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Abstract— In this paper, the problem of distributed oppor-
tunistic channel access in wireless relaying is investigated. A
relay network with multiple source-destination pairs and multiple
relays is considered. All source nodes contend through a random
access procedure. A winner source may give up its transmission
opportunity if its link quality is poor. In this research, we
apply the optimal stopping theory to analyze when a winner
source should give up its transmission opportunity. By assuming
the winner source has channel state information (CSI) of links
from itself to relays and from relays to its destination, the
existence of an optimal stopping strategy is rigorously proved.
The optimal stopping strategy has a pure-threshold structure.
The case when a winner source does not have CSI of links
from relays to its destination is also studied. Two stopping
problems exist, one in the main layer (for channel access of
sources), and the other in the sub-layer (for channel access of
relays). An intuitive stopping strategy, where the main layer
(for the first hop) and sub-layer (for the second hop) maximize
their throughput respectively, is derived. The intuitive stopping
strategy is shown to be non-optimal. An optimal stopping strategy
is then derived theoretically. In either the intuitive stopping
strategy or the optimal stopping strategy, the main-layer stopping
rule has a pure-threshold structure, while the sub-layer stopping
rule has a threshold determined by the channel realization in
the preceding first-hop transmission. Our research reveals that
multi-user (including multi-source and multi-relay) diversity and
time diversity can be utilized in a relay network by our proposed
strategies. The effectiveness of the strategies is validated by
numerical and simulation results.

Keywords – Relay, opportunistic channel access, optimal
stopping.

I. INTRODUCTION

Opportunistic channel access, in which a user with poor
channel quality gives up its channel access opportunity to other
users with good channel conditions, has received much atten-
tion in the literature [1], particularly in centralized networks.
A central controller can collect the channel state information
(CSI) of the users, and schedule only those users with the
best channel conditions. On the other hand, the research on
distributed opportunistic channel access is still in its infancy.
Without a central controller, it is hard for a user to decide when
to give up its transmission opportunity. An intuitive way is to
categorize the channel of a user into two states: good state
when the channel gain is above a threshold; and bad state
otherwise. Then a user gives up its channel access opportunity
when its channel is bad. Apparently the multi-user diversity
(i.e., different users experience different channel gains) and
time diversity (i.e., a user experiences different channel gain
when time varies) are not fully utilized by the intuitive method.
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This problem was addressed recently in [2], by means of
optimal stopping. The major idea is to let all the users contend
for channel access. It is found that, 1) if the winner in a
contention has an achievable (transmission) rate smaller than a
threshold (which can be obtained numerically), it is optimal for
the winner to give up its transmission opportunity and all users
continue to contend; and 2) if the winner in a contention has an
achievable rate larger than the threshold, it is optimal for the
winner to stop here, i.e., to utilize the transmission opportunity
and transmit its data. The beautiful part of the work is in
the pure-threshold strategy, which is easy to implement. As
extensions to the work in [2], interference channel which can
tolerate multiple users transmitting is considered in [3] where
more than one node can share the channel simultaneously, and
delay constraints are considered for real-time service in [4].
Pure-threshold strategies are also derived in [3], [4].

In this paper, we investigate distributed opportunistic chan-
nel access in a relay network, since wireless relaying has
recently attracted a lot of research interests [5]–[9]. We
consider multiple source-destination pairs aided by multiple
relays. Since transmission between each source-destination
pair involves two hops: from source to relays and from relays
to the destination, the problem of opportunistic channel access
in a relay network is quite different from those in a single-
hop network (e.g., in references [2]–[4]), and is challenging as
multi-source diversity, multi-relay diversity, and time diversity
should be all exploited. Two cases are considered: Case I
with full CSI at a winner source where a winner source in
a contention has CSI of links from itself to all relays and
from all relays to its destination, and Case II with partial CSI
at a winner source where a winner source only has CSI of
links from itself to all relays. In Case I, it is found that a
pure-threshold strategy exists to optimize the average system
throughput. There are two stopping problems in Case II, one in
the main layer (for channel access of sources) and the other
in the sub-layer (for channel access of relays). An intuitive
strategy is proposed, which is shown to be non-optimal. We
also theoretically derive an optimal strategy for Case II. In
either the intuitive strategy or the optimal strategy, the first-hop
stopping rule has a pure-threshold structure, while the second-
hop stopping rule has a threshold determined by channel gain
realization in the preceding first-hop transmission.

II. CASE I: WITH FULL CSI AT A WINNER SOURCE

A. System Model
Consider K source-destination pairs aided by L relays. For

transmission from a source to its destination, there is no direct
link, and only one relay is selected to help with amplify-and-
forward (AF) mode. The transmission power of a source and a
relay is Ps and Pr, respectively. Channel reciprocity in terms
of channel gain is assumed, and we denote the channel gain
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from the ith source to the jth relay (and vice versa) as fij ,
and the channel gain from the jth relay to the ith destination
(and vice versa) as gji. Assume fij and gji follow a complex
Gaussian distribution with mean being zero and variance being
σ2
f and σ2

g , respectively. Noise is assume to be Gaussian with
unit variance. For source-to-destination transmission, say from
the ith source to its destination aided by the jth relay, the
maximal rate that can be achieved in AF mode is

log2

(
1 +

PsPr|fij |2|gji|2

1 + Ps|fij |2 + Pr|gji|2

)
(1)

and the data transmission time from the source to the relay
and from the relay to the destination are both τd

2 .
Channel contention of the sources is as follows. At the

beginning of a time slot with duration δ, each source indepen-
dently contends for the channel by sending a request-to-send
(RTS) packet with probability p0. There are three possible
outcomes:

• If there is no source transmitting RTS in the time slot
(with probability (1−p0)

K ), then all the sources continue
to contend in the next time slot;

• If there are two or more sources transmitting RTS (with
probability 1− (1− p0)

K −Kp0(1− p0)
K−1), a collision

happens, and then in the next time slot after the RTS
transmission all sources continue to contend;

• If there is only one source, say Source i, transmitting
RTS (with probability Kp0(1− p0)

