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Abstract—We investigate the power allocation problem in a
two-tier femtocell network including a macrocell and multiple
femtocells. Due to shadowing and fading effects, at each tel
(macrocell or femtocell), the power levels of desired signaand
interference signals vary with time. Under this circumstarce, one
method to achieve transmission quality in the cells is to filsget
channel state information of all desired links and interference
links and then perform power allocation. This method has vey
large communication and computation overhead. In this work
we focus on power allocation in which the transmit power levis
of the users in the cells do not need to change when the wiretes
channels fluctuate. We formulate a power allocation problem
subject to bounded outage probability in any cell (macrocélor
femtocell). The formulated problem has probabilistic consraints.
It is hard to have closed-form expressions of the probabilisc
constraints. To solve this, we propose novel transformatius of the
constraints, based on which we obtain constraints in the fanat
of worst-case value-at-risk. Such constraints can be conited to
convex constraints, and thus, the research problem is trarisrmed
to a convex problem. For the convex problem, we provide an
iterative algorithm that converges quickly. We also invesgate
the case when the channel gain distributions are unknown. Qu
proposed schemes have the merits of very small communicatio
and computation overhead, and are particularly useful in fest
fading environments.

Index Terms—Femtocell, optimization, robustness.

I. INTRODUCTION
Femtocell networks have the advantages of extending

cellular network coverage and providing indoor users wi

reliable and high-data-rate wireless access. Femtocelied
coverage of a macrocell share the wireless spectrum of

macrocell. Due to the random deployment of femtocells,ethe%J
may exist severe cross-tier interference between madroce
and femtocells and co-tier interference among femtocel
Therefore, to combat the interference, power allocatioa is

critical issue for femtocell networks, and has receivedtafo
research attention recently.
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To achieve power allocation, traditionally the channetesta
information (CSI) of the desired links and interferencédins
obtained first, and then the transmit power levels in the femt
cells and/or macrocell are managed such that the trangmissi
quality in the cells is guaranteed. However, since it is H#rd
not impossible) to get perfect CSl, robust power allocaktias
been receiving increasing attention, in which “robust” mea
the power allocation still works if there exists some levél o
uncertainty in CSI. The work in [1] investigates uplink pawe
control of a two-tier femtocell network, in which only path
loss attenuation is considered (without fading). Due to the
possible inaccuracy in measuring the path distance of etesir
and interference links, it is assumed that there is a bounded
error in distance estimation, and a robust power allocation
problem is formulated and solved, which takes into account
quality-of-service of macrocell and femtocell users and/go
efficiency of femtocell users. The work in [2] assumes there
is an uncertainty bound for channel gain estimation of eesir
links and interference links in downlink of a two-tier ferntdl
network. Power control and beamforming problems are sglved
in which the proposed algorithm has two steps. In the firgt, ste
the beamformer in the macrocell is determined, and the power
allocation in macrocell and femtocells are jointly detered.

In the second step, the beamformers in the femtocells are
tﬂeetgrmined ina distr.ibuted manner. The work in [3] conss'qler
tV]phnk power allocation of a femtocell network by assuming
an uncertainty bound for CSI estimation. A hierarchical gam
tiﬁeformulat_ed and solved by it_eratively perfo_rming two sub-
ames until convergence: the first sub-game is for power allo
ca}tion in femtocells given power allocation of the macrtgel
ub-game, and the second sub-game is for power allocation of
Pe macrocell given power allocation of the femtocells’ sub
game. The work in [4] considers downlink transmission in
a two-tier femtocell network. The femto-base stations have
imperfect estimation of the instantaneous channel gaiorinf
mation, and it is assumed that the difference of the estidnate
channel gain from the exact channel gain is a zero-mean unit-
variance complex Gaussian random variable. Power allmtati
and beamforming are combined so as to mitigate interference
among femto-users and macro-users. The effect of channel
uncertainty is analyzed, based on which the transmit power
level is determined to guarantee spectrum efficiency ofando
edge femto-user and the beam weight is determined from a
minimum mean square error (MMSE) criterion. The work in
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is assumed (e.g., considering that the channel CSI estimati
has errors, and the errors have known distributions). Thespo
of the macrocell user is given, and the femtocell user needs
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to minimize its power consumption such that the quality dhe format of worst-case value-at-risk. Such constraiatslme

its transmission is guaranteed in a probabilistic sensetlaad converted to convex constraints, and thus, the researtigmno
interference level to the macrocell user is also bounded ig transformed to a convex problem. 2) We prove that the
a probabilistic sense. By using semidefinite relaxationRBD convex problem satisfies some special features, and thas, ca
and/or approximations, the formulated problems are relaxbe solved by an iterative algorithm that converges quicR}y.
into convex semidefinite programming problems. The woNe further investigate the research problem in a more malcti

in [6] deals with power control in an uplink code-divisionsetting when the channel gain distributions are unknown. 4)
multiple access network. A base station collects instagas Our solutions are robust to channel fluctuations, with very
CSI from each user to itself. The CSI estimations have errossnall communication and computation overhead.

