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Abstract— This paper introduces an automatic method to
visualize 3D needle shapes for reliable assessment of nee-
dle placement during needle insertion procedures. Based on
partial observations of the needle within a small sample of
2D transverse ultrasound images, the 3D shape of the entire
needle is reconstructed. An intensity thresholding technique is
used to identify points representing possible needle locations
within each 2D ultrasound image. Then, a Random Sample
and Consensus (RANSAC) algorithm is used to filter out false
positives and fit the remaining points to a polynomial model.
To test this method, a set of 21 transverse ultrasound images of
a brachytherapy needle embedded within a transparent tissue
phantom are obtained and used to reconstruct the needle shape.
Results are validated using camera images which capture the
true needle shape. For this experimental data, obtaining at least
three images from an insertion depth of 50 mm or greater
allows the entire needle shape to be calculated with an average
error of 0.5 mm with respect to the measured needle curve
obtained from the camera image. Future work and application
to robotics is also discussed.

I. INTRODUCTION

Medical ultrasound is one of the most widely-used imag-
ing modalities for guidance of percutaneous needle insertion
procedures such as brachytherapy, biopsy, fluid drainage and
anesthesiology. Precise needle tracking within the ultrasound
images is crucial for accurate needle positioning. However,
there are two main limitations that detract from the effective-
ness of ultrasound: 1) The images produced are generally low
in quality, and 2) the images often contain false features such
as shadows or reverberation artifacts. Additionally, aspects
such as needle deflection and tissue deformation cause the
needle and desired target location to shift, creating additional
challenges. As a result, significant research is directed to-
wards the development of automated methods for locating the
needle in ultrasound images. For the purposes of context, our
paper will focus discussion towards prostate brachytherapy,
but the techniques described are general and can be applied
to all forms of ultrasound-guided needle insertion, including
both maual and robotically-assisted procedures.
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A large focus of research has been on the development of
needle detection algorithms using 3D volumetric ultrasound
images. For instance, Wei et al. [1] developed a needle seg-
mentation algorithm for 3D ultrasound-guided robotically-
assisted brachytherapy. Novotny et al. [2] and Neshat et
al. [3] worked on real-time instrument and needle tracking
techniques based on the Radon transform. Ding et al. [4]
developed a segmentation algorithm designed to locate the
needle as well as the seeds implanted during brachytherapy
procedures. Uhercik et al. [5] developed a method to detect
the position and orientation of long, thin surgical tools using
Random Sample and Consensus (RANSAC), which was
based on work by Barva et al. [6]. As an extension of [5],
Zhao et al. [7], [8] applied a Kalman filter technique and
a speckle tracking method to their RANSAC algorithm for
tracking micro-tools.

The 3D ultrasound methods mentioned in [1]-[8] are useful
for needle segmentation since the entire set of position and
orientation parameters can be obtained from a single volume.
However, while a few state-of-the-art machines implement
special 2D transducer arrays that can allow for real-time 3D
imaging, these devices are very costly, and most hospitals
will not have access to this type of equipment. It is more
common to use ultrasound probes containing 1D transducer
arrays to obtain a series of 2D images, and derive the
3D volume based on their relative positions [9]. With this
method, typically less than 1-2 volumes per second can be
calculated depending on the sweep speed of the ultrasound
probe. As well, only a small segment of the needle can be
visualized at once; multiple volumes, each taking several
seconds to acquire, are needed in order to visualize the entire
needle.

Methods for 2D ultrasound needle segmentation are conve-
nient since the technology is typically cheaper, easier to use,
and faster than 3D ultrasound. Research in this field includes
work performed by Okazawa et al. [10], who implemented
a Hough-transform based detection scheme. Mathiassen et
al. [11] developed a real-time algorithm for the estimation
of the needle tip. Kaya et al. [12] used Gabor filtering and
the utilization of RANSAC to improve needle segmentation.
Neubach et al. [13] developed a flexible needle insertion
robot guided by 2D ultrasound images.

Methods [10]-[13] make use of images containing the
longitudinal axis of the needle. These images are referred
to as “longitudinal” images in our paper, or alternatively,
“sagittal” images in the context of prostate brachytherapy
in reference to the anatomical planes of the human body.
Images of this type are located in the (y, z) plane of Fig. 1.
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Fig. 1. Depiction of ultrasound-guided prostate brachytherapy. Multiple
transverse slices can be obtained by inserting the probe further into the
patient. In this paper, the objective is to reconstruct the needle shape based
on the needle observations within each transverse slice.

