P0+|gi|2P+1)2

, (32)

and the corresponding maximum end-to-end received SNR is

SNRmax(P ) = max
α≽0

P0(α
Tb)2

1 + ∥α ◦ d∥2
=

R∑
i=1

|fi|2|gi|2P0P

|fi|2P0 + |gi|2P + 1
. (33)

Substituting (33) into (31), our PN-SNR maximization problem is reduced to the following

one-dimensional problem of finding the optimal sum power P consumed on all relays:

max
0<P≤PR,lim

R∑
i=1

|fi|2|gi|2P0P

(|fi|2P0 + |gi|2P + 1)(P + P0)
. (34)

The second order derivative of the objective function can be calculated as

d2η

dP 2
=

R∑
i=1

2|fi|2|gi|2P0(|gi|4P 3 − |gi|2P0(|fi|2P 2
0 + 1)(3P + P0)− P0(|fi|2P 2

0 + 1)2)

(P + P0)3(|fi|2P0 + |gi|2P + 1)3
. (35)
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It can be seen from (35) that d2η
dP 2 is not always negative, so the objective function in (34) is

not concave in general. We first consider the case when the sum power constraint on relays is

unlimited, i.e., 0 < P < ∞. The following lemma is proved.

Lemma 2. The objective function in (34) is a semi-strictly quasi-concave function and has only

one maximum for 0 < P < ∞.

Proof. The objective function in (34) can be expressed as SNRmax(P )
P+P0

where the nominator is

provided in (33). It is easy to verify that

d2SNRmax

dP 2
= −

R∑
i=1

2|fi|2|gi|4P0(|fi|2P0 + 1)

(|fi|2P0 + |gi|2P + 1)3
< 0.

In other words, the numerator is a strict concave function of P . It is obvious that P + P0 is a

convex function and both SNRmax and P+P0 are positive for P > 0. According to Theorem 2.3.8

in [34], the objective function is a semi-strictly quasi-concave function. Moreover, it is shown

in [35] that a semi-strictly quasi-concave function has a unique maximum if the numerator is

strictly concave. Thus, the maximum of (34) is unique for P > 0.

Denote the optimal sum power as P ∗. To find P ∗, we propose to use a gradient-ascent

algorithm. It has been shown in [36] that by proper step size selection, gradient-ascent algorithm

will converge to a stationary point that satisfies dη
dP

= 0. According to Lemma 2, this is also

the only stationary point for P > 0. Thus, gradient-ascent algorithm will converge to the

optimal solution. The complexity of such algorithm is low. Newton’s algorithm, for example, has

quadratic convergence. In each iteration, Newton’s algorithm only needs to calculate the second

order derivative in (35).

We next consider the case when PR,lim is finite. Since the objective function in (34) has a

unique maximum at P ∗, it is non-decreasing when P ≤ P ∗ and non-increasing when P ≥ P ∗.

Thus, the optimal sum relay power in this case can be expressed as

Popt = min(P ∗, PR,lim). (36)
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Finally, the optimal power control coefficient for each relay under sum relay power constraint

can be easily obtained by using (36) in (32).

Unfortunately, we are unable to analytically investigate the network performance in this case

since the optimal solution can only be found numerically. Numerical simulation results of the

network performance will be shown in Section VI.

V. MULTI-RELAY NETWORKS WITH SEPARATE POWER CONSTRAINTS

In this section, we consider multi-relay networks with separate relay power constraints, where

the ith relay has its own power constraint denoted as Pi,lim.

According to (4) and (8), our PN-SNR maximization problem can be described as

max
α≽0

(αTb)2

(1 + ∥α ◦ d∥2)(1 + ∥α ◦ a∥2)

s. t. 0 ≤ αi ≤

√
Pi,lim

1 + P0|fi|2
, for i = 1, · · · , R, (37)

where a =
[√

1
P0

+ |f1|2 · · ·
√

1
P0

+ |fR|2
]

as defined in Section II.

This is a non-convex optimization problem in which finding the globally optimal solution

is usually sophisticated. We first propose a numerical algorithm to obtain the optimal solution.

Next, we provide a low-complexity algorithm to find a suboptimal solution for the problem. The

performance of the suboptimal solution is simulated in Section VI and compared with that of

the optimal solution.