K−1), then Source i is
called winner of the contention. By reception of the RTS,
each relay can estimate CSI between Source i and itself.
Then the first relay transmits an RTS to Destination i, and
Destination i replies with a CTS, which can be received
by all relays. By reception of the CTS from Destination i,
each relay can estimate its CSI with Destination i. Then
all relays send a CTS to Source i in turn. In the CTS
from a relay to Source i, CSI of the relay with Source
i and with Destination i is included. After reception of
the CTSs, Source i knows CSI from itself to all relays
and from all relays to its destination. Then Source i has
two options: 1) Source i selects the relay that renders its
maximal source-to-destination rate, i.e., Source i selects
Relay j∗ = arg max

j∈{1,...,L}

{
log2

(
1+

PsPr|fij |2|gji|2

1+Ps|fij |2+Pr|gji|2

)}
and

transmits its packet to Relay j∗ within duration τd
2

, then
Relay j∗ forwards the packet to Destination i within
duration τd

2
; or 2) Source i gives up its transmission

opportunity, and other sources can detect an idle slot after
the RTS and CTS exchanges among Source i, all relays,
and Destination i (i.e., that idle slot tells other sources
that Source i gives up its transmission opportunity). After
that a new contention is started among all the sources.

RTS
2RTS 

+ (L+1)CTS
data TX

(source to relay)

idle collision idle win and give up idle win and transmit

2RTS 
+ (L+1)CTS

time slot

data TX
(relay to destination)

Fig. 1. An example of channel contention of sources

An example of the channel contention procedure is shown
in Fig. 1. In the example, no source transmits RTS in the
first two time slots. Then two or more sources transmit,
which results in a collision. After three idle slots, one winner
appears. However, it gives up its transmission opportunity.
Then after three more idle slots (the first is used to indicate

the previous winner gives up, and the other two are for two
new contentions), another winner appears. After exchange of
2 RTSs and (L+1) CTSs, the winner transmits its data to its
selected relay and the relay forwards the data to the winner’s
destination.
B. Optimal Stopping Strategy

Define an observation as the process of channel contention
among the sources until a successful contention (i.e., a winner
source appears). In an observation, the number of contentions
follows a geometric distribution with parameter Kp0(1 −
p0)

K−1. Among all the contentions in an observation, the
last contention is successful with duration (excluding data
transmission) 2τRTS + (L + 1)τCTS where τRTS and τCTS

are duration of an RTS and CTS, respectively, and any
other contention is either an idle slot (with duration δ) or a
collision (with duration τRTS). The mean of the duration of
an observation is then given as τo = 2τRTS +(L+1)τCTS +

(1−p0)
K

Kp0(1−p0)K−1 · δ + 1−(1−p0)
K−Kp0(1−p0)

K−1

Kp0(1−p0)K−1 · τRTS .
After each observation, the winner source decides whether

to continue a new observation (i.e., a new contention is started)
or to stop (i.e., the winner source transmits its data). In the
nth observation, let s(n) denote the winner source. Then
the observed information in the nth observation is X(n) :={
s(n), fs(n)1(n), ..., fs(n)L(n), g1s(n)(n), ..., gLs(n)(n)

}
. Here f

and g with index (n) means the channel gain realizations at the
end of the nth observation. For the nth observation, the reward
Yn is the total traffic volume that can be sent if the winner
source transmits its data, which is a function of X(n), and
the cost Tn is the total waiting time from the first observation
until the nth observation plus the data transmission time. If
it is decided to stop at the N th observation, then the average
system throughput is YN

TN
. In the sequel, capital N is called the

stopping time. And our objective is to find the optimal stopping
time (also called optimal stopping strategy), N∗, which attains
average system throughput sup

N≥0

E[YN ]
E[TN ]

. Here E[·] means expec-

tation. According to [10, Chapter 6], this maximal-expected-
return problem can be equivalently transformed into a standard
form with its reward being (YN − λ∗TN ). In particular,
to get N∗, we need to find an optimal strategy to reach
maximal expected reward V ∗(λ∗) = sup

N≥0
{E[YN ]−λ∗E[TN ]}

where λ∗ satisfies sup
N≥0

{E[YN ]−λ∗E[TN ]} = 0. Here λ∗ is

actually the maximal system throughput in our problem. This
transformation method will be used when we solve the optimal
stopping problems in our research, as shown in the sequel.

To formulate our research problem as an optimal stopping
problem, in the nth observation, the reward is Yn = τd

2
Rn

with the spent time denoted as Tn =
n∑

l=1

tl + τd where Rn is

the achievable rate of the winner source in the nth observation
via the best relay, given as

Rn=
K∑
i=1

I([s(n)= i]) max
j∈{1,...,L}

{
log2

(
1+

PsPr|fij(n)|2|gji(n)|2

1+Ps|fij(n)|2+Pr|gji(n)|2

)}
(2)

I(·) means an indicator function, and tl is the time spent in
the lth observation with mean being τo. For finding a strategy
N∗ to achieve maximal average system throughput E[YN ]

E[TN ] , it
is equivalent [10] to design a strategy which attains

V ∗(λ∗) = sup
N≥0

{
τd
2
E[RN ]− λ∗E

[
τd +

n∑
l=1

tl

]}
(3)
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where λ∗ satisfies V ∗(λ∗) = 0.
Before deriving an optimal stopping strategy N∗, two

conditions should be checked which guarantee the existence
of an optimal stopping strategy. Here λ can be viewed as
the system throughput, while λ∗ has the physical meaning of
maximal system throughput.

Lemma 1: The first condition is satisfied as

E

[
sup
n

{
τd
2
Rn − λ

(
τd +

n∑
l=1

tl

)}]
< ∞.

Proof: See Appendix I.
Lemma 2: The second condition is also satisfied, namely

lim sup
n→∞

{
τd
2
Rn − λ

(
τd +

n∑
l=1

tl

)}
= −∞ a.s.

Proof: See Appendix II.
Based on Lemmas 1 and 2, the existence of an optimal

stopping strategy is guaranteed.
Theorem 1: An optimal stopping strategy which achieves

maximal system throughput sup
N≥0

E[YN ]
E[TN ] is given as: N∗ =

min {n ≥ 1 : Rn ≥ 2λ∗} where λ∗ is the solution of the equa-
tion E

[
max

{
τd
2
Rn − λτd, 0

}]
= λτo.

