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Abstract—We investigate the power allocation problem in a
two-tier femtocell network including a macrocell and multiple
femtocells. Due to shadowing and fading effects, at each cell
(macrocell or femtocell), the power levels of desired signal and
interference signals vary with time. Under this circumstance, one
method to achieve transmission quality in the cells is to first get
channel state information of all desired links and interference
links and then perform power allocation. This method has very
large communication and computation overhead. In this work,
we focus on power allocation in which the transmit power levels
of the users in the cells do not need to change when the wireless
channels fluctuate. We formulate a power allocation problem
subject to bounded outage probability in any cell (macrocell or
femtocell). The formulated problem has probabilistic constraints.
It is hard to have closed-form expressions of the probabilistic
constraints. To solve this, we propose novel transformations of the
constraints, based on which we obtain constraints in the format
of worst-case value-at-risk. Such constraints can be converted to
convex constraints, and thus, the research problem is transformed
to a convex problem. For the convex problem, we provide an
iterative algorithm that converges quickly. We also investigate
the case when the channel gain distributions are unknown. Our
proposed schemes have the merits of very small communication
and computation overhead, and are particularly useful in fast
fading environments.

Index Terms—Femtocell, optimization, robustness.

I. I NTRODUCTION

Femtocell networks have the advantages of extending the
cellular network coverage and providing indoor users with
reliable and high-data-rate wireless access. Femtocells in the
coverage of a macrocell share the wireless spectrum of the
macrocell. Due to the random deployment of femtocells, there
may exist severe cross-tier interference between macrocell
and femtocells and co-tier interference among femtocells.
Therefore, to combat the interference, power allocation isa
critical issue for femtocell networks, and has received a lot of
research attention recently.
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To achieve power allocation, traditionally the channel state
information (CSI) of the desired links and interference links is
obtained first, and then the transmit power levels in the femto-
cells and/or macrocell are managed such that the transmission
quality in the cells is guaranteed. However, since it is hard(if
not impossible) to get perfect CSI, robust power allocationhas
been receiving increasing attention, in which “robust” means
the power allocation still works if there exists some level of
uncertainty in CSI. The work in [1] investigates uplink power
control of a two-tier femtocell network, in which only path
loss attenuation is considered (without fading). Due to the
possible inaccuracy in measuring the path distance of desired
and interference links, it is assumed that there is a bounded
error in distance estimation, and a robust power allocation
problem is formulated and solved, which takes into account
quality-of-service of macrocell and femtocell users and power
efficiency of femtocell users. The work in [2] assumes there
is an uncertainty bound for channel gain estimation of desired
links and interference links in downlink of a two-tier femtocell
network. Power control and beamforming problems are solved,
in which the proposed algorithm has two steps. In the first step,
the beamformer in the macrocell is determined, and the power
allocation in macrocell and femtocells are jointly determined.
In the second step, the beamformers in the femtocells are
determined in a distributed manner. The work in [3] considers
uplink power allocation of a femtocell network by assuming
an uncertainty bound for CSI estimation. A hierarchical game
is formulated and solved by iteratively performing two sub-
games until convergence: the first sub-game is for power allo-
cation in femtocells given power allocation of the macrocell’s
sub-game, and the second sub-game is for power allocation of
the macrocell given power allocation of the femtocells’ sub-
game. The work in [4] considers downlink transmission in
a two-tier femtocell network. The femto-base stations have
imperfect estimation of the instantaneous channel gain infor-
mation, and it is assumed that the difference of the estimated
channel gain from the exact channel gain is a zero-mean unit-
variance complex Gaussian random variable. Power allocation
and beamforming are combined so as to mitigate interference
among femto-users and macro-users. The effect of channel
uncertainty is analyzed, based on which the transmit power
level is determined to guarantee spectrum efficiency of indoor
edge femto-user and the beam weight is determined from a
minimum mean square error (MMSE) criterion. The work in
[5] considers a single femtocell in a macrocell. Imperfect CSI
is assumed (e.g., considering that the channel CSI estimation
has errors, and the errors have known distributions). The power
of the macrocell user is given, and the femtocell user needs
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to minimize its power consumption such that the quality of
its transmission is guaranteed in a probabilistic sense andthe
interference level to the macrocell user is also bounded in
a probabilistic sense. By using semidefinite relaxation (SDR)
and/or approximations, the formulated problems are relaxed
into convex semidefinite programming problems. The work
in [6] deals with power control in an uplink code-division
multiple access network. A base station collects instantaneous
CSI from each user to itself. The CSI estimations have errors,
and the errors for all users’ channels are independent and iden-
tically distributed within a closed region. To achieve robustness
to CSI uncertainty, a probabilistic constraint is adopted,i.e.,
the outage probability of each user is bounded. The work in [6]
targets at solving the formulated minimum power consumption
problem by reduced complexity. After approximations of the
probabilistic constraint, the formulated problem is transformed
to a second order cone programming problem or a linear pro-
gramming problem, both of which are convex problems. The
work in [7] investigates an underlay cognitive radio network, in
which a secondary user can share the spectrum with primary
users if its interference to each primary user is bounded by
a pre-defined threshold. The instantaneous CSI estimation
from secondary transmitters to their receivers is perfect,the
estimation of instantaneous interference from primary users
to secondary users is perfect, while the instantaneous CSI
estimation from each secondary transmitter to primary users
has bounded errors. To achieve robustness, the interference to
primary users is required to be always below a given threshold
when the estimation errors are within the bounded region. For
two different formations of the bounded region of errors, the
secondary throughput optimization problem is solved. Tradeoff
between robust interference control and secondary throughput
is further investigated, by keeping the probability of violating
the interference requirement below a given threshold.

