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ABSTRACT
As an important arithmetic module, the adder plays a key
role in determining the speed and power consumption of
a digital signal processing (DSP) system. The demands of
high speed and power efficiency as well as the fault tolerance
nature of some applications have promoted the development
of approximate adders. This paper reviews current approx-
imate adder designs and provides a comparative evaluation
in terms of both error and circuit characteristics. Simula-
tion results show that the equal segmentation adder (ESA)
is the most hardware-efficient design, but it has the lowest
accuracy in terms of error rate (ER) and mean relative error
distance (MRED). The error-tolerant adder type II (ETAII),
the speculative carry select adder (SCSA) and the accuracy-
configurable approximate adder (ACAA) are equally accu-
rate (provided that the same parameters are used), how-
ever ETATII incurs the lowest power-delay-product (PDP)
among them. The almost correct adder (ACA) is the most
power consuming scheme with a moderate accuracy. The
lower-part-OR adder (LOA) is the slowest, but it is highly
efficient in power dissipation.

Categories and Subject Descriptors
B.2.0 [Arithmetic and Logic Structures]: General; B.6.1
[Logic Design]: Design Styles—combinational logic; B.7.1
[Integrated Circuits]: Types and Design Styles—VLSI ;
B.8.0 [Performance and Reliability]: General
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1. INTRODUCTION
As the physical dimensions of CMOS scale down to a

few tens of nanometers, it has been increasingly difficult
to improve circuit performance and/or to enhance power
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efficiency. Approximate computing has been advocated as
a new approach to saving area and power dissipation, as
well as increasing performance at a limited loss in accuracy
[3]. While computation errors are in general not desirable,
applications such as multimedia (image, audio and video)
processing, wireless communications, recognition, and data
mining are tolerant to some errors. Due to the statisti-
cal/probabilistic nature of these applications, small errors
in computation would not impose noticeable degradation in
performance [22].

Generally, there are two types of methodologies for im-
proving speed and power efficiency by approximation. The
first methodology uses a voltage-over-scaling (VOS) tech-
nique for CMOS circuits to save power [4,15,19]. The second
methodology is based on redesigning a logic circuit into an
approximate version. While the VOS technique is applicable
to most circuits for error-tolerant applications, an approxi-
mate redesign pertains to the functionalities of different logic
circuits. Approximately redesigned adders (simply referred
to as approximate adders) are reviewed and a comparative
evaluation is performed in this paper.

2. REVIEW
Adders are utilized for calculating the addition (or sum)

of two binary numbers. Two common types of adders are
the ripple-carry adder (RCA) and the carry lookahead adder
(CLA) [9, 21]. In an n-bit RCA, n 1-bit full adders (FAs)
are cascaded; the carry of each FA is propagated to the next
FA, thus the delay of RCA grows in proportion to n (or
O(n)). An n-bit CLA consists of n SPGs, which operate in
parallel to produce the sum, generate (gi = aibi) and prop-
agate (pi = ai + bi) signals, and connected to a carry looka-
head generator. For CLA, all carries are generated directly
by the carry lookahead generator using only the generate
and propagate signals, so the delay of CLA is logarithmic
in n (or O(log(n))), thus significantly shorter than that of
RCA. However, CLA requires larger circuit area and higher
power dissipation. The carry lookahead generator becomes
very complex for large n. The area complexity of CLA is
O(nlog(n)) when the fan-in and fan-out of the constituent
gates are fixed [16].

Many approximation schemes have been proposed by re-
ducing the critical path and hardware complexity of the ac-
curate adder. An early methodology is based on a specula-
tive operation [16, 23]. In an n-bit speculative adder, each
sum bit is predicted by its previous k less significant bits



(LSBs) (k < n). A speculative design makes an adder sig-
nificantly faster than the conventional design. Segmented
adders are proposed in [7,19,27]. An n-bit segmented adder
is implemented by several smaller adders operating in par-
allel. Hence, the carry propagation chain is truncated into
shorter segments. Segmentation is also utilized in [1,5,8,10,
12,25], but their carry inputs for each sub-adder are selected
differently. This type of adder is referred to as a carry se-
lect adder. Another method for reducing the critical path
delay and power dissipation of a conventional adder is by
approximating the full adder [2, 17,20,24]; the approximate
adder is usually applied to the LSBs of an accurate adder.
In the sequel, the approximate adders are divided into four
categories.