and the errors for all users’ channels are independent @amd id The rest of the paper is organized as follows. The system
tically distributed within a closed region. To achieve retmess model is given, and the research problem is formulated and
to CSI uncertainty, a probabilistic constraint is adopteel, solved in Section Il for the cases when the channel gain
the outage probability of each user is bounded. The work]in [Bistributions are known and unknown. The performance of our
targets at solving the formulated minimum power consunmptigolutions are evaluated by simulations in Section Ill,dekd
problem by reduced complexity. After approximations of thby conclusions in Section IV.

probabilistic constraint, the formulated problem is tfansmed

to a second order cone programming problem or a linear proH. PROBLEM FORMULATION, TRANSFORMATIONS, AND
gramming problem, both of which are convex problems. The ITERATIVE ALGORITHM

work in [7] investigates an underlay cognitive radio netwan A System Model

which a secondary user can share the spectrum with primaryConsider a two-tier femtocell network, which includes a

users if its interference to each primary user is bounded Pﬁ/acrocell and a numbed;, of femtocells inside the coverage

a pre-defined threshold. The instantaneous CS eSt'mat'r%'E]ion of the macrocell. The radius of the macrocell or a

from secondary transmitters to their receivers is perfe, . . .
. . ) . femtocell is R,,, or Ry, respectively, with a macrocell base
estimation of instantaneous interference from primaryrsise ;.. : :
: . . tion (BS) or a femtocell BS located at the center. Uplink
to secondary users is perfect, while the instantaneous o . ;
ransmissions in the macrocell and femtocells are consitler

estimation from each secondary transmitter to primarysus%ote that downlink transmissions can be treated simijarl
has bounded errors. To achieve robustness, the interfetenc y

. : : : QOnsider a target frequency band, which is used by a user
primary users is required to be always below a given thresho h of theNV + 1 cells. For presentation simplicity. the
when the estimation errors are within the bounded region. 8 cach of X b plctly,

. . . macrocell is called cell 0, and th€ femtocells are called cell
two different formations of the bounded region of errorg th
secondary throughput optimization problem is solved. &odfd
between robust interference control and secondary thimutgh
is further investigated, by keeping the probability of itdhg
the interference requirement below a given threshold.

In these existing robust power allocation schemes,
still required that the instantaneous CSI of the links (aebi
links and interference links) should be measured. In a faio-t
femtocell network, femtocells are usually isolated frontctea
other [8]. It may be costly, or even impossible, to get in&an
neous CSI of interference links. And the transmit powerleveB. Optimization Problem and Transformations
in the macrocell and femtocells need to change frequentlyln the two-tier network considered, users in the macrocell
as the channels vary, resulting in high communication amghd femtocells jointly allocate their transmit power subhtt
computation overhead. Further, estimation of instantasedhe communication quality in each cell is guaranteed. For
CSI of all links and subsequent data transmissions shoul communication of user (¢ A) to its BS, the signal to
be done within the channel coherence time, which meaingerference plus noise ratio (SINR) is given as
that existing robust schemes may not work in a fast fading Pigi.i
environment. To solve this problem, our target is robust grow Vi = ZN 152 )
allocation with much less communication and computation §=0,7i Pi9i.5
overhead. Our robustness is in the sense that we do not naderep; is the transmit power of usérc N, and§? is the
to measure instantaneous CSI of any link and we do not ne&tiance of background noise.
to change transmit power levels of the users in the cells whenThe target SINR in cell is given ad’;. To provide a certain
the wireless channels vary with time (due to shadowing afelel of quality-of-service in each cell, the outage praligb
fading). (i.e., the probability that; is less thari’;) should be bounded

The contributions of this paper are as follows. 1) Thby ¢; € (0,1), given as
formulated problem has probabilistic constraints. It isdhi
have closed-form expressions of the probabilistic coirgsa Privi 2 Tu) 2 1 — e (2)
To solve this, we propose novel transformations of the probhere P(-) means probability of an event. The expression of
abilistic constraints, based on which we obtain constsaimt ~; in (1) involves multiple random variables ;'s (i, j € N),

1,2, ..., N, respectively. In cell (i =0,1, ..., N), the user that
uses the target frequency band and the BS are callediuser
and BSi, respectively. Denotfé\/é {0,1,2,...., N} .
Denotey; ;, i,j € N, as the channel gain from usgto BS

it 4sWhich includes path loss attenuation with pass loss exftone
«, log-normal distributed shadowing (i.e., the logarithra [t
base10] of the shadowing follows normal distribution with
mean zero and varianeg’), and Rayleigh fading.
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which makes it difficult to get a closed-form expressiom [9]. Here the term “worst-case” is in the sense that
of Pr(y; > T;). Even if such a closed-form expression isPr(—yiTri Spi) > 1 — ¢; can be guaranteed even rif
available, it is very unlikely for constraint (2) to be a cemv has an adverse distribution in the imaginary general case.
constraint, which makes it difficult to solve the research Next we give expressions of the elementsnaf andV;,,.
problem subject to constraint (2). To address this chadeng For presentation simplicity, the first row or column of a matr
have the following mathematical manipulations to transforis called row 0 or column 0, respectively, and the first eleimen

constraint (2). of a vector is call elemertt. Denotem; (j € N U{N +1})
Let as thejth element ofm,,.! Denotev; . (j,k € NU{N +1})
T as the element o¥,, at thejth row andkth column.
yi:_ri [pOapla"'api—laoapi+la"' apNa(S]