In these existing robust power allocation schemes, it is
still required that the instantaneous CSI of the links (desired
links and interference links) should be measured. In a two-tier
femtocell network, femtocells are usually isolated from each
other [8]. It may be costly, or even impossible, to get instanta-
neous CSI of interference links. And the transmit power levels
in the macrocell and femtocells need to change frequently
as the channels vary, resulting in high communication and
computation overhead. Further, estimation of instantaneous
CSI of all links and subsequent data transmissions should
be done within the channel coherence time, which means
that existing robust schemes may not work in a fast fading
environment. To solve this problem, our target is robust power
allocation with much less communication and computation
overhead. Our robustness is in the sense that we do not need
to measure instantaneous CSI of any link and we do not need
to change transmit power levels of the users in the cells when
the wireless channels vary with time (due to shadowing and
fading).

The contributions of this paper are as follows. 1) The
formulated problem has probabilistic constraints. It is hard to
have closed-form expressions of the probabilistic constraints.
To solve this, we propose novel transformations of the prob-
abilistic constraints, based on which we obtain constraints in

the format of worst-case value-at-risk. Such constraints can be
converted to convex constraints, and thus, the research problem
is transformed to a convex problem. 2) We prove that the
convex problem satisfies some special features, and thus, can
be solved by an iterative algorithm that converges quickly.3)
We further investigate the research problem in a more practical
setting when the channel gain distributions are unknown. 4)
Our solutions are robust to channel fluctuations, with very
small communication and computation overhead.

The rest of the paper is organized as follows. The system
model is given, and the research problem is formulated and
solved in Section II for the cases when the channel gain
distributions are known and unknown. The performance of our
solutions are evaluated by simulations in Section III, followed
by conclusions in Section IV.

II. PROBLEM FORMULATION , TRANSFORMATIONS, AND

ITERATIVE ALGORITHM

A. System Model

Consider a two-tier femtocell network, which includes a
macrocell and a number,N , of femtocells inside the coverage
region of the macrocell. The radius of the macrocell or a
femtocell isRm or Rf , respectively, with a macrocell base
station (BS) or a femtocell BS located at the center. Uplink
transmissions in the macrocell and femtocells are considered
(note that downlink transmissions can be treated similarly).
Consider a target frequency band, which is used by a user
in each of theN + 1 cells. For presentation simplicity, the
macrocell is called cell 0, and theN femtocells are called cell
1, 2, ..., N , respectively. In celli (i = 0, 1, ..., N ), the user that
uses the target frequency band and the BS are called useri

and BSi, respectively. DenoteN △
= {0, 1, 2, ..., N} .

Denotegi,j , i, j ∈ N , as the channel gain from userj to BS
i, which includes path loss attenuation with pass loss exponent
α, log-normal distributed shadowing (i.e., the logarithm [to
base10] of the shadowing follows normal distribution with
mean zero and varianceσ2), and Rayleigh fading.

B. Optimization Problem and Transformations

In the two-tier network considered, users in the macrocell
and femtocells jointly allocate their transmit power such that
the communication quality in each cell is guaranteed. For
the communication of useri (∈ N ) to its BS, the signal to
interference plus noise ratio (SINR) is given as

γi =
pigi,i

∑N
j=0,j 6=i pjgi,j + δ2

(1)

wherepl is the transmit power of userl ∈ N , and δ2 is the
variance of background noise.

The target SINR in celli is given asΓi. To provide a certain
level of quality-of-service in each cell, the outage probability
(i.e., the probability thatγi is less thanΓi) should be bounded
by εi ∈ (0, 1), given as

Pr(γi ≥ Γi) ≥ 1− εi (2)

where Pr(·) means probability of an event. The expression of
γi in (1) involves multiple random variablesgi,j ’s (i, j ∈ N ),
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which makes it difficult to get a closed-form expression
of Pr(γi ≥ Γi). Even if such a closed-form expression is
available, it is very unlikely for constraint (2) to be a convex
constraint, which makes it difficult to solve the research
problem subject to constraint (2). To address this challenge, we
have the following mathematical manipulations to transform
constraint (2).

Let

yi = −Γi

[

p0, p1, · · · , pi−1, 0, pi+1, · · · , pN , δ2
]T

in which superscriptT denotes transpose operation. Define
random vector

r i =
[

gi,0
gi,i

,
gi,1
gi,i

, · · · , gi,i−1

gi,i
, 0,

gi,i+1

gi,i
, · · · , gi,N

gi,i
,
1

gi,i

]T

.

Then (2) can be rewritten as

Pr
(

−yTi r i ≤ pi
)

≥ 1− εi. (3)

Our objective is to find power allocation ofp0, p1, ..., pN
in the cells such that the total power consumption, given as
∑N

i=0 pi, is minimized subject to constraint (3) for all cells, in
which channel gaingi,j , i, j ∈ N , fluctuates (including path
loss, shadowing, and fading) as described in Section II-A.

To solve the above problem, the major challenge lies in the
time-varying fluctuations of channel gainsgi,j ’s. A possible
solution is as follows, referred to as anideal schemewith
perfect CSI: for each fading block in which the channel
gains keep unchanged, a central controller (e.g., the macrocell
BS) collects instantaneous values ofgi,j ’s for all i, j ∈ N ,
and performs power allocation to minimize the total power
consumption such that the achieved SINR in each cell is not
less than the target value; then the central controller sends
the power allocation results to all the cells via a control
channel. The major drawback of the ideal scheme is that the
communication overhead (for collecting instantaneous CSIof
all desired links and interference links) and computational
overhead (for solving the power allocation problem for each
fading block) are both very large. Therefore, it is desired
to have power allocation with much less communication and
computation overhead.