A. Optimal Solution

We first examine the Karush-Kuhn-Tucker (KKT) conditions for (37) to better understand

the problem. In general, the KKT conditions are not sufficient optimality conditions for non-

convex problems. With linear constraint, however, the KKT conditions are necessary optimality

conditions. With straightforward calculations, KKT conditions of the problem in (37) can be

derived as

αi

(
αi −

√
Pi,lim

1 + P0|fi|2

)
∂η

∂αi

= 0.
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The optimal solution will either be an inner point of the feasible set satisfying ∇αη = 0 or be a

boundary point meaning that there exists at least one i, such that αi = 0 or αi =
√

Pi,lim

1+P0|fi|2 . If the

optimal solution is an inner point, we will show later with Lemma 3 that it can be easily found

by gradient-ascent algorithm. However, if it is on the boundary, gradient-ascent algorithm can

only converge to a stationary point which may not even be locally optimal [36]. The uniqueness

of locally optimal solution of (37) is not guaranteed either.

When the optimal solution is on the boundary, the constraints in (37) are satisfied with equality

for some i, which means some relays will transmit with zero or maximum power. The difficulty

lies in determining the relays that transmit with zero or maximum power. Exhaustive search

for these relays has exponential complexity in the number of relays, and thus, it is obviously

impractical. The same problem is encountered in [10] and [15], where optimal and suboptimal

relay ordering criteria are proposed to reduce the complexity. In our problem, however, optimal

relay ordering criteria may not exist.

Thus, we combine sequential quadratic programming (SQP) algorithm [37] with scatter search

to obtain the globally optimal solution. The former algorithm is guaranteed to converge to a

locally optimal solution [38] and the latter search starts SQP algorithm from different randomly

selected initial points for a number of times to find the globally optimal solution.

SQP algorithm is widely used in solving nonlinear optimization problems whose main idea

is to solve a non-convex problem by successive convex approximation [39]. It is also a gradient

based iterative algorithm. At each major iteration, a Taylor series approximation of the objective

function (or Lagrangian function if nonlinear constraints are involved) at a local iteration point

is made. Then, an approximation of the Hessian matrix of the objective function is used to

generate a convex quadratic programming (QP) subproblem whose solution is used to form a

direction for the next iteration. With properly selected step size, SQP algorithm will converge to

a local optimum in finite iterations for arbitrarily small error tolerance. In our simulations, we

use Matlab’s optimization toolbox to implement the SQP algorithm.
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This SQP algorithm is more computationally complex compared with the gradient-ascent

algorithm. According to [38], the rate of convergence of SQP algorithm is at best super-linear.

Meanwhile, a QP subproblem is involved in each iteration and the SQP algorithm is run several

times to find the globally optimal solution. The optimal solution proposed in this subsection is

mainly used as a benchmark for performance evaluation.

B. Suboptimal Solution

In this subsection, we will discover a computationally more affordable algorithm to find a

suboptimal solution. Recall that in single-relay and multi-relay networks with a sum relay power

constraint, while solving the PN-SNR maximization problems, we first find the optimal solutions

without any power constraint then project the optimal solution into the feasible set. In both

cases, it is either a one-dimensional problem or it can be simplified into a one-dimensional

problem in which the projection preserves the optimality. In the PN-SNR maximization problem

with separate power constraints on relays, however, projection no longer preserves optimality.

Nevertheless, the same methodology can be used to obtain a suboptimal solution. We first ignore

the power constraints in (37) and focus on the following problem

max
α≽0

(αTb)2

(1 + ∥α ◦ d∥2)(1 + ∥α ◦ a∥2)
. (38)

The following property for the objective function in (38) is proved.

Lemma 3. The objective function in (38) has unique maximum for α ≽ 0.

Proof. The problem in (38) and (30) have the same objective function while the constraint in

(30) is P0∥α ◦ a∥2 < PR,lim. Thus, (38) can be viewed as a special case of (30) when PR,lim is

infinity, where the sum relay power constraint is eliminated. According to Lemma 2, the problem

in (30) has a unique maximum for all PR,lim. Thus, the maximum for (38) is also unique.