2.1 Speculative Adders
As the carry chain is significantly shorter than n in most

practical cases, [23] has proposed an almost correct adder
(ACA) based on the speculative adder design of [16]. In an
n-bit ACA, k LSBs are used to predict the carry for each
sum bit (n > k), as shown in Fig. 1. Therefore, the critical
path delay is reduced to O(log(k)) (for a parallel implemen-
tation such as CLA, the same below). As an example, four
LSBs are used to calculate each carry bit in Fig. 1. As
each carry bit needs a k-bit sub-carry generator in the de-
sign of [16], (n − k) k-bit sub-carry generators are required
in an n-bit adder and thus, the hardware overhead is rather
high. This issue is solved in [23] by sharing some compo-
nents among the sub-carry generators. Moreover, a variable
latency speculative adder (VLSA) is then proposed with an
error detection and recovery scheme [23]. VLSA achieves a
speedup of 1.5× on average compared to CLA.

2.2 Segmented adders

2.2.1 The Equal Segmentation Adder (ESA)
A dynamic segmentation with error compensation (DSEC)

is proposed in [19] to approximate an adder. This scheme
divides an n-bit adder into a number of smaller sub-adders;
these sub-adders operate in parallel with fixed carry inputs.
In this paper, the error compensation technique is ignored
because the focus is on the approximate design, so the equal
segmentation adder (ESA) (Fig. 2) is considered as a simple
structure of the DSEC adder. In Fig. 2,

⌈
n
k

⌉
sub-adders are

used, l is the size of the first sub-adder (l ≤ k), and k is
the size of the other sub-adders. Hence, the delay of ESA
is O(log(k)) and the hardware overhead is significantly less
than ACA.

2.2.2 The Error-Tolerant Adder Type II (ETAII)
Another segmentation based approximate adder (ETAII)

is proposed in [27]. Different from ESA, ETAII consists of
carry generators and sum generators, as shown in Fig. 3 (n
is the adder size; k is the size of the carry and sum gener-
ators). The carry signal from the previous carry generator
propagates to the next sum generator. Therefore, ETAII
utilizes more information to predict the carry bit and thus,
it is more accurate compared with ESA for the same k. Be-
cause the sub-adders in ESA produce both sum and carry,
the circuit complexity of ETAII is similar to ESA, however
its delay is larger (O(log(2k))). In addition to ETAII, sev-
eral other error tolerant adders (ETAs) have been proposed
by the same authors in [26,28,29].

Figure 1: The almost correct adder (ACA). : the carry
propagation path of the sum bit.

Figure 2: The equal segmentation adder (ESA). k: the max-
imum carry chain length; l: the size of the first sub-adder
(l ≤ k).

Figure 3: The error-tolerant adder type II (ETAII) [27]: the
carry propagates through the two shaded blocks.

2.2.3 Accuracy-Configurable Approximate Adder
An accuracy-configurable approximate adder (ACAA) is

proposed in [7]. As accuracy can be configured at runtime
by changing the circuit structure, a tradeoff of accuracy ver-
sus performance and power can be achieved. In an n-bit
adder,

⌈
n
k
− 1

⌉
2k-bit sub-adders are required. Each sub-

adder adds 2k consecutive bits with an overlap of k bits, and
all 2k-bit sub-adders operate in parallel to reduce the delay
to O(log(2k)). In each sub-adder, the half most significant
sum bits are selected as the partial sum. An error detection
and correction (EDC) circuit is used to correct the errors
generated by each sub-adder. The accuracy configuration is
implemented by the approximate adder and its EDC with
a pipelined architecture. For the same k, the carry propa-
gation path is the same for each sum bit as in ACAA and
ETAII; hence they have the same error characteristics.

2.2.4 The Dithering Adder
The dithering adder [18] starts by dividing a multiple-

bit adder into two sub-adders. The higher sub-adder is an
accurate adder and the lower sub-adder consists of a con-
ditional upper bounding module and a conditional lower
bounding module. An additional “Dither Control” signal
is used to configure an upper or lower bound of the lower



Figure 4: The speculative carry selection adder (SCSA).

sum and carry into the higher accurate sub-adder, resulting
in a smaller overall error variance.