Accordingly, we select to satisfy constraint (3) in an “imag-
inary” more general case as follows. For constraint (3), denote
the mean and covariance matrix of vectorr i as mr i = E(r i)
andVr i = Cov(r i), respectively. HereE(·) represents expec-
tation, and Cov(·) is the covariance matrix of a vector. Random
vectorr i has a distribution, which fully depends on the channel
gain distribution as described in Section II-A, although itis
hard to have a closed-form expression of the distribution of
r i. In this work, we consider an imaginary more general case
in which constraint (3) is guaranteed when vectorr i has mean
the same asmr i and covariance matrix the same asVr i but
with arbitrary distribution, denoted asr i ∼ (mr i ,Vr i). In
other words, we select to satisfy

inf
r i∼ (mri ,Vri )

Pr
(

−yTi r i ≤ pi
)

≥ 1− εi. (4)

It can be seen that the constraint in (4) has the same
format of the worst-case value-at-risk (VaR) introduced

in [9]. Here the term “worst-case” is in the sense that
Pr
(

−yTi r i ≤ pi
)

≥ 1 − εi can be guaranteed even ifr i
has an adverse distribution in the imaginary general case.

Next we give expressions of the elements ofmr i and Vr i .
For presentation simplicity, the first row or column of a matrix
is called row 0 or column 0, respectively, and the first element
of a vector is call element0. Denotemj (j ∈ N ∪ {N + 1})
as thejth element ofmr i .

1 Denotevj,k (j, k ∈ N ∪{N +1})
as the element ofVri at thejth row andkth column.

Denote di,j as the distance from userj to BS i. The
following lemma for elements inmri is in order.

Lemma 1:Let ω =
√
σ2 + 5.572 dB; µj = 10α lg di,i −

10α lg di,j for j ∈ N , j 6= i; andµN+1 = 10α lg di,i + 2.5.
We have

mj = 0, if j = i;

mj = 10
µj

10 exp
[

(

ln 10
10

)2
ω2
]

, for j ∈ N , j 6= i;

mN+1 = 10
µN+1

10 exp
[

0.5
(

ln 10
10

)2
ω2
]

.

Proof: See Appendix A.
For Vr i , we havevj,k = 0 when j = i or k = i. Next we

give expressions of other elements inVr i . First we have the
following lemma for diagonal elements.

Lemma 2:We have

vj,j = 10
µj
5

(

exp
[

4
(

ln 10
10

)2
ω2
]

− exp
[

2
(

ln 10
10

)2
ω2
])

for j ∈ {0, 1, ..., i− 1, i+ 1, ..., N};
vN+1,N+1 = 10

µN+1
5

(

exp
[

2
(

ln 10
10

)2
ω2
]

− exp
[

(

ln 10
10

)2
ω2
] )

Proof: See Appendix C.
Next we give expressions of non-diagonal elements inVr i .

First, we give the expression of̄gi,j that is the mean value of
gi,j . Similar to the derivation ofmj (j ∈ N , j 6= i) shown in
proof of Lemma 1, forj 6= i, we have

ḡi,j = 10
−2.5−10α lg di,j

10 exp

[

0.5

(

ln 10

10

)2

ω2

]

.

Then forj, k ∈ {0, 1, ..., i− 1, i+ 1, ..., N} andj 6= k, we
have

vj,k = vk,j = E(
gi,j
gi,i

· gi,k
gi,i

)− E(
gi,j
gi,i

)E(
gi,k
gi,i

)

= E(gi,j)E(gi,k)E(
1

g2
i,i

)− E(gi,j)E(gi,k)[E(
1

gi,i
)]2

= ḡi,j ḡi,kvN+1,N+1.

And similarly, we have

vj,N+1 = vN+1,j = ḡi,jvN+1,N+1.

Now we have expressions of elements inmri and Vr i .
According to [9], constraint (4) can be converted to

√

1− εi
εi

√

yTi Vr iyi − yTi mri ≤ pi. (5)

1Note that for presentation simplicity, here we omit subscript ‘i’ from
notationmj and some other subsequent notations.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

Therefore, the power allocation problem of the cells can be
formulated as

min

N
∑

i=0

pi

s.t.

{

(i) Constraint(5), i ∈ N
(ii) 0 ≤ pi ≤ pi,max, i ∈ N (6)

where pi,max is the maximum allowable transmit power of
useri.

We take the solution of (6) as the power allocation for
the considered two-tier femtocell network. The solution is
conservative. However, since we do not have instantaneous
CSI in (6), we do not need to collect instantaneous CSI. This
also means that the solution of (6) isrobust since we do not
need to change the transmit power levels in the cells when the
channels fluctuate with time. Overall, the major advantages
of the solution of (6) are the very small communication
and computation overhead, and the robustness to channel
fluctuations.

C. The Case when the Mean and Covariance Matrix ofri
Need to be Estimated

In the power allocation problem in (6), we should knowmr i
andVr i , the mean and covariance matrix of vectorr i. When
the channel gain distributions as described in Section II-Aare
known,mr i andVri can be derived, as we have done in Section
II-B. However, it is possible that the channel gain distributions
are not known, and thus,mr i and Vr i need to be estimated
based on sampled data. In this subsection, we consider this
case, and give a new transformation of the constraint in (4).

Suppose we haveL samples for r i,2 denoted as
r i,1, r i,2, ..., r i,L. The estimated mean ofr i can be written as

m̂r i =
1

L

L
∑

l=1

r i,l

and the unbiased estimation of covariance matrix ofr i can be
written as

V̂ri =
1

L− 1

L
∑

l=1

(r i,l − m̂r i)× (r i,l − m̂ri)
T
.

Then the focus is on how to transform the constraint in (4)
given m̂r i and V̂ri , i ∈ N .