With Lemma 3, the globally optimal solution for problem (38) can be easily located with the

gradient-ascent algorithm used in Section IV. We denote the optimal solution for (38) as α∗.
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Our suboptimal solution for (37), denoted as αsub, is obtained by truncating those entries of α∗

whose amplitudes exceed
√

Pi,lim

1+P0|fi|2 , i.e.,

αsub
i = min

(
α∗
i ,

√
Pi,lim

1 + P0|fi|2

)
for i = 1, · · · , R.

In fact, we know from previous discussion that αsub is the optimal solution if it is an inner

point of the feasible set. If it is a boundary point, αsub is suboptimal. We will see in the next

section that this suboptimal solution actually has close-to-optimal performance.

VI. NUMERICAL SIMULATION

In this section, we present the simulated performance of our proposed PN-SNR-maximizing

scheme. We also compare the proposed scheme with the fixed relay power scheme and the SNR-

maximizing scheme. Channels are randomly generated as i.i.d. circularly symmetric complex

Gaussian with zero mean and unit variance in our simulation. The main criterion we use to

evaluate the network is the average PN-SNR. Meanwhile, we also simulate the average end-to-

end received SNR and the outage probability as alternative criteria for the performance evaluation.

A. Single-Relay Networks

In this subsection, we present the simulation results for single-relay networks. We simulate the

average PN-SNR, end-to-end received SNR and outage probability with threshold γth = 0 dB

for the proposed PN-SNR-maximizing scheme (denoted as “Proposed”), the SNR-maximizing

scheme (denoted as “SNR-max”) and the fixed relay power scheme (denoted as “Fixed power”).

For the relay power constraint, three cases are considered: 1) PR,lim = ∞, 2) PR,lim = 4P0, and

3) PR,lim = P0. For fair comparison, in the fixed relay power scheme, the relay power is set

to be Pave provided in (15). So the proposed and the fixed relay power schemes use the same

amount of power resource. In the SNR-maximizing scheme, the relay always uses its maximum

power PR,lim, and thus, it consumes more relay power than the other two schemes. Also, the

case PR,lim = ∞ does not apply.
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Fig. 2. Average PN-SNR versus P0 for a single-relay network.
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Fig. 3. Average received SNR versus P0 for a single-relay

network.
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Fig. 4. SNR outage probability versus P0 for a single-relay network.

Fig. 2 shows the average PN-SNR versus P0 for the three schemes. We can see that in

the proposed PN-SNR-maximizing scheme, the PN-SNR is non-decreasing as PR,lim increases.

In the SNR-maximizing scheme, however, PN-SNR decreases sharply as PR,lim increases. It

can be shown that the PN-SNR decreases to 0 as PR,lim tends to infinity. In the fixed relay

power scheme, the PN-SNR slowly decreases as PR,lim increases. Among the three schemes, our

proposed scheme always achieves the highest PN-SNR. When PR,lim = P0, the proposed scheme

is 5.4% better than the fixed relay power scheme and 4.2% better than the SNR-maximizing
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scheme at P0 = 30 dBW. When PR,lim = 4P0, it is 9.2% better than the fixed relay power

scheme and 53% better than the SNR-maximizing scheme at P0 = 30 dBW. These observations

comply with the theoretical analysis in Section III.

Fig. 3 shows the average end-to-end received SNR versus P0 for the three schemes. We can

see that in the SNR-maximizing scheme, the average SNR increases rapidly as PR,lim increases,

and grows out of bound when PR,lim approaches infinity. But in both the proposed scheme and

the fixed relay power scheme, the average SNR increases but saturates quickly. This is because

for these two schemes, only partial relay power is used. When PR,lim = P0 and P0 = 30 dBW,

the average SNR in the proposed scheme is 0.25 dB better than the fixed relay power scheme

but 0.2 dB worse than the SNR-maximizing scheme. When PR,lim = 4P0 and P0 = 30 dBW, the

average SNR in the proposed scheme is 0.1 dB better than the fixed relay power scheme, while

about 2 dB worse than the SNR-maximizing scheme. When PR,lim = ∞ and P0 = 30 dBW, the

average SNR in the proposed scheme is inferior to the fixed relay power scheme by 0.2 dB.

The simulation results comply with the analysis in Section III and indicate that our proposed

scheme has comparable performance in average SNR with the fixed relay power scheme but it

is inferior to the SNR-maximizing scheme.