2.3 Carry Select Adders
In the carry select adders, several signals are commonly

used: generate gj = ajbj , propagate pj = aj ⊕ bj , and P i =
k−1∏
j=0

pij . P
i = 1 means that all k propagate signals in the ith

block are true.

2.3.1 The Speculative Carry Select Adder (SCSA)
The SCSA is proposed in [1]. An n-bit SCSA consists

of m =
⌈
n
k

⌉
sub-adders (window adders). Each sub-adder

is made of two k-bit adders: adder0 and adder1, as shown
in Fig. 4. Adder0 has carry-in “0” while the carry-in of
adder1 is “1”; then the carry-out of adder0 is connected to
a multiplexer to select the addition result as a part of the
final result. Thus, the critical path delay of SCSA is tadder+
tmux, where tadder is the delay of the sub-adder (O(log(k))),
and tmux is the delay of the multiplexer. SCSA and ETAII
achieve the same accuracy for the same parameter k, because
the same function is used to predict the carry for every sum
bit. Compared with ETAII, SCSA uses an additional adder
and multiplexer in each block and thus, the circuit of SCSA
is more complex than ETAII.

2.3.2 The Carry Skip Adder (CSA)
Similar to SCSA, an n-bit carry skip adder (CSA) [8] is

divided into
⌈
n
k

⌉
blocks, but each block consists of a sub-

carry generator and a sub-adder. The carry-in of the (i+1)th

sub-adder is determined by the propagate signals of the ith

block: the carry-in is the carry-out of the (i−1)th sub-carry
generator when all the propagate signals are true (P i = 1),
otherwise it is the carry-out of the ith sub-carry generator.
Therefore, the critical path delay of CSA is O(log(2k)). This
carry select scheme enhances the carry prediction accuracy.

2.3.3 The Gracefully-Degrading Accuracy-Configurable
Adder (GDA)

An accuracy-configurable adder, referred to as the gracefully-
degrading accuracy-configurable adder (GDA), is presented
in [25]. Control signals are used to configure the accuracy
of GDA by selecting the accurate or approximate carry-in
using a multiplexer for each sub-adder. The delay of GDA is
determined by the carry propagation and thus by the control
signals to multiplexers.

2.3.4 The Carry Speculative Adder
Different from SCSA, the carry speculative adder (CSPA)

in [12] contains one sum generator, two internal carry gener-
ators (one with carry-0 and one with carry-1) and one carry

predictor in each block. The output of the ith carry pre-
dictor is used to select carry signals for the (i + 1)th sum
generator. l input bits (rather than k, l < k) in a block are
used in a carry predictor. Therefore, the hardware overhead
is reduced compared to SCSA.

2.3.5 The Consistent Carry Approximate Adder
The consistent carry approximate adder (CCA) [10] is also

based on SCSA. Likewise, each block of CCA comprises
adder0 with carry-0 and adder1 with carry-1. The select
signal of a multiplexer is determined by the propagate sig-
nals, i.e., Si = (P i + P i−1)SC + (P i + P i−1)Ci−1

out , where
Ci−1

out is the carry out of the (i − 1)th adder0, and SC is a
global speculative carry (referred to as a consistent carry).
In CCA, the carry prediction depends not only on its LSBs,
but also on the higher bits. The critical path delay and area
complexity of CCA are similar to SCSA.

2.3.6 The Generate Signals Exploited Carry Specu-
lation Adder (GCSA)

In [5], the generate signals are used for carry speculation.
GSCA has a similar structure as CSA. The only difference
between them is the carry selection; the carry-in for the
(i + 1)th sub-adder is selected by its own propagate signals
rather than its previous block. The carry-in is the most
significant generate signal gik−1 of the ith block if P i = 1, or

else it is the carry-out of the ith sub-carry generator. The
critical path delay of GCSA is O(log(2k)) due to the carry
propagation. This carry selection scheme effectively controls
the maximal relative error.