Proof: See Appendix III.
With threshold 2λ∗ as a fixed value, our derived strategy
N∗ has a pure-threshold structure and achieves the maximal
system throughput λ∗ =

E[YN∗ ]

E[TN∗ ]
. And as the solution of the

equation E
[
max

{
τd
2
Rn − λτd, 0

}]
= λτo, the maximal system

throughput λ∗ always uniquely exists. The proof is similar
to that of Proposition 3.1 in [2], and thus, is omitted. The
uniqueness of λ∗ is consistent with its physical meaning as
the maximal system throughput.

With {Rn}n=1,...,∞ i.i.d. and pure-threshold structure of
N∗, the stopping time denoted N determined by the optimal
stopping strategy N∗ follows a geometric distribution with
Prob(N = n) = FRn(2λ

∗)n−1 (1− FRn(2λ
∗)) where FRn(·)

means cumulative distribution function (CDF) of Rn given
in (2). Let RN∗ denote the achievable rate when the win-
ner source stops. It has the CDF as FRN∗ (x) = I(x ≥
2λ∗)

FRn (x)−FRn (2λ∗)
1−FRn (2λ∗) .

With the stopping time N determined by the strategy N∗

geometrically distributed, the expectation of the stopping time
E[N ] = 1

1−FRn (2λ∗) is finite. According to Wald Theorem [10]
we have E[TN ] = E[tl]E[N ] + τd = τo

1−FRn (2λ∗) + τd.
In addition, the pure-threshold structure largely simplifies

implementation. In details, after the nth successful channel
contention, Source s(n) wins the channel and calculates its
achievable transmission rate Rn (which is via the best relay).
If Rn ≥ 2λ∗, Source s(n) transmits to the best relay and the
best relay helps forward to Destination s(n); otherwise, Source
s(n) gives up the transmission opportunity and re-contends
for channel access with the other (K − 1) sources again. In
this way, the maximal average system throughput λ∗ can be
achieved.

Note that the value of λ∗ can be calculated off-line. And
the following iterative algorithm can be used to calculate λ∗:

λk+1 = λk + α ·
{
E
[
max

(τd
2
Rn − λkτd, 0

)]
− λkτo

}
(4)

where λ0 is a non-negative initial value and α is step size such
that ϵ ≤ α ≤ 2−ϵ

τo+τd
where ϵ > 0 can be arbitrarily selected.

Theorem 2: The sequence {λk} generated by the iterative
algorithm converges to λ∗.

Proof: See Appendix IV.

III. CASE II: WITH PARTIAL CSI AT A WINNER SOURCE

A. System Model

In the previous section, the winner source in each obser-
vation has CSI of links from itself to all relays and from all
relays to its destination. Next we consider a more practical
case that the winner source in each observation has only CSI
of links from itself to all relays. Since the winner source
does not have CSI in the second hop, relay is not selected
by the winner source. Rather, there is another channel access
contention among the relays, with details as follows.

The channel contention of sources is similar to that in
Section II. The difference is as follows: if there is only one
source, say Source i, transmitting RTS in a contention, there
is no information exchange between relays and Destination
i. So Source i has only its CSI to the L relays (obtained
from the L CTSs from the relays). And if Source i decides
to stop, it broadcasts its packet to all relays, and then all
relays start to contend for channel access, as follows. At the
beginning of a time slot, each relay independently transmits
an RTS with probability p1. If no relay transmits RTS, or two
or more relays transmit, then a new contention of relays is
started subsequently. If only one relay, say Relay j, transmits
RTS (in which information of Destination i is included), then
Destination i estimates its channel gain gji with Relay j and
replies with a CTS with channel gain information gji included.
Then Relay j can decide 1) to stop (i.e., to forward its received
packet to Destination i, and then a new source contention is
started), or 2) to give up its transmission opportunity and then
a new contention of relays is started.

The channel access is actually a bi-layer stopping problem:
the main layer for access of sources, and the sub-layer for
access of relays. In either layer, still define an observation as
the process until a successful winner appears. So in the main
layer, the winner source in the nth observation, denote s(n),
decides whether to stop based on its observed information{
s(n), fs(n)1(n), ..., fs(n)L(n)

}
. In the sub-layer, the winner

relay in the mth observation, denote s(m), decides whether to
stop based on its observed information {s(m), gs(m)s(n)(m)}
and channel gain realization fs(n)s(m)(n) in the preceding
first-hop transmission. Recall that information of fs(n)j(n)(j=

1, 2, ..., L) is already obtained by Relay j when Source s(n)
broadcasts to relays in the first hop.

Similar to Section II, the mean of duration of an observation
in the main layer and the sub-layer are τs

o = τRTS + LτCTS +
(1−p0)

K

Kp0(1−p0)K−1 · δ + 1−(1−p0)
K−Kp0(1−p0)

K−1

Kp0(1−p0)K−1 · τRTS and τr
o =

τRTS+τCTS+
(1−p1)

L

Lp1(1−p1)L−1 ·δ+ 1−(1−p1)
L−Lp1(1−p1)

L−1

Lp1(1−p1)L−1 ·τRTS ,
respectively. In this paper, superscript ‘s’ and ‘r’ stand for
source (first hop) and relays (second hop), respectively.

A winner source does not have CSI of links in the second
hop (from relays to destinations). Rather, statistical informa-
tion (e.g., channel gain distribution) of channel gains in the
second hop is assumed to be available. Therefore, in the
main layer, the reward (which is the source-to-destination data
volume) in the nth observation is the expected reward in the
sub-layer. On the other hand, in the sub-layer, the stopping
problem should be conditioned on channel gain realization of
the preceding first-hop transmission.

In the main layer, let n and N denote the observation
index and stopping time, respectively. And in the sub-layer,
let m and M denote the observation index and stopping time,



4

respectively. We use E1[·] and E2[·] to present expectations
on the main layer and sub-layer, respectively.

B. Intuitive Stopping strategy
An intuitive method to solve the bi-layer stopping problem

is to let the sub-layer and main layer apply optimal stopping
theory to maximize sub-layer and main-layer throughput,
respectively.

We first consider the sub-layer. The relays already know
channel gain realization F =

{
fs(n)1(n), ..., fs(n)L(n)

}
in the

preceding first-hop transmission.1 Then in the mth observa-
tion, the achievable rate of the winner relay, s(m), is

Rm=

L∑
j=1

I([s(m) = j])log2

(
1+

PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

)
(5)

The reward in the mth observation is Ym = τd
2
Rm. The cost

is the total waiting time until the mth observation plus the
data transmission time in the second hop: Tm =

∑m
l=1 t

r
l +

τd
2

,
where trl is the time used in the lth observation. Then we need
to find an optimal stopping rule M∗ in the sub-layer to attain
the maximal λ∗ = sup

M≥0

E2[YM |F]
E2[TM |F]

.