Images perpendicular to the needle’s longitudinal axis are
named “transverse” images in our paper, or alternatively,
“axial” images in prostate brachytherapy. These images are
located in the (x, y) plane of Fig. 1. In our paper, the terms
longitudinal and transverse will be given preference.

Longitudinal plane imaging is effective when the imaging
plane is precisely known; however, aligning the ultrasound
probe with the plane of the needle is not trivial, and in many
instances tissue motion and needle deflection will cause the
needle to diverge from the longitudinal imaging plane. By
making use of transverse images, we can avoid the problems
of probe alignment found in longitudinal imaging while
obtaining a 3D visualization of the needle shape. The use
of transverse images also greatly reduces the amount of data
processing required for 3D methods. Finally, in procedures
such as prostate brachytherapy, surgeons already monitor
several transverse ultrasound slices of the prostate, and so
the use of transverse ultrasound images would not only be
clinically feasible, but would require very little additional
effort by the surgeon.

We propose a new method using 2D transverse ultra-
sound images to reconstruct the 3D needle shape. Fig. 1
demonstrates how the ultrasound probe is used in prostate
brachytherapy to obtain various transverse views of the
needle embedded within the prostate. By varying the position
of the probe along the z-axis, multiple cross sections of the
needle can be obtained. The main premise of this paper is that
tracking the movement of the needle cross sections within the
plane of each image in conjunction with the relative positions
of the images allows for the reconstruction of the entire
3D needle shape. This is implemented using an intensity
thresholding technique that locates potential needle locations
within each transverse image. A RANSAC algorithm is then
used to remove false positives and calculate the needle shape.

The paper is organized as follows. In Section II, the
image processing procedure used to identify potential needle
locations within the transverse images is summarized. In

Fig. 2. Example of the needle appearance in 2D transverse prostate
brachytherapy images. The needle is circled in white and extraneous objects
are circled in black. The image processing result is zoomed-in on the right
with the potential needle pixels outlined in black.

Section III, these points are used in a RANSAC curve-fitting
algorithm to calculate the curvilinear needle shape. The
experimental setup, which acquires multiple transverse ultra-
sound images along the length of a needle embedded within
phantom tissue, is detailed in Section IV. In Section V,
results are shown and the accuracy of the proposed method
is quantified through comparison with a camera image of the
needle shape. Conclusions are drawn in Section VI.

II. ULTRASOUND IMAGE PROCESSING

Each of the 2D transverse ultrasound images must be
processed to identify the potential needle locations. In typical
transverse ultrasound images, the needle appears throughout
each slice as a bright spot. An example is circled in white in
Fig. 2. It is often assumed that the needle will be the brightest
object in the ultrasound image; however, in brachytherapy
for example, a gel is often inserted into the urethra for
landmarking purposes, causing the urethra to appear as bright
as or brighter than the needle. As well, implanted seeds from
previous insertions could create similar bright “background”
objects. In Fig. 2, these types of objects are circled in black.

In order to remove the majority of these extraneous
background objects from the candidate needle points, the
search area for the potential needle pixels is limited to a
small window around the needle insertion point, as shown
by the gray box in Fig. 2. The needle insertion point can
be easily located by aligning the guide template grid with
the ultrasound image, demonstrated by the numbered array
of gray dots shown in Fig. 2.

After localizing the search area, the MATLAB function
imadjust is used to apply an intensity transformation to the
cropped image as described in (1).

T (r) = rmin +(rmax− rmin)

(
r− rlow

rhigh− rlow

)γ

(1)

where r, rmin, rmax, rlow, and rhigh are normalized values
within the range [0,1]. The value r represents the individual
pixel intensities within each image, [rmin, rmax] specifies the
minimum and maximum intensities of the desired grayscale
spectrum and [rlow, rhigh] specifies the thresholds for satu-
ration at the minimum and maximum grayscale intensities
respectively. The desired spectrum is chosen to span [0,1],
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Fig. 3. Flowchart summary of the image processing procedure.

where 0 represents the color black and 1 represents the
color white. The saturation thresholds are selected as the
minimum and maximum intensity values in the cropped
image. The value of γ specifies the shape of the mapping
curve. By setting γ > 1, the function compresses the gray
scale values of the low-intensity pixels, expands those of
the high-intensity pixels, and distributes the pixel intensities
throughout the entire grayscale spectrum. This allows for
improved contrast between the needle and tissue.