Denote d; ; as the distance from usefr to BS i. The
in which superscriptl’ denotes transpose operation. Defintollowing lemma for elements im,, is in order.

random vector Lemma l:Let w = Vo2 +5.572 dB; p; = 10algd;; —
‘ . N N . T 10algd; ; for j € N,j # i; and uy41 = 10algd;; + 2.5.
(= |9h0 gt Giimt o Giirt o 9N LT e haye
Gii  Yii Gi,i Gi,i Gii  Yii

m; =0, if j=i;

5 In10\2 2 i i £
m; = 10T exp {(T) w ] , forj e N, j#i;
Pr—ylr, <p)) >1-—¢,. 3 e o) w
% pi) 3 my1 = 1071 exp [0-5 (111150)2 2} '

Then (2) can be rewritten as

Our objective is to find power allocation @k, p1, ..., pn
in the cells such that the total power consumption, given as Proof: See Appendix A. [ ]
Zf-vzopi, is minimized subject to constraint (3) for all cells, in For V,,, we havev;, = 0 whenj =i or k = i. Next we
which channel gairy; ;, i, j € N, fluctuates (including path give expressions of other elements\ip.. First we have the
loss, shadowing, and fading) as described in Section lI-A. following lemma for diagonal elements.

To solve the above problem, the major challenge lies in the. emma 2:\We have
time-varying fluctuations of channel gaigs;'s. A possible

Hj 2 2
solution is as follows, referred to as ageal schemewith vj; =107% (GXP {4 (1552) wQ} — exp {2 (552) MQD
perfect CSlI: for each fading block in which the channel for j€{0,1,...i—1,i+1,...N};
gains keep unchanged, a central controller (e.g., the raltro _ ol In10)2 2}

BS) collects instantaneous values gf;'s for all i,j € N, ON+1N+1 = 1075 { exp 3( ) e

and performs power allocation to minimize the total power — exp [(1“1(1)0) oﬂ} )

consumption such that the achieved SINR in each cell is not

less than the target value; then the central controller send Proof: See Appendix C. ]

exp

Vi k

é{‘d similarly, we have

communication overhead (for collecting instantaneous @Sl g;,;. Similar to the derivation ofn; (j € V,j # i) shown in
fading block) are both very large. Therefore, it is desired gi; =10 o

Accordingly, we select to satisfy constraint (3) in an “imag Then forj,k € {0,1,....i—1,i+1,..,N} andj # k, we
andV,, = Cov(r;), respectively. Heré&(-) represents expec- AN AL Gi,i 7 gt
gain distribution as described in Section II-A, althoughsit
in which constraint (3) is guaranteed when vectohas mean UHNFL = UN+LG = JigUNFLN -
other words, we select to satisfy

the power allocation results to all the cells via a control Next we give expressions of non-diagonal elementg/in
channel. The major drawback of the ideal scheme is that thist, we give the expression gf ; that is the mean value of
all desired links and interference links) and computationgroof of Lemma 1, forj # i, we have
overhead (for solving the power allocation problem for each )

—2.5-10algd; ; 0.5 (hl 10> 9

. —_— w .

to have power allocation with much less communication and 10
computation overhead.
inary” more general case as follows. For constraint (3) otken have
the mean and covariance matrix of vectgrasm,, = E(r;) Uy = ]E(gi_:j Gk (i Y[ ( Sk )

. . 1y _ . . 1 y12
tation, and Co¥) is the covariance matrix of a vector. Random H;z(g?])E(gz,k)E(E?:) ]E(gw)]E(glv’“)[]E(gi,i )]
vectorr; has a distribution, which fully depends on the channel = 9i,j9ikUN+1,N+1-
hard to have a closed-form expression of the distribution
r;. In this work, we consider an imaginary more general case
the same asn;, and covariance matrix the same ¥s but Now we have expressions of elementsrm, and V,,.
with arbitrary distribution, denoted as; ~ (m,,V;,). In. According to [9], constraint (4) can be converted to

. T 1 i T T <
inf Pr(-y/ri<pi) > 1—e. (4) _ Yi Vi,Y; —Y; Me, < pi. (5)
(e (mriavri) i

It can be seen that the ConStramt. in (4) ha; the sameyre that for presentation simplicity, here we omit substcti’ from
format of the worst-case value-at-risk (VaR) introducegbtationi; and some other subsequent notations.
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Therefore, the power allocation problem of the cells can b&: = ﬁ ZzL:1 (zig — mzz»)z )
formulated as = S (Y g yIag)
s = 75 S (Y yIm) (7 (v +mly,)
min » p; . N
= = (v (75 S = me) (r = me)T) ()
(i) Constraint(5), i € N =y V.Y,
S"{ (i) 0<pi<pimmich O ®)

Thus, constraint (4) giverh,, and \7” is equivalent to the
where p; max is the maximum allowable transmit power offollowing constraint

useri.

