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Abstract— In this paper, the average rate maximization prob-
lem given transmission power constraints in a decode-and-
forward (DF) relay network over slow fading channels is studied.
For the problem, either long-term or short-term power constraint
is imposed on the source and relays. In each combination of
the power constraints at the source and relays, the original
optimization problem is decomposed into sub-problems, each
corresponding to a specific channel gain realization. For each
sub-problem, a fast algorithm with closed-form solutions is
provided. The case with additional peak power spectrum density
constraints is also investigated. Numerical results are presented
to demonstrate the effectiveness of the algorithms.

I. INTRODUCTION

Recently relay communications have emerged as a solution
to improve transmission reliability and rate, where relays help
forward signal from sources to destinations [1]–[3]. Due to
limited resources of the sources and relays, power allocation
in relay networks is a critical issue, and has received much
attention. For power allocation over relay networks, bit error
rate (BER)/outage probability, network capacity, and received
signal-to-noise ratio (SNR) are popularly used performance
measures, as follows.

• BER/outage probability: In [4], under the assumption of
perfect channel state information (CSI), power allocation
strategies under three scenarios are studied to minimize
the BER. Optimal power allocation strategies are given
in [5] for minimizing the outage probability in relay
networks with perfect CSI, limited CSI, or no CSI.
With the objective of minimizing the outage probability,
optimal power allocation strategies are presented in [6]
for multi-hop relay networks. A two-hop relay network
with one or more relays is considered in [7], and power
allocation strategies are proposed, which are shown to
minimize both the system symbol error rate and outage
probability.

• Network capacity: The sum capacity of multiple source-
destination pairs assisted with relays is investigated in
[8]. Capacity bounds are studied in [9] for a multi-
channel relay network with one relay, and power and/or
time/bandwidth allocation is also discussed. For a relay
network with one relay, outage capacity is studied in [10],
with focus on the upper bounds and lower bounds. With a
quality-of-service constraint on delay, the throughput of a
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relay network is maximized in [11], based on cross-layer
resource allocation.

• Received SNR: In [12], by implementing amplify-and-
forward (AF) transmission mode, a scenario of a source-
destination pair with one and two relays is studied for
a distributed space-time coding (DSTC) system, with
aim at maximizing the SNR at the output of the DSTC
system. Both decode-and-forward (DF) and AF trans-
mission modes are considered in [13] for a source-
destination pair with one or more relays, and the received
SNR at the destination is maximized. Beamforming and
power allocation problems are jointly investigated in [14]
to maximize the received SNR at the destination. The
research in [15] aims at minimizing the total transmission
power with a target outage probability for the received
SNR.

In aforementioned research efforts on relay networks, it can be
seen that, when there are multiple relays, the multiple relays
will forward the same information (received from the source)
to the destination. This can increase the link reliability.

In a practical wireless communication system, the channel
between a transceiver pair experiences fading. Therefore, er-
godic capacity, the expectation of channel capacity over all the
channel fading states, has attracted research attention recently
in resource allocation problems. The ergodic capacity region
together with resource allocation problems in multiple-access
channel is studied in [16]. Ergodic capacity and resource allo-
cation strategies in broadcast channels are given in [17]. The
ergodic capacity and power allocation problems are studied in
[18] under both multiple-access channel and broadcast channel
in cognitive radio networks.

Note that ergodic capacity is defined for fast fading channels
only. When slow fading channel is considered, outage capacity
is a commonly used performance metric [19]. However, in our
paper, we are interested in a setup that is different from the
traditional slow fading model. In our model, in addition to the
slow fading, we assume that the transmitter has the CSI (the
fact that the channel is in slow fading makes this assumption
reasonable). As pointed out in many recent works (e.g. [20]),
the presence of CSI at transmitter makes the average rate a
reasonable alternative performance metric for the slow fading
channel. The transmit rate can be matched to the fading
(e.g., by adaptive modulation) when timely CSI is available
at the transmitter in slow fading. In this case the fading-
induced outages can be essentially eliminated and an average
rate can be achieved, which is defined as the expectation of
rate over a sufficiently long interval and coincides with the
ergodic capacity (i.e., expectation over fading distribution)
when the fading process is ergodic. In our research, we target
at maximizing the average rate in relay networks over slow
fading channels.
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It should be noticed that with the CSI at the transmitter,
there is no need to use codeword spanning over a large number
of fading blocks (but rather, spanning over a single fading
block), as the average rate is just a mathematical average of
the realized instant rates in every fading block. Without using
the long-spanning codeword, delay is not a serious problem
anymore.

In this work, our focus is on maximizing the average
rate of a source-destination pair aided by multiple relays
in a slow fading environment. Since the transmitter can be
adaptive to the fading state when considering the average
rate in slow fading, link outage can be essentially eliminated
and link reliability is not a big problem, and thus, it may
not be necessary for all the relays to forward the same
information to the destination. On the other hand, to increase
the average rate, it is better to let different relays forward
different information to destination. Therefore, we consider
the case that the traffic from the source is split into multiple
streams, each of which goes through a relay. Then it is
essential how to assign the source traffic to the multiple relays
and how the multiple relays relay the assigned traffic. A
good solution is to use orthogonal frequency division multiple
access (OFDMA) technology [21]–[25] to assign each relay
a portion of the available bandwidth of the target source-
destination pair, by means of subcarrier allocation1. Since
different relays experience different fading, some relays may
have good channel conditions while others may have bad
channel quality. Then the relays with good channels should
be assigned more bandwidth portions, while relays with bad
channels should have less or no bandwidth portions. This
means uneven traffic splitting is expected. Further, since the
source or a relay has power constraint (short-term or long-
term), it is also critical how those nodes allocate power for
assigned bandwidth portions to maximize the average rate
and to meet their short-term or long-term power constraints.
In other words, power and bandwidth allocation should be
jointly considered. So, two major differences of our research
problem from existing work for wireless relaying are: first, we
consider maximization of average rate, and the source traffic
is split over multiple relays; and second, we use joint power
and bandwidth allocation.

In the literature, research on ergodic capacity/average rate
of relay networks is still in its infancy, which mainly focuses
on upper and lower bounds. Upper and lower bounds of the
ergodic capacity in a multiple-input multiple-output (MIMO)
relay network are studied in [26], while upper bounds of the
ergodic capacity of a multi-hop relay network are analyzed
in [27]. On the other hand, the research problem of joint
bandwidth and power allocation has been raised very recently
for relay networks. In [28], joint power and bandwidth allo-
cation is studied in a wireless network with multiple source-
destination pairs, each aided by one or no relay to maximize
the sum capacity and minimum capacity of multiple users and
minimize the total power consumption. In [29], power and
bandwidth allocation is considered in a relay network with one
source-destination pair aided by multiple relays to maximize

1Note that OFDMA is a core technique in broadband wireless networks
(e.g., IEEE 802.16 WiMAX, and Long Term Evolution (LTE) proposal in
3GPP). Therefore, our work can be implemented easily in those networks.
In particular, if a source-destination pair is assigned a number of subcarriers
in an OFDMA network, those subcarriers can be further distributed to the
multiple relays.

the capacity. The major differences of our work from [28]
and [29] are: 1) we consider average rate maximization, and
2) source traffic is split into multiple streams over multiple
relays in our work.

In this paper, with the goal as maximizing the average
rate by jointly optimizing transmission power and bandwidth
allocation strategies, we investigate the DF relaying case with
one source, one destination, and multiple relays. Four differ-
ent power constraint scenarios are considered. The research
problem in each scenario is decomposed into sub-problems,
each corresponding to a specific channel gain realization.
Although each sub-problem can be solved by traditional
methods, iterative calculations are needed (with no closed-
form solutions), and the computational complexity involved
may not be desired. In this work, as our major contribution,
we investigate properties of the sub-problems, and provide
fast algorithms with closed-form solutions for them. The
rest of the paper is organized as follows. In Section II the
system model is given and the average rate maximization
problem is formulated. For different scenarios of constraints,
the average rate maximization problem is solved in Section III,
and fast algorithms with closed-form solutions are presented
accordingly. Implementations issues are discussed in Section
IV. Further discussion for the case with peak power spectrum
density constraints is given in Section V. Numerical results
are presented in Section VI, followed by conclusion remarks
in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a target source-destination pair in a wireless
network: source S and destination D. The source-destination
pair is assigned (by the resource allocation coordinator for the
whole network) a portion of the bandwidth of the network
(e.g., by means of subcarrier allocation in OFDMA). To facil-
itate the fast algorithms proposed in this paper, it is suggested
that the bandwidth assigned for a source-destination pair be
within the coherence bandwidth. Since we consider only a
particular source-destination pair in a wireless network (e.g.,
WiMAX, LTE) that may include a large number of source-
destination pairs, the assigned bandwidth for the target source-
destination pair is only a small portion of the total bandwidth
of the network. Therefore, it is reasonable to assume that the
bandwidth for the source-destination pair is smaller than the
coherence bandwidth, and the channel gains (from the source
to relays and from relays to the destination) are flat within the
bandwidth for the source-destination pair. 2

The source-destination pair is assisted by N relays Ri’s (i ∈
N ,where N = {1, 2, ..., N}). The DF method is employed
by relays. Denote the channel gain between the source S and
Relay Ri as gi, and the channel gain between Relay Ri and
the destination D as hi, which, as mentioned above, are flat
within the assigned bandwidth for the source-destination pair.