Fig. 4 shows the outage probability versus P0 for the three schemes. We can see that as PR,lim

increases, all three schemes have better performance in outage probability. When PR,lim = P0,

our proposed scheme is 0.5 dB superior to the fixed relay power scheme but is 0.1 dB inferior

to the SNR-maximizing scheme. When PR,lim = 4P0, our proposed scheme is 1.2 dB superior to

the fixed relay power scheme but is inferior, by 0.25 dB, to the SNR-maximizing scheme. For

the extreme case PR,lim = ∞, our proposed scheme is superior by about 1.8 dB to the fixed relay

power scheme. The two curves in our scheme and the SNR-maximizing scheme become closer

to each other as P0 increases. These observations are in accordance with the analysis in Section

III. We can conclude that the proposed PN-SNR-maximizing scheme outperforms the fixed relay

power scheme in outage probability and is comparable to the SNR-maximizing scheme.
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Fig. 5. Average PN-SNR versus P0 for a two-relay network

with sum relay power constraint.
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Fig. 6. SNR outage probability versus P0 for a two-relay

network with sum relay power constraint.

We can see from Figs. 2 to 4 that the proposed PN-SNR-maximizing scheme is more efficient

in single-relay networks compared with the other two schemes. Meanwhile, with the same power

resource, the proposed scheme has comparable performance in the average SNR and is better

in outage probability compared with fixed relay power scheme. Naturally, the SNR-maximizing

scheme achieves higher SNR than the proposed scheme. But its advantage in outage probability

is small and negligible in the high SNR regime. And it has significant lower PN-SNR than the

proposed scheme, implying that the power is not efficiently used in this method.

B. Multi-Relay Networks with a Sum Power Constraint on Relays

In this subsection, we present the simulation results for multi-relay networks with a sum relay

power constraint. We simulate the average PN-SNR and the outage probability with threshold

γth = 0 dB for the proposed PN-SNR-maximizing scheme, the SNR-maximizing scheme, and the

fixed relay power scheme. In the fixed relay power scheme, the sum power on relays is fixed for

each transmission regardless of the channel quality. For fair comparisons, this fixed power is set

to be the average sum relay power P in the proposed scheme. In the SNR-maximizing scheme,

the relays always use the maximum sum power PR,lim to achieve the maximum SNR. The power
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control coefficient for each relay is obtained according to (32). We simulate a two-relay network

with the sum power constraint PR,lim = 2P0 and PR,lim = 4P0.

Fig. 5 shows the average PN-SNR versus P0 for the three schemes. In the PN-SNR-maximizing

scheme, the average PN-SNR slightly increases as PR,lim changes from 2P0 to 4P0. In the fixed

relay power scheme, the average PN-SNR slightly decreases as PR,lim increases. In the SNR-

maximizing scheme, the average PN-SNR sharply decreases as PR,lim increases. This is the

same trend as in single-relay networks. Among the three schemes, the proposed scheme always

achieves the highest PN-SNR. When PR,lim = 2P0 and P0 = 30 dBW, the proposed scheme

outperforms the fixed relay power scheme and the SNR-maximizing scheme in term of PN-SNR

by 3.8% and 14%, respectively, and the percentage turns to 4% and 48% when PR,lim = 4P0.

Fig. 6 shows the outage probability versus P0 for the three schemes. Note that for all three

schemes, the outage probabilities decreases as PR,lim grows from 2P0 to 4P0. When PR,lim = 2P0,

our proposed scheme outperforms the fixed relay power scheme by about 0.4 dB, but it is 1 dB

inferior to the SNR-maximizing scheme. When PR,lim = 4P0, our proposed scheme is 0.6 dB

superior to the fixed relay power scheme but is about 1.8 dB inferior to the SNR-maximizing

scheme. We can see that the gap between the proposed scheme and the SNR-maximizing scheme

grows larger as PR,lim increases.

We can conclude from Figs. 5 and 6 that the PN-SNR-maximizing scheme is more power

efficient than the other two schemes. Compared with the fixed relay power scheme with the

same power resource, the proposed scheme also outperforms in outage probability. In the SNR-

maximizing scheme, more power is used to achieve a better outage probability compared with

our proposed scheme. But the efficiency of consumed power is low in the sense of producing

received SNR. Our results indicate that there is a tradeoff between PN-SNR and received SNR.