Define a new random variablezi , −yTi r i. Accordingly,
zi hasL samples, denoted aszi,l = −yTi r i,l, l = 1, 2, ..., L.
We denote the real mean and variance ofzi as mzi and
vzi , respectively, and denote the estimated mean and esti-
mated variance ofzi as m̂zi = (1/L)

∑L
l=1 zi,l and v̂zi =

(

1/(L− 1)
)
∑L

l=1 (zi,l − m̂zi)
2, respectively. The estimated

mean and variance ofzi, i ∈ N can be obtained as:

m̂zi = 1
L

∑L
l=1 zi,l =

1
L

∑L
l=1

(

−yTi r i,l
)

= −yTi
(

1
L

∑L
l=1 r i,l

)

= −yTi m̂r i ,
(7)

2Samples ofr i can be obtained from the sampledgi,j ’s, j ∈ N .

v̂zi = 1
L−1

∑L
l=1 (zi,l − m̂zi)

2

= 1
L−1

∑L
l=1

(

−yTi r i,l + yTi m̂r i

)2

= 1
L−1

∑L
l=1

(

−yTi r i,l + yTi m̂r i

)

(

rTi,l (−yi) + m̂T
r iyi
)

=
(

−yTi
)

(

1
L−1

∑L
l=1(r i,l − m̂ri) (r i,l − m̂r i)

T
)

(−yi)

= yTi V̂r iyi.
(8)

Thus, constraint (4) given̂mr i and V̂ri is equivalent to the
following constraint

inf
zi∼ (mzi

,vzi )
Pr(zi ≤ pi) ≥ 1− εi (9)

given m̂zi andv̂zi as shown in (7) and (8), respectively.
Expression (9) can be rewritten as

sup
zi∼ (mzi

,vzi )
Pr

(

zi − m̂zi
√

v̂zi
≥ pi − m̂zi

√

v̂zi

)

≤ εi. (10)

Further define new random variable

ui =

√

L

L− 1

(zi − m̂zi)
√

v̂zi
, i ∈ N

and define

ki =

√

L

L− 1

(pi − m̂zi)
√

v̂zi
, i ∈ N .

For the region ofki, we have the following lemma.
Lemma 3:With εi close to 0 andL large enough, we should

haveki > 1, i ∈ N .
Proof: We use proof by contradiction.

We first prove thatki < 0 leads to a contradiction. Suppose
ki < 0, i.e., pi < m̂zi , then

supzi∼ (mzi
,vzi )

Pr

(

zi−m̂zi√
v̂zi

≥ pi−m̂zi√
v̂zi

)

≥ supzi∼ (mzi
,vzi )

Pr

(

zi−m̂zi√
v̂zi

≥ m̂zi
−m̂zi√
v̂zi

)

= supzi∼ (mzi
,vzi )

Pr(zi ≥ m̂zi)

≥ supzi∼ (mzi
,vzi ), zi is symmetrically distributedPr(zi ≥ m̂zi) .

(11)
When the random variablezi is symmetrically distributed,

we have

sup
zi∼ (mzi

,vzi ), zi is symmetrically distributed
Pr(zi ≥ mzi) =

1

2
. (12)

When L is large enough,m̂zi approaches to mzi , and
therefore, there exists a smallǫ such that

sup
zi∼ (mzi

,vzi ), zi is symmetrically distributed
Pr(zi ≥ m̂zi)

≥ sup
zi∼ (mzi

,vzi ), zi is symmetrically distributed
Pr(zi ≥ mzi)− ǫ.

(13)

From (11), (12), and (13), it can be seen that

sup
zi∼ (mzi

,vzi )
Pr

(

zi − m̂zi
√

v̂zi
≥ pi − m̂zi

√

v̂zi

)

≥ 1

2
− ǫ

which contradicts (10) whenεi is close to 0.
Next we prove that0 ≤ ki ≤ 1 also leads to a contradiction.
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Suppose0 ≤ ki ≤ 1, i ∈ N . By the definition ofki and (7)
and (8), we have

−yTi m̂r i ≤ pi ≤
√

L− 1

L

√

yTi V̂r iyi − yTi m̂r i . (14)

When L is large,m̂r i and V̂ri can almost approximatemr i
and Vr i perfectly. Replacêmr i and V̂r i with mri and Vr i in
(14), we get

−yTi mr i ≤ pi ≤
√

L− 1

L

√

yTi Vr iyi − yTi mr i . (15)

When m̂r i and V̂r i can almost approximatemri and Vr i
perfectly, the constraint (5) should also hold. From (15) and
(5), it can be seen that

0 ≤
√

1− εi
εi

≤
√

L− 1

L
(16)

which leads to
1

2
≤ 1

2− 1
L

≤ εi ≤ 1. (17)

The inequality in (17) contradicts the fact thatεi is close to
zero.

As a summary,ki < 0 and 0 ≤ ki ≤ 1 both lead
to contradiction. Therefore, we should haveki > 1. This
completes the proof.

Denote the sampled sequence of random variableui as

ui,l =

√

L

L− 1

(zi,l − m̂zi)
√

v̂zi
, l = 1, 2, ..., L

then it can be seen that

L
∑

l=1

ui,l = 0 (18)

and
L
∑

l=1

u2
i,l = L. (19)

According to [10], for the sequence ofui,l, l = 1, 2, ..., L
satisfying the equations (18) and (19), forki > 1, we have

Pr
(

u2
i ≥ k2i

)

≤ 1

L

⌊(

L

k2i

)⌋

in which ⌊·⌋ means floor function. So

Pr (ui ≥ ki) ≤ Pr
(

u2
i ≥ k2i

)

≤ 1
L

⌊(

L
k2
i

)⌋

≤ 1
L

(

L
k2
i

)

= 1
k2
i

.
(20)

Recall that constraint (4) is equivalent to constraint (10),
which is further equivalent tosupzi∼ (mzi

,vzi )
Pr (ui ≥ ki) ≤

εi. From (20), if 1/k2i ≤ εi, then constraint (10) is satisfied,
and thus, constraint (4) is satisfied. Therefore, we try to satisfy
1/k2i ≤ εi, which is equivalent to (based on definition ofki
and (7) and (8))

√

L− 1

Lεi

√

yTi V̂r iyi − yTi m̂r i ≤ pi. (21)

So the power allocation problem with sampled datam̂r i and
V̂r i , i ∈ N can be given as

min
N
∑

i=0

pi

s.t.