2If the assigned bandwidth is not within the coherence bandwidth (for
example, the assigned bandwidth is big, or the assigned subcarriers are not
consecutive), a new optimization problem can be formulated. If the assigned
bandwidth consists of several flat-fading sub-bands each with a number
of subcarriers, the new problem is still convex, and thus, can be solved
numerically by traditional methods. However, unlike the case when assigned
bandwidth is within the coherence bandwidth in our paper, no fast algorithms
with closed-form solutions can be found. On the other hand, if the source-
destination pair is assigned a number of subcarriers each with different channel
gain, the new problem is a mixed-integer problem, and is NP-hard.
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All the channel gains are supposed to be block-fading, which
means the channel gains keep stable within each transmission
block. At the beginning of each fading block, the source can
measure channel gains gi’s and hi’s (i ∈ N ), which can be
implemented by a training scheme, detailed in Section IV-A.
For simplicity of presentation, the bandwidth for the source-
destination pair is normalized to be 1. Relay Ri is assigned a
portion, denoted as xi, of the bandwidth, referred to as sub-
band i, for transmission from the source to Ri and from Ri to
the destination. The source transmits different information to
different relays. After decoding the information received from
the source, each relay forwards the decoded information to the
destination over its assigned sub-band.

Denote the transmission power of the source on sub-band
i as Pi, and the transmission power of Relay Ri as Qi. By
normalizing the power spectrum density of background noise
as 1, the channel capacity on the path S → Ri → D, or say
Link i, can be expressed as

Ci = min

(
xi ln

(
1 +

Pigi
xi

)
, xi ln

(
1 +

Qihi

xi

))
. (1)

Then the total channel capacity from the source S to the
destination D is

C =

N∑
i=1

Ci. (2)

Channel gains gi and hi are assumed to be ergodic pro-
cesses over fading blocks. Denote the joint probability density
function (PDF) of the channel gains as f(g, h), where g =
(g1, ..., gN ) and h = (h1, ..., hN ). It is reasonable to further
assume that gi’s and hi’s are independent from each other
[30]. In this case, power and bandwidth allocation should be
based on the instantaneous channel states. Denote the power
allocation policy to be Pi and Qi, and the bandwidth allocation
strategy to be xi. Note that Pi, Qi and xi are all dependent on
the fading state g and h, which are omitted in the notations
of Pi, Qi and xi for the sake of simplicity. Then the expected
rate from the source S to the destination D, referred to as the
average rate, is

Ce = E

[
N∑
i=1

min

(
xi ln

(
1 +

Pigi
xi

)
,

xi ln

(
1 +

Qihi

xi

))]
(3)

where E means expectation for g and h. And we have

Pi ≥ 0, ∀i ∈ N (4)

Qi ≥ 0, ∀i ∈ N (5)

xi ≥ 0, ∀i ∈ N ;

N∑
i=1

xi ≤ 1. (6)

In addition, the transmission power at the source and relays
is limited. The instantaneous source power may be bounded
by a pre-specified value PST , referred to as short-term source-
power constraint, given as

N∑
i=1

Pi ≤ PST , (7)

or the average source power may be bounded by a pre-
specified value PLT , referred to as long-term source-power
constraint, given as

E

[
N∑
i=1

Pi

]
≤ PLT . (8)

Similarly, the short-term relay-power constraint bounds the
instantaneous power at Relay Ri by QST

i , given as

Qi ≤ QST
i , ∀i ∈ N (9)

while the long-term relay-power constraint bounds the average
power at Relay Ri by QLT

i , given as

E [Qi] ≤ QLT
i , ∀i ∈ N . (10)

And a group of optimization problems can be formulated in
the following form.3

Problem P1 :

max
{Pi},{Qi},{xi}

E
[ N∑
i=1

min
(
xi ln

(
1 + Pigi

xi

)
,

xi ln
(
1 + Qihi

xi

)) ]
s.t. (4), (5) and (6),

(7) or (8) ,
(9) or (10) .

(11)

We need to derive the power and bandwidth allocation Pi’s,
Qi’s and xi’s with respect to every specific channel realization
g and h.

Note that for Link i, when the channel capacity from the
source to Relay Ri is equal to that from Relay Ri to the
destination, we have xi ln

(
1 + Pigi

xi

)
= xi ln

(
1 + Qihi

xi

)
, or

equivalently
Pigi = Qihi. (12)

Suppose in an optimal solution of Problem P1 we have P ∗
i

and Q∗
i for Link i. We claim that P ∗

i and Q∗
i must satisfy

equation (12). The claim is reasonable for the following
reason. Suppose P ∗

i and Q∗
i do not satisfy equation (12),

for example, P ∗
i gi < Q∗

i hi. Then, if we change Q∗
i to

P ∗
i gi/hi (which is less than Q∗

i ), we can reach the same utility
value of Problem P1 with lower power from Relay Ri to the
destination.

With the above claim, the short-term and long-term trans-
mission power constraints of Qi in (9) and (10) become

Pigi
hi

≤ QST
i ,∀i ∈ N , (13)

and

E
[
Pigi
hi

]
≤ QLT

i ,∀i ∈ N (14)

respectively.
Therefore, Problem P1 is equivalent to Problem P2 shown

on the next page, which is convex (the proof is given in
Appendix I).

3Note that here we assume the source (or relay) power constraint is either
short-term or long-term, not both, and our target is on fast algorithms with
closed-form solutions. With both short-term and long-term power constraints
at either the source or relays, no fast algorithms with closed-form solutions can
be found, and traditional methods such as sub-gradient methods and interior-
point algorithms may be used to solve the problems numerically.
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Problem P2 :

max
{Pi},{xi}

E
[

N∑
i=1

xi ln
(
1 + Pigi

xi

)]
s.t. Pi ≥ 0, xi ≥ 0,∀i ∈ N ;

N∑
i=1

xi ≤ 1

N∑
i=1

Pi ≤ PST (short-term) or E
[

N∑
i=1

Pi

]
≤ PLT (long-term)

Pigi
hi

≤ QST
i (short-term) or E

[
Pigi
hi

]
≤ QLT

i (long-term), ∀i ∈ N .

(15)

The resource allocation is conducted at the source S. In
the following two sections, we will focus on how to solve
the resource allocation problem and how to implement the
resource allocation, respectively.

III. AVERAGE RATE MAXIMIZATION

In this section, Problem P2 with four scenarios of power
constraints is studied sequentially. In each scenario, optimal
bandwidth and power allocation strategy are derived.

A. Scenario with Long-term Source-power and Long-term
Relay-power Constraints

In this scenario, the Lagrangian of Problem P2 can be
written as

L({Pi}, {xi}, {µi}, λ)

= E
[

N∑
i=1

xi ln
(
1 + Pigi

xi

)]
− λ

(
E
[

N∑
i=1

Pi

]
− PLT

)
−

N∑
i=1

µi

(
E
[
Pigi
hi

]
−QLT

i

)
(16)

where µi and λ are non-negative Lagrange multipliers corre-

sponding to the constrains E
[
Pigi
hi

]
≤ QLT

i and E
[

N∑
i=1

Pi

]
≤

PLT , respectively. Then the Lagrange dual function is given
as

D(λ, {µi}) = max
{Pi}, {xi}

L({Pi}, {xi}, {µi}, λ)

s.t. Pi ≥ 0, xi ≥ 0, ∀i ∈ N ;
N∑
i=1

xi ≤ 1.
(17)

Since Problem P2 in this scenario is convex, and strictly
feasible points are available in this problem, which satisfies the
Slater’s condition [31], the minimum of the duality function

min
λ≥0, µi≥0, i∈N

D(λ, {µi}) (18)

is guaranteed to achieve the optimal utility of Problem P2.
Therefore, optimizing Problem P2 is equivalent to minimizing
the duality function D(λ, {µi}). To converge to the minimum
of D(λ, {µi}), the Lagrange multipliers λ and µi’s can be
updated by resorting to the sub-gradient method [32] as

λ(t+ 1) =

(
λ(t)− a(t)

(
PLT − E

[
N∑
i=1

Pi(t)

]))+

(19)

and

µi(t+ 1) =

(
µi(t)− a(t)

(
QLT

i − E
[
Pi(t)gi

hi

]))+

,

∀i ∈ N (20)

where Pi(t) is the optimal power allocation solution of the
dual function in (17) at the tth iteration, a(t) is the positive
step size at the tth iteration, and (x)+ = max(x, 0).

In other words, Problem P2 is decomposed into two levels.
In the higher level, λ and µi’s are updated iteratively as in
(19) and (20). In the lower level, the Lagrange dual function
in (17) is obtained for each iteration.

The update of λ and µi’s in (19) and (20) will be discussed
in Section IV-B. So next we focus on how to obtain the
optimal solution of the dual function in (17),4 i.e., how to
obtain D(λ, {µi}) for given λ and µi’s.

It can be seen that the optimization problem in (17) can be
solved by investigating the sub-problem as follows for every
realization of channel gains g and h.

max
{Pi}, {xi}

N∑
i=1

xi ln
(
1 + Pigi

xi

)
− λ

N∑
i=1

Pi −
N∑
i=1

µi
Pigi
hi

s.t. Pi ≥ 0, xi ≥ 0, ∀i ∈ N ;
∑N

i=1 xi ≤ 1.
(21)

Note that for the ease of presentation, the constant terms λPLT

and
N∑
i=1

µiQ
LT
i in the objective function are discarded.

The sub-problem in (21) is a convex problem, and tradi-
tionally, can be solved by numerical optimization methods,
such as sub-gradient method and interior-point algorithm [33].
However, the traditional methods require iterative calculations
and can only numerically achieve the optimal solution (i.e.,
no closed-form solution is achieved). In this paper, we will
not use the numerical methods to solve the sub-problem in
(21). Rather, we will use KKT conditions to analyze special
properties of the convex sub-problem in (21). Based on the
special properties, we give a fast algorithm with a closed-
form optimal solution for the sub-problem, which avoids high
computational complexity.