We take the solution of (6) as the power allocation for o (1mnf yvz_)Pr(Zi <pi) 2 1-e ©)
the considered two-tier femtocell network. The solution is '
conservative. However, since we do not have instantanedi¢€nm.; andv., as shown in (7) and (8), respectively.
CSl in (6), we do not need to collect instantaneous CSI. ThisExpression (9) can be rewritten as
also means that the solution of (6)rizbustsince we do not (

need to change the transmit power levels in the cells whenthe  sup — M P _Amzi
channels fluctuate with time. Overall, the major advantages %~ (M=;-V=;) \/_ \/\Z
of the solution of (6) are the very small communication Fuyrther define new random variable
and computation overhead, and the robustness to channel T (z— 1)

) < &;. (10)

fluctuations. Y P i
WENToT e N
C. The Case when the Mean and Covariance Matrix ;of and define
i L g — M) .
Need to be Estimated ke = = (p _ 7.)’z cN.
In the power allocation problem in (6), we should know, - VVz

andV,,, the mean and covariance matrix of vector When For the region oft;, we have the following lemma.
the channel gain distributions as described in Section dré& Lemma 3: With ¢; close to 0 and. large enough, we should
known,m,, andV,, can be derived, as we have done in Sectiafavek; > 1, i € N.
[I-B. However, it is possible that the channel gain disttibos Proof: We use proof by contradiction.
are not known, and thusn,, andV,, need to be estimated e first prove thak; < 0 leads to a contradiction. Suppose
based on sampled data. In this subsection, we consider this< 0, i.e.,p; < m.,, then
case, and give a new transformation of the constraint in (4).
Suppose we haveL samples forr;? denoted as  sup. . (m . )Pr (Ziimzi > ﬂ)

ri1,fi2,...,r; . The estimated mean of can be written as ot V=
1 ' Z4 Z4
my, = 7 Z il =SUD.. (m., v.,) Pr(z; > m.,)
=1 > Sup,, ., (M2, Vvz,), 2; is symmetrically distributecPr(Zi > mzi) .

and the unbiased estimation of covariance matrix;afan be (11)
written as When the random variable; is symmetrically distributed,

. we have

L I Z il — M) X (ri; — mri)T- sup A o Pr(z; >m,,) = % (12)

1=1 zi~ (M2, V2, ), 2z is symmetrically distributed
Then the focus is on how to transform the constraint in (4) When L is large enoughs., approaches to m, and
givenrh,, andV,,, i € . therefore, there exists a smalsuch that

Define a new random variablg = —y’r;. Accordingly,

z; has L samples, denoted as; = —y7r;;,l = 1,2,..., L. sup . o Pr(z; > )
We denote the real mean and variance zpfas m, and ~ (M=;Vz,), =i is symmetrically distributed

v.,, respectively, and denote the estimated mean and esti-= sup ) o Pr(z; >m,,) —e.
mated variance szi as mZi _ (1/L) Zlel i and \721 _ ~ (M, vz, ), z; is symmetrically distributed (13)
(1/(L-1)) Zle (z:0 —1,,)?, respectively. The estimated

mean and variance af,i € A’ can be obtained as: From (11), (12), and (13), it can be seen that

N L L R
m,, = % Do Bl = %21:1 (_y;rri,l) ) sup ( M. . b mZI) 1 —€
B R v B e

which contradlcts (10) whes; is close to 0.
2Samples of ; can be obtained from the sampled;’s, j € N. Next we prove thab < k; < 1 also leads to a contradiction.
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Supposé) < k; < 1,7 € N. By the definition ofk; and (7)
and (8), we have

N L—-1 ~ N
—yl'my, <p; < V1 yIvVey, —yimg,.

When L is large,m,, and \7,i can Aalmost approximate,,
andV,, perfectly. Replacen,, andV,, with m;, andV,, in
(14), we get

L—1
—yI'mp, <p; < \/ T\/ygvriyi —yim,.

When iy, and V,, can almost approximaten,, and V,

(14)

(15)

_ So the power allocation problem with sampled data and
V,,, i € N can be given as

N
min E i
i=0

(i) Constraint(21), i € N
S't'{ (i) 0<pi<pimecichN. 2
Problem (22) has the same structure as problem (6). And
constraint (21) has similar format to constraint (5). Tlere,
similar to the solution of problem (6), the solution of preiul
(22) is also robust, and has the advantages of very small
communication and computation overhead.

perfectly, the constraint (5) should also hold. From (15) an

(5), it can be seen that

1—¢; L—-1
0< L < 16
e (16)
which leads to ) )
< <g <1 17
2= L == ()

The inequality in (17) contradicts the fact thatis close to
zero.

As a summary,k; < 0 and0 < k; < 1 both lead
to contradiction. Therefore, we should hake > 1. This
completes the proof. [ |

Denote the sampled sequence of random variablas

L (Zi,l — mzl)
L-1 A,

i

[=1,2

g Ly eeny

L

Ui =

then it can be seen that

L
> uig=0 (18)
=1
and
L
> ul =L (19)
=1

According to [10], for the sequence eof;;,l = 1,2,...,L
satisfying the equations (18) and (19), far> 1, we have

P> 1) < 1 |(53)]

in which |-| means floor function. So
Pr(u; > k;) <Pr (uf > kf)

<t|(#)]=t(k) =%

=7

(20)

. . . . it
Recall that constraint (4) is equivalent to constraint (10>J

which is further equivalent teup,,, ., (m_ . ) Pr(u; > ki) <

g;. From (20), if1/k? < ¢;, then constraint (10) is satisfied,
and thus, constraint (4) is satisfied. Therefore, we try tisfya

1/k? < &;, which is equivalent to (based on definition fof
and (7) and (8))

L—-1 [/~ .
Les y?Vf1yz - y?mfw < pi-

(21)

D. lterative Algorithm

The problem (6) and problem (22) are convex problems, and
can be solved by a Lagrangian decomposition method. Since it
is possible that problem (6) and problem (22) are not feasibl
(i.e., it might be impossible that all constraints are &b,
the Lagrangian decomposition method may converge to a
point that violates the constraints [11]. If this happers] c
admission control is needed to remove some femtocell users.