C. Multi-Relay Networks with Separate Relay Power Constraints

In this subsection, we investigate the performance of a multi-relay network with separate power

constraints on relays. We simulate the average PN-SNR and outage probability with threshold
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Fig. 7. Average PN-SNR versus P0 for a two-relay network

with separate relay power constraints.
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Fig. 8. SNR outage probability versus P0 for a two-relay

network with separate relay power constraints.
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Fig. 9. Average PN-SNR versus number of relays for networks with separate relay power constraints.

γth = 0 dB for the PN-SNR-maximizing scheme (denoted as “Proposed”) and compare them with

the SNR-maximizing scheme (denoted as“SNR-max”) and the all maximum scheme (denoted as

“All-max”). In the SNR-maximizing scheme, the optimal beamforming design proposed in [10]

is employed to maximize the end-to-end received SNR. In the all maximum scheme, all relays

transmit with their maximum power. We first simulate a two-relay network and assume that all

nodes have the same power constraint i.e, Pi,lim = P0 for i = 1, 2. Next, the average PN-SNR

in networks with more that two relays is also simulated.
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Fig. 7 shows the average PN-SNR versus P0 for the three schemes in two-relay networks.

First We can see that the PN-SNR of the suboptimal solution is almost the same as the optimal

solution. Also, the proposed PN-SNR-maximizing scheme outperforms the other two schemes

in terms of the PN-SNR. When P0 = 30 dBW, we can read from the plot that our proposed

scheme is superior by 20.4% and 40% compared with the other two schemes.

Fig. 8 shows the outage probability versus P0 for the three schemes in two-relay networks.

We can see that the proposed scheme is 0.7 dB worse in outage probability than the SNR-

maximizing scheme. By reading from the slopes of the outage curves, we can also see that the

all-maximum scheme loses diversity order while the other two schemes achieve full diversity.

Fig. 9 shows the average PN-SNR in networks with different numbers of relays. The transmit

power on transmitter and each relay is set to be 10 dBW. We can first see that our suboptimal

solution performs as well as the optimal solution. In the proposed PN-SNR-maximizing scheme,

the average PN-SNR increases linearly with the number of the relays. In the SNR-maximizing

scheme, however, the average PN-SNR increases with a significant smaller rate and saturates as

the number of the relays increases. For the all-maximum scheme, the average PN-SNR remains

unchanged as the number of the relays increases.

We can conclude from Figs. 7 to 9 that our PN-SNR-maximizing scheme is more efficient than

the other two schemes in using transmit power to provide the received SNR. This scheme also

has comparable network performance with the SNR-maximizing scheme in two-relay networks

with Pi,lim = P0 for i = 1, 2. Even though there is a trade-off between the PN-SNR and the

received SNR, the PN-SNR can be a promising measure in designing energy efficient networks.

VII. CONCLUSION

In this paper, we adopted a new metric, namely power normalized SNR (PN-SNR) to design

efficient relay networks, and proposed an optimal relay power control scheme which maxi-

mizes this metric. Performance of the proposed scheme is analyzed and compared with existing

schemes. Our studies showed that the proposed scheme achieves better PN-SNR while having
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comparable or even better outage performance compared with the fixed relay power scheme.

Compared with the SNR-maximizing design, it has significantly higher PN-SNR with moderate

degradation in outage performance. The work discovered the potential of the PN-SNR as an

efficiency measure in relay network design.

APPENDIX

A. Proof of Theorem 1

We herein provide the proof of Theorem 1. Define X , |f | and Y , |g|, then X and Y are
Rayleigh distributed whose probability density function (pdf) is f(x) = 2xe−x2 for x ≥ 0. The
average of the relay power in (14) can be calculated as

E{Papprox}=
∫ +∞

0

∫ +∞

0

min

(
x

y
P0, PR,lim

)
4xy · e−(x2+y2)dxdy

=

∫ +∞

0

∫ PR,lim
P0

y

0

4P0x
2e−(x2+y2)dx+

∫ +∞

PR,limy

P0

4PR,limxye
−(x2+y2)dx

 dy

=

∫ +∞

0

{
2P0e

−y2

[√
π

2
erf

(
PR,lim

P0
y

)
− PR,lim

P0
ye

−
(

PR,limy

P0

)2
]
+ 2PR,limye

−y2

e
−
(

PR,lim
P0

y
)2
}
dy

=

∫ +∞

0

√
πP0e

−y2

erf

(
PR,lim

P0
y

)
dy = P0 tan

−1

(
PR,lim

P0

)
.