In the main layer, define Tn as the total waiting time until
the nth observation plus the data transmission time in the
first hop: Tn =

∑n
l=1 t

s
l + τd

2
, where tsl is the time used

in the lth observation. If the stopping time is N , then the
reward is E2[YM∗ |F ], and the waiting time is E2[TM∗ |F ]+TN .
Then we need to find an optimal stopping rule N∗ to attain
sup
N≥0

E1[E2[YM∗ |F]]

E1[E2[TM∗ |F]+TN ]
.

For the sub-layer optimal stopping problem, we have the
following theorem.

Theorem 3: Conditioned on F , a sub-layer optimal stop-
ping rule achieving the maximal sub-layer throughput λ∗ =

sup
M≥0

E2[YM |F]
E2[TM |F]

is given as M∗=min{m≥1:Rm≥λ∗} where λ∗

is the unique solution of the equation E2 [max(Rm−λ, 0)|F ]=
2λτr

o
τd

and always exists.
Proof: See Appendix V.

Define FRm(·) as the CDF of Rm given in (5). The sub-
layer optimal stopping rule has the following property.

Corollary 1: Conditioned on F , we have finite λ∗,
E2[TM∗|F ]=

τr
o

1−FRm (λ∗) + τd
2

and E2 [YM∗ |F ] =
λ∗τr

o
1−FRm (λ∗) +

λ∗τd
2

.
Proof: See Appendix VI.

Based on the acquired strategy M∗ for the sub-layer
stopping problem, a main-layer optimal stopping rule which
achieves maximal system throughput is given in the following
theorem.

Theorem 4: An optimal stopping rule for the main-layer
problem is of the form N∗=min

{
n ≥ 1 :R1

n − γ∗R2
n ≥ γ∗ τd

2

}
where γ∗ satisfies equation E1

[
max

{
R1

n − γR2
n − γ τd

2
, 0
}]

=

γτs
o , and R1

n and R2
n are given as: R1

n = λ∗E2[TM∗ |F] and
R2

n=E2[TM∗ |F ].2
Proof: See Appendix VII.

Note that here γ∗ is actually the maximal main-layer system
throughput.

1Note that it means Relay j knows fs(n)j(n), j = 1, 2, ..., L.
2Note that here M∗ is the optimal stopping rule of the sub-layer conditioned

on F , and λ∗ is the corresponding maximal throughput in the sub-layer
stopping problem. Therefore, R1

n and R2
n are functions of F .

From Theorem 3 and 4, it can be seen that, the in-
tuitive optimal stopping strategy {N∗,M∗} with M∗ =

min{m≥1 : Rm≥λ∗} and N∗=min
{
n≥1 :R1

n−γ∗R2
n≥γ∗ τd

2

}
has semi-pure-threshold structure. In details, with sub-layer
stopping rule M∗, its threshold is not a fixed value, but
depends on channel gain realization F in the preceding first-
hop transmission. Different from M∗, the main-layer stopping
rule N∗ has a fixed-valued threshold γ∗ τd

2
.

The intuitive stopping strategy can be implemented as
follows.

For channel access of sources, upon a successful contention
in the nth observation, the winner source, s(n), has the
information of its channel gains F =

{
fs(n)1(n), ..., fs(n)L(n)

}
.

Source s(n) can calculate R1
n and R2

n by solving the sub-
layer optimal stopping problem conditioned on F . During the
calculation of R1

n and R2
n, Source s(n) needs to calculate λ∗,

which is the threshold of the sub-layer optimal stopping rule
conditioned on F . In the main-layer stopping rule, γ∗ is a
fixed value satisfying E1

[
max

{
R1

n − γR2
n − γ τd

2
, 0
}]

= γτs
o .

• If R1
n − γ∗R2

n < γ∗ τd
2

, Source s(n) gives up its transmis-
sion opportunity and re-contend with other sources.

• If R1
n − γ∗R2

n ≥ γ∗ τd
2

, Source s(n) broadcasts its data
and the value of λ∗ to all relays, and the channel
contention of relays starts. Upon a successful contention
in the mth observation, the winner relay, s(m), which
has information of fs(n)s(m)(n) in the preceding first-
hop transmission, calculates its source-to-destination rate
Rm. If Rm < λ∗, Relay s(m) gives up its transmission
opportunity, and re-contends with other relays. Otherwise,
Relay s(m) forwards its received data (from Source
s(n)) to Destination s(n), and the source-to-destination
transmission process for the packet from Source s(n) is
complete, and all sources start a new contention.

Note that, the threshold in the main layer γ∗ (for simplicity
of presentation, the constant factor τd

2
is omitted) can be

calculated off-line, while the threshold λ∗ in the sub-layer
depends on the channel gain realization F in the preceding
first-hop transmission, and thus, should be calculated online at
Source s(n), who knows F . The following iterative algorithm
can be used to calculate γ∗ and λ∗.

To calculate λ∗, we have

λl+1 = λl + αλ ·
{
E2 [max (Rm − λl, 0) |F ]− 2λlτ

r
o

τd

}
(6)

where step size αλ satisfies ϵ ≤ αλ ≤ τd(2−ϵ)
2τr

o+τd
for a fixed

positive ϵ.
For main-layer problem, to calculate γ∗, we have

γk+1=γk+αγ ·
{
E1

[
max

(
R1

n − γkR
2
n − γk

τd
2
, 0
)]

−γkτ
s
o

}
(7)

where step size αγ satisfies ϵ ≤ αγ ≤ 2(2−ϵ)

2E1[R2
n]+τd+2τs

o
for a

fixed positive ϵ.
Theorem 5: The sequence {γk} generated by the iterative

algorithm converges to γ∗.
Proof: See Appendix VIII.

Since the calculation of γ∗ involves the calculation of λ∗

conditioned on F , convergence of {γk} to γ∗ also guarantees
convergence of {λl} to λ∗.

C. Non-optimality of Intuitive Stopping strategy
The intuitive stopping strategy {N∗,M∗} first maximizes

sub-layer system throughput and then maximizes that of main-
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layer system. It is interesting to notice that the intuitive
stopping strategy is not optimal, as follows.