Next a histogram of the pixel intensities is obtained, which
is used to determine an intensity threshold α such that

α = min
rn
{rn ≥ β ∩n≥ δ} (2)

where rn is the nth brightest pixel in the grayscale range,
β defines the absolute minimum threshold level for α , and
δ specifies the number of desired pixels selected for each
image. After identifying α , the corresponding pixels with
intensities greater than α are found. These pixels represent
candidate points for the needle location within the transverse
image. This image processing procedure is performed for
each transverse slice obtained throughout the needle shape.
An example of potential needle pixels identified using the
above procedure is outlined in black in the zoomed-in portion
of Fig. 2 and a summary of the image processing procedure
is shown in Fig. 3.

Several pixels are identified after the aforementioned
thresholding process, only some of which correspond to the
actual needle. Bright background objects can occasionally
appear within the search area, and speckle noise often
contaminates clinical ultrasound images; these features may
make their way through the image processing steps and can
be identified as potential needle locations. A method such
as least squares curve fitting treats all data points equally,
leading to poor results when these types of false positives
are present. Therefore, a method is required to identify
and exclude outliers before obtaining the needle shape.
RANSAC, as described in the next section, can exclude false
positives and calculate the needle shape at the same time,
making it very suitable for our problem.

III. RANDOM SAMPLE AND CONSENSUS (RANSAC)
ALGORITHM

RANSAC is a robust model-fitting algorithm proficient
at handling data sets containing a significant proportion
of outliers [14]. The RANSAC Toolbox developed in [15]
is used to implement the RANSAC procedure, which is
composed of four main steps, namely 1) estimate model

Fig. 4. Diagram showing the calculation of ei for the ith point in the data
set S obtained after image processing.

parameters, 2) develop consensus set, 3) determine the best
consensus set, and 4) optimize the results.

1. Estimate Model Parameters: Given a data set S of
N points and a model M that requires k < N points for
complete parameterization, a random selection of k points
is used to identify the model parameters [14]. In our case, S
refers to the combined set of N pixel center points identified
within all of the transverse images analyzed during the image
processing procedure described in Section II, and the needle
model M is characterized by the second order polynomial
function defined by

x(d) = a2d2 +a1d +a0 (3)

y(d) = b2d2 +b1d +b0 (4)

z(d) = d (5)

where d represents the relative needle depth of insertion
into tissue with respect to the needle’s insertion location
and the values a2, a1, a0 and b2, b1, b0 represent the
parameters to be identified. The values x and y refer to the
needle’s spatial position within the transverse images and z
specifies the depth of each image. A second order polynomial
is chosen because higher orders result in rippling effects
uncharacteristic of the actual needle deflection. In our case,
k = 3 for complete parameterization.

2. Develop Consensus Set: The ith point in S is defined
by the values (pi, qi, di) which correspond to the 3D
coordinates of the point, as shown in Fig. 4. The pair (pi, qi)
refers to the spatial location of point i within the transverse
image located at depth di. Each point in S is categorized as
either an inlier or an outlier based on the magnitude of the
error ei between the ith point and the model we obtained in
the previous step using the randomly selected d+ata points.
The value ei can be calculated using (6).

ei(di) =
√
(x(di)− pi)2 +(y(di)−qi)2 (6)

where (x(di), y(di)) represents the model estimation of
the needle location at the depth di. An example of ei is
demonstrated in Fig. 4, where point i is located in Image
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2. The “Point Prediction” shown in the diagram represents
the estimated needle location within each transverse image.
In this case, since Image 2 is located at a depth of dIm2, the
Point Prediction for Image 2 is (x(dIm2), y(dIm2)). Let us
define

inliers = {(pi,qi,di)|ei < ε} (7)

where ε specifies the inlier tolerance. Points in S that
lie further than a distance ε from their respective Point
Predictions are categorized as outliers. The remaining set
of inliers is known as the consensus set.

3. Determine Best Consensus Set: Steps 1 and 2 are
performed a minimum of T times, and a cost function is
evaluated for each consensus set. The M-Estimator Sample
Consensus (MSAC) technique developed by Torr et al. [16]
is used to obtain the optimal consensus set. This technique
is based on the minimization of the cost function C over all
points within S. The cost function is shown in (8).

C =
N

∑
i=1

f (ei) (8)

where:

f (ei) =

{
ei, ei < ε

ε, ei ≥ ε
(9)

Equation (8) is used to rank the consensus sets, where their
rankings are inversely proportional to their respective cost
function magnitudes. Once the change in the cost function
for the highest ranked consensus set becomes smaller than a
user-specified tolerance level, the process terminates.