Recall the expression of the PN-SNR in (10) and also ξ =
PR,lim

P0
. With the relay power design

in (14), the average PN-SNR can be calculated as

ηave≈
∫ +∞

0

∫ +∞

0

x2y2 min
(

x
yP0, PR,lim

)
[
x2P0 + y2 min

(
x
yP0, PR,lim

)] [
P0 +min

(
x
yP0, PR,lim

)]4xye−(x2+y2)dxdy

=4

∫ +∞

0

∫ ξy

0

x3y3

(x+ y)2
e−(x2+y2)dxdy + 4

ξ

1 + ξ

∫ +∞

0

∫ +∞

ξy

x3y3

x2 + ξy2
e−(x2+y2)dxdy

=4

∫ π
2

tan−1( 1
ξ )

cos3 θ sin3 θ

(cos θ + sin θ)2
dθ +

4ξ

1 + ξ

∫ tan−1( 1
ξ )

0

cos3 θ sin3 θ

cos2 θ + ξ sin2 θ
dθ

=
3

8
π − 3

4
tan−1

(
1

ξ

)
− 4ξ3 − 7ξ2 − ξ

4(ξ + 1)(ξ − 1)2
+

2ξ2 ln
(

ξ2+1
ξ(ξ+1)

)
(ξ − 1)3(ξ + 1)

.

In step three, we use the polar coordinate system and the fact that
∫ +∞
0

r5e−r2dr = 1. From
(9), the corresponding average SNR can be obtained in the same way as

SNRave≈
∫ +∞

0

∫ +∞

0

x2y2 min
(

x
yP0, PR,lim

)
x2P0 + y2 min

(
x
yP0, PR,lim

)4xye−(x2+y2)dxdy

=4P0

∫ +∞

0

∫ ξy

0

x3y2

x+ y
e−(x2+y2)dxdy + 4P0ξ

∫ +∞

0

∫ +∞

ξy

x3y3

x2 + ξy2
e−(x2+y2)dxdy
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=4P0

∫ π
2

tan−1( 1
ξ )

cos3 θ sin2 θ

cos θ + sin θ
dθ + 4P0ξ

∫ tan−1( 1
ξ )

0

cos3 θ sin3 θ

cos2 θ + ξ sin2 θ
dθ

=P0

π
8
− 1

4
tan−1

(
1

ξ

)
− 3ξ3 + 5ξ

4(ξ − 1)2(ξ2 + 1)
− 1

4
ln

(
(ξ + 1)2

ξ2 + 1

)
+

2ξ2 ln
(

ξ2+1
ξ(ξ+1)

)
(ξ − 1)3

 .

Defining A , |f |2 and B , |g|2, the outage probability can be expressed as

O=P (SNR ≤ γth) = P (SNR ≤ γth ∩X ≤ ξY ) + P (SNR ≤ γth ∩X ≥ ξY )

≈P
(
X2Y P0

X + Y
≤ γth ∩X ≤ ξY

)
+ P

(
ABPR,lim

A+ ξB
≤ γth ∩A ≥ ξ2B

)
=P
(
Y ≤ γthX

P0X2 − γth
∩ Y ≥ X

ξ
∩ P0X

2 ≥ γth

)
+ P

(
X ≤ ξY ∩ P0X

2 ≤ γth
)

+P
(
A ≤ γthξB

PR,limB − γth
∩A ≥ ξ2B ∩B ≥ γth

PR,lim

)
+ P

(
A ≥ ξ2B ∩B ≤ γth

PR,lim

)

=

∫ √
(1+ξ)γth

P0√
γth
P0

fX(x)dx

(∫ γthx

P0x2−γth

x
ξ

fY (y)dy

)
+

∫ √
γth
P0

0

fX(x)dx

(∫ +∞

x
ξ

fY (y)dy

)