The expected system throughput can be expressed as
E1[λ∗E2[TM∗ |F]]

E1[E2[TM∗ |F]+TN∗ ]
in the intuitive stopping strategy. The sub-

layer stopping rule M∗ maximizes λ∗. Considering the term
TN∗ in the expression of the expected system throughput, the
sub-layer stopping rule M∗, which maximizes λ∗, may not
maximize E1[λ∗E2[TM∗ |F]]

E1[E2[TM∗ |F]+TN∗ ]
.

D. Optimal Stopping strategy
Next we derive an optimal stopping strategy for the sub-

layer and main layer.
For γ ≥ 0 and a particular stopping rule in the sub-layer

(which is conditioned on F) denoted M , the maximal average
reward achieved by main-layer optimal stopping rule can be
expressed as:

V ∗(γ) := sup
N≥0

{
E1

[
E2[YM |F ]− γ(E2[TM |F ] + TN )

]}
(8)

which is equivalent to

V ∗(γ) := sup
N≥0

{
E1

[
E2 [YM − γTM |F ]− γTN

]}
. (9)

In the expression of (9), the sub-layer affects only the term
E2 [YM − γTM |F ]. Therefore, to increase the maximal system
throughput γ∗, we need to increase V ∗(γ) (this is because
V ∗(γ) is a decreasing function of γ, and γ∗ is the root of
V ∗(γ) = 0). And to achieve the largest V ∗(γ) , the sub-layer
should maximize E2 [YM − γTM |F ]. Based on this, we have
the following theorem for the sub-layer. Here we use W ∗(γ)
to denote the maximal reward sup

M≥0
E2 [YM − γTM |F ] in the

sub-layer.
Theorem 6: For fixed γ ≥ 0, an optimal stopping rule

M∗(γ) for maximizing E2 [YM − γTM |F ] is of the form
M∗(γ) = min

{
m ≥ 1 : τd

2
Rm ≥ W ∗(γ) + τd

2
γ
}

where W ∗(γ)
satisfies

E2

[
max

(τd
2
Rm − τd

2
γ,W ∗(γ)

) ∣∣∣∣F] = W ∗(γ) + γτr
o . (10)

Proof: See Appendix IX.
Although Theorem 6 is for any particular value of γ, it is
desired the sub-layer stopping rule is corresponding to the
maximal system throughput γ∗. How to obtain the value of γ∗

will be discussed in the main-layer stopping rule, as follows.
Theorem 7: With the sub-layer system following

the strategy M∗(γ∗), an optimal strategy to
maximize the average system throughput is given as
N∗ = min

{
n ≥ 1 : W ∗(γ∗) ≥ τd

2
γ∗} where γ∗ satisfies

E1

[
max(W ∗(γ)− τd

2
γ, 0)

]
= γτs

o .
Proof: See Appendix X.

Overall, we can see that the optimal stopping
strategy {N∗,M∗} has the form of M(γ∗) =

min
{
m ≥ 1: τd

2
Rm ≥ W ∗(γ∗) + τd

2
γ∗} and N∗ ={

n ≥1 : W ∗(γ∗)≥ τd
2
γ∗}, which achieves average system

throughput maximum γ∗. Here γ∗ is a fixed value satisfying
E1

[
max

(
W ∗(γ)− τd

2
γ, 0
)]

= γτs
o where W ∗(γ) is an unique

root of E2

[
max

(
τd
2
Rm − τd

2
γ,W ∗(γ)

)
|F
]
= W ∗(γ) + γτr

o .
Note that the optimal stopping strategy {N∗,M∗} has also

semi-pure-threshold structure, as in the main layer the thresh-
old τd

2
γ∗ is a fixed value, while in the sub-layer the threshold

W ∗(γ∗) + τd
2
γ∗ is conditioned on the channel gain realization

in the preceding first-hop transmission.

The optimal stopping strategy can be carried out as follows.
For channel access of sources, upon a successful contention

in the nth observation, the winner source, s(n), has the
information of its channel gains F =

{
fs(n)1(n), ..., fs(n)L(n)

}
.

Source s(n) can calculate W ∗(γ∗) by solving the sub-layer
optimal stopping problem conditioned on F .

• If W ∗(γ∗) < τd
2
γ∗, Source s(n) gives up its transmission

opportunity and re-contend with other sources.
• If W ∗(γ∗) ≥ τd

2
γ∗, Source s(n) broadcasts its data and

also the value of W ∗(γ∗)+ τd
2
γ∗ to all relays, and channel

contention of relays starts. Upon a successful contention
in the mth observation, the winner relay, s(m), who
has information of fs(n)s(m)(n) in the preceding first-
hop transmission, calculates its source-to-destination rate
Rm. If τd

2
Rm < W ∗(γ∗) + τd

2
γ∗, Relay s(m) gives up

its transmission opportunity, and re-contends with other
relays; otherwise, Relay s(m) forwards its received data
(from Source s(n) in the preceding first-hop transmis-
sion) to Destination s(n), and the source-to-destination
transmission process for the packet from Source s(n) is
complete, and all sources start a new contention.

Similar to the intuitive stopping strategy, the threshold in
the main layer γ∗ (with the constant factor τd

2
omitted) can

be calculated off-line, while the threshold W ∗(γ∗) (with the
constant τd

2
γ∗ omitted) is dependent on F , and thus, should be

calculated online at Source s(n), who knows F . The following
iterative algorithm can be used to calculate γ∗ and W ∗(γ∗).

In the main layer, iterative algorithm is given below: γk+1 =

γk + αγ

(
E1

[
max(W ∗(γk)− τd

2
γk, 0)

]
− γkτ

s
o

)
where step size

αγ satisfies ϵ≤ αγ ≤ 2−ϵ

τd+τ
s
o+τ

r
o ·E1

[
1

1−FRm (2W∗(0)/τd)

] for a fixed

positive ϵ.
For each iteration of main layer, W ∗(γk) can be calculate

below:

Wl+1(γk) = Wl(γk)

+αW

(
E2

[
max

(
τd
2
Rm − τd

2
γk −Wl(γk), 0

) ∣∣F]− γkτ
r
o

)
where step size αW satisfies ϵ ≤ αW ≤ 2 − ϵ for a fixed

positive ϵ.
Theorem 8: The sequence {γk} generated by the iterative

algorithm converges to γ∗.
Its proof is similar to that of Theorem 5, with details omitted.