As an alternative solution, next we give an iterative algo-
rithm to solve problem (6), and perform call admission contr
if necessary. Since problem (22) has a similar structure to
problem (6), it can be treated similarly.

Itis easy to see, by Lagrangian method, that, if problem (6)
is feasible, the solution satisfies

. 1 —¢g; /
Pi = mln{ - L. leVnyl - y;rml‘ppi.,max}
i

for all i € \V.
Define vector p = [po,p1,--- , PN,
pmax [pO,maxapl,maX o 7pN,max]a and | (p) =

['o(D),|1(_p)-~- ,Ix(p)], where

1-¢ :
Ii(p) =\ = \YIVey, —yime i€ N (29)

Then if problem (6) is feasible, its solution satisfips=

A(p) 2 min{l(p), P,,.x}- Here min(a,b) means a vector
whosekth element is the minimum one of thgh elements
of vectorsa andb. We usea > b (or a = b) to represent that
each element in vecta is not less than (or larger than) the
corresponding element in vectbr

We consider the following iterative algorithm:

p(t+1) =A(p(t))

in which p(¢) is p in the tth iteration. In other words, at each
erationt = 1,2, - -, useri updates its transmit power level

ypi(t+1) = Ai(p(?)), i.e.,
pi(t + 1) = min {Ii(p(t))vpi,max} .

Here A;(p(t)) is theith element ofA(p(t)).
Next, we show that the iterative algorithm converges to
optimal solution of problem (6) if problem (6) is feasible.
Definition [12]: a functionf(p) is standardif it has three
properties: 1) positivity, which mearf§p) > 0 (hereO is

(24)
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A

a vector with all elements being 0); 2) monotonicity, whicli24), i.e., p;(t + 1) = A;(p(¢t)) = min{L;(p(t)), Pi.max }»
meansf(p') = f(p) if p’ = p; 3) scalability, which means converges to the optimal solution of problem (6) if problem

of(p) = f(op) for o > 1. (6) is feasible.
Next we check the three properties for functid(s) and Consider that the iterative algorithm (24) converges to a
Proas- convergence poinp = [po, p1,...,Dn]. p; Sshould be equal
For I(p): to either I;(p) or p;max, Whichever is less. I, = I;(p)

. Positivity: All elements of —y; and m,, are non- for all i € N, which also impliesp; < p;max, it can be
negative, and the last element of them are both padeen that all constraints of problem (6) are satisfied, since
itve. So —y’m,, > 0. We also have\/y’V,,y, = (D) is the left handside of constraint (5) when the users use

(—y,)TV,,(—y,) > 0, because all elements efy, are power levelspy, p1, ...,p. However, for a cell, say cell, if
non-negative with the last element being positive, and ale havep; = p;max < I;(p) (i.e., p; converges t@; max).
elements olV,, are non-negative with the element on théhen we saypower saturatiorhappens at cell, and call user
last row and last column being positive. Thus, we have a saturated userln this situation; < I;(p) means that at

the convergence point, constraint (5) is not satisfied fdrice
=4/ 1-&i VYIVey: —yime, > 0. which implies thatp; max is not sufficiently large compared
&i with interference. Since constraint (5) is transformednfro

« Monotonicity: it is not difficult to find out thaf;(p) is an constraint (2), power saturation at celineans that usei’s
increasing function of;, j # i. Therefore, forp’ = p, quality-of-service cannot be guaranteed, i.e., the oupaglea-
we havel;(p") > I;(p). bility of user: cannot be bounded belaw. So the problem (6)

« Scalability: Forp > 1, I;(op) can be expressed as is infeasible, and thus, the system cannot accommodateeall t

users simultaneously. Therefore, call admission controukd

Li(op) = 1-¢& WV w4 wlmy, (25) be performed to remove some users from the system such
V s P . e

that the optimization problem (6) with the remaining users

in which becomes feasible.
o T For call admission control, we have the following observa-
w; =T [opo, 0p1, - - -, 0Pi-1,0, 0pis1. -+ , 0PN, 67 fions

Define « If all saturated users are removed from the system, then

xi =T [0po; 01, - - - 0pi—1,0, 0Pit1, - » 0PN, 052}? problem (6) with the remaining users becomes feasible.
_ _ The reason is as follows. For a non-saturated user (i.e.,
All elements inw; and x; are non-negative, and the 3 yser that is not a saturated user), say useonstraint

last elements of them are positive. The only difference (5) js satisfied at the convergence point, that is
betweenw; andx; is that the last element of; is larger.