2.4 Approximate Full Adders

2.4.1 The Lower-Part-OR Adder (LOA)
LOA [17] divides an n-bit adder into an (n − l)-bit more

significant sub-adder and an l-bit less significant sub-adder.
For the less significant sub-adder, its inputs are simply pro-
cessed by using OR gates (as a simple approximate full
adder). The more significant (n − l)-bit sub-adder is an
accurate adder. An extra AND gate is used to generate the
carry-in signal for the more significant sub-adder by AND-
ing the most significant input bits of the less significant sub-
adder. The critical path of LOA is from the AND gate
to the most significant sum bit of the accurate adder, i.e.,
approximately O(log(n − l)). LOA has been utilized in a
recently-proposed approximate floating-point adder [14].

2.4.2 Approximate Mirror Adders (AMAs)
In [2], five AMAs are proposed by reducing the number of

transistors and the internal node capacitance of the mirror
adder (MA). The AMA adder cells are then used in the
LSBs of a multiple-bit adder. However, the critical paths of
AMA1-4 are longer than LOA because the carry propagates
through every bit. As for AMA5, the carry-out is one of the
inputs; thus, no carry propagation exists in the LSBs of an
approximate multiple-bit adder.

2.4.3 Approximate Full Adders using Pass Transis-
tors

Three approximate adders (AXAs) based on XOR/XNOR
gates and multiplexers (implemented by pass transistors)
have been presented in [24]. Several approximate comple-
mentary pass transistor logic (CPL) adders have been pro-



posed by reducing the number of transistors in the accurate
CPL adder [20]. Significant area and power savings have
been obtained for both types of approximate designs.

3. COMPARATIVE EVALUATION
In the evaluation, SCSA is selected as a typical carry se-

lect adder and LOA is considered as a representative design
using approximate full adders. All adders and sub-adders
are implemented as CLA in this paper.

3.1 Error Characteristics
To evaluate the accuracy of approximate adders, analyt-

ical and simulation-based approaches have been proposed
[6, 11, 13, 18, 22]. In this paper, Monte Carlo simulation is
performed. The error rate (ER, the probability of produc-
ing an incorrect result), the normalized mean error distance
(NMED, the normalization of mean error distance (MED) by
the maximum output of the accurate adder) and the mean
relative error distance (MRED, the average value of all pos-
sible relative error distances (REDs)) are used to assess the
error characteristics of the approximate designs. Error dis-
tance (ED) and RED are calculated as: ED = |M ′−M | and
RED = ED

M
, where M ′ is the approximate result and M is

the accurate result [11]. MED is the mean of all possible
EDs.
The functions of the approximate adders (16−bit) are im-

plemented in MATLAB and simulated with 108 random in-
put combinations. The error measures in ER, NMED and
MRED are obtained. Fig. 5 shows the simulation results
where each adder’s name is followed by the value of its pa-
rameter k. For ACA, ETAII and ESA, k is the size of the
sub-adder, while k is the size of the less significant adder for
LOA (as implemented by OR gates).
The NMED and MRED values of the approximate adders

with data sorted by the MRED are shown in Fig. 5(a). The
logarithms (base 10) of the NMED and MRED are plotted,
and the vertical axis is labeled by negative numbers. In this
figure, ETAII-k represents ETAII-k, SCSA-k and ACAA-
k because they have the same carry propagation chain for
each sum bit and hence, the same error characteristics (ER,
NMED and MRED). The NMED and MRED show the same
trend, so we only consider MRED in the comparison. Fig.
5(b) shows the comparison of ER and MRED of the approx-
imate adders with data sorted by ER.
Among these approximate adders, ETAII-6 has the small-

est MRED, while ESA-3 has the largest. LOA (shown in
different patterns in Fig. 5(b)) has a structure different
from the other approximate adders. Its higher part is to-
tally accurate, while the approximate part is less significant.
Therefore, the MRED of LOA is rather small but its ER is
very large. The information used to predict each carry in
ESA is rather limited, so its MRED and ER are the largest
(excluding LOA). Specifically, a lower ER usually indicates a
smaller MRED; a larger k normally means a lower ER and
MRED for all the approximate adders (except for LOA).
Compared with ETAII, SCSA and ACAA (represented by
ETAII in Fig. 5), ACA gives slightly higher ER and MRED
for the same k due to the shorter carry propagation chain
(thus, less information is used for predicting the carry bits).
In summary, ETAII-6, SCSA-6 and ACAA-6 are the most

accurate adders among the compared designs since they have
the smallest ER and MRED. ESA-3 is the least accurate
design in terms of ER and MRED.