IV. PERFORMANCE EVALUATION

We use computer simulation to validate our analysis. Con-
sider 5 sources and 4 relays in our network. Channels from
sources to relays experience i.i.d. Rayleigh fading while
channels from relays to destinations also experience i.i.d.
Rayleigh fading. The channel contention parameters are set
as: p0 = p1 = 0.3, δ = 20 µs, τRTS = τCTS = 40 µs,
τd = 2 ms. Consider the scenario that the average received
signal-to-noise ratio (SNR) in the first and the second hops
are the same. When the average SNR varies from 0.5 to 10,
Fig. 2 shows the numerically calculated (shown as “analytical”
in Fig. 2) and simulated (shown as “sim” in Fig. 2) system
throughput of Case I, Case II with intuitive stopping strategy,
and Case II with optimal stopping strategy. It can be seen
that the analytical and simulation results match well with each
other, which confirms the accuracy of the analysis of our three
strategies.
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Fig. 2. Comparison of analytical and simulation results of our three strategies.

Next we perform comparison with alternative strategies. In
particular, we consider four alternative strategies: 1) Case-I-
no-wait strategy: a winner source has full CSI, and always
transmits (i.e., always stop and does not wait); 2) Case-
II-no-wait strategy: a winner source has partial CSI, and a
winner source or relay always transmits; 3) Case-II-wait-1st-
hop strategy: a winner source has partial CSI, and a winner
source applies optimal stopping rule, while a winner relay
always transmits; 4) Case-II-wait-2nd-hop strategy: a winner
source has partial CSI, and a winner source always transmits
while a winner relay applies optimal stopping rule.

Fig. 2 also shows a comparison of our three strategies and
the four alternative strategies. It can be seen that our optimal
strategy in Case I and the Case-I-no-wait strategy have better
performance than others. This is because of the full CSI at a
winner source. The optimal stopping strategy exploits the time
diversity of sources (by deciding whether to stop or not) and
multi-user diversity of relays (by selecting the best relay). On
the other hand, Case-I-no-wait strategy exploits only the multi-
user diversity of relays, and therefore, has worse performance
than the optimal strategy.

In Case II, among the five strategies, our intuitive strategy
and our optimal strategy are the best, with the former having
some performance loss compared with the latter, as expected.
For the two alternative strategies with a stopping rule applied
in one hop, i.e., Case-II-wait-1st-hop and Case-II-wait-2nd-
hop, they have a big performance gap, and Case-II-wait-1st-
hop strategy is close to the Case-II-no-wait strategy (the worst
strategy) while Case-II-wait-2nd-hop strategy is close to our
intuitive strategy. The reason is as follows. In Case-II-wait-
1st-hop strategy, the threshold in the stopping rule (which is
in the first hop) is based on only statistical information of
second-hop channels. On the other hand, in Case-II-wait-2nd-
hop strategy, the threshold in the stopping rule (which is in
the second hop) can be determined based on exact CSI in the
first hop. Compared with statistical channel gain information,
the exact CSI can help select the best threshold.

V. CONCLUSION

In a wireless relay network, the sources and relays all
experience fading. It is desired to exploit the multi-source
diversity, multi-relay diversity, and time diversity. To achieve
this, opportunistic channel access is needed, which is in-
vestigated in our research in a distributed structure. For the
two considered cases (with a winner source having or not
having CSI of the second hop), we derive optimal stopping
strategies for opportunistic channel access. Further research
may include the cases with quantized CSI and with quality-
of-service constraints.

APPENDIX I
PROOF OF LEMMA 1

The mean of achievable transmission rate at the nth obser-
vation is

E[Rn]=

K∑
i=1

1

K
E

[
max

j∈{1,...,L}

{
log2

(
1+

PsPr|fij(n)|2|gji(n)|2

1+Ps|fij(n)|2+Pr|gji(n)|2

)}]
.

Since fij and gji follow complex Gaussian distribution with
mean being zero and variance being σ2

f and σ2
g , respectively,

we have E[|fij |2] = σ2
fand E[|gji|2] = σ2

g . Then we have

E[Rn]<

K∑
i=1

1

K
E

[
L∑

j=1

log2

(
1+

PsPr|fij(n)|2|gji(n)|2

1+Ps|fij(n)|2+Pr|gji(n)|2

)]
(a)

≤
K∑
i=1

1

K

L∑
j=1

1

ln 2
E(Ps|fij |2)E(Pr|gji|2)

=
1

ln 2
LPsPrσ

2
fσ

2
g < ∞ (11)

E[R2
n]<

K∑
i=1

1

K
E

[
L∑

j=1

log22

(
1+

PsPr|fij(n)|2|gji(n)|2

1+Ps|fij(n)|2+Pr|gji(n)|2

)]
(b)

≤
K∑
i=1

1

K

L∑
j=1

1

(ln 2)2
E[P 2

s |fij |4]E[P 2
r |gji|4]

=
4

(ln 2)2
LP 2

s P
2
r σ

4
fσ

4
g < ∞ (12)

where (a) and (b) come from the fact that for x, y ≥ 0, we
havelog2

(
1 + xy

1+x+y

)
≤

xy
1+x+y

ln 2
≤ xy

ln 2
. Based on [10], from

E[Rn]<∞, we have sup
n

{
τd
2
Rn−nc

}
<∞ a.s.; from E[R2

n]<∞,

we have E

[
sup
n

{
τd
2
Rn−nc

}]
< ∞. By decomposition similar

to (43) in [2], the first condition for existence of an optimal
stopping strategy can be proved.

APPENDIX II
PROOF OF LEMMA 2

Using a similar method to that in [2], for 0 < ε < τo, we
have the following decomposition

τd
2
Rn − λ

(
τd +

n∑
l=1

tl

)

=
[τd
2
Rn − nλ (τo−ε)−τdλ

]
+

[
λ

n∑
l=1

(τo − ε− tl)

]
. (13)

From [10, Theorem 4.1], τo − ε > 0, and (12), we have

lim
n→∞

[τd
2
Rn − nλ (τo − ε)

]
= −∞ a.s. (14)

Next we focus on the second component on the right-hand
side of (13). Using [10, Theorem 4.2], when E [τo − ε− tl] <
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0 holds, E

[
sup
n≥0

n∑
l=1

(τo − ε− tl)

]
< ∞ if and only if

E
[
(τo−ε−tl)

+]2<∞, where (τo − ε− tl)
+ = max(τo−ε−tl, 0).