{

(i) Constraint(21), i ∈ N
(ii) 0 ≤ pi ≤ pi,max, i ∈ N .

(22)

Problem (22) has the same structure as problem (6). And
constraint (21) has similar format to constraint (5). Therefore,
similar to the solution of problem (6), the solution of problem
(22) is also robust, and has the advantages of very small
communication and computation overhead.

D. Iterative Algorithm

The problem (6) and problem (22) are convex problems, and
can be solved by a Lagrangian decomposition method. Since it
is possible that problem (6) and problem (22) are not feasible
(i.e., it might be impossible that all constraints are satisfied),
the Lagrangian decomposition method may converge to a
point that violates the constraints [11]. If this happens, call
admission control is needed to remove some femtocell users.

As an alternative solution, next we give an iterative algo-
rithm to solve problem (6), and perform call admission control
if necessary. Since problem (22) has a similar structure to
problem (6), it can be treated similarly.

It is easy to see, by Lagrangian method, that, if problem (6)
is feasible, the solution satisfies

pi = min

{
√

1− εi
εi

·
√

yTi Vr iyi − yTi mr i , pi,max

}

for all i ∈ N .
Define vector p = [p0, p1, · · · , pN ],

pmax = [p0,max, p1,max · · · , pN,max], and I(p) =
[I0(p), I1(p) · · · , IN (p)], where

Ii(p) =

√

1− εi
εi

·
√

yTi Vr iyi − yTi mr i , i ∈ N . (23)

Then if problem (6) is feasible, its solution satisfiesp =

A(p)
△
= min{I(p), pmax}. Here min(a, b) means a vector

whosekth element is the minimum one of thekth elements
of vectorsa andb. We usea � b (or a ≻ b) to represent that
each element in vectora is not less than (or larger than) the
corresponding element in vectorb.

We consider the following iterative algorithm:

p(t+ 1) = A(p(t))

in which p(t) is p in the tth iteration. In other words, at each
iteration t = 1, 2, · · · , useri updates its transmit power level
by pi(t+ 1) = Ai(p(t)), i.e.,

pi(t+ 1) = min {Ii(p(t)), pi,max} . (24)

HereAi(p(t)) is the ith element ofA(p(t)).
Next, we show that the iterative algorithm converges to

optimal solution of problem (6) if problem (6) is feasible.
Definition [12]: a functionf(p) is standard if it has three

properties: 1) positivity, which meansf(p) ≻ 0 (here 0 is
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a vector with all elements being 0); 2) monotonicity, which
meansf(p†) � f(p) if p† � p; 3) scalability, which means
̺f(p) ≻ f(̺p) for ̺ > 1.

Next we check the three properties for functionsI(p) and
pmax.

For I(p) :
• Positivity: All elements of −yi and mri are non-

negative, and the last element of them are both pos-
itive. So −yTi mr i > 0. We also have

√

yTi Vr iyi =
√

(−yi)TVr i(−yi) > 0, because all elements of−yi are
non-negative with the last element being positive, and all
elements ofVri are non-negative with the element on the
last row and last column being positive. Thus, we have

Ii(p) =

√

1− εi
εi

·
√

yTi Vr iyi − yTi mr i > 0.

• Monotonicity: it is not difficult to find out thatIi(p) is an
increasing function ofpj , j 6= i. Therefore, forp† � p,
we haveIi(p†) ≥ Ii(p).

• Scalability: For̺ > 1, Ii(̺p) can be expressed as

Ii(̺p) =

√

1− εi
εi

·
√

wT
i Vr iwi + wT

i mri (25)

in which

wi=Γi

[

̺p0, ̺p1, · · ·, ̺pi−1, 0, ̺pi+1, · · · , ̺pN , δ2
]T

.

Define

xi=Γi

[

̺p0, ̺p1, · · ·, ̺pi−1, 0, ̺pi+1, · · · , ̺pN , ̺δ2
]T

.

All elements in wi and xi are non-negative, and the
last elements of them are positive. The only difference
betweenwi andxi is that the last element ofxi is larger.
Since all elements inmr i are non-negative, and its last
element is positive, we havewT

i mr i < xTi mr i . Since
all elements ofVr i are non-negative, and its element
on the last row and last column is positive, we have
wT

i Vr iwi < xTi Vr ixi. Together with (25), we have

Ii(̺p) <
√

1−εi
εi

·
√

xTi Vr ixi + xTi mr i

(a)
=
√

1−εi
εi

·
√

(̺yi)T Vr i(̺yi)− ̺yTi mr i

= ̺
(√

1−εi
εi

·
√

yTi Vr iyi − yTi mri

)

(b)
= ̺Ii(p)

(26)
in which (a) is due to the factxi = −̺yi, and (b) is
due to expression ofIi(p) given in (23). SoI(p) has the
property of scalability.

For pmax, defineH(p)
△
= pmax. Here H(p) is a constant

vector, and is always equal topmax for whateverp. Apparently
H(p) has the properties of positivity and monotonicity. For
̺ > 1, since H(p) is a constant vector, we haveH(̺p) =
pmax. So we have̺ H(p) = ̺pmax = ̺H(̺p) ≻ H(̺p). So
H(p) has the property of scalability.

Therefore, functionsI(p) and H(p)
△
= pmax are both

standard. And apparently, functionA(p) = min{I(p), pmax}
is also standard. SinceA(p) is standard and problem (6)
is convex, it can be concluded [12] that iterative algorithm

(24), i.e., pi(t + 1) = Ai(p(t)) , min {Ii(p(t)), pi,max},
converges to the optimal solution of problem (6) if problem
(6) is feasible.