Table 1: Circuit Characteristics Comparison of ETAII,
SCSA and ACAA.

Adder Type Delay (ps) Area (um2) Power (uW)
ETAII-4 560 254 68.4
SCSA-4 370 394 117.6
ACAA-4 700 272 73.6

3.2 Circuit Characteristics
To assess circuit characteristics, the considered 16-bit ap-

proximate adders and the accurate CLA are implemented in
VHDL and synthesized using the Synopsys Design Compiler
based on an STM 65-nm process with a supply voltage of
1.35 V; delay, area and power are then obtained. Among
ETAII, SCSA and ACAA (with the same error characteris-
tics when the same parameter k is selected), SCSA incurs the
largest area and power dissipation because two sub-adders
and one multiplexer are utilized in each block, and ACAA is
the slowest because of its long critical path (2k) (Table 1).
The block of ETAII (a carry generator and a sum genera-
tor) is significantly simpler than those of SCSA and ACAA.
Therefore, ETAII has a shorter delay than ACAA and con-
sumes less power and area than SCSA, thus ETAII is se-
lected for circuit comparisons.

A circuit with larger area is likely to consume more power,
so only power and delay are considered in the comparison.
Fig. 6 shows the delay and power of the approximate adders
with ascending delay (Fig. 6(a)) and power (Fig. 6(b)) from
left to right. Obviously, the accurate CLA has the longest
delay among all adders, but not the highest power dissipa-
tion. LOA (shown in different patterns) is the slowest, but
it is very power efficient compared with the other approx-
imate adders. With the same k, ESA is the fastest (when
k is 3 or 4) and most power efficient due to its simple seg-
ment structure. ETAII is the slowest excluding LOA, and
ACA incurs the largest power consumption due to its com-
plex speculation circuit. Among all the approximate adders
shown in Fig. 6, ESA-3 is the fastest, while LOA-8 is the
slowest. The delays of all ACAs are very close (less than
400 ps), and all the LOAs have a delay larger than 600 ps.
For ESA, a smaller k leads to a smaller delay and power
dissipation, a larger k also shows significantly larger values
of these metrics.

Since a smaller delay does not always imply lower power
dissipation, the power-delay-product (PDP) is used as a
joint metric to evaluate the circuit characteristics of the ap-
proximate adders. Fig. 7 shows in ascending order the PDPs
of the approximate adders from left to right. ESA-3 has
the smallest PDP, while the accurate CLA has the largest
value. LOA-10 and LOA-9 have moderate PDPs (due to
large delay and low power dissipation). In terms of PDP,
the approximate adders can be classified into three classes:
ESA-3 and ESA-4 have the smallest PDP with less than 10
fJ, then ESA-5, LOA-10 and ACA-3 with around 20 fJ, and
the PDPs of the other approximate adders are larger than
20 fJ and less than 45 fJ.

4. DISCUSSION AND CONCLUSION
In this paper, current approximate adders are reviewed;

their error and circuit characteristics are evaluated. Fig. 8
shows the MRED and PDP of the approximate adders in



(a) (b)

Figure 5: A comparison of error characteristics of approximate adders with data sorted on (a) MRED and (b) ER.

(a) (b)

Figure 6: A comparison of delay and power of approximate adders with data sorted on (a) delay and (b) power.

a two-dimension (2-D) plot. ESA-3 and ESA-4 have rather
small PDP but a considerably large MRED; ETAII-6, LOA-
6 and ETAII-5 are the opposite, i.e., they have a small
MRED but a large PDP. These approximate adders do not
show the best tradeoff, but they can be used for special
applications where either hardware efficiency or high accu-
racy is required. ESA-5, LOA-10, ETAII-3 and ACA-4 show
moderate MRED and PDP.
Overall, ESA is the most hardware-efficient design but it

is also the least accurate. ETAII, SCSA and ACAA have the
same accuracy when their parameters are the same, whereas
ETATII shows the smallest PDP among them. ACA is the
most power consuming design with a moderate accuracy,
while LOA is the slowest but it is highly power efficient
among all approximate adders.
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