We have E [τo − ε− tl] = τo − ε − τo = −ε < 0,
and E

[
(τo − ε− tl)

+]2 ≤ E [τo − ε− tl]
2 = (τo − ε)2 −

2 (τo − ε) τo + E[t2l ] < ∞ (since E[t2l ] can be shown to be
finite). As a result, we have

E

[
lim sup
n→∞

{
n∑

l=1

(τo − ε− tl)

}]
≤E

[
sup
n≥0

{
n∑

l=1

(τo − ε− tl)

}]
<∞

which leads to

lim sup
n→∞

{
n∑

l=1

(τo − ε− tl)

}
< ∞ a.s. (15)

From (13), (14), and (15), we have

lim sup
n→∞

{
τd
2
Rn − λ

(
τd +

n∑
l=1

tl

)}
= −∞ a.s.

APPENDIX III
PROOF OF THEOREM 1

Recall that to maximize throughput E[YN ]
E[TN ]

, we need to
achieve V ∗(λ∗) = sup

N≥0
{E[YN ]−λ∗E[TN ]} where λ∗ satisfies

V ∗(λ∗) = 0. Here λ∗ is actually maximal average throughput.
Therefore we need to know expression of V ∗(λ).

For λ ≥ 0, the stopping strategy which achieves
maximal reward V ∗(λ) can be described as N∗ =
min

{
n≥1: τd

2
Rn−λτd≥V ∗(λ)

}
, where V ∗(λ) is determined by

optimality equation

V ∗
n =max

{
τd
2
Rn−λτd−λ

n∑
l=1

tl, E[V ∗
n+1|X(1), ..., X(n)]

}
. (16)

Here V ∗
n represents expected reward if the winner source at

the nth observation does not stop and the optimal stopping
strategy is followed starting from the (n+1)th observation.

Since V ∗
n = V ∗(λ)−λ

n−1∑
l=1

tl, after taking expectation over both

sides of (16) we have:

E

[
V ∗(λ)−λ

n−1∑
l=1

tl

]
=E

[
max

{
τd
2
Rn−λτd−λ

n∑
l=1

tl, V
∗(λ)−λ

n∑
l=1

tl

}]
which leads to V ∗(λ) = E

[
max

{
τd
2
Rn − λτd, V

∗(λ)
}
− λtn

]
.

Setting V ∗(λ∗) = 0, the maximal throughput λ∗ satisfies

E
[
max

{τd
2
Rn − λ∗τd, 0

}]
= λ∗E [tn] = λ∗τo. (17)

And an optimal stopping strategy which maximizes through-
put is of form

N∗=min
{
n ≥1:

τd
2
Rn−λ∗τd≥V ∗(λ∗)

}
=min{n ≥1:Rn≥2λ∗} .

APPENDIX IV
PROOF OF THEOREM 2

By Proposition 1.2.3 in [11], we take ▽f(λ) = λτo −
E
{
max

{
τd
2
Rn − λτd, 0

}}
where ▽f(·) means gradient of

function f(·). Then there is one unique solution satisfying
▽f(λ) = 0, which is λ∗ in our optimal stopping problem.

For the Lipschitz continuity condition, we have
| ▽ f(x) − ▽f(y)| =

∣∣xτo − E
[
max

{
τd
2
Rn − xτd, 0

}]
− yτo +

E
[
max

{
τd
2
Rn − yτd, 0

}] ∣∣ ≤ (τo+τd) |x−y|= C|x − y| where
C = τo + τd. This means the Lipschitz continuity condition in
Proposition 1.2.3 in [11] is satisfied.

Define directions dk as the steepest descent direction

dk
∆
= −▽ f(λk) = E

{
max

{τd
2
Rn − λkτd, 0

}}
− λkτo.

It can be proved that {dk} is gradient related.
Then based on Proposition 1.2.3 in [11], a generated se-

quence {λk} by

λk+1=λk+αkdk when ϵ ≤ α ≤ (2− ϵ) · 1

C
=

2−ϵ

τo+τd
(18)

converges to the stationary point of f , which is λ∗.
Iteration form (18) is actually the iteration form (4).

APPENDIX V
PROOF OF THEOREM 3

We first prove the finiteness of E[R2
m].

E2[R
2
m|F ] = E2

[ L∑
j=1

I ([s(m) = j])

· log22
(
1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1 + Ps|fs(n)j(n)|2 + Pr|gjs(n)(m)|2

) ∣∣F]
=

L∑
j=1

1

L
E2

[
log22

(
1+

PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

) ∣∣F]
(c)

≤
L∑

j=1

1

L

1

(ln 2)2
P 2
r E[|gjs(n)|4] =

L∑
j=1

1

L

2

(ln 2)2
P 2
r σ

4
g < ∞ (19)

where (c) comes from the fact that for x, y ≥ 0, we have

log2

(
1 +

xy

1 + x+ y

)
≤

xy
1+x+y

ln 2
≤ y

ln 2
. (20)

With the finite property of E2[R
2
m|F ], we have

E2[Rm|F ] < ∞. (21)

Then similar to proofs of Lemmas 1 and 2, the existence
conditions of an optimal stopping rule in the sub-layer can
be proved. With the reward as τd

2
Rm − λ τd

2
− λ

m∑
l=1

trl , by

following a similar way to that in proof of Theorem 1, we
can obtain an optimal stopping rule for the sub-layer as the
form: M∗ = min {m ≥ 1 : Rm ≥ λ∗} where λ∗ satisfies the
equality E2 [max (Rm − λ, 0) |F ] =

2λτr
o

τd
. And the existence

and uniqueness of λ∗ can be straightforwardly proved.

APPENDIX VI
PROOF OF COROLLARY 1

E2 [max (Rm − λ, 0) |F ] is a decreasing function from +∞
to 0 with respect to λ, and λτr

o
τd

linearly increases with
respect to λ. Hence, the uniqueness and non-negativeness
of the root λ∗ are guaranteed, since λ∗ is the root of
E2 [max (Rm − λ, 0) |F ] =

2λτr
o

τd
. Further, we have 2λ∗τr

o
τd

=

E2[max(Rm − λ∗, 0) |F ] ≤ E2[Rm|F ]
from (21)

< ∞ which leads
to λ∗ < ∞.