The sub-problem in (21) satisfies the Slater’s condition.
Then, the KKT condition which serves as a sufficient and
necessary condition for the optimal solution can be listed as

4Note that the method in Section IV-B also applies for the scenarios
discussed in Section III-B, III-C, and III-D. So in those three subsections,
we also focus only on the lower-level problems.
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follows [31].

ln

(
1 +

Pigi
xi

)
− Pigi

xi + Pigi
− Γ∗ + δ∗i = 0, ∀i ∈ N (22a)

xigi
xi + giPi

− λ− µigi
hi

+∆∗
i = 0, ∀i ∈ N (22b)

∆∗
iPi = 0, δ∗i xi = 0, ∀i ∈ N ; Γ∗

(
N∑
i=1

xi − 1

)
= 0 (22c)

Pi ≥ 0, xi ≥ 0, ∀i ∈ N ;
N∑
i=1

xi ≤ 1. (22d)

in which ∆∗
i , δ∗i and Γ∗ are non-negative Lagrange multipliers

associated with constraints Pi ≥ 0, xi ≥ 0, and
∑N

i=1 xi ≤ 1,
respectively. In this paper, when superscript ∗ is used for
a Lagrange multiplier, it means the Lagrange multiplier is
associated with a sub-problem for a realization of (g, h) (to
distinguish from the Lagrange multipliers associated with the
original optimization problem P2). Equations (22a) and (22b)
are obtained by setting the derivative of the Lagrangian of
the sub-problem in (21) with respect to xi and Pi as 0,
respectively. The following lemma is in order for the KKT
condition (22a)-(22d).

Lemma 1: If A = {j|Pj > 0, xj > 0} ̸= ∅ (null set), then
|A| ≤ 1.

Proof: Define SNRi =
Pigi
xi

. Equations (22a) and (22b)
can be rewritten as

ln(1 + SNRi)−
SNRi

1 + SNRi
= Γ∗ − δ∗i , ∀i ∈ N (23a)

1

1 + SNRi
=

λ

gi
+

µi

hi
− ∆∗

i

gi
, ∀i ∈ N . (23b)

Suppose i† ∈ A. From (22c) it can be seen that δ∗i† and ∆∗
i†

should be zero. Define S(x)
△
= ln(1 + x) − x

1+x , which is
a monotonic increasing non-negative function of non-negative
x. Since SNRi† =

P
i†gi†
x
i†

∈ (0,+∞) and δ∗i† = 0, from (23a)
we have

Γ∗ = S(SNRi†) + δ∗i† = S(SNRi†) ∈ (0,+∞).

When λ and µi† are nonzero (this case is general in the
updating procedure of λ and µi†), after dividing the left- and
right-hand sides of (23a) by the left- and right-hand sides of
(23b), respectively, for i†, we get

(1 + SNRi†) ln(1 + SNRi†)− SNRi† =
Γ∗

λ
g
i†

+
µ
i†

h
i†

. (24)

Define T (x)
△
= (1 + x) ln(1 + x) − x, which is a monotonic

increasing non-negative function of non-negative x. From
(23a) and (24), we have

S

(
T−1

(
Γ∗

λ
g
i†

+
µ
i†

h
i†

))
= Γ∗ (25)

and S(T−1(·)) is a monotonic increasing function. So if there
exists i‡(̸= i†) ∈ A, it should also satisfy equation (25), which
leads to

Γ∗

λ
g
i†

+
µ
i†

h
i†

=
Γ∗

λ
g
i‡

+
µ
i‡

h
i‡

. (26)

Note that gi† , hi† , gi‡ and hi‡ are independent channel gains,
while λ, µi† and µi‡ are fixed for the problem in (21).
Therefore, the probability that equation (26) holds is zero.
So there is at most one element in set A almost surely, i.e.,
|A| ≤ 1. This completes the proof.5

Note that A is actually the set of selected relays, i.e., with
non-zero power and bandwidth assignment. Therefore, Lemma
1 indicates that either of the two following cases happens:
i) no relay is assigned bandwidth and power (e.g., when the
channels are poor, it may be better not to transmit, since the
power constraints are in a long-term scale); ii) only one relay
is selected.

From Lemma 1, it is clear that, if i ∈ A, then i is unique
and xi = 1 since the objective function of the sub-problem in
(21) is an increasing function with respect to xi. Substituting
xi = 1 in equation (22b), we have

Pi =
hi

λhi + µigi
− 1

gi
(27)

and the corresponding achieved utility of the sub-problem in
(21) is λ

gi
+ µi

hi
− ln

(
λ
gi

+ µi

hi

)
− 1. Since Pi > 0, we have

λ
gi
+ µi

hi
< 1, based on (27). The above achieved utility can be

proved to be always positive when λ
gi

+ µi

hi
> 0. On the other

hand, the utility, i.e., λ
gi

+ µi

hi
− ln

(
λ
gi

+ µi

hi

)
− 1, decreases

if λ
gi

+ µi

hi
increases within range (0, 1). Therefore, if there is

no relay that satisfies λ
gi

+ µi

hi
< 1, then no relay is selected;

otherwise, the relay with the minimum value of λ
gi

+ µi

hi
is

selected.
Then the optimal solution for the sub-problem in (21) can

be obtained in the procedure as follows.

Algorithm 1 Searching procedure for the optimal solution of
the sub-problem in (21).

1: Define set I △
= {i| λgi +

µi

hi
< 1}.

2: if I = ∅ then
3: The maximal utility is 0, with Pi = 0 and xi = 0,

∀i ∈ N .
4: else
5: Find i∗ = argmin

i∈I

(
λ
gi

+ µi

hi

)
.

Output the optimal index i∗, with optimal bandwidth
and power allocation strategy xi∗ = 1 and Pi∗ =

hi∗
λhi∗+µi∗gi∗

− 1
gi∗

, respectively, and the maximal utility(
λ
gi∗

+ µi∗
hi∗

− ln( λ
gi∗

+ µi∗
hi∗

)− 1
)

.

It can be seen that the complexity of Algorithm 1 is O(N).
Remark: When the source- and relay-power constraints are

both long-term, if no relay is with good channels at one
moment, then it is reasonable not to select any relay at this
moment, to save power for moments when relays are with
good channels. And if there are relays with good channels,
then it is good to select the relay with the best channels.
Since each relay is associated with two channels (from the
source and to the destination), Algorithm 1 indicates a metric
to measure the overall quality of the two channels with a
relay, i.e., λ

gi
+ µi

hi
. This metric is reasonable since it includes

5Note that a similar proof method is adopted in [34].
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the channel gains of the two channels. Interestingly, when the
measure is below a fixed value 1, the relay is considered to
be with overall good channels.

B. Scenario with Short-term Source-power and Long-term
Relay-power Constraints

Similar to Section III-A, Problem P2 in this scenario
(with short-term source-power and long-term relay-power con-
straints) can be solved by investigating the following sub-
problem for each realization of (g, h)

max
{Pi}, {xi}

N∑
i=1

xi ln

(
1 +

Pigi
xi

)
−

N∑
i=1

µi
Pigi
hi

s.t.
N∑
i=1

Pi ≤ PST (28a)

Pi ≥ 0, xi ≥ 0, ∀i ∈ N ;

N∑
i=1

xi ≤ 1

(28b)

which is a convex problem satisfying Slater’s condition. To
analyze this sub-problem, the KKT condition is listed as
follows.

ln

(
1 +

Pigi
xi

)
− Pigi

xi + Pigi
− Γ∗ + δ∗i = 0, ∀i ∈ N (29a)

xigi
xi + giPi

− λ∗ − µigi
hi

+∆∗
i = 0, ∀i ∈ N (29b)

λ∗

(
N∑
i=1

Pi − PST

)
= 0 (29c)

∆∗
iPi = 0, δ∗i xi = 0, ∀i ∈ N ; Γ∗

(
N∑
i=1

xi − 1

)
= 0 (29d)

Constraints (28a) – (28b) (29e)

where λ∗, ∆∗
i , δ∗i , and Γ∗ are non-negative Lagrange multi-

pliers associated with constraints
∑N

i=1 Pi ≤ PST , Pi ≥ 0,
xi ≥ 0, and

∑N
i=1 xi ≤ 1, respectively.

For the KKT condition, the following lemmas are in order.
Lemma 2: If A △

= {j|Pj > 0, xj > 0} ≠ ∅,

• when the constraint
N∑
i=1

Pi ≤ PST in (28a) is inactive6,

|A| = 1.

• when the constraint
N∑
i=1

Pi ≤ PST in (28a) is active,

|A| ≤ 2.
Proof: Please refer to Appendix II.

Lemma 3: For ∀i, j ∈ A, SNRi = SNRj .
Proof: Please refer to Appendix III.

Lemma 2 and Lemma 3 indicate that, in the scenario, at
most two relays are selected. And the SNR for all selected
relays should be the same.

Define a new set B △
= {j|Pj = 0, xj = 0}. Note

that set B includes relays that are not selected. Therefore,

6At the optimal point of the problem (say in (28)), if the equality in

constraint
N∑
i=1

Pi ≤ PST holds (i.e.,
N∑
i=1

Pi = PST ), we say the constraint

is active; otherwise, we say it is inactive.