Since all elements im,, are non-negative, and its last L([po, p1,---sDN]) < Pi- (27)
element is positive, we have’m;, < x'm,,. Since

all elements ofV,, are non-negative, and its element
on the last row and last column is positive, we have

If all saturated users are removed, which is equivalent
to setting the power levels of the saturated users in

wIV, w; < XV, x;. Together with (25), we have (27)~ to~ be zero, _the ir_1equa|it_y 27) sFiII holds,. since
L ([po, p1, ..., DN]) IS an increasing function of; (j =
e \/W+ xI'my, 0,1,2,...,N,j # i). Therefore, if we only keep the non-
(a) saturated users, then constraint (5) is still satisfied Hor a
= \/ = /(oy;)"Vr. (oy;) — eyim, the non-saturated users. Thus, problem (6) with only the
_ ( / NV — Y] mn) non-saturated users is feasible.
) « lItis possible that problem (6) becomes feasible if part of
2 oli( ) the saturated users are removed. We use the following
] ] ] (25) example to illustrate. Assume there are two saturated
in which (a) is due to the fack; = —oy;, and (b) is users, called user 1 and user 2. Consider that user 1

due to expression af;(p) given in (23). Sd(p) has the

~ is removed and all other users keep using power levels
property of scalablhty

at convergence poinp. For the constraint (5) of user

For P deflneH(p) = Poax- HereH(p) is a constant 2 (which was originally not satisfied), removal of user 1
vector, and is always equal g, for whatevep. Apparently makes the left handside of (5) become smaller, and thus, it
H(p) has the properties of positivity and monotonicity. For  is possible that constraint (5) of user 2 becomes satisfied.
o > 1, sinceH(p) is a constant vector, we hawé(op) = In other words, it may not be necessary to remove all
Prax: SO We haveoH(p) = 0P, = oH(op) > H(op). So saturated users to make problem (6) feasible.

H(p) has the property of scalability. Based on the above observations, when there is only one

Therefore, functionsl(p) and H(p) 2 PnLax are both saturated user and the user is a femtocell user, then we only
standard. And apparently, functioh(p) = min{l(p), p,..x; Need to remove the saturated user, which makes problem (6)
is also standard. SincA(p) is standard and problem (6)become feasible. When there are multiple saturated users an
is convex, it can be concluded [12] that iterative algorithrall of them are femtocell users, we can remove the saturated
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(252, 400) (unit: meter). The positions of the five users are:
(100, 60), (225, —143), (304, 315), (378, —128), (257,407).
R,, = 500m, Ry = 30m, pomax = 33 dBm (2 W),
Pimax = 23 dBm (200 mW),i = 1,2,3,4. §° = 1079,
I'o=5dB, I, = 15 dB, i = 1,2,3,4. a = 4, 0 = 6.5dB.
g, =¢,1=0,1,2,3,4.

For our proposed scheme with known channel gain distri-

= 10| = macroBS butions, Fig. 2 shows the transmit power levgplss of the

2 0 . f";?nctroo_;;er . iterative algorithm in (24) wher = 0.2. The initial power

- level of cell i is p; max- It can be seen that the iterative
-100 + femto-user )

algorithm converges within approximately 10 iterations.

We simulate the performance of our proposed scheme with
known channel gain distributions and our proposed scheme
without channel gain distribution information but usingrsa
pled data (30 samples are used for channel gain of each
O ‘ - link). We change the value of from 0.1 to 0.4. For each

-500 -400 -300 -200 100 0 100 200 300 400 500 specifice value, we first use the iterative algorithm in (24)

X (meter) . .
to calculate the power allocation of the users, then with

the power allocation, we run Monte-Carlo simulation using

Fig. 1. The simulated two-tier femtocell network. MATLAB to simulate the average outage probabilities of the

users when the channels (desired channels and interference

channels) vary as described in Section II-A. As a comparison
we also simulate the ideal scheme introduced in Section 11-B

-2001

-3001

-4001

—E—user 0 and a naive scheme. The naive scheme has the average channel
—o—user 1 g gain information of each link. By assuming the real channel
—user2 gains take the values of the average channel gains, the naive
25l —4—user3 scheme derives the transmit power levels of all the users suc
—>—user 4 that the SINR of each user is not less than the corresponding

target value. Then the derived transmit power levels ard use
in the simulation in which the channels vary as described in
Section II-A.

The simulation results are shown in Tables | and Il. Table |
shows the outage probabilities of the five users in our pregpos
scheme with known channel gain distributions (represebyed
“proposed (known distributions)”), our proposed schemtwi
sampled data (represented by “proposed (sampled datajl), a

Power(dBm)
N
o

=
al
T

10F

5 10 20 30 20 50 the naive scheme. The ideal scheme does not have outage.
Iteration It can be seen that for the proposed schemes with known

channel gain distributions and with sampled data, the @utag

Fig. 2. Convergence performance of the iterative algori(@d). probability of each user is bounded by the threshold value