Consider that the iterative algorithm (24) converges to a
convergence point̃p = [p̃0, p̃1, ..., p̃N ]. p̃i should be equal
to either Ii(p̃) or pi,max, whichever is less. If̃pi = Ii(p̃)
for all i ∈ N , which also impliesp̃i ≤ pi,max, it can be
seen that all constraints of problem (6) are satisfied, since
Ii(p̃) is the left handside of constraint (5) when the users use
power levelsp̃0, p̃1, ..., p̃N . However, for a cell, say celli, if
we havep̃i = pi,max < Ii(p̃) (i.e., p̃i converges topi,max),
then we saypower saturationhappens at celli, and call user
i a saturated user. In this situation,p̃i < Ii(p̃) means that at
the convergence point, constraint (5) is not satisfied for cell i,
which implies thatpi,max is not sufficiently large compared
with interference. Since constraint (5) is transformed from
constraint (2), power saturation at celli means that useri’s
quality-of-service cannot be guaranteed, i.e., the outageproba-
bility of useri cannot be bounded belowεi. So the problem (6)
is infeasible, and thus, the system cannot accommodate all the
users simultaneously. Therefore, call admission control should
be performed to remove some users from the system such
that the optimization problem (6) with the remaining users
becomes feasible.

For call admission control, we have the following observa-
tions.

• If all saturated users are removed from the system, then
problem (6) with the remaining users becomes feasible.
The reason is as follows. For a non-saturated user (i.e.,
a user that is not a saturated user), say useri, constraint
(5) is satisfied at the convergence point, that is

Ii([p̃0, p̃1, ..., p̃N ]) ≤ p̃i. (27)

If all saturated users are removed, which is equivalent
to setting the power levels of the saturated users in
(27) to be zero, the inequality (27) still holds, since
Ii([p̃0, p̃1, ..., p̃N ]) is an increasing function of̃pj (j =
0, 1, 2, ..., N, j 6= i). Therefore, if we only keep the non-
saturated users, then constraint (5) is still satisfied for all
the non-saturated users. Thus, problem (6) with only the
non-saturated users is feasible.

• It is possible that problem (6) becomes feasible if part of
the saturated users are removed. We use the following
example to illustrate. Assume there are two saturated
users, called user 1 and user 2. Consider that user 1
is removed and all other users keep using power levels
at convergence point̃p. For the constraint (5) of user
2 (which was originally not satisfied), removal of user 1
makes the left handside of (5) become smaller, and thus, it
is possible that constraint (5) of user 2 becomes satisfied.
In other words, it may not be necessary to remove all
saturated users to make problem (6) feasible.

Based on the above observations, when there is only one
saturated user and the user is a femtocell user, then we only
need to remove the saturated user, which makes problem (6)
become feasible. When there are multiple saturated users and
all of them are femtocell users, we can remove the saturated
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Fig. 1. The simulated two-tier femtocell network.
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Fig. 2. Convergence performance of the iterative algorithm(24).

users one after another until problem (6) becomes feasible (i.e.,
power saturation does not happen at any remaining cell). On
the other hand, if the macrocell user is a saturated user, it may
not be good to remove the macrocell user, since the macrocell
user should have a higher priority. Then we can remove the
femtocell users one after another, based on descending order
of their interference level to the macrocell user, until problem
(6) becomes feasible.

Once the power allocation and/or the call admission decision
are made, the results are sent to all the cells via, for example,
the control channel of the macrocell.

III. PERFORMANCEEVALUATION

Here we present simulation results. Consider one macrocell
and four femtocells as shown in Fig. 1. The positions of
the five BSs are (0,0), (220, -140), (300, 310), (360, -126),

(252, 400) (unit: meter). The positions of the five users are:
(100, 60), (225,−143), (304, 315), (378,−128), (257, 407).
Rm = 500m, Rf = 30m, p0,max = 33 dBm (2 W),
pi,max = 23 dBm (200 mW), i = 1, 2, 3, 4. δ2 = 10−9,
Γ0 = 5dB, Γi = 15 dB, i = 1, 2, 3, 4. α = 4, σ = 6.5dB.
εi = ε, i = 0, 1, 2, 3, 4.

For our proposed scheme with known channel gain distri-
butions, Fig. 2 shows the transmit power levelspi’s of the
iterative algorithm in (24) whenε = 0.2. The initial power
level of cell i is pi,max. It can be seen that the iterative
algorithm converges within approximately 10 iterations.

We simulate the performance of our proposed scheme with
known channel gain distributions and our proposed scheme
without channel gain distribution information but using sam-
pled data (30 samples are used for channel gain of each
link). We change the value ofε from 0.1 to 0.4. For each
specific ε value, we first use the iterative algorithm in (24)
to calculate the power allocation of the users, then with
the power allocation, we run Monte-Carlo simulation using
MATLAB to simulate the average outage probabilities of the
users when the channels (desired channels and interference
channels) vary as described in Section II-A. As a comparison,
we also simulate the ideal scheme introduced in Section II-B
and a naive scheme. The naive scheme has the average channel
gain information of each link. By assuming the real channel
gains take the values of the average channel gains, the naive
scheme derives the transmit power levels of all the users such
that the SINR of each user is not less than the corresponding
target value. Then the derived transmit power levels are used
in the simulation in which the channels vary as described in
Section II-A.

The simulation results are shown in Tables I and II. Table I
shows the outage probabilities of the five users in our proposed
scheme with known channel gain distributions (representedby
“proposed (known distributions)”), our proposed scheme with
sampled data (represented by “proposed (sampled data)”), and
the naive scheme. The ideal scheme does not have outage.
It can be seen that for the proposed schemes with known
channel gain distributions and with sampled data, the outage
probability of each user is bounded by the threshold value
ε, which demonstrates the robustness of the power allocation
to time varying wireless channels. Since the naive scheme is
based only on average channel gain information, the outage
probability of each user is large. Table II shows the power
consumption of the four schemes. It is clear that the naive
scheme has the least power consumption since it is based only
on average channel gain information. The ideal scheme has
more power consumption than the naive scheme, but with less
power consumption than the proposed schemes.

Next we compare the communication overhead and com-
putation overhead of our proposed schemes with the ideal
scheme.