A
∪
B = {1, ..., N}.7 Considering the conclusion of Lemma

3 and constraint
∑N

i=1 xi ≤ 1, the common SNR indicated by
Lemma 3 is shown to be SNR =

∑
i∈A

giPi. Then the utility of

the sub-problem in (28) is

N∑
i=1

xi ln
(
1 + Pigi

xi

)
−

N∑
i=1

µi
Pigi
hi

=
∑
i∈A

xi ln (1 + SNR)−
N∑
i=1

µi
Pigi
hi

= ln

(
1 +

∑
i∈A

giPi

)
−

N∑
i=1

µi
Pigi
hi

= ln

(
1 +

N∑
i=1

giPi

)
−

N∑
i=1

µi
Pigi
hi

(30)

where the second equality is because
∑
i∈A

xi = 1 and the third

equality is because Pi = 0 for ∀i ∈ B and A
∪
B = N . Then

the sub-problem in (28) is equivalent to

max
{Pi}, {xi}

ln

(
1 +

N∑
i=1

Pigi

)
−

N∑
i=1

µi
Pigi
hi

s.t.
N∑
i=1

Pi ≤ PST (31a)

Pi ≥ 0,∀i ∈ N . (31b)

Recall that at most two relays are selected.
• When there are two selected relays, there are totally(

N
2

)
= N(N−1)

2 possible combinations of the two relays.
In a specific combination, denote the two selected relays
as Ri and Rj . The problem in (31) is re-written as

max
Pi,Pj

ln (1 + Pigi + Pjgj)−
(
µi

Pigi
hi

+ µj
Pjgj
hj

)
s.t. Pi ≥ 0, Pj ≥ 0,

Pi + Pj = PST

the closed-form solution of which can be obtained
straightforwardly based on corresponding KKT condition,
and is omitted here.

• When there is only one selected relay, there are totally
N possible cases for the selected relay. For each specific
case, denote the selected relay as Ri. Set the derivative of
the utility function of the problem in (31) as zero. Then,
we can get the power allocation for the link from the
source to Relay Ri, given as

Pi =

[
1

gi

(
hi

µi
− 1

)]PST

0

where [x]ba is defined as max(min(b, x), a). Note that
when Pi = 0, it means that no relay is selected.

Comparing the N(N−1)
2 +N optimal utilities for the above

cases, we can obtain the maximal utility of problem in (31)
(the largest among the N + N(N−1)

2 optimal utilities) and the
associated power allocation strategy. Note that when all the
N + N(N−1)

2 optimal utilities are non-positive, then no relay
is selected. The computational complexity is O(N2).

7Note that cases of “Pj > 0, xj = 0” and “Pj = 0, xj > 0” are omitted
because neither of them achieves a utility more than that in the case “Pj =
0, xj = 0” for the sub-problem in (28).



7

For bandwidth allocation strategy, when there is only one
selected relay (say Relay Ri) in the above optimal power
allocation, it can be seen that xi = 1, as the utility function
in (28) is an increasing function of xi. When there are two
selected relays (say Relays Ri and Rj), we have xi + xj = 1
(since the utility function in (28) is an increasing function of
xi and xj), which leads to SNRi = SNRj = Pigi+Pjgj (from
Lemma 3), and further we have xi =

Pigi
SNRi

= Pigi
Pigi+Pjgj

, and

xj =
Pjgj
SNRj

=
Pjgj

Pigi+Pjgj
.

Remark: Comparing with Section III-A, the scenario in
Section III-B has short-term source-power constraint, which
reduces the flexibility in power and bandwidth allocation. The
reduced flexibility is the main reason that at most one relay
is selected in the scenario in Section III-A, while two relays
may be selected in the scenario in Section III-B. The reduced
flexibility is also the reason that, with short-term source-power
constraint, we do not have that simple metric as in Algorithm
1 to determine which relay(s) to be selected.

C. Scenario with Long-term Source-power and Short-term
Relay-power Constraints

In this scenario, the sub-problem for every realization of
(g,h) is

max
{Pi}, {xi}

N∑
i=1

xi ln

(
1 +

Pigi
xi

)
− λ

N∑
i=1

Pi

s.t.
Pigi
hi

≤ QST
i , ∀i ∈ N (32a)

Pi ≥ 0, xi ≥ 0, ∀i ∈ N ;
N∑
i=1

xi ≤ 1.

(32b)

The sub-problem in (32) is a convex problem satisfying
Slater’s condition. The KKT condition is

ln

(
1 +

Pigi
xi

)
− Pigi

xi + Pigi
− Γ∗ + δ∗i = 0, ∀i ∈ N (33a)

xigi
xi + giPi

− λ− µ∗
i gi
hi

+∆∗
i = 0, ∀i ∈ N (33b)

µ∗
i

(
Pigi
hi

−QST
i

)
= 0, ∀i ∈ N (33c)

∆∗
iPi = 0, δ∗i xi = 0, ∀i ∈ N ; Γ∗

(
N∑
i=1

xi − 1

)
= 0 (33d)

Constraints (32a) – (32b) (33e)

where µ∗
i , ∆∗

i , δ∗i , and Γ∗ are non-negative Lagrange multipli-
ers associated with constraints Pigi

hi
≤ QST

i , Pi ≥ 0, xi ≥ 0,
and

∑N
i=1 xi ≤ 1, respectively.

Define A △
= {j|Pj > 0, xj > 0} = A1 ∪

A2, where A1
△
=

{
j|Pj =

QST
j hj

gj
, xj > 0

}
and A2

△
={

j|0 < Pj <
QST

j hj

gj
, xj > 0

}
. Note that A includes the se-

lected relays. From (12) it can be seen that A1 includes the
selected relays with power (for its hop to destination) being
the maximal allowed power, while A2 includes the selected
relays with power (for its hop to destination) less than the

maximal allowed power. By analyzing the KKT condition in
(33), a series of lemmas can be expected as follows.

Lemma 4: When A ̸= ∅, |A2| ≤ 1.
The proof is similar to that of Lemma 1, and is omitted here.
Note that in the proof, we have µ∗

i = 0, i ∈ A2 (based on
(33c)).

Lemma 5: For ∀i, j ∈ A, SNRi = SNRj .
Proof: Please refer to the proof of Lemma 3.

Lemma 6: For ∀i ∈ A1 and ∀j ∈ A2, gi ≥ gj .
Proof: Please refer to Appendix IV.

Lemmas 4–6 indicate that, among all the selected relays, at
most one relay transmits over its link to the destination with
power less than the maximal allowed power, while all other
selected relays use the maximal allowed power; and the relay
with less than maximal allowed power has less channel gain in
the first hop (from the source to the relay) than other selected
relays. All selected relays have the same SNR.

With the aid of Lemma 5 and by following the same pro-
cedure in Section III-B, the sub-problem in (32) is equivalent
to the following optimization problem

max
{Pi}

ln

(
1 +

N∑
i=1

Pigi

)
− λ

N∑
i=1

Pi

s.t. 0 ≤ Pi ≤ QST
i hi

gi
,∀i ∈ N .

(34)

For the solution of the problem in (34), the following lemma
is in order.

Lemma 7: For ∀k ∈ B and ∀j ∈ A, gk ≤ gj .
Proof: Please refer to Appendix V.

From Lemmas 4, 6, and 7, it is clear that, in the optimal
solution of the problem in (34), the set of all the links (i.e.,
{1, ..., N}) can be partitioned into three sub-sets, A1 (in
which each relay uses its maximal allowed power), A2 (where
|A2| ≤ 1, in which the relay, if exists, uses less than its
maximal allowed power) and B (which included relays that
are not selected); and for ∀i ∈ A1, j ∈ A2, k ∈ B, we have
gi ≥ gj ≥ gk. If we sort the N links in descending order
of the channel gains gi’s, i.e., gs1 ≥ gs2 ≥ .... ≥ gsN , where
(s1, ..., sN ) is a permutation of (1, ..., N), then there are N+1
possible cases for the optimal solution of the problem in (34):
in Case j, there are j − 1 channels in set A1, detailed as
follows.

• Case 1: A1 = ∅, s1 ∈ A2 ∪ B, and s2, s3, ..., sN ∈ B,
which means Ps1 ∈ [0,

QST
s1

hs1

gs1
), and Ps2 = Ps3 = ... =

PsN = 0.
• Case 2: A1 = {s1}, s2 ∈ A2 ∪B, and s3, s4, ..., sN ∈ B,

which means Ps1 =
QST

s1
hs1

gs1
, Ps2 ∈ [0,

QST
s2

hs2

gs2
), and

Ps3 = Ps4 = ... = PsN = 0.
...

• Case j: A1 = {s1, s2, ..., sj−1}, sj ∈ A2 ∪ B, and

sj+1, sj+2, ..., sN ∈ B, which means Psi =
QST

si
hsi

gsi
for

i = 1, 2, ..., j − 1, Psj ∈ [0,
QST

sj
hsj

gsj
), and Psj+1 =

Psj+2 = ... = PsN = 0.
...

• Case N + 1: A1 = {s1, s2, ..., sN}, which means Psi =
QST

si
hsi

gsi
for i = 1, ..., N .
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Therefore, to solve the problem in (34), we need to search
the N +1 cases only. We can first find the optimal8 solutions
in Cases 1, 2, ..., and N + 1, respectively. Then the optimal
solution with the largest objective function among the N + 1
cases will be the global optimal solution for problem in (34).

Next we show how to find the optimal solutions for the
N + 1 cases.

In Case j ≤ N , the power allocation values for all links
(except Link sj) are known (for i < j, Link si uses its
maximal allowed power in the second hop; for i > j, Link sj
is not assigned power). Denote the power allocation value for
Link sj in Case j as φj , the optimal value of which is to be
determined as follows.

For the problem in (34), the achieved utility in Case j is
given as

ln

(
1 +

j−1∑
i=1

QST
si hsi + φjgsj

)
− λ

(
j−1∑
i=1

QST
si hsi

gsi
+ φj

)
.

(35)
The optimal φj can be obtained by setting the derivative of
(35) to zero, given as

gsj

1 +
j−1∑
i=1

QST
si hsi + φjgsj

− λ = 0. (36)

Generally after optimal utility values in the N +1 cases are
obtained, the largest one is the optimal utility of the problem
in (34).