At this point, all false positives are removed from each
transverse image slice with respect to the curve obtained
from the highest ranked consensus set and a preliminary
curve fit describing the needle shape is identified. To sum-
marize the procedure thus far, in Step 1, three randomly-
selected points from the data set are used to fit the needle
shape model. In Step 2, each point from the entire data set is
examined and is categorized as either an inlier or an outlier
based on how well it satisfies the model identified in the
previous step. In Step 3, the quality of this model is evaluated
using the MSAC technique. Steps 1-3 are performed until a
model with sufficient quality has been determined.

4. Optimize the Results: The model identified using the
RANSAC procedure necessarily passes through at least 3
points within the set of inliers as a result of Step 1. At
the end of the process the second order polynomial curve
fit is optimized by applying the least-squares method to
the entire set of inliers obtained in Step 3 as well as the
needle’s insertion location. The resulting output is a 3D
approximation of the needle shape.

IV. EXPERIMENTAL SETUP

A demonstration of the experimental setup used to validate
the proposed method is shown in Fig. 5. An 18-gauge, bevel-
tipped brachytherapy needle (Worldwide Medical Technolo-
gies) is manually inserted through a stabilizing guide tem-
plate to a depth of 110 mm within a transparent tissue

(a) Experimental setup

(b) Depiction of the setup mechanics

Fig. 5. A photograph of the setup is shown in (a) and the setup mechanics
are depicted in (b). The ultrasound transducer is attached to a translating
platform, which is manually adjusted to obtain transverse slices of the
embedded needle every 5 mm.

phantom created using a plastisol base (M-F Manufacturing
Company). A mechanical holder is used to secure a 4DL14-
5/38 linear ultrasound transducer (Analogic Ultrasound) to
a translating stage. The stage is manually positioned to
allow for the collection of transverse ultrasound images
of the needle every 5 mm along the z-axis, starting from
a depth of 5 mm. A total of 21 transverse images are
collected using a SonixTouch Ultrasound System (Analogic
Ultrasound). As well, a Logitech C270 HD camera mounted
above the setup is used to obtain a view of the (x, z) plane
of the needle. The needle bevel is positioned such that the
out-of-plane needle deflection is negligible; therefore, only
the (x, z) plane is required for needle shape comparison.
Based on the ultrasound results, the out-of-plane deflection
was less than 0.45 mm, which is minor compared to the
11.5 mm of deflection observed in the (x, z) plane. Needle
segmentation from the camera image is performed using
morphological image processing, and is used for verification
of the RANSAC algorithm results.

The ultrasound images obtained from the experimental
system are much clearer than typical medical ultrasound
images. To compensate for this, Gaussian noise followed
by speckle noise is added to the original images using the
function imnoise in MATLAB. A comparison of the results
before and after the addition of noise is shown in Fig. 6.
The circles highlight the potential needle locations identified
using the procedure described in Section II. The addition of
noise scatters the potential needle points, similar to results
obtained when analyzing clinical images.
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(a) Original image (b) Image after addition of noise

Fig. 6. Example of potential needle points identified using (a) the original
image and (b) the images containing artificial noise. The example shown in
(b) is closer to the results obtained in clinical ultrasound images.

Fig. 7. Example demonstrating how transverse slices were grouped into
various image sets. The image sets shown are labelled 1, 2, and 3. Each set
starts at a different depth and contains a different portion of the needle.

V. RESULTS & DISCUSSION

The needle model given in (3)-(5) requires at least 3 image
slices for full parameterization. The 21 transverse images
obtained from the experiment are grouped into sets ranging
from 3 successive slices to 21 successive slices, resulting
in a total of 190 different image sets. Examples of several
different image sets are shown in Fig. 7. The dotted lines
represent transverse images taken at various depths along the
needle. Example 1 in Fig. 7 contains 3 slices ranging from
a depth of 5 mm to 15 mm, Example 2 contains 4 slices
ranging from a depth of 10 mm to 25 mm, and Example 3
contains 6 slices ranging from 20 mm to 45 mm.