Communication overhead: For the ideal scheme, for each
fading block, the instantaneous channel gains of all desired
links and interference links need to be measured, and the
decision of power allocation needs to be delivered to all users.
This can be achieved by2(N + 1) + 1 message exchanges.

• The first N + 1 messages are as follows: Each of the
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user 0 user 1

Proposed (known distributions) {0.001 0.003 0.006 0.008} {0.002 0.004 0.007 0.008}
Proposed (sampled data) {0.001 0.002 0.005 0.006} {0.002 0.003 0.006 0.008}
Naive 0.597 0.623

user 2 user 3 user 4

Proposed (known distributions) {0.002 0.003 0.004 0.008} {0.002 0.004 0.009 0.013} {0.002 0.005 0.006 0.014}
Proposed (sampled data) {0.003 0.003 0.006 0.01} {0.002 0.004 0.011 0.014} {0.003 0.004 0.005 0.012}
Naive 0.605 0.631 0.625

TABLE I
SIMULATED OUTAGE PROBABILITIES OF THE USERS IN DIFFERENT SCHEMES WHENε={0.1, 0.2, 0.3, 0.4}.

user 0 user 1

Proposed (known distributions) {31.666 29.784 28.641 27.746} {14.336 10.505 8.102 6.249}
Proposed (sampled data) {32.852 30.172 29.114 28.275} {15.961 12.043 9.650 7.771}
Naive 7.003 -22.019
Ideal 17.374 -3.079

user 2 user 3 user 4

Proposed (known distributions) {12.200 7.131 4.788 3.115} {23.010 20.053 17.932 16.352} {14.560 9.395 7.138 5.604}
Proposed (sampled data) {10.355 6.007 4.133 2.757} {23.010 19.804 17.794 16.231} {13.569 10.857 8.585 6.076}
Naive -20.805 -7.260 -16.960
Ideal -2.761 4.607 -2.195

TABLE II
SIMULATED POWER CONSUMPTION(UNIT: DBM ) OF THE USERS IN DIFFERENT SCHEMES WHENε={0.1, 0.2, 0.3, 0.4}.

N + 1 users sends a pilot message in turn, and based on
reception of the pilot messages, each BS measures the
channel gains from the sending users to itself.

• The subsequentN +1 messages are as follows: theN +
1 BSs send their measured instantaneous channel gain
information to the central controller in turn.

• The last message is as follows: Based on collected instan-
taneous channel gain information, the central controller
makes a decision on the transmit power levels of the users
and announces the decision.

Therefore, the communication overhead is2(N + 1) + 1
message exchanges per fading block. For the proposed scheme
with known channel gain distributions, when a user joins the
system, the user sends to the central controller a message
containing information of its location and its BS’s location,
and the central controller runs the iterative algorithm to decide
on the transmit power levels of the users and announces
a message containing the power allocation decision. So the
communication overhead is two message exchanges per user
joining the system. For our proposed scheme with sampled
data, we need2(N + 1) + 1 message exchanges per user
joining the system. The firstN + 1 message exchanges are
the N + 1 users’ pilot messages. For each pilot message,
each BS takes a number of samples. When theN + 1 pilot
messages are completed, each BS, say BSi, can estimate the
mean and covariance matrix ofri. Then all theN + 1 BSs
send their estimation to the central controller in turn (totally
N + 1 messages). The central controller runs the iterative
algorithm, and announces the power allocation decision to
all users (one message). So the communication overhead
is 2(N + 1) + 1 message exchanges per user joining the
system. For the proposed schemes with known channel gain
distributions and with sampled data, once a user joins the
system, we do not need message exchanges for the fading

blocks.
Computation overhead: The ideal scheme needs to solve

a power allocation problem per fading block. The power
allocation is a convex problem. The proposed schemes with
known channel gain distributions and with sampled data need
to solve problem (6) and problem (22), respectively, per user
joining the system. Both problems are convex and can be
solved by using the iterative algorithm (24). Once a user joins
the system, we do not need computation for the fading blocks.

Overall, it can be seen that the proposed schemes have much
less communication overhead and much less computation over-
head, and are particularly useful in fast fading environments.

IV. CONCLUSION

In this paper, by proposing novel transformations, we have
solved the power allocation problem in a two-tier femtocell
network, and the solution is robust to time-varying channels in
macrocell and femtocells. An iterative algorithm has been pre-
sented to find the power allocation. We have also investigated
the case when the channel gain distributions are not known,
and derived robust power allocation solution. Simulation re-
sults demonstrate that our schemes have strong robustness
to channel fluctuations, with very small communication and
computation overhead.

APPENDIX

A. Proof of Lemma 1

It is apparent thatmj = 0 when j = i. Next we focus on
the expression ofmj whenj ∈ N , j 6= i.

The probability density function ofgi,j (i, j ∈ N ) can be
approximated as [13], [14]

f(gi,j) =
10/ ln 10

gi,j
√
2πω2

× exp
[

− (10 lg gi,j+2.5+10α lg di,j)
2

2ω2

] (28)
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where ‘lg’ means logarithm to base 10, andω2 = σ2 +5.572.