Actually it may not be necessary to search all the N + 1
cases. To demonstrate this, we take a look at (36) first, for
which we have the following three observations for the optimal
φj , denoted φ∗

j .

• When 1+
j−1∑
i=1

QST
si hsi <

gsj
λ < 1+

j∑
i=1

QST
si hsi , we have

φ∗
j =

1

gsj

(
gsj
λ

− 1−
j−1∑
i=1

QST
si hsi

)
∈

(
0,

QST
sj hsj

gsj

)
.

• When
gsj
λ ≤ 1 +

j−1∑
i=1

QST
si hsi , the solution for (36) is

1
gsj

(
gsj
λ − 1−

j−1∑
i=1

QST
si hsi

)
≤ 0. Since the feasible

region of φj is [0,
QST

sj
hsj

gsj
), the optimal solution for Case

j is φ∗
j = 0.

• When
gsj
λ ≥ 1 +

j∑
i=1

QST
si hsi , the solution for (36) is

1
gsj

(
gsj
λ − 1−

j−1∑
i=1

QST
si hsi

)
≥

QST
sj

hsj

gsj
. However, the

feasible region of φj is [0,
QST

sj
hsj

gsj
). It can be seen that

the maximal utility in the feasible region in Case j is

less than the utility when φj =
QST

sj
hsj

gsj
. The utility in

the latter case is not greater than the maximal utility in

Case j+1. Therefore, we can virtually set φ∗
j =

QST
sj

hsj

gsj
.

8Note that this optimal solution is limited to a particular case, not global
optimal solution.

Define j† = argminj

(
φ∗
j ∈ [0,

QST
sj

hsj

gsj
)

)
. The following

lemma is in order.

Lemma 8: The maximal utility in Case j† is the maximal
utility of problem in (34).

Proof: Please refer to Appendix VI.

Lemma 8 tells that, to obtain the optimal solution for
problem (34), we need only search until the first case (say

Case j) such that φ∗
j is not equal to

QST
sj

hsj

gsj
. Accordingly, the

optimal solution of the problem in (34) can be searched as
follows.

Algorithm 2 Searching procedure for the optimal solution of
the problem in (34).

1: Sort the N links in descending order of the channel gains
gi’s, i.e., gs1 ≥ gs2 ≥ .... ≥ gsN .

2: Find j† = argminj

(
φ∗
j <

QST
sj

hsj

gsj

)
3: Output the optimal power configuration: Psj =

QST
sj

hsj

gsj

for 0 < j < j†, Psj = 1
gsj

(
gsj
λ − 1−

j−1∑
i=1

QST
si hsi

)
for j = j†, and Psj = 0 for j > j†. The maximal

utility is ln

(
1 +

j†∑
i=1

Psigsi

)
− λ

j†∑
i=1

Psi . The bandwidth

configuration is xsj =
Psj

gsj
j†∑
i=1

Psi
gsi

, j ∈ N .

In Step 3 of the algorithm, the bandwidth configuration is
from the fact that, for ∀j ∈ A, SNRj =

∑
i∈A

giPi.

It can be seen that the complexity of the algorithm is O(N).

Remark: Compared to the scenario in Section III-A, the
short-term source-power constraint in Section III-B changes
the upper bound of the number of selected relays from one to
two, while the short-term relay-power constraint in Section
III-C makes all selected relays except one transmit to the
destination with their maximal allowed power levels. The
difference of the impact of short-term source-power constraint
and short-term relay-power constraint lies in the fact that the
source power is used to transmit to all selected relays while
the relay power is used to transmit to the destination only.
Interestingly, with short-term relay-power constraints, relays
with larger channel gains gi’s are selected. Note that it does
not mean the relay selection is independent of hi’s, since hi’s
affect how many relays are selected.

D. Scenario with Short-term Source-power and Short-term
Relay-power Constraints

Similar to previous subsections, the following sub-problem
is expected to be solved for every realization of (g, h) in this
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scenario.

max
{Pi}, {xi}

N∑
i=1

xi ln

(
1 +

Pigi
xi

)
s.t.

Pigi
hi

≤ QST ,∀i ∈ N (37a)

N∑
i=1

Pi ≤ PST , (37b)

Pi ≥ 0, xi ≥ 0, ∀i ∈ N ;
N∑
i=1

xi ≤ 1.

(37c)

The KKT condition is written as follows.

ln(1 +
Pigi
xi

)− Pigi
xi + Pigi

− Γ∗ + δ∗i = 0, ∀i ∈ N (38a)

xigi
xi + giPi

− λ∗ − µ∗
i gi
hi

+∆∗
i = 0, ∀i ∈ N (38b)

λ∗

(
N∑
i=1

Pi − PST

)
= 0 (38c)

µ∗
i

(
Pigi
hi

−QST
i

)
= 0, ∀i ∈ N (38d)

∆∗
iPi = 0, δ∗i xi = 0, ∀i ∈ N ; Γ∗

(
N∑
i=1

xi − 1

)
= 0 (38e)

Constraints (37a) – (37c) (38f)

where µ∗
i , λ∗, ∆∗

i , δ∗i , and Γ∗ are non-negative Lagrange mul-
tipliers associated with constraints Pigi

hi
≤ QST ,

∑N
i=1 Pi ≤

PST , Pi ≥ 0, xi ≥ 0, and
∑N

i=1 xi ≤ 1, respectively.
Define A = {j|Pj > 0, xj > 0} = A1

∪
A2 where

A1 = {j|Pj =
QST

j hj

gj
, xj > 0} and A2 = {j|0 < Pj <

QST
j hj

gj
, xj > 0}. Define B = {j|Pj = 0, xj = 0}. So A, A1,

A2, and B have the same physical meanings as in Section
III-C.

To solve the sub-problem in (37), the following lemmas are
in order.

Lemma 9:
• When the constraint in (37b) is inactive, |A2| = 0.
• When the constraint in (37b) is active, the associated

Lagrange multiplier λ∗ > 0, and |A2| ≤ 1.
Proof: Please refer to Appendix VII.

Similar to Lemmas 5-7, we have the following lemmas (with
proofs omitted).

Lemma 10: For ∀i, j ∈ A,SNRi = SNRj .
Lemma 11: For ∀i ∈ A1 and ∀j ∈ A2, gi ≥ gj .
Lemma 12: For ∀j ∈ A and ∀k ∈ B, gj ≥ gk.
Similar to Section III-C, the sub-problem in (37) can be

reduced (according to Lemma 10) to the following problem

max
{Pi}

ln

(
1 +

N∑
i=1

Pigi

)

s.t. 0 ≤ Pi ≤
QST

i hi

gi
, ∀i ∈ N (39a)

N∑
i=1

Pi ≤ PST . (39b)

It can be easily proved that the problem in (39) can be
solved as follows (the proof is omitted). First sort all the
links, {1, ..., N}, based on the descending order of channel
gains gi’s such that gs1 ≥ gs2 ≥ ... ≥ gsN . Denote

i∗ = argmini
i∑

j=1

QST
sj

hsj

gsj
> PST .9 Then the solution for the

problem in (39) is: Psi =
QST

si
hsi

gsi
, i = 1, ..., i∗ − 1; Psi∗ =

PST −
i∗−1∑
i=1

QST
si

hsi

gsi
; and Psi = 0, i = i∗ + 1, i∗ + 2, ..., N ;

xsi =
Psi

gsi
i∗∑
i=1

Psi
gsi

, i ∈ N . The computational complexity is

O(N).
Remark: Similar to Section III-C, relays with larger gi’s are

selected, and all selected relays except one use the maximal al-
lowed power level to transmit to the destination. The difference
is that the short-term source-power constraint in Section III-D
makes the power allocation simpler, i.e., the short-term source
power is assigned to relays according to the descending order
of gi’s, until all the short-term source power is used up. The
simplicity is because, with short-term source-power constraint,
when the channels are not good at a moment, we do not need
to save source power for other moments with good channels.

IV. IMPLEMENTATION ISSUES

A. Training for Channel Gains

Information of gi’s and hi’s can be obtained by training. In
the literature, training schemes have already been studied in
relay networks [35], [36]. In our research, the training scheme
can be designed as follows. First, each relay sends (in turn)
a pilot to the source. Then the source can estimate gi’s. Note
that here we assume channel reciprocity. Then, the destination
broadcasts a pilot to all the relays, and after that, each relay
amplifies its received signal (from the destination) and sends in
turn to the source. Since the source already has the information
of gi’s, it can estimate hi’s based on the received signals from
the relays. It can be seen that the overhead is 2N+1, linear to
the number of relays, which is usually considered acceptable
in relay networks [35], [36].

B. Online Calculation of Resource Allocation

Take the scenario in Section III-A as an example. To update
λ and µi’s as in (19) and (20),

(
PLT − E

[∑N
i=1 Pi(t)

])
and(

QLT
i − E

[
Pi(t)gi

hi

])
should be calculated, in which the two

expectation terms require the resource allocation solution of
the sub-problem in (21) for any possible realization of channel
gains gi’s and hi’s. Thus, the computational complexity is
high. In addition, PDF of the channel gains f(g, h) is required
to be known in advance. To address these problems, an online
(fading block-by-fading block) calculation method of resource
allocation is adopted, similar to that in [37].