The RANSAC algorithm is performed on each image
set 20 times. The area between the estimated needle shape
obtained using the proposed method and the measured needle
shape obtained from the camera image is calculated for each
iteration. The mean area error is obtained for each image
set, and the value is divided by the total insertion depth to
obtain the average error between the estimated results and
the measured results. A contour plot displaying the results
for the 190 image sets is shown in Fig. 8. As well, the
maximum error between the predicted needle shape and the
measured shape is calculated and the averages are shown
in the contour plots of Fig. 9. The y-axis represents the
difference between the minimum and maximum depths of
the image slices considered. This difference is referred to as
the “depth differential”. Two successive transverse images
represents a depth differential of 5 mm, since the images are
spaced 5 mm apart. A set of 3 successive transverse images
represents a depth differential of 10 mm and so on. The x-
axis shows the depth of the initial slice for each image set.

(a) Original images

(b) Noisy images

Fig. 8. Contour plots comparing the average error obtained for the (a)
original images and (b) noisy images. P1 represents the image set containing
a 40 mm segment of the needle beginning at a depth of 10 mm. P2 represents
a 60 mm segment starting at a depth of 30 mm.

Therefore, P1 in Fig. 8 represents the image set containing
a 40 mm segment of the needle (or 9 transverse slices)
beginning from a depth of 10 mm. P2 represents a 60 mm
segment starting from a depth of 30 mm. The computations
are performed on a PC with a 2.6GHz, AMD Phenom II x4
910 processor, 4 GB of RAM, and running 32 bit versions of
Windows 7 and MATLAB. Average computation times are
17 ms to process and locate the needle point candidates in
each image, and 107.4 ms to calculate the needle shape using
RANSAC and optimize the solution. The needle shape can
be obtained in real-time as soon as the transverse ultrasound
images have been collected.

Based on Fig. 8, to obtain an average error of less than 0.5
mm, there exists an inverse relationship between the required
depth differential and the starting depth. For example, based
on the noisy images, a starting depth of 5 mm requires
a depth differential of 40 mm, whereas a starting depth
of 50 mm only requires a depth differential of 10 mm.
A similar trend is observed in Fig. 9, which shows the
maximum error between the predicted and measured needle
curves. To obtain a maximum error of less than 2 mm,
one can image a 50 mm segment of the needle anywhere
along its length, or use an image set containing a 10 mm
depth differential from a starting depth of 50 mm or greater.
Additionally, the results in Figures 8 and 9 are noticeably
similar between the normal and noisy images, especially as
the depth differential increases, demonstrating the ability of
the algorithm to process noise similar to the levels observed
in medical ultrasound images.

There are minor inconsistencies for small depth differ-
entials within the noisy images, which can be observed in
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(a) Original images

(b) Noisy images

Fig. 9. Contour plots comparing the maximum errors obtained for the (a)
original images and (b) noisy images.

the contour formed near the depth of 90 mm and the depth
differential of 10 mm in panel (b) of Fig. 8. This is likely
due to the high degree of extrapolation required when using
such a small sample of images.

VI. CONCLUSIONS

We have presented a method for characterizing the needle
shape during needle insertion procedures using 2D transverse
ultrasound images of the embedded needle. An intensity
thresholding procedure is used to identify potential needle
locations within each transverse slice. Based on the identified
points, a RANSAC algorithm is used to remove outliers and
statistically parameterize the needle’s curvilinear shape.

Experimental results demonstrated that for the collected
2D ultrasound images of the phantom tissue containing
the embedded needle, images obtained at starting depths
of 50 mm or greater required only 3 transverse images to
obtain a maximum error of less than 2 mm, which is the
minimum number of images required for the model param-
eterization procedure. This type of technology holds great
potential for use with robot-guided needle insertion systems.
By obtaining the initial needle trajectory across a small
sample of transverse slices, the future deflection shape can
be predicted and used to align a longitudinal imaging probe
for imaging feedback control. The method can also be used
for rapid assessment of needle placement in manual prostate
brachytherapy. For example, the needle shape within the
prostate can be used to assist with the automatic prediction
of the final seed placement. The problem of seed placement
is highly complex, and requires consideration of additional
factors such as seed migration and tissue relaxation following

needle retraction, but the proposed method is a necessary first
step toward the development of such an automated system.

Although human tissue is inhomogenous, the proposed
algorithm is still applicable since needle deflection is only
observed, not predicted. However, in future applications such
as needle trajectory prediction, additional ultrasound images
may be required to improve the accuracy of the predictions.
Additional work will focus on assessment of the algorithm
using transverse ultrasound images obtained during prostate
brachytherapy procedures. As well, the proposed algorithm
will be modified to compute the real-time trajectory of the
needle, which will be incorporated into an image-guided
control system for robotic needle steering applications.
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