Define τj
△
= gi,j/gi,i, j ∈ N , j 6= i. The probability density

function of τj can be derived as (the proof is given in
Appendix B)

f(τj) =
10/ ln 10

τj
√
2πκ2

· exp
[

− (10 lg τj − µj)
2

2κ2

]

(29)

with µj = 10α lg di,i − 10α lg di,j andκ2 = 2ω2.
Based on (29), forj ∈ N , j 6= i, we have

mj = E(τj) =

∫ +∞

0

τjf(τj)dτj

=

∫ +∞

0

10/ ln 10√
2πκ2

· exp
[

− (10 lg τj − µj)
2

2κ2

]

dτj

(c)
=

1√
2πκ2

· 10
µj
10 ·

∫ +∞

−∞
10

xj
10 exp

[

−
x2
j

2κ2

]

dxj

(d)
= exp

[

(

κ2 ln 10
10

)2

2κ2

]

· 10
µj
10

×
∫ +∞

−∞

1√
2πκ2

exp

[

−
[

xj − κ2 ln 10
10

]2

2κ2

]

dxj

(e)
= 10

µj
10 exp

[

(

ln 10

10

)2

ω2

]

(30)

in which E(·) means expectation,(c) comes from defining
xj = 10 lg τj − µj , (d) comes from

10
xj
10 = exp

[

ln 10

10
xj

]

and (e) comes from
∫ +∞

−∞

1√
2πκ2

exp

[

−
[

xj − κ2 ln 10
10

]2

2κ2

]

dxj = 1

andκ2 = 2ω2.
Similarly, we can get the expression ofmN+1.

B. Derivation of (29)

For presentation simplicity, denotegi,j, gi,i, andτj asX ,
Y , andZ, respectively. So we haveZ = X/Y . From (28),
we can have the probability density function ofX andY as

fX(x) =
10/ ln 10

x
√
2πω2

· exp
[

− (10 lg x− λj)
2

2ω2

]

(31)

fY (y) =
10/ ln 10

y
√
2πω2

· exp
[

− (10 lg y − λi)
2

2ω2

]

(32)

whereλj = −2.5 − 10α lg di,j andλi = −2.5 − 10α lg di,i.
Then after some math manipulation, the probability density
function ofZ is given as

fZ(z) =

∫ +∞

0

yfX(yz)fY (y)dy. (33)

Replacing (31) and (32) in (33), we have

fZ(z) =
10/ ln 10

z
√
2πω2

·
∫ +∞

0

exp

[

− (10 lg(yz)− λj)
2

2ω2

]

×10/ ln 10

y
√
2πω2

· exp
[

− (10 lg y − λi)
2

2ω2

]

dy.

Let b = 10 lg y − λi. So we havey = 10
b+λi
10 , and dy =

10
b
10 · 10 λi

10 · ln 10
10 · db, which lead to

fZ(z) = 10/ ln 10

z
√
2πω2

·
∫ +∞
−∞ exp

[

− (b+10 lg z+λi−λj)
2

2ω2

]

× 1√
2πω2

· exp
[

− b2

2ω2

]

db

= 10/ ln 10

z
√
2πω2

· exp
[

− a2

4ω2

]

×
∫ +∞
−∞

1√
2πω2

exp
[

− (b+ 1
2
a)2

ω2

]

db.

= 10/ ln 10

z
√
2πω2

· exp
[

− a2

4ω2

]

· 1√
2

×
∫ +∞
−∞

1√
2πϑ2

exp
[

− (b−(− 1
2
a))2

2ϑ2

]

db.

= 10/ ln 10

z
√
2πω2

· exp
[

− a2

4ω2

]

· 1√
2

in which the second equality comes from denotinga =
10 lg z + λi − λj , the third equality comes from denoting
ϑ2 = ω2/2, and the last equality comes from

∫ +∞

−∞

1√
2πϑ2

exp

[

− (b− (− 1
2a))

2

2ϑ2

]

db = 1.

Applying a = 10 lg z + λi − λj , λi = −2.5 − 10α lg di,i,
andλj = −2.5− 10α lg di,j , we get

fZ(z) =
10/ ln 10

z
√
2πκ2

· exp
[

− (10 lg z − µj)
2

2κ2

]

whereκ2 = 2ω2 andµj = 10α lg di,i − 10α lg di,j .

C. Proof of Lemma 2

For j = 0, 1, 2, i−1, i+1, · · · , N , we havevj,j = E
(

τ2j
)

−
{E (τj)}2 = E

(

τ2j
)

− (mj)
2.

From (29),E
(

τ2j
)

can be calculated as follows.

E
(

τ2j
)

=
∫ +∞
0

τ2j f(τj)dτj

=
∫ +∞
0 τj · 10/ ln 10√

2πκ2
· exp

[

− (10 lg τj−µj)
2

2κ2

]

dτj
(f)
= 1√

2πκ2
· 10

2µj
10 ·

∫ +∞
−∞ 10

2xj
10 exp

[

− x2
j

2κ2

]

dxj

(g)
= 1√

2π·(2κ)2
· 10

2µj
10

∫ +∞
−∞ 10

yj
10 exp

[

− (yj)
2

2·(2κ)2

]

dyj

(h)
= 1√

2π·(2κ)2
· 10

2µj

10

∫ +∞
−∞ exp

[

− (yj)
2

2·(2κ)2 + ln 10
10 yj

]

dyj

= 10
2µj
10 · exp

[

2
(

ln 10
10 κ

)2
]

×
∫ +∞
−∞

1√
2π·(2κ)2

· exp
[

− (yj−4κ2 ln 10
10

)2

2·(2κ)2

]

dyj

(i)
= 10

µj
5 exp

[

4
(

ln 10
10

)2
ω2
]

in which (f) comes from denotingxj = 10 lg τj − µj , (g)
comes from denotingyj = 2xj , (h) comes from

10
yj

10 = exp

[

ln 10

10
yj

]

and (i) comes fromκ2 = 2ω2 and

∫ +∞

−∞

1
√

2π · (2κ)2
· exp

[

− (yj − 4κ2 ln 10
10 )2

2 · (2κ)2

]

dyj = 1.
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Therefore, from (30) we have

vj,j = E
(

τ2j
)

− (mj)
2

= 10
µj
5 exp

[

4
(

ln 10
10

)2
ω2
]

−
(

10
µj
10 exp

[

(

ln 10
10

)2
ω2
])2

= 10
µj
5

(

exp
[

4
(

ln 10
10

)2
ω2
]

− exp
[

2
(

ln 10
10

)2
ω2
])

.

Similarly, we can get the expression ofvj,j with j = N+1.
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