Step 1: Initialize λ(0) and µi(0) (i ∈ N ).
Step 2: At the beginning of the tth fading block, the source

S measures channel gains gi(t)’s and hi(t)’s (i ∈ N ), solves
sub-problem (21) for that particular channel gain realization

9Note that if
N∑

j=1

QST
sj

hsj

gsj
< PST , then Psi =

QST
si

hsi

gsi
, i = 1, ..., N .
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and gets solutions Pi(t), broadcasts resource allocation deci-
sion to all relays, and updates Lagrange multipliers

λ(t+ 1) =

(
λ(t)− a(t)

(
PLT −

N∑
i=1

Pi(t)

))+

(40)

µi(t+ 1) =

(
µi(t)− a(t)

(
QLT

i − Pi(t)gi(t)

hi(t)

))+

,

∀i ∈ N . (41)

It is proved in [37] that λ(t) and µi(t)’s will converge to
the optimal λ and µi’s values with probability 1, under the
conditions 1) a(t) ≥ 0,

∑+∞
t=0 a(t) = +∞, and

∑+∞
t=0 a(t)

2 <

+∞, and 2) (PLT −
∑N

i=1 Pi(t)) and (QLT
i − Pi(t)gi(t)

hi(t)
) are

bounded.
Compared with (19) and (20), expectation terms do not

exist in (40) and (41), thus leading to much less complexity.
In addition, the new updating method also works when the
channel statistics information f(g, h) is unknown, because
1) the impact of f(g, h) is represented by the realizations
of the channel gains gi’s and hi’s (i ∈ N ) in continuous
fading blocks, and 2) the realizations of channel gains can
be measured at the beginning of the fading blocks.

Note that the updating method in (40) and (41) is called
stochastic sub-gradient method, broadly used for solving
stochastic optimization problems. More details for this method
can be found in references [37], [38] and [39].

V. THE CASE WITH PEAK POWER SPECTRUM DENSITY
CONSTRAINTS

In this section, we consider the case when additional con-
straints of peak power spectrum density (PSD) are imposed
on the source and relays. Denote the peak power spectrum
density constraints for the source and relay i as P PEAK and
QPEAK

i , respectively. Then, we have
Pi

xi
≤ P PEAK, ∀i ∈ N (42)

and
Qi

xi
≤ QPEAK

i , ∀i ∈ N . (43)

Since Qi can be replaced with Pigi
hi

by equation (12), the
constraints (42) and (43) can be combined to be

Pi

xi
≤ UPEAK

i , ∀i ∈ N (44)

where UPEAK
i = min

(
P PEAK,

QPEAK
i hi

gi

)
. Then the average

rate maximization problem in this paper with additional peak
power spectrum density constraints can be formulated as Prob-
lem P2 with additional constraints (44). Again, the problem
can be decomposed into two levels, and next we focus on
the sub-problems in the lower level. We still consider the
four scenarios as in Section III. Fast algorithms with closed-
form solutions may exist in scenarios with long-term source-
power and long-term relay-power constraints and with short-
term source-power and long-term relay-power constraints, as
shown in the following two subsections, respectively. However,
for the other two scenarios, fast algorithms with closed-form
solutions cannot be found, and thus, traditional methods (such
as sub-gradient method and interior-point algorithm) may have
to be resorted to.

A. Scenario with Long-term Source-power and Long-term
Relay-power Constraints

In this scenario, a sub-problem as in (21) with additional
constraints in (44) is supposed to be solved. Similar to Section
III, we define A △

= {j|Pj > 0, xj > 0} and B △
= {j|Pj =

0, xj = 0}. It can be seen that A ∪ B = {1, ..., N}.
Denote A = C ∪D, where C △

=
{
j|0 <

Pj

xj
< UPEAK

j , xj > 0
}

(i.e., the set of selected relays with transmit power spectrum
density over the first hop less than the peak value) and D △

={
j|Pj

xj
= UPEAK

j , xj > 0
}

(i.e., the set of selected relays with
transmit power spectrum density over the first hop equal to
the peak value). It can be proved using the similar method to
that in Lemma 1 that

Lemma 13: If C ̸= ∅, then |C| ≤ 1.
Further, we have the following two lemmas.

Lemma 14: If D ̸= ∅, then |D| ≤ 1.
Proof: For j ∈ D, Pj = xjU

PEAK
j . The sub-problem can

be rewritten as

max
{Pi}, {xi}

∑
i∈C

xi ln
(
1 + Pigi

xi

)
− λ

∑
i∈C

Pi−

∑
i∈C

µi
Pigi
hi

+
∑
j∈D

xj

(
ln
(
1 + UPEAK

j gj
)

− λUPEAK
j − µj

UPEAK
j gj
hj

)
s.t.

∑
i∈C

xi +
∑
j∈D

xj ≤ 1.

(45)
When D ̸= ∅,

max
j∈D

(
ln
(
1 + UPEAK

j gj
)
− λUPEAK

j − µj

UPEAK
j gj

hj

)
> 0.

Define

j∗ = argmax
j

(
ln
(
1 + UPEAK

j gj
)
− λUPEAK

j − µj

UPEAK
j gj

hj

)
.

If |D| > 1, then it will achieve a higher objective function of
(45) if the bandwidth assignments for links in |D| are instead
all assigned to Link j∗ only. Therefore, in the optimal solution,
we have |D| = 1.
Similar to proof of Lemma 14, we can prove the following
lemma.

Lemma 15: |A| ≤ 1.
According to Lemma 15, at most one relay is selected.

Suppose the only selected relay, if exists, is Ri. To maximize
the objective function in (21), xi should be set as 1. By setting
the derivative of the objective function in (21) with respect to
Pi as 0, Pi can be obtained as

(
hi

λhi+µigi
− 1

gi

)
. Considering

the constraint Pi ≥ 0 and Pi

xi
≤ UPEAK

i further, the optimal

power configuration should be Pi =
[

hi

λhi+µigi
− 1

gi

]UPEAK
i

0
.

In summary, the optimal solution of the problem in (21)
with additional constraints in (44) can be obtained as follows.
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Algorithm 3 Searching procedure for the optimal solution of
the problem in (21) with additional constraints in (44).

1: Define Vi = ln

(
1 +

[
hi

λhi+µigi
− 1

gi

]UPEAK
i

0
gi

)
−

λ
[

hi

λhi+µigi
− 1

gi

]UPEAK
i

0
− µi

[
hi

λhi+µigi
− 1

gi

]UPEAK
i

0
gi

hi
.

2: if maxi Vi ≤ 0 then
3: The maximal utility is 0, with Pi = 0 and xi = 0,

∀i ∈ N .
4: else
5: Find i∗ = argmax

i
Vi.

Output the optimal index i∗, with optimal bandwidth
and power allocation strategy xi∗ = 1 and Pi∗ =[

hi∗
λhi∗+µi∗gi∗

− 1
gi∗

]UPEAK
i∗

0
, respectively, and the maxi-

mal utility Vi∗ .

It can be seen that the complexity of the algorithm is O(N).

B. Scenario with Short-term Source-power and Long-term
Relay-power Constraints

In this scenario, a sub-problem as in (28) with addi-
tional constraints (44) is going to be solved. For the sub-
problem, still define A △

= {j|Pj > 0, xj > 0} and
A = C ∪ D, where C △

=
{
j|0 <

Pj

xj
< UPEAK

i , xj > 0
}

and

D △
=
{
j|Pj

xj
= UPEAK

i , xj > 0
}

. The following lemmas can be
expected.

Lemma 16: If C ̸= ∅,

• when the constraint
N∑
i=1

Pi ≤ PST in (28a) is inactive,

|C| = 1.

• when the constraint
N∑
i=1

Pi ≤ PST in (28a) is active,

|C| ≤ 2.
Lemma 17: If D ̸= ∅, then |D| ≤ 1.

Lemma 18: When the constraint
N∑
i=1

Pi ≤ PST in (28a) is

inactive, |A| ≤ 1.
The proofs of the three lemmas are similar to those of Lemmas
2, 14, and 15, respectively, and thus, are omitted.

According to Lemma 18, when the constraint
N∑
i=1

Pi ≤ PST

is inactive, at most one relay is selected. Suppose the only
selected relay, if exists, is Ri. Similar to Section V-A, the
optimal bandwidth and power configuration is xi = 1 and

Pi =
[

1
gi

(
hi

µi
− 1
)]UPEAK

i

0
.

In summary, when
N∑
i=1

Pi ≤ PST is inactive (e.g., a

sufficient condition for this is maxi(U
peak
i ) < PST ), the

optimal solution of the sub-problem in (28) with additional
constraints in (44) can be obtained as follows.

Algorithm 4 Searching procedure for the optimal solution of
the sub-problem in (28) with additional constraints in (44)
(when

∑N
i=1 Pi ≤ PST is inactive).

1: Define Zi = ln

(
1 +

[
1
gi

(
hi

µi
− 1
)]UPEAK

i

0
gi

)
−

µi

[
1
gi

(
hi
µi

−1
)]UPEAK

i

0
gi

hi
.

2: if maxi Zi ≤ 0 then
3: The maximal utility is 0, with Pi = 0 and xi = 0,

∀i ∈ N .
4: else
5: Find i∗ = argmax

i
Zi.

Output the optimal index i∗, with optimal bandwidth
and power allocation strategy xi∗ = 1 and Pi∗ =[

1
gi∗

(
hi∗
µi∗

− 1
)]UPEAK

i∗

0
, respectively, and the maximal

utility Zi∗ .

It can be seen that the complexity of the algorithm is O(N).
When

∑N
i=1 Pi ≤ PST is active, fast algorithms with

closed-form solutions cannot be found, and therefore, tradi-
tional methods (such as sub-gradient method and interior-point
algorithm) may have to be resorted to.

Table I summarizes the number of selected relays and
algorithm complexity for the six scenarios discussed in Sec-
tion III and Section V, denoted as LT-LT, ST-LT, LT-ST,
ST-ST, LT-LT (PK) and ST-LT (PK), respectively. Here the
LT/ST before the hyphen means long-term/short-term source-
power constraint, while LT/ST after the hyphen means long-
term/short-term relay-power constraint, and PK means that
peak power spectrum density constraints are imposed.