Stopping time M in the sub-layer is geometrically dis-
tributed. Then according to Wald Theorem [10], E2[TM∗ |F ] =

τr
o

1−FRm (λ∗)+
τd
2

. Also, we have E2[YM∗ |F ] =
λ∗τr

o
1−FRm (λ∗)+

λ∗τd
2

.
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APPENDIX VII
PROOF OF THEOREM 4

Recall that to maximize throughput E1[λ∗E2[TM∗ |F]]
E1[E2[TM∗ |F]+TN∗ ]

, we
need to achieve

V ∗(γ∗)= sup
N≥0

{
E1

[
λ∗E2[TM∗|F ]−γ∗

(
E2[TM∗|F ]+

τd
2
+

N∑
l=1

tsl

)]}
where γ∗ satisfies V ∗(γ∗) = 0. To derive an optimal stopping

rule, we first need to calculate V ∗(γ).
For γ ≥ 0, an optimal stopping rule

N∗(γ) = min
{
n ≥ 1: R1

n − γ τd
2
− γR2

n ≥ V ∗(γ)
}

exists (the proof is omitted) and achieves V ∗(γ)

that satisfies the equation E1

[
V ∗(γ)−γ

n−1∑
l=1

tsl

]
=

E1

[
max

{
R1

n − γ τd
2
−γR2

n−γ
n∑

l=1

tsl , V
∗(γ)−γ

n∑
l=1

tsl

}]
, which

leads to V ∗(γ)=E1

[
max

{
R1

n−γ τd
2
−γR2

n, V
∗(γ)

}
−γtsn

]
.

Setting V ∗(γ∗)=0, the maximal throughput γ∗ satisfies

E1

[
max

{
R1

n − γ∗R2
n − γ∗ τd

2
, 0
}]

= τs
o . (22)

And an optimal stopping rule which achieves γ∗ is

N∗ = min
{
n ≥ 1 : R1

n − γ∗R2
n ≥ γ∗ τd

2

}
.

APPENDIX VIII
PROOF OF THEOREM 5

Similar to proof of Theorem 2, Lipschitz continuity condi-
tions in the sub-layer and main layer are derived as follows.

In the sub-layer problem, we have:∣∣∣∣2xτr
o

τd
−E2[max(Rm−x, 0) |F ]− 2yτr

o

τd
+E2[max(Rm−y, 0)|F ]

∣∣∣∣
≤
(
2τr

o

τd
+ 1

)
|x− y|.

Step-size αλ is fixed, which satisfies ϵ ≤ αλ ≤ τd(2−ϵ)
2τr

o+τd
.

In the main-layer problem, we have:∣∣∣∣xτs
o − E1

[
max

(
R1

n − xR2
n − x

τd
2
, 0
)]

− yτs
o

+ E1

[
max

(
R1

n − yR2
n − y

τd
2
, 0
)] ∣∣∣∣

≤
(
τs
o + E1[R

2
n] +

τd
2

)
|x− y|.

Step-sizeαγ is fixed, which satisfies ϵ≤αγ ≤ 2(2−ϵ)

2E1[R2
n]+τd+2τs

o
.

APPENDIX IX
PROOF OF THEOREM 6

Similar to proof of (19), we have E2[(Rm)2] < ∞,
which guarantees existence of an optimal stopping rule. To
achieve maximal reward W ∗(γ) = sup

M≥0
{E2 [YM − γTM |F ]},

an optimal stopping rule takes the form M∗(γ) =
min

{
m ≥ 1 : τd

2
Rm ≥ W ∗(γ) + τd

2
γ
}

where W ∗(γ) satisfies

the equation E2

[
max

(
τd
2
Rm − τd

2
γ,W ∗(γ)

) ∣∣∣∣F] = W ∗(γ) +

γτr
o . By rearranging terms, we have

E2

[
max

(τd
2
Rm − τd

2
γ −W ∗(γ), 0

) ∣∣∣∣F] = γτr
o . (23)

Since the left hand side of (23) continuously decreases from
∞ to 0 with W ∗(γ), while the right hand side is a constant,
a finite unique solution W ∗(γ) always exists.

APPENDIX X
PROOF OF THEOREM 7

Recall that to maximize throughput E1[E2[YM∗ |F]]

E1[E2[TM∗ |F]+TN∗ ]
, we

need to achieve V ∗(γ∗)= sup
N≥0

{
E1

[
W ∗(γ∗)−γ∗

(
τd
2
+

N∑
l=1

tsl

)]}
where γ∗ satisfies V ∗(γ∗)=0.

To derive an optimal stopping rule, we first need to calculate
V ∗(γ). For γ ≥ 0, an optimal stopping rule N∗ to achieve
V ∗(γ) exists which is proved as follows.

Similar to (19), conditioned on F , we have

Rm ≤ max
j∈{1,...,L}

{
log2

(
1+

PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

)}
≤ Ps

ln 2
max

j∈{1,...,L}
|fs(n)j(n)|2. (24)

From (23), we have W ∗(γ) < τd
2

· Ps
ln 2

max
j∈{1,...,L}

|fs(n)j(n)|2,

which leads to E1

[
(W ∗(γ))2

]
<∞ by integrating (W ∗(γ))2 over

joint PDF of
{
|fs(n)1(n)|2, ..., |fs(n)L(n)|2

}
which are indepen-

dently and exponentially distributed i.i.d. random variables.
Similar to proofs of Lemmas 1 and 2, E1

[
W ∗(γ)2

]
<

∞ and E1[(t
s
l )

2] < ∞ guarantee existence of an opti-
mal stopping rule. By using optimal stopping rule N∗(γ)=

min
{
n≥1:W ∗(γ)−τd

2
γ≥V ∗(γ)

}
, we can achieve V ∗(γ) which

satisfies the equation as E1

[
max(W ∗(γ)− τd

2
γ, V ∗(γ))

]
=

V ∗(γ)+γτs
o . Setting V ∗(γ) = 0, the maximal throughput γ∗

satisfies E1

[
max(W ∗(γ∗)− τd

2
γ∗, 0)

]
= γ∗τs

o . And an optimal
stopping rule which maximizes the throughput is N∗ =

min
{
n ≥ 1 : W ∗(γ∗) ≥ τd

2
γ∗}.
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