¢, which demonstrates the robustness of the power allocation

to time varying wireless channels. Since the naive scheme is
users one after another until problem (6) becomes feasible ( pased only on average channel gain information, the outage
power saturation does not happen at any remaining cell). @fpability of each user is large. Table 1l shows the power
the other hand, if the macrocell user is a saturated useayt M:onsumption of the four schemes. It is clear that the naive
not be good to remove the macrocell user, since the macroGglheme has the least power consumption since it is based only
user should have a higher priority. Then we can remove t8g average channel gain information. The ideal scheme has
femtocell users one after another, based on descending ongdg e power consumption than the naive scheme, but with less
of their interference level to the macrocell user, untillgemn power consumption than the proposed schemes.
(6) becomes feasible. Next we compare the communication overhead and com-

are made, the results are sent to all the cells via, for e@mpicheme.

the control channel of the macrocell. Communication overhead: For the ideal scheme, for each
fading block, the instantaneous channel gains of all désire
[1l. PERFORMANCEEVALUATION links and interference links need to be measured, and the

Here we present simulation results. Consider one macrogégicision of power allocation needs to be delivered to altsise
and four femtocells as shown in Fig. 1. The positions dfhis can be achieved (N + 1) + 1 message exchanges.
the five BSs are (0,0), (220, -140), (300, 310), (360, -126),. The first N + 1 messages are as follows: Each of the
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| [ user 0 | user 1 |
Proposed (known distributions]] {0.001 0.003 0.006 0.098| {0.002 0.004 0.007 0.008
Proposed (sampled data) 0.001 0.002 0.005 0.006| {0.002 0.003 0.006 0.008
Naive 0.597 0.623
| I user 2 | user 3 | user 4 |
Proposed (known distributions]| {0.002 0.003 0.004 0.008| {0.002 0.004 0.009 0.033] {0.002 0.005 0.006 0.03}4
Proposed (sampled data) {0.003 0.003 0.006 0.1 | {0.002 0.004 0.011 0.034| {0.003 0.004 0.005 0.032
Naive 0.605 0.631 0.625
TABLE |
SIMULATED OUTAGE PROBABILITIES OF THE USERS IN DIFFERENT SCEMES WHENe={0.1, 0.2, 0.3, 0.%.
| [ user 0 | user 1 |
Proposed (known distributions]| {31.666 29.784 28.641 27.746| {14.336 10.505 8.102 6.239
Proposed (sampled data) 32.852 30.172 29.114 28.2y5| {15.961 12.043 9.650 7.7F1
Naive 7.003 -22.019
Ideal 17.374 -3.079
| Il user 2 | user 3 | user 4 |
Proposed (known distributions]| {12.200 7.131 4.788 3.1}5| {23.010 20.053 17.932 16.352] {14.560 9.395 7.138 5.604
Proposed (sampled data) 10.355 6.007 4.133 2.7%7| {23.010 19.804 17.794 16.2B1| {13.569 10.857 8.585 6.0¥6
Naive -20.805 -7.260 -16.960
Ideal -2.761 4.607 -2.195
TABLE Il

SIMULATED POWER CONSUMPTION(UNIT: DBM) OF THE USERS IN DIFFERENT SCHEMES WHE&={0.1, 0.2, 0.3, 0.4

N + 1 users sends a pilot message in turn, and based ldocks.
reception of the pilot messages, each BS measures th€omputation overhead: The ideal scheme needs to solve
channel gains from the sending users to itself. a power allocation problem per fading block. The power
« The subsequenV + 1 messages are as follows: the+ allocation is a convex problem. The proposed schemes with
1 BSs send their measured instantaneous channel gaimown channel gain distributions and with sampled data need
information to the central controller in turn. to solve problem (6) and problem (22), respectively, per use
« The last message is as follows: Based on collected instgoining the system. Both problems are convex and can be
taneous channel gain information, the central controllsplved by using the iterative algorithm (24). Once a useTgoi
makes a decision on the transmit power levels of the usd¢he system, we do not need computation for the fading blocks.
and announces the decision. Overall, it can be seen that the proposed schemes have much
less communication overhead and much less computation over

Therefore, the communication overhead 26N + 1) + 1 head, and are particularly useful in fast fading environtsien
message exchanges per fading block. For the proposed scheme

with known channel gain distributions, when a user joins the IV. CONCLUSION
system, the user sends to the central controller a messag

containing information of its location and its BS's locatjo g /ey the power allocation problem in a two-tier femtocell
and the central controller runs the iterative algorithmeeide .\ ork and the solution is robust to time-varying chasiiel

on the transmit power rl]evels of th”e USErs danq .annosuncrﬁﬁcrocell and femtocells. An iterative algorithm has been p

a message .contamlr;]g tdg power allocation ﬁusmn. 0 l;at‘bented to find the power allocation. We have also investigate
communication overhead Is two message exchanges per Ysgr . qq \when the channel gain distributions are not known,

joining the system. For our proposed scheme with samplg d derived robust power allocation solution. Simulatien r
data, we nee®(N + 1) + 1 message exchanges per usey

o . ults demonstrate that our schemes have strong robustness
joining the systefn. _The firs/ + 1 message exghanges A% channel fluctuations, with very small communication and
the N + 1 users’ pilot messages. For each pilot messa mputation overhead.

each BS takes a number of samples. WhenXthe- 1 pilot

messages are completed, each BS, say,B8n estimate the APPENDIX

mean and covariance matrix of. Then all theN + 1 BSs
send their estimation to the central controller in turngligt
N + 1 messages). The central controller runs the iterativelt is apparent thatn; = 0 whenj = i. Next we focus on
algorithm, and announces the power allocation decision ¢ expression ofn; whenj € N, j # i.

all users (one message). So the communication overheadhe probability density function of; ; (i,j € N) can be
is 2(N + 1) + 1 message exchanges per user joining tfPProximated as [13], [14]
system. For the proposed schemes with known channel gain Flgis) = 10/1In10
distributions and with sampled data, once a user joins the ' ging V 2mw?