VI. NUMERICAL RESULTS

In this section, numerical results are given to show the
performance of the algorithms for the four scenarios, LT-
LT, ST-LT, LT-ST and ST-ST, discussed in Section III. Peak
power spectrum density constraints are not considered. The
channel gains gi’s, hi’s (i = 1, ..., N ) are independent and
exponentially distributed (i.e., Rayleigh fading channels) with
mean being 1. The channel gain distributions are supposed
to be unknown by any node. So the stochastic sub-gradient
method introduced in Section IV is used to update Lagrange
multipliers λ and µi’s iteratively over fading blocks. All the
initial values of Lagrange multipliers are set as 1. The step
size a(t) in (40) and (41) is selected as a(t) = 1

t+200 .

A. Convergence of Lagrange multipliers

In this subsection, the convergence of Lagrange multipliers
λ and µi’s is illustrated (note that for the original optimization
problem, short-term power constraints do not have Lagrange
multipliers). In this numerical example, the long-term and
short-term power constraint of the source, PLT and PST , are
set to have a value equal to the number of relays. For example,
when there are 4 relays, both PLT and PST are set as 4. The
long-term and short-term power constraint of every relay, QLT

i
and QST

i , are set as 1.
Fig. 1, Fig. 2 and Fig. 3 show the updating iterations of the

Lagrange multipliers as in (40) and (41) in different scenarios
with 4 relays, 8 relays and 16 relays, respectively. Note that
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TABLE I
NUMBER OF SELECTED RELAYS AND ALGORITHM COMPLEXITY

Scenario Number of selected relays Algorithm complexity
LT-LT 0 or 1 O(N)
ST-LT 0, 1, or 2 O(N2)
LT-ST 0, 1, ..., N − 1, or N O(N)
ST-ST 1, ..., N − 1, or N O(N)

LT-LT (PK) 0 or 1 O(N)

ST-LT (PK) (with
N∑
i=1

Pi ≤ PST inactive) 0 or 1 O(N)
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Fig. 1. Convergence of Lagrange multipliers for the average rate maximiza-
tion problem with 4 relays.

in Fig. 2 and Fig. 3, legends are not illustrated due to the
large number of Lagrange multipliers. It can be seen from
the figures that all the Lagrange multipliers converge within
a few thousand fading blocks. In particular, all the Lagrange
multipliers in Fig. 1, Fig. 2 and Fig. 3 converge to nonzero
values, which means that the associated long-term constraints
are all active. It can be also seen from the three figures that
the number of relays has negligible impact on the convergence
speed.

B. Average rates
Consider 4 relays. When the source-power constraint (either

long-term or short-term) is fixed as 1, Fig. 4 shows the average
rate, where the horizontal axis means the (long-term or short-
term) relay-power constraint. Here all relays have the same
value of power constraint in each scenario. When the relay-
power constraint (either long-term or short-term) is fixed as
0.25, Fig. 5 shows the average rate, where the horizontal axis
means the (long-term of short-term) source-power constraint.
It can be seen that, with the same amount of power constraints,
the LT-LT scenario always has the largest average rate, while
the ST-ST scenario has the smallest average rate. This is
because a long-term power constraint allows more flexibility
than a short-term power constraint does, and therefore, leads
to more efficient resource allocation.
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Fig. 2. Convergence of Lagrange multipliers for the average rate maximiza-
tion problem with 8 relays.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fading Block

La
gr

an
ge

 M
ul

tip
lie

r

Fig. 3. Convergence of Lagrange multipliers for the average rate maximiza-
tion problem with 16 relays.
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Fig. 4. Average rate vs. relay-power constraint (the source-power constraint
is 1).

As a comparison, two other resource allocation algorithms
are considered: greedy algorithm and alternate algorithm. In
either algorithm, both source and relays have short-term power
constraints only, and in each fading block, only one relay is
allowed to relay using the whole available bandwidth and its
maximal allowed power. And the source uses its maximal
allowed power. The difference of the greedy and alternate
algorithms is: in the greedy algorithm, in a fading block only
the relay which can render the maximal source-to-destination
transmission rate is permitted to relay, while in the alternate
algorithm, all the relays take turn to relay in fading blocks.
The simulation results are also shown in Fig. 4 and Fig.
5. It can be seen that our proposed algorithms outperform
the greedy algorithm and alternate algorithm. The is because
our proposed algorithms take advantage of joint power and
bandwidth allocation.

C. Range and variance of instant rates
Consider 4 relays. When the source-power constraint (either

long-term or short-term) is fixed as 1, Table II shows the
range and variance of instant rates (achieved in every fading
block) in the four power constraint scenarios. Here all relays
have the same value of power constraint. It can be seen that
the maximal instant rate and the variance in LT-LT scenario
are the largest among the four scenarios. This is because the
source-power and relay-power constraints are both for long-
term, resulting in the most flexibility in resource allocation.
When either source-power constraint or relay-power constraint
becomes short-term, the maximal instant rate and variance are
reduced, but still larger than those in ST-ST. When at least
one power constraint is for long-term (i.e., in LT-LT, ST-LT,
or LT-ST scenario), it can be seen that the minimal instant rate
is zero or almost zero. This is because when the channels are
with poor quality, it is better not to select any relay, to save
long-term power for moments when channels are good. On
the other hand, in ST-ST scenario, the minimal instant rate is
also close to zero. This is because although at any moment
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Fig. 5. Average rate vs. source-power constraint (relay-power constraint is
0.25).

we have relay(s) selected, if the channels are extremely poor,
the achievable instant rate is very small.

Long-term constraint can help to achieve a higher average
rate, while short-term constraint is able to guarantee a smaller
fluctuation of instant rates. Therefore, long-term constraints
may be better for applications whose major performance
metric is average rate (such as data transfer), while short-term
constraints may be favored by applications that enjoy small
rate fluctuation (such as voice applications).

D. Average number of selected relays
Still consider 4 relays. When the source-power constraint

(either long-term or short-term) is fixed as 1, Fig. 6 shows
the average number of selected relays when the relay-power
constraint varies. Here all relays have the same value of power
constraint, which can be as small as 10−3 and as large as 1000.

First consider LT-LT scenario and ST-LT scenario. When
relay-power constraint is very small, the relay-power constraint
is the “bottleneck” constraint. And thus, the two scenarios
have similar performance (because the difference in the two
scenarios is in source-power constraint), i.e., only when the
channels are very good, a relay is selected. Therefore, the
average number of selected relays is small. When the relay-
power constraint increases, the possibility of selecting relay(s)
increases, and thus, the average number of relays increases.
Since the number of selected relays in LT-LT and ST-LT
scenarios is bounded by one and two, respectively, the average
number of relays in ST-LT scenario is larger than that in LT-LT
scenario.

Similarly, the LT-ST and ST-ST scenarios have similar
performance when the relay-power constraint is very small.
Take ST-ST scenario as an example. According to the resource
allocation algorithm in Section III-D, relays are selected ac-
cording to the channel gains gi’s until the source power is used
up. Since the source-power constraint is much larger than the
relay-power constraint, all four relays should be selected, and
thus, the average number of selected relays is 4 as shown in
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TABLE II
RANGE AND VARIANCE OF INSTANT RATES

Power constraint 0.5 1 1.5 2
of a relay

LT-LT [0, 2.82] [0, 2.86] [0, 2.84] [0, 2.84]
ST-LT [0, 2.4] [0.02, 2.4] [0.07, 2.4] [0.08, 2.4]Range
LT-ST [0, 2.05] [0, 2.33] [0, 2.4] [0, 2.63]
ST-ST [0.03, 1.76] [0.05, 2.07] [0.03, 2.27] [0.05, 2.37]
LT-LT 0.25 0.29 0.28 0.28
ST-LT 0.13 0.14 0.14 0.14Variance
LT-ST 0.1 0.14 0.17 0.19
ST-ST 0.05 0.07 0.08 0.09

Fig. 6. When the relay-power constraint increases, the source
power may not be sufficient to support all the four relays, and
thus, the average number of selected relays tends to decrease.

When the relay-power constraint is very large, the source-
power constraint is the “bottleneck” constraint. So ST-ST and
ST-LT scenarios have similar performance. Take ST-ST as
an example. Since the source-power constraint is much less
than the relay-power constraint, according to the resource
allocation algorithm in Section III-D, only the relay with
the largest gi’s is selected. Therefore, the average number of
relays converges to 1. Similarly, LT-LT and LT-ST scenario
have similar performance when the relay-power constraint is
very large. Take LT-ST as an example. When there are relays
selected, according to Algorithm 2, it is very likely that at
most one relay is selected. This is because, if there are two or
more selected relays, at least one relay should transmit with its
(very large) maximal allowed power, which the very limited
source power is very likely not sufficient to support, according
to (12). Consider the possibility that no relay is selected when
channel gains are poor, the average number of selected relays
converges to a value less than 1.

From Fig. 6, it can also be seen that LT constraint allows
fewer relays to be selected compared with ST constraint, be-
cause LT constraint has more flexibility in resource allocation,
and thus it can “wait” until the moments when there are good
channels.

E. Impact of Imperfect CSI
Consider 4 relays with long-term source-power and long-

term relay-power constraints. Note that similar results are
observed for the other three power constraint scenarios. Fig. 7
(when source-power constraint is 1) and Fig. 8 (when relay-
power constraint is 0.25) illustrate the impact of imperfect CSI
on achieved average rate, respectively. Similar to reference
[40], the measured CSI (channel gains gi’s and hi’s) is
disturbed by additive zero mean Gaussian random variable
with variance σ2.

The achieved average rate with perfect CSI, imperfect CSI
with σ = 0.1 and σ = 0.3 are compared. It can be seen that
with larger σ, the achieved average rate is lower.