+

∫ γth
PR,lim

(1+ 1
ξ )

γth
PR,lim

fB(b)db

(∫ γthξb

PR,limb−γth

ξ2b

fA(a)da

)
+

∫ γth
PR,lim

0

fB(b)db

(∫ +∞

ξ2b

fA(a)da

)

=
ξ2

ξ2 + 1

[
1− e

−
(
1+ 1

ξ2

)
(1+ξ)

γth
P0

]
− e

γth
P0

∫ γthξ

P0

0

e
− γ3

th
P3
0 u2

1
− γ2

th
P2
0 u1

−u1

du1 (39)

+
1

ξ2 + 1

[
1− e−(1+

1
ξ )(1+ξ2)

γth
ξP0

]
− e(1+

1
ξ )

γth
P0

∫ γth
ξ2P0

0

e
− γ2

th
ξP2

0 u2
−u2

du2. (40)

The integral in (39) can be upper bounded by∫ γthξ

P0

0

e
− γ3

th
P3
0 u2

1
− γ2

th
P2
0 u1

−u1

du1 ≤
∫ γthξ

P0

0

e−u1du1 = 1− e−
γthξ

P0 =
γthξ

P0
+O

(
1

P 2
0

)
.

It can also be lower bounded by∫ γthξ

P0

0

e
− γ3

th
P3
0 u2

1
− γ2

th
P2
0 u1

−u1

du1 ≥
∫ γthξ

P0

P
−4/3
0

e
− γ3

th
P3
0 u2

1
− γ2

th
P2
0 u1

−u1

du1 ≥ e
− γ3

th

P3
0 (P

−4/3
0 )

2 − γ2
th

P2
0 P

−4/3
0

∫ γthξ

P0

P
−4/3
0

e−u1du1

=

1− γ3
th

P 3
0

(
P

−4/3
0

)2 − γ2
th

P 2
0P

−4/3
0

(γthξ

P0
− P

−4/3
0

)
+O

(
1

P
4/3
0

)
=

γthξ

P0
+O

(
1

P
4/3
0

)
.

We can see that the dominant terms are the same for the upper and the lower bound. For the
second integral, it can be shown in the same manner that

γth
ξ2P0

+O
(

1

P 2
0

)
≤
∫ γth

ξ2P0

0

e
− γ2

th
ξP2

0 u2
−u2

du2 ≤ γth
ξ2P0

+O

(
1

P
3/2
0

)

By using Taylor series expansion for large P0, the outage probability can be bounded as (18).
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B. Proof of Lemma 1

With the relay transmit power fixed as P for each transmission, the PN-SNR and the end-to-

end received SNR can be expressed as

ηfix ≈
|fg|2PP0

(|f |2P0 + |g|2P )(P0 + P )
, SNRfix ≈

|fg|2PP0

|f |2P0 + |g|2P
.

The average PN-SNR thus is

ηave fix ≈
P

P + P0

∫ +∞

0

∫ +∞

0

P0x
2y2

P0x2 + Py2
4xy · e−(x2+y2)dxdy

= 4
P

P + P0

∫ +∞

0

∫ +∞

0

x3y3

x2 + P/P0y2
e−(x2+y2)dxdy

= 4
P

P + P0

∫ π
2

0

cos3 θ sin3 θ

cos2 θ + P/P0 sin
2 θ

(∫ +∞

0

r5e−r2dr

)
dθ

=
PP0

(P − P0)2
− 2P 2P 2

0

(P − P0)3(P + P0)
ln

(
P

P0

)
.

The average end-to-end received SNR can be easily derived as

SNRave fix ≈ ηave fix(P0 + P ) =
PP0(P + P0)

(P − P0)2
− 2P 2P 2

0

(P − P0)3
ln

(
P

P0

)
.

The outage probability with SNR threshold γth can be derived as [28], [40]

Ofix ≈ 1− e−
γth
P e−

γth
P0 2

γth
P

√
P

P0
K1

(
2
γth
P

√
P

P0

)

= 1− e−
γth
P − γth

P0

[
1−O

(
ln(PP0)

PP0

)]
=

(
1 +

1

ζ

)
γth
P0

+O
(
ln(P0)

P 2
0

)
.

This ends the proof.
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