. (101g gi,;4+2.5+10a g d; ;)2
system, we do not need message exchanges for the fading X exp [— T :

fh this paper, by proposing novel transformations, we have

A. Proof of Lemma 1

(28)
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where 1g’ means logarithm to base 10, and = 02 +5.572.

Definer; = g”/g“, j € N,j # i. The probability density 10% - 107 -

Let b = 101gy— Ai. SO we havey = 10° m', anddy =
1n19 . db, which lead to

function of 7; can be derived as (the proof is given in

Appendix B)
_ 10/In10 _(101g 7 — py)?
f(TJ) - ij exp [ 22 (29)

with i = 10« lg di,i — 100[1g di,j and k2 = 2w?.
Based on (29), foy € NV, j # i, we have

—+oo
mj = ]E(Tj)Z/O 7 f(7j)d7;

0 10/1 = )2
_ 10/In10 exp _(101gTj — ) i,
0 V2mrK2 2K2
(c) "j oo 1O'LJ' I? d
= . 10 _ .
V 271—[4;2 /—oo exp 2’%2 xl]
(4) 5
= 2[{2 ] . 1070
too g . ,2In1072
exp ——[IJ " 10} dx;
oo VK2 2kK2 .

(30)

(e "y In10\° 9
= 1010expl( 0 w

in which E(-) means expectationc) comes from defining

x; = 101g7; — pj, (d) comes from
@) In10
1070 = exp [nl—oxj}

and (e) comes from

—+oo

x__ﬂ21n102
exp[—[J 2/{210] dz; =1

V2mK2

and k2 = 2w?.
Similarly, we can get the expression iy 1.

B. Derivation of (29)
For presentation simplicity, denotg ;, ¢;;, andr; as X,

Y, and Z, respectively. So we havg = X/Y. From (28),

we can have the probability density function &fandY as

~10/In10 (101gz — A;)?
fx(x) = oo exp [ 5 (31)
~10/In10 (101gy — \;)?
fY(y) - ym exp |: 202 (32)
where)\; = —2.5 — 10algd; ; and \; = —2.5 — 10alg d; ;.

Then after some math manipulation, the probability densit

function of Z is given as

+oo
fe) = [ urcw) e
Replacing (31) and (32) in (33), we have

(33)

~10/In10  [* (101g(yz) — ;)2
R R ] B
L 10/In10 10lgy — \i)?
10/In10 p[_( gy2 )]dy'
y\/27r 2w

and\; = -2

wherex? = 2w? andu; = 10algd; ; —

{E())* =E(7}) -

fa(z) = 10/1n 10 -f+ooexp[ (b+101g21+>\ -2 }

1 b2
10/ln10 [ a? ]
Vomw? | P | T2 L
+ b1
<1 ke [ |
_10/In10 2] 1
T 2V27w? eXp L 4"-’2 V2 L os
too 1 (b—(=3a))
X ffoo 27”9 exp [ %} db.
*10/“110'6)( a® | 1
T wamez P Tw?]

in which the second equality comes from denoting=
101g2 + A —

+oo 1
ex
\/;oo V 27T'l92
Applying a = 101gz + A\; — A\j, Ay = —2.5 — 10algd, ;,
5 —10algd; ;, we get

_(101gz — pu))?
2K2

Falz) = 10/1n10 .exp[

2V 27K?2
10« 1g d/@j.

C. Proof of Lemma 2

Forj=0,1,2,¢—1,i+1,---
(mJ)Q'

From (29), ]E( 2) can be calculated as follows.

—+o0
(7'32) = fo szf(Tj)de
0+oo T 10/2;2120 .exp{ (lOng‘rJ ) }dT
1048 fj;o

, N, we havev; ; = E (17) —

=

J

1010 exp [ dx;

21{2
2ug 00 Y5
a0 1107 exp { 2((22)2} dy;

_2%1212)2 + 1“130%} dy;

e 15 M
s =
—

27 (2K)?

“oxp [2 (i)’

—+oo
X ffoo 27+ (2K)2 FEXp

2107 exp [4(1312)%w?]

(yj _4x2In10 ln 10 )
[_ 2 (2;-;)2

Jas

i which (f) comes from denoting:; = 101g7; — u;, (g9)

comes from denoting; = 2x;, (k) comes from

vj Inl
1070 = exp {n—oyj}

and (i) comes fromx? = 2w? and

—+o0

(y — 4k 21n10)
W] dyj =1

¢_____&pk

A;, the third equality comes from denoting
9¥? = w?/2, and the last equality comes from
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Therefore, from (30) we have

vj; =E(17) = (m;)?

10
~ (10% exp [ (30)° 2

(exp [4 (1“1%)2(*}2} — exp [2 (1“1%)2(,02}) .

= 10% exp [4 (w)Qwﬂ

o=

=10

Similarly, we can get the expression®f; with j = N +1.
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