VII. CONCLUSION

In this paper, the average rate maximization problem given
transmission power constraints in DF relaying has been stud-
ied. With a consideration of either long-term or short-term
power constraint imposed on the source and relays, the average
rate maximization under four scenarios of power constraints
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Fig. 8. Average rate vs. source-power constraint with imperfect CSI.

at the source and relays is investigated. In each scenario, the
average rate maximization problem is decomposed to sub-
problems, each corresponding to a realization of channel gains.
For each sub-problem, special properties are found and a
fast algorithm with closed-form resource allocation solution
is given. This research should provide helpful insight to the
design of relay networks over slow fading channels.

APPENDIX I
CONVEXITY PROOF OF PROBLEM P2

To prove convexity of Problem P2, we need to prove
that the objective function is concave with respect to {Pi}
and {xi}. Since the objection function in Problem P2 is
separable with link index i, it is equivalent to prove that
function x ln

(
1 + ph

x

)
is concave with respect to p and x.

We investigate the Hessian matrix of function x ln
(
1 + ph

x

)
,

H, which can be obtained as

H =
h2

x3(1 + hp
x )

2

[
−p2 px
px −x2

]
with eigenvalues values − h2(x2+p2)

x3(1+hp
x )

2 and 0. With all the
eigenvalues not larger than 0, it can be seen that matrix H
is a semi-negative definite matrix. Therefore, the function
x ln

(
1 + ph

x

)
is concave. This completes the proof.

APPENDIX II
PROOF OF LEMMA 2

A similar proof method to that in Lemma 1 is used.
We use proof by contradiction. When the constraint in (28a)

is inactive, suppose |A| > 1, and i†, i‡ ∈ A. Similar to (26),
we have

Γ∗

λ∗

g
i†

+
µ
i†

h
i†

=
Γ∗

λ∗

g
i‡

+
µ
i‡

h
i‡

(46)

and Γ∗ > 0.

When the constraint in (28a) is inactive, λ∗ = 0 according
to (29c). Note that µi† and µi‡ are fixed for the problem in
(29). In this case, equation (46) holds with probability zero
since hi† and hi‡ are independent random variables.

When the constraint in (28a) is active, λ∗ ≥ 0. Suppose
|A| > 2, and i†, i‡, i′ ∈ A. We have

Γ∗

λ∗

g
i†

+
µ
i†

h
i†

=
Γ∗

λ∗

g
i‡

+
µ
i‡

h
i‡

=
Γ∗

λ∗

gi′
+ µi′

hi′

. (47)

Note that µi† , µi‡ , and µi′ are fixed for the problem in (29).
It can be seen that equation (47) holds with probability zero
since gi† , gi‡ , gi′ , hi† , hi‡ , and hi′ are independent random
variables.

This completes the proof.

APPENDIX III
PROOF OF LEMMA 3

According to (29d), for ∀i ∈ A, we have δ∗i = 0. Since
SNRi =

Pigi
xi

, equation (29a) can be written as

ln (1 + SNRi)−
SNRi

1 + SNRi
= Γ∗. (48)

The left-hand side of (48) is in the form of S(x) (defined in
Section III-A), which is a monotonic increasing function. If
i, j ∈ A, then both i and j satisfy (48), which means SNRi =
SNRj .

APPENDIX IV
PROOF OF LEMMA 6

For ∀i ∈ A1 and ∀j ∈ A2, it can be seen that ∆∗
i = 0 and

∆∗
j = 0 according to equation (33d) and µ∗

j = 0 according to
(33c). Therefore, for i and j, equation (33b) can be rewritten
as

gi
1 + SNRi

= λ+
µ∗
i gi
hi

(49)

and gj
1 + SNRj

= λ (50)

respectively. Together with the conclusion of Lemma 5 and the
fact that µ∗

i ≥ 0, it is apparent that gi ≥ gj from equations
(49) and (50).

APPENDIX V
PROOF OF LEMMA 7

We use proof by contradiction. For ease of presentation,
assume in the optimal solution of the problem in (34) we
have 1 ∈ B and 2 ∈ A and g1 > g2. Then P1 = 0, and P2 ∈
(0,

QST
2 h2

g2
]. In the optimal solution, the total utility achieved

on Links 1 and 2 is

ln (1 + P2g2)− λP2. (51)

It can be seen that there exist P †
1 and P †

2 such that 0 < P †
1 ≤

QST
1 h1

g1
, 0 ≤ P †

2 < P2, and P †
1 + P †

2 = P2. If the power on
Links 1 and 2 is P †

1 and P †
2 , respectively, the total achieved

utility on Links 1 and 2 is

ln
(
1 + P †

1 g1 + P †
2 g2

)
− λP2 (52)

which is definitely larger than the utility in (51) since g1 > g2.
This completes the proof.
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APPENDIX VI
PROOF OF LEMMA 8

Before the proof, we have two properties for φ∗
j : If φ∗

j = 0,

then φ∗
j+1 = 0; If 0 < φ∗

j <
QST

sj
hsj

gsj
, then φ∗

j+1 = 0. This is
because, according to the three observations of (36), we have

φ∗
j = 0

⇔ gsj
λ ≤ 1 +

j−1∑
i=1

QST
si hsi

⇒ gsj
λ ≤ 1 +

j∑
i=1

QST
si hsi

⇒ gsj+1

λ ≤ 1 +
j∑

i=1

QST
si hsi

⇔ φ∗
j+1 = 0.

(53)

0 < φ∗
j <

QST
sj

hsj

gsj

⇒ gsj
λ < 1 +

j∑
i=1

QST
si hsi

⇒ gsj+1

λ < 1 +
j∑

i=1

QST
si hsi

⇒ φ∗
j+1 = 0.

(54)

Then it can be concluded that, for Case j < j†, we have

φ∗ =
QST

sj
hsj

gsj
. Based on the third observations for (36), it can

be seen that, for Case j < j†, the maximal utility in Case j
is less than the maximal utility in Case j + 1. Therefore, the
maximal utility in Case j† is larger than the maximal utility
in any prior case.

Next we prove that the maximal utility in Case j† is larger
than the maximal utility in Case j†+1. Here we assume φ∗

j† ∈

(0,
QST

s
j†

hs
j†

gs
j†

), as a similar proof can apply when φ∗
j† = 0.

From the observations for (36) and the fact that φ∗
j† ∈

(0,
QST

s
j†

hs
j†

gs
j†

), it can be seen that φ∗
j† is the solution of (36) in

Case j†. It also means the maximal utility in Case j† is larger

than the utility when Psi =
QST

si
hsi

gsi
for i = 1, ..., j† − 1,

Ps
j†

=
QST

s
j†

hs
j†

gs
j†

, and Ps
j†+1

= Ps
j†+2

= ... = PsN = 0.

The latter utility is exactly the utility of the optimal solution
in Case j† + 1 (which is because, φ∗

j†+1 = 0 from the first
property of φ∗

j ).
Now we prove that the maximal utility in Case j† + 1 is

larger than the maximal utility in Case j† + 2. Note that the
optimal solution in Case j† +1 is φ∗

j†+1 = 0. This means the
solution for (36) in Case j† + 1 is a negative value. In the
optimal solution in Case j† +1 (i.e., Ps

j†+1
= φ∗

j†+1 = 0), if

the value of Ps
j†+1

increases from φ∗
j†+1 = 0 to

QST
s
j†+1

hs
j†+1

gs
j†+1

,

the utility function decreases. On the other hand, in the optimal
solution in Case j† + 1, when the value of Ps

j†+1
is changed

to
QST

s
j†+1

hs
j†+1

gs
j†+1

, it leads to the optimal solution in Case j† +

2 (according to the second property of φ∗
j ). Therefore, the

maximal utility in Case j† + 1 is larger than the maximal
utility in Case j† + 2.

By induction, it can be proved that when j > j†, the
maximal utility in Case j is larger than the maximal utility
in Case j + 1. It follows that the maximal utility in Case j†

is larger than the maximal utility in any subsequent case.

APPENDIX VII
PROOF OF LEMMA 9

We first prove |A2| = 0 when the constraint in (37b) is
inactive. We use proof by contradiction. Assume |A2| ≥ 1,
i.e., there exists a link, denoted Link i, such that Pi <

QST
i hi

gi
.

It can be seen that the utility function of the sub-problem in
(37) can be further improved if we increase Pi by the smaller

value between
(
PST −

N∑
i=1

Pi

)
(> 0) and

(
QST

i hi

gi
− Pi

)
(>

0), since the utility function of the sub-problem in (37) is
an increasing function with respect to Pi. Therefore, when
constraint in (37b) is inactive, A2 = ∅.

Next we prove λ∗ > 0 when the constraint in (37b) is active.
Here we first show that there exists a link, denoted Link i,
such that 0 < Pi <

QST
i hi

gi
. We use proof by contradiction.

Assume for any link, say Link i, we have either Pi = 0 or
Pi =

QST
i hi

gi
. Denote the number of links with zero power

assignment as K. Without loss of generality, assume Links 1,
..., K are with zero power assignment. Therefore, we have

Pjyj = QST , j = K + 1,K + 2, ..., N
N∑

j=K+1

Pj = PST (55)

where yj =
gj
hj

. The probability for (55) to hold is zero, since
gj’s and hj’s are independent random variables. Therefore,
there exists a link, denoted Link i, such that 0 < Pi <

QST
i hi

gi
.

Together with (38d) and (38e), we have µ∗
i = 0 and ∆∗

i = 0.
Assume λ∗ = 0. Since µ∗

i = 0 and ∆∗
i = 0, we have xi = 0

according to (38b). This contradicts the fact that Link i is with
positive power and bandwidth assignment. Therefore, we have
λ∗ > 0.

Then, we prove |A2| ≤ 1 when the constraint in (37b) is
active. The proof is similar to that of Lemma 4, and is omitted
here.
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