
ReCycle: Pipeline Adaptation to Tolerate Process
Variation∗

Abhishek Tiwari, Smruti R. Sarangi and Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

{atiwari,sarangi,torrellas}@cs.uiuc.edu

Abstract
Process variation affects processor pipelines by making some

stages slower and others faster, therefore exacerbating pipeline un-
balance. This reduces the frequency attainable by the pipeline. To
improve performance, this paper proposes ReCycle, an architectural
framework that comprehensively applies cycle time stealing to the
pipeline — transferring the time slack of the faster stages to the
slow ones by skewing clock arrival times to latching elements after
fabrication. As a result, the pipeline can be clocked with a period
close to the average stage delay rather than the longest one. In ad-
dition, ReCycle’s frequency gains are enhanced with Donor stages,
which are empty stages added to “donate” slack to the slow stages.
Finally, ReCycle can also convert slack into power reductions.
For a 17FO4 pipeline, ReCycle increases the frequency by 12%

and the application performance by 9% on average. Combining Re-
Cycle and donor stages delivers improvements of 36% in frequency
and 15% in performance on average, completely reclaiming the per-
formance losses due to variation.

Categories and Subject Descriptors: B.8.0 [Hardware]: Perfor-
mance and Reliability–General

General Terms: Performance, Design

Keywords: Pipeline, Process Variation, Clock Skew

1. Introduction
Process variation is a major obstacle to the continued scaling of

integrated-circuit technology in the sub-45 nm regime. As transis-
tor dimensions continue to shrink, it becomes successively harder to
precisely control the fabrication process. As a result, different tran-
sistors in the same chip exhibit different values of parameters such
as threshold voltage or effective channel length. These parameters
in turn determine the switching speed and leakage of transistors,
which are also subject to substantial fluctuation.
Variation in transistor switching speed is visible at the archi-

tectural level when it makes some unit in the processor too slow

∗This work was supported in part by the National Science Foundation un-
der grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603;
DARPA under grant NBCH30390004; DOE under grant B347886; and gifts
from IBM and Intel. Smruti R. Sarangi is now with Synopsys, Bangalore,
India. His email is ssarangi@synopsys.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

to meet timing, forcing the whole processor to operate at a lower
frequency than nominal. Variation is already forcing designers to
employ guard banding, and the margins are getting wider as tech-
nology scales. Bowman et al. suggest that variation may wipe out
the performance gains of a full technology generation [6].
Careful timing design is especially important in state-of-the-art

processor pipelines. The choices of what stages to have and what
clock period they will all share are affected by many considera-
tions [21, 23, 42]. With process variation, the logic paths in some
stages become slower and those in other stages become faster after
fabrication, exacerbating pipeline unbalance and reducing the fre-
quency attainable by the pipeline.
Current solutions to the general problem of process variation can

be broadly classified into circuit-level and architecture-level tech-
niques. At the circuit level, there are multiple proposed techniques,
including adaptive body biasing (ABB) [45] and adaptive supply
voltage (ASV) scaling [9]. Such techniques are effective in many
cases, although they add complexity to the manufacturing process
and have other side effects. Specifically, boosting frequency with
ABB increases leakage power and doing it with ASV can have a
damaging effect on lifetime reliability.
Architecture-level techniques are complementary to circuit-level

ones. However, most of the ones proposed so far target a small
number of functional blocks, namely the register file and execute
units [31] and the data caches [34]. Other techniques have focused
on redesigning the latching elements [17, 46]. These techniques
likely involve a substantial design effort and hardware overhead.
In this paper, we propose to tolerate the effect of process vari-

ation on processor pipelines with an architecture-level technique
that: (i) does not adversely affect leakage or hardware reliabiliy,
(ii) is globally applicable to all subsystems in a pipeline, and (iii)
has a negligible hardware overhead. It is based on the comprehen-
sive application of cycle time stealing [4], where the time slack of
the faster stages in the pipeline is transferred to the slower ones by
skewing the clock arrival times to latching elements. As a result,
the pipeline can be clocked with a period close to the average stage
delay rather than the longest one. We call this approach ReCycle
because the time slack that was formerly wasted by the faster stages
is now “recycled” to the slower ones.
We show that ReCycle increases the frequency of the pipeline

without changing the pipeline structure, pipeline depth, or the in-
herent switching speed of transistors. Such increase is relatively
higher the deeper the pipeline is. Moreover, ReCycle can be com-
bined with Donor pipeline stages, which are empty stages added to
the critical loop in the pipeline to “donate” slack to the slow stages,
enabling an increase in the pipeline frequency. We can also use

323

ReCycle to push the slack of non-critical pipeline loops to their
feedback paths, and then consume it there to reduce wire power
or to improve wire routability. Finally, ReCycle can also be used
to salvage chips that would otherwise be rejected due to variation-
induced hold-time failures.
Our evaluation compares variation-affected pipelines without

and with ReCycle. On average for a 17FO4 pipeline, ReCycle in-
creases the frequency by 12%, thereby recovering 63% of the fre-
quency lost to variation, and speeding up our applications by 9%.
Combining ReCycle and donor stages is even more effective. Com-
pared to the pipeline without ReCycle, it increases the frequency
by 36% and the performance by 15% on average, performing even
better than a pipeline without process variation. Finally, ReCycle
also saves 7-15% of the power in feedback paths.
This paper is organized as follows. Section 2 gives a back-

ground; Sections 3, 4, and 5 present ReCycle’s ideas, uses, and
implementation, respectively. Sections 6 and 7 evaluate ReCycle;
and Section 8 discusses related work.

2. Background
2.1. Pipeline Clocking
One of the most challenging tasks in pipeline design is to ensure

that the pipeline is clocked correctly. Data propagation delay and
clock period have to be such that, in each latch element, the setup
(Tsetup) and hold (Thold) times are maintained.
Often, it is desired to fit more logic in a pipeline stage than the

cycle time would allow. This can be accomplished without chang-
ing the pipeline frequency by using a technique called Cycle Time
Stealing [4]. With this technique, a stage utilizes a portion of the
time allotted to its successor or predecessor stages. This forcible re-
moval of time from another stage is typically obtained by adjusting
the clock arrival times.
Consider a pipeline stage that is preceded by flip-flop FFi (for

initial) and followed by flip-flop FFf (for final). The stage can steal
time from its successor stage by delaying the clocking of FFf by a
certain time or skew δf . Similarly, it can steal time from its prede-
cessor stage by changing the clocking of FFi by a skew δi that is
negative. In all cases, since we do not change the cycle time, one
or more stages have to have at least as much slack as the amount
stolen.
Under cycle time stealing, the setup and hold constraints still

have to be satisfied. Assume that the data propagation delay in the
stage is Tdelay and the pipeline’s clock period is TCP . The data
generated at FFi by a clock edge must arrive at FFf no later than
the setup time before the arrival of the next clock edge at FFf (Equa-
tion 1). Moreover, the data generated at FFi by a clock edge must
arrive at FFf no sooner than the hold time after the arrival of the
clock edge at FFf (Equation 2).

δi + Tdelay + Tsetup ≤ TCP + δf (1)

δi + Tdelay ≥ δf + Thold (2)

2.2. Pipeline Loops
Pipeline loops are communication loops that appear when the

result of one stage is needed in the same or an earlier stage of the
pipeline [5, 10]. Loops are caused by data, control, or structural
hazards. A loop is typically composed of one or more pipeline
stages and a feedback path that connects the end stage to the be-
gin stage.

As an example, Figure 1(a) shows a simplified version of the Al-
pha 21264 pipeline [28] that we use to demonstrate ReCycle. The
figure does not show the physical structure of the pipeline. Rather, it
shows a logical structure. Each long box represents a logical stage,
while short boxes are pipeline registers between them. Some logi-
cal stages are broken down into multiple physical stages, as shown
with dashed lines. Lines between logical stages represent commu-
nication links.

FPRegFPQFPMap

IntExecIntMap IntQ IntReg

8

LdStUBpred

2

3

4

5

6

9

10 12

1

711IF

FPMul

FPAdd

Dcache

(a) Simplified logical pipeline structure.

Name Description Fdbk Components
Path

Fetch Dependence between 1 IF, Bpred, 1
PC and Next PC

Int Dependence between 2 IntMap, 2
rename inst. assigning a rename
FP tag and a later one 3 FPMap, 3
rename reading the tag
Int Dependence between 4 IntQ, 4
issue the select of a
FP producer inst. and the 5 FPQ, 5
issue wakeup of a consumer
Int ALU Forwarding 6 IntExec, 6
FPAdd from execute 7 FPAdd, 7
FPMul to execute 8 FPMul, 8
Branch Mispredicted IF, Bpred, IntMap
mispred. branch 9 IntQ, IntReg,

IntExec, 9
Int load 10 IntQ, LdStU,
misspecul Load miss Dcache, 10
FP load replay 11 FPQ, LdStU,
misspecul Dcache, 11
Load Forwarding from load IntExec, 9, IF, Bpred,
forward to integer execute 12 IntMap, IntQ, LdStU,

Dcache, 12

(b) Pipeline loops.

Figure 1: Simplified version of the Alpha 21264 pipeline used to
demonstrate ReCycle: logical pipeline structure (a) and pipeline
loops (b).

The figure depicts the front-end stages and then, from top to
bottom, the stages in the integer datapath, load-store unit and cache,
and floating-point datapath. While the real processor has more com-
munication links, we only show those that we consider most impor-
tant or most time critical. For example, we do not show the write
back links, since write back is less time critical. The feedback paths
are labeled.
Figure 1(b) describes the pipeline loops in the simplified

pipeline. The first two columns name and describe, respectively,
the loop. The next two columns show the feedback path that creates
the loop and the components of the loop.
Note that our loops are not exactly the same as those in [5, 10].

Here, we examine a more complicated pipeline, and have not shown

324

all the communication links. In particular, we only show the feed-
back paths that we consider most important. For example, we do not
show all the forwarding paths. While we will base our analysis on
this simplified pipeline, ReCycle is general enough to be applicable
to more complicated pipelines.

2.3. Process Variation and Its Impact
While process variation exists at several levels, we focus on

Within-Die (WID) variation, which is caused by both systematic ef-
fects due to lithographic irregularities and random effects primarily
due to varying dopant concentrations [43]. Systematic variation ex-
hibits strong spatial correlation — structures that are close together
are likely to have similar values—while random variation does not.
Two important process parameters affected by variation are the

threshold voltage (Vt) and the effective channel length (Leff). Vari-
ation of these parameters directly affects a gate’s delay (Tg), as
given by the alpha-power model [38]:

Tg ∝ LeffVdd

μ(Vdd − Vt)α
(3)

where μ is the carrier mobility, Vdd is the supply voltage, and α is
usually 1.3. Both μ and Vt are a function of the temperature T.
We treat random and systematic variation separately. We model

the systematic variation of Vt with a multivariate normal distribu-
tion with a specific correlation structure [43]. It is characterized by
three parameters: μ, σsys, and φ. Specifically, we divide the chip
into a grid with 1M cells. Each cell takes on a single value of Vt as
given by a multivariate normal distribution with parameters μ and
σsys. Along with this, Vt is spatially correlated.
We assume that the correlation is isotropic and independent of

position [47]. This means that the correlation between two points
�x and �y in the grid depends on the distance between them and not
on the direction or position. Consequently, we express the corre-
lation function of Vt(�x) and Vt(�y) as ρ(r), where r = |�x − �y|.
By definition, ρ(0)=1 (i.e., totally correlated). We also set ρ(∞)=0
(i.e., totally uncorrelated). We then assume that ρ(r) changes with r
as per the Spherical distribution [12]. In the Spherical distribution,
ρ(r) decreases from 1 to 0 smoothly and reaches 0 at a distance φ
called range. Intuitively, this means that at distance φ, there is no
significant correlation between the Vt of two transistors. This ap-
proach matches empirical data obtained by Friedberg et al. [19]. φ
is given as a fraction of the chip’s width.
Random variation of Vt occurs at a much finer granularity than

systematic variation: it occurs at the level of individual transistors.
We model it as an uncorrelated normal distribution with σrand and
a zero mean.

Leff is modeled like Vt with a different μ, σsys, and σrand but
the same φ.
From the Vt and Leff variation, we compute the Tg variation

using Equation 3. We then use the critical path model of Bow-
man et al. [6] to estimate the frequency supported by each pipeline
stage. This model takes the number of gates (ncp) in a critical
path and the number of critical paths (Ncp) in a structure, and
computes the probability distribution of the longest critical path
delay (max{Tcp}) in the structure. This is the path that deter-
mines the maximum frequency of the structure, which we set to
be 1/ max{Tcp}.
For simplicity, we model a critical path as ncp FO4 gates con-

nected by very short wires — where ncp is the useful logic depth
of a pipeline stage. Unfortunately, accurately estimating Ncp for

each pipeline stage is difficult because Ncp is design-specific and
not publicly available for a design. Consequently, we assume that
critical paths are distributed in a spatially-uniform manner on the
processor layout — except in the L2, whose paths we assume never
affect the cycle time. From the layout area of each pipeline stage
and Bowman et al.’s estimate that a high-performance processor
chip at our technology node has about 10,000 critical paths [6], we
determine the critical paths in each stage. The slowest critical path
in a stage determines the frequency of the stage; the slowest stage
determines the pipeline frequency.

3. Pipeline Adaptation with ReCycle
3.1. Main Idea
To understand the idea behind ReCycle, consider the pipeline of

Figure 2(a) and call Ti the time taken to perform the work in stage
i. For simplicity, in the absence of process variation, we assume
that Ti is the same for all i and, therefore, the pipeline’s period is
TCP = Ti, ∀i. When variation sets in, it slows down some stages
while it speeds up others. As shown in Figure 2(a), the resulting
unbalanced pipeline has to be clocked with a longer period TCP =
Max(Ti), ∀i.

Without
Variation

Pipeline

Effect
of
Variation

Pipeline
After
Variation
(No ReCycle)

RETEXRENIF IS

Period

Clock to
Initial
Register

Clock to
Final
Register
(No ReCycle)

Ti
for all i

iAvg(T)

IF REN EX RET

IF

IS

REN

IS

EX

RET

RETEXISRENIF

(a)
ReCycle)
(With
Variation
After
Pipeline

Clock to
Final
Register
(With
ReCycle)

(b)

D

T

T

min

skew

setupT holdmaxD

iMax(T)

Figure 2: Effect of process variation on pipelines (a) and skewing
a clock signal (b).

With ReCycle, we comprehensively apply cycle time stealing
to correct this variation-induced pipeline unbalance. The resulting
clock period of the pipeline is TCP = Average(Ti), ∀i. This pe-
riod can potentially be similar to that of the no-variation pipeline.
As shown in Figure 2(a), the slow stages get more than a clock pe-
riod to propagate their signal, at the expense of faster stages that
transfer their slack.
With this approach, we do not need to change the pipeline struc-

ture, pipeline depth, or the inherent switching speed of transistors.

325

Figure 2(b) depicts the timing diagram for a slow stage, showing the
clock signal to its initial pipeline register and to its final register (the
latter without and with ReCycle). Data propagation in the stage can
take a range of delays (Dmin, Dmax), depending on which path it
uses. This range is shown as a shaded cone. Without ReCycle, the
figure shows that the signal may take too long to be latched by the
final register.
With ReCycle, the clock of the final register is delayed by Tskew.

Tskew is chosen so that, even if the signal takes Dmax, it reaches
the final register early enough to satisfy the setup time (Tsetup)
(Figure 2(b)). Since the clock period is smaller than Dmax, two
signals can simultaneously exist in the logic of one stage in a wave-
pipelined manner [11]. This can be seen by the fact that the cones of
two signals overlap in time. In addition, the minimum delay Dmin

has to be long enough so that the hold time (Thold) of the final reg-
ister is satisfied (Figure 2(b)).
In general, we will skew the clocks of both the initial and final

registers of the stage. As per Section 2.1, we call such skews δi

and δf , respectively. Consequently, Tskew in Figure 2(b) is δf -δi.
In a slow stage, δf > δi; in a fast one, δf < δi. For ReCycle to
work, all the stages in the pipeline have to satisfy the setup and hold
constraints of Equations 1 and 2 which, expressed in terms ofDmin

andDmax can be rewritten as:

δf − δi + TCP ≥ Dmax + Tsetup (4)

δf − δi ≤ Dmin − Thold (5)

In a real pipeline, this simple model gets complicated by the
fact that a pipeline is not a single linear chain of stages. Instead,
as shown in Figure 1(a), the pipeline forks to generate subpipelines
(e.g., the integer and floating-point pipelines) and loops back to pre-
vious stages through feedback paths (e.g., the branch misprediction
loop).
With ReCycle, stages can only trade slack if they participate in

a common loop. As an example, in Figure 1(a), the IntExec and
the Bpred stages can trade slack because they belong to the branch
misprediction loop. However, the IntExec and the FPAdd stages
cannot trade slack.

3.2. Finding the Optimal Period and Skews
Given an arbitrary pipeline, we would like to find the shortest

clock period TCP that we can clock it at, and the set of time skews
δ that we need to apply to the different pipeline registers to make
that possible. The setup and hold constraints of Equations 4 and 5
are linear inequalities. Consequently, the problem of finding the
optimal period and skews can be formulated as a linear program,
where we are minimizing TCP subject to the setup and hold con-
straints for all the stages in the pipeline.
In this linear program, the unknowns are TCP and the skews (δi

and δf) of the initial and final pipeline registers of each individual
stage. Such skews can take positive or negative values. The known
quantities are the delays of the slowest and fastest paths (Dmax and
Dmin) in each pipeline stage, and the setup and hold times (Tsetup

and Thold) of each pipeline register. We will see later how Dmax

andDmin can be estimated.
To solve this linear program, we can use a conventional al-

gorithm, which typically runs in asymptotically exponential time.
Here, instead, we choose to map this problem to a graph, where
nodes represent pipeline register skews and the directed edges rep-
resent the setup and hold constraints. The representation for a stage

is shown in Figure 3, where the edge values are additive to the node
values. We represent the whole pipeline as a graph in this way.
With this representation, we can solve the problem of finding the
optimal skew assignment using a shortest-paths algorithm proposed
by Albrecht et al. [3].

δ i δ f

Dmax Tsetup TCP

DminThold

Figure 3: Constraint graph.

This algorithm runs in worst-case asymptotic time O(NumEdges
× NumNodes + NumNodes2× log(NumNodes)) and is much faster
in practice. To determine an upper bound on the execution time of
this algorithm, let us consider the Bellman-Ford algorithm (BF),
which is a less efficient shortest-paths algorithm. An invocation of
the BF algorithm iterates over all the nodes in the graph. In each
iteration, it relaxes all graph edges. Relaxing an edge involves 3
loads, 2 integer ALU operations, and 1 store. Consequently, a BF
invocation involves 4×NumNodes×NumEdges memory accesses
and 2×NumNodes×NumEdges integer ALU operations. Since, in
practice, only 2 calls to BF are required to converge for this type of
problem, the total number of operations is twice that. For our model
of the Alpha 21264 pipeline (Section 2.2), there are 14 nodes and
26 edges, which brings the total number of memory accesses to
≈2,900 and integer ALU operations to ≈1,500. Memory accesses
have high locality because they only read and write the nodes and
edges. Overall, the execution takes little time. In the rest of the
paper, we will refer to Albrecht et al.’s algorithm as the ReCycle
algorithm.
The advantage of using this algorithm is two-fold. First, it

is much faster than conventional linear programming approaches.
Second, it identifies the loop that limits any further decrease in TCP ,
namely the critical loop. Overall, after applying this algorithm, we
obtain three results: (i) the shortest clock period TCP that is com-
patible with all the constraints, (ii) the individual clock skew δ to
apply to each pipeline register, and (iii) the critical pipeline loop.

3.3. Applying ReCycle
Recycle applies cycle time stealing [4] in a comprehensive man-

ner to compensate for process variation in a pipeline. It relies on
tunable delay buffers in the clock network that enable the insertion
of intentional skew to the signal that reaches individual pipeline
registers. We will outline an implementation of such buffers in Sec-
tion 5.1.
To determine the skews to apply, we need to estimate the max-

imum (Dmax) and minimum (Dmin) delay of each stage. For a
given stage, these parameters can be approximately obtained as fol-
lows. At design time, designers should identify two groups of paths:
those that will contain the slowest one and those that will contain
the fastest one. This can be done with timing analysis tools plus
the addition of a guard band to take into account the effects of the
expected systematic variation after fabrication — note that random
variation is typically less important, since its effects on the gates
of a path tend to cancel each other. In addition, designers should
construct a few BIST vectors that exercise these paths.
After fabrication, the processor should be exercised with these

BIST vectors at a range of frequencies. From when the test fails,
designers should be able to identify the actual fastest and slowest

326

paths under these conditions, and Dmax and Dmin. Since the test-
ing of each stage can proceed in parallel, characterization of the
entire pipeline can be done quickly.
Note that the application of ReCycle does not assume that the

pipeline stages were completely balanced before variation. In real-
ity, pipelines are typically unbalanced. Since ReCycle can leverage
unbalance irrespective of its source, the more unbalance that ex-
ists before variation, the higher the potential benefits of ReCycle.
In reality, however, some of the unbalance detected at design time
will have been eliminated by introducing various time-borrowing
circuits in the design. ReCycle is compatible with the existence of
such circuits, and will still exploit the variation-induced unbalance.
ReCycle can be applied once by the chip manufacturer after the

chip is fabricated. After determining the delays, the manufacturer
runs the algorithm of Section 3.2 to determine the skews, and pro-
grams the latter in the delay buffers. The chip is then run at the
chosen TCP . Note that operating the chip at lower frequencies is
still possible, since the setup and hold constraints for all pipeline
registers would still be satisfied.
In addition, we can envision automatically applying ReCycle dy-

namically, as chip conditions such as temperature change. Such
ability requires embedding circuitry to detect changes in path de-
lays, such as ring oscillators, temperature sensors, delay chains or
flip-flop modifications [1, 15]. Once the delays are known, our algo-
rithm of Section 3.2 can determine the optimal TCP and the skews
very quickly. Specifically, as indicated in Section 3.2, our algorithm
requires≈4,400 basic operations for our model of the Alpha 21264
pipeline — which can be performed in about the same number of
cycles.

4. Using ReCycle
ReCycle has several architectural uses that we outline here.

4.1. Enabling High-Frequency, Long Pipelines
The basic use of ReCycle is to enable high-frequency, long

pipelines. With process variation, the transistors in one or several
stages of a long pipeline are likely to be significantly slower than
those in other stages. Without ReCycle, these stages directly limit
the pipeline frequency; with ReCycle, the delay in these stages is
averaged out with that of fast stages. With more stages in long
pipelines, the variations in stage delays average out more effec-
tively.
While Section 7.2 presents simulations that support this conjec-

ture, this section introduces a simple, intuitive analytical model that
gives insight into this issue. Specifically, consider a linear pipeline
with N stages. For this model only, assume that (i) in each pipeline
stage, all paths have the same delay, (ii) across stages, such delay is
uncorrelated, and (iii) the delay is normally distributed with mean
μ and standard deviation σ. Moreover, for simplicity, assume also
that Tsetup and Thold are zero.
Denote the path delays in each stage as T1, T2, . . . , TN .

The cumulative distribution function of the pipeline’s clock period
(FCP (x)) is the probability that the pipeline can cycle with a period
smaller than or equal to a given value (P (TCP ≤ x)).
For a pipeline without ReCycle, such cumulative distribution

function is:

F nr
CP (x) = P (TCP ≤ x) = P (T1 ≤ x ∩ . . . ∩ TN ≤ x)

Given that we assume that path delays are independent across
stages,

F nr
CP (x) = P (TCP ≤ x) = P (T1 ≤ x)× . . .× P (TN ≤ x)

If we call F (x) the cumulative distribution function of the path de-
lay in a stage, given that all stages have the same distribution, we
have:

F nr
CP (x) = P (TCP ≤ x) = F (x)× . . .× F (x) = (F (x))N

In a pipeline with Recycle, the delay of a stage can be redis-
tributed to other stages, and the pipeline’s period is given by the
average of the stage delays. Specifically, the cumulative distribu-
tion function of the pipeline’s clock period is:

F r
CP (x) = P (TCP ≤ x) = P (

T1 + . . . TN

N
≤ x) = F (x)

The last equality used the fact that the average of N independent
random variables distributed normally with μ and σ is a random
variable distributed normally with the same μ and σ.
From these equations, we see that F nr

CP (x) = (F r
CP (x))N ,

where F r
CP (x) = F (x) < 1. This allows us to draw an important

conclusion: as we add more stages to the pipeline (N increases), the
pipeline with ReCycle performs exponentially better than the one
without it — i.e., the relative ability of ReCycle to make timing
improves exponentially with pipeline depth.

4.2. Adding Donor Stages
A second use of ReCycle is to increase the frequency of a

pipeline further by adding Donor pipeline stages. A donor stage
is an empty stage that is added to the critical loop of the pipeline
— i.e., the loop that determines the cycle time of the pipeline. The
donor stage introduces additional slack that it “donates” to the other
stages in the critical loop. This enables a reduction in the pipeline’s
clock period.
Donor stages are supported by including an additional pipeline

register immediately after the output pipeline register of some
pipeline stages. We call such registers Duplicates. In normal op-
eration, a duplicate register is transparent and, as described in [33],
introduces minor time overhead. To insert a donor stage after a
stage, we enable its duplicate register. In our experiments, we add
one duplicate register to each of the 13 logical pipeline stages in the
Alpha pipeline of Figure 1(a). In this way, we ensure we cover all
the pipeline loops.
Adding an extra stage to the pipeline incurs an IPC penalty, so

it must be carefully done to deliver a net positive performance im-
provement. To select what donor stage(s) to add, we need to have
a way of measuring their individual impact on the IPC of the ap-
plications. Then, we choose the one(s) that deliver the highest per-
formance. The selection algorithm that we use is called the Donor
algorithm.
The Donor algorithm proceeds as follows. Given an individual

pipeline, we run the ReCycle algorithm to identify the critical loop.
Then, we select one duplicate register from the critical loop and cre-
ate a donor stage, rerun the ReCycle algorithm to set the new time
skews and clock period, and measure the IPC. We repeat this pro-
cess for all the duplicate registers in the loop, one at a time. The
donor stage that results in the highest performance is accepted. Af-
ter this, we run the ReCycle algorithm again to identify the new
critical loop and repeat the process on this loop. This iterative pro-
cess can be repeated until the pipeline reaches the power limit.

327

The Donor algorithm can be run statically at the manufacturer’s
site once or dynamically at runtime many times. In the former case,
the manufacturer has a representative workload, and makes each
decision in the algorithm based on the impact on the performance
of the workload.
If the Donor algorithm is run dynamically, we rely on a phase

detector and predictor (e.g., [40]) to detect phases in the running
application. At the beginning of each new phase, the system runs
the whole algorithm to decide what donor stages to add. The algo-
rithm overhead is tolerable because application phases are long —
the average phase is typically over 100ms. Moreover, during the
period needed to profile the IPC of a given pipeline configuration
(e.g., ≈10,000 cycles), the application is still running.
Note, however, that at every step in the Donor algorithm that we

want to change the clock skews in the pipeline, we need to wait until
the pipeline drains. Consequently, such operation is as expensive as
a costly branch misprediction. To reduce overheads, since program
phases tend to repeat, we envision that, after the system selects the
skews, period, and donor(s) for a new phase, it saves them in a table.
The data in the table will be reused if the phase is seen again in the
future. Moreover, as an option, we may decide to stop after we have
added one or two donor stages.
Supporting the ability to add donor stages necessarily compli-

cates the pipeline implementation. For example, extending the
number of cycles taken by a functional unit introduces complex-
ity in the instruction scheduler. We are not aware of any work
on systematically managing variable numbers of cycles for logical
pipeline stages — although some restricted schemes have been re-
cently proposed [34] (Section 8). We plan to target this problem in
our future work.

4.3. Pushing Slack to Feedback Paths
A third use of ReCycle is to push the slack of non-critical loops

to the loops’ feedback paths. Such slack can then be used to re-
duce power or to improve wire routability. To see why, recall that
the pipeline model that we are using (Section 2.2) models loops as
sets of stages with feedback paths. The latter are abstracted away
as one-cycle stages of simply wires with repeaters. Repeaters are
typically inverters that, by interrupting long wires, reduce the total
wire delay [22].
Two loops in a pipeline can be disjoint or overlapping. For ex-

ample, Figure 4 shows two overlapping loops from Figure 1(a): the
branch misprediction one and the integer load misspeculation one.

1

IF BPred IntQ IntReg IntExec

DcacheLdStU
2

R R

RRR

Load misspeculation loop

Branch misprediction loop

: RepeaterR

1

2

IntMap

Figure 4: Example of overlapping loops.

In all the pipeline loops but the critical one, we use ReCycle to
push all the slack in the loop to its feedback path. This does not
affect the cycle time. Note that a stage that belongs to multiple
loops has a special property: its slack is transferred to the feedback
paths of all the loops it belongs to. For example, in Figure 4, the
slack in the IntQ stage is passed simultaneously to both feedback
paths.

By accumulating the slacks in the feedback paths, we can per-
form the following two optimizations.

4.3.1. Power Reduction
With optimal repeater design, about 50% of the power in a feed-

back path is dissipated in the repeaters [26]. Eliminating repeaters
would save power, but it would also increase the delay of the feed-
back path, since a wire delay is D = kl2, where l is the length of the
wire without repeaters. Consequently, we propose to save power by
eliminating as many repeaters as it takes to consume all the slack in
the feedback path.
We envision an environment where the manufacturer, after mea-

suring the effect of process variation on a particular pipeline, could
eliminate individual repeaters from feedback paths to save power. In
this case, we would proceed by removing one repeater at a time, se-
lecting first repeaters between adjacent shortest wire segments (ls).
If we assume a wire with repeaters designed for optimal total delay,
the delay through a repeater is equal to the delay through a wire
segment [22]. Consequently, eliminating one repeater increases the
delay from 3kl2s to k(2ls)

2, which is kl2s .

4.3.2. Improved Routability
The slack of the feedback paths can instead be used to ease wire

routing during the layout stage of pipeline design. Specifically, we
can give the routing tool more flexibility to either lengthen the wires
or put them in slower metal layers. Unfortunately, the routing stage
is pre-fabrication and, therefore, we do not know the exact slack
that will be available for each feedback path after fabrication. Con-
sequently, the amount of leeway given to the routing tool has to be
based on statistical estimates. We can use heuristics such as giving
leeway only to the feedback paths of loops that are long — since
they are unlikely to be critical because they can collect slack from
many stages — and giving no leeway to the feedback paths of the
loops that are very short — since one of them is likely to be the crit-
ical loop. In any case, even if for a particular pipeline, a loop whose
feedback path was routed suboptimally ends up being the critical
loop, we have not hurt correctness: ReCycle will simply choose a
slighly longer clock period than it would have chosen otherwise.
We lack the infrastructure to properly evaluate this optimization.

However, discussions with Synopsys designers suggest that the lee-
way that ReCycle provides would ease the job of routing the feed-
back paths of the pipeline.

4.4. Salvaging Chips Rejected Due to Hold Violations
A final use of ReCycle is to salvage chips that would otherwise

be rejected due to variation-induced hold-time failures. This is a
special case of ReCycle’s use of cycle time stealing to improve
pipelines after fabrication. However, while correcting setup vi-
olations (violations of Equation 4) can be accomplished through
other, non-ReCycle techniques, correcting hold violations (viola-
tions of Equation 5) after fabrication with other techiques is harder.
Specifically, a setup-time problem can be corrected by increasing
the pipeline’s clock period. However, correcting a hold-time prob-
lem after fabrication can be done only with trickier techniques such
as slowing down critical paths by decreasing the voltage — with an
adverse effect on noise margins. As a result, chips with hold-time
problems typically end up being discarded.
The ReCycle framework seamlessly fixes pipelines with hold

failures. Referring to Equation 5, a hold failure makes the right side
negative for some pipeline stage, but ReCycle can make the left side
negative as well. Running the ReCycle algorithm of Section 3.2

328

Delayed
Signal

Signal

Skew
Clock
Drivers

Signal
Buffers

(b)

LocalRepeaters
Grid

Clock

(a)

Gen.

IntQ

Figure 5: Skewing the clock signal: clock distribution network (a) and circuitry to change the delay of the signal (b).

will compute the optimal register skews for all stages to make such
a pipeline reusable.

5. Implementation Issues
ReCycle has three components: tunable delay buffers, the soft-

ware system manager, and duplicate registers. In addition, it can
optionally have a phase detector and predictor, and temperature sen-
sors. In this section, we overview their implementation and then
show the overall ReCycle system.

5.1. Tunable Delay Buffers
ReCycle uses Tunable Delay Buffers (TDB) in the clock net-

work to intentionally skew the signal that reaches individual
pipeline registers. This can be easily done. Figure 5(a) shows a
conventional clock network, where the clock signal is distributed
through a multi-level network — usually a balanced H tree. The
signal driven by the clock generator is boosted by repeaters and
buffered in signal buffers — at least once, but often at a few levels
— before driving a local clock grid. A local clock grid clocks a
pipeline stage. This multi-level tree is strategically partitioned into
zones that follow pipeline-stage boundaries.
We replace the last signal buffer at each zonal level in Figure 5(a)

with a TDB, capable of injecting an intentional skew into its clock-
ing subtree. This can be done by simply adding a circuit to delay
the clock signal, for example as shown in Figure 5(b). A string of
inverters is tapped into at different points to sample the signal at
different intervals, and then a multiplexer is used to select the sig-
nal with the desired delay. A similar design is used in the Itanium
clock network [14] — in their case to ensure that all signals reach
the stages with the same skew.
The TDB itself could be subject to variation. This can be

avoided by sizing its transistors larger.

5.2. System Manager
We propose to implement the ReCycle algorithm in a privileged

software handler that executes below the operating system like the
System Manager (SM) in Pentium 4 [39]. The ReCycle algorithm
code and its data structures are stored in the SM RAM. When a
System Management Interrupt (SMI) is generated, the ReCycle SM
handler is invoked. The handler determines the new pipeline regis-
ter skews and programs them into the TDBs. It also determines the
new cycle time. As indicated in Section 3.2, the ReCycle algorithm
performs about 4,400 basic operations for our pipeline, which take
around 750ns on a 6GHz processor.
An SMI can be generated in two cases: when chip conditions

such as temperature change (Section 3.3) or, if donor stages are sup-

ported, when the currently running application enters a new phase
(Section 4.2). In the former case, the SMI is generated by sensors
that detect when path delays change, such as a temperature sensor.
In the latter case, the SMI is generated by a phase detector and pre-
dictor, such as the hardware unit proposed by Sherwood et al. [40].

5.3. Duplicate Registers
To apply the Donor Stage optimization of Section 4.2, we in-

clude one duplicate register in each logical pipeline stage — for
example, immediately after the output pipeline register of its last
physical stage. By default, these duplicate registers are disabled;
when one is enabled, it creates a donor stage.
Previous work on variable pipeline-depth implementations

shows how pipeline registers can be made transparent using pass-
transistor multiplexing structures [33]. In our design, the single-bit
enable/disable signals of all duplicate registers are collected in a
special hardware register called Donor Creation register. Such reg-
ister is set in privileged mode by the ReCycle SM handler.

5.4. Overall ReCycle System
The overall ReCycle system is shown in Figure 6. The figure

shows one logical stage comprised of one physical stage. The du-
plicate register of the previous stage (shown in dashed lines) is not
enabled, but the one of this stage is.

and Predictor
Phase Detector

Register
Donor Creation

Enable
Enable

TDB TDB TDB TDB

(Software)
System Manager

Temperature
Sensor

SMI SMI

Figure 6: Overall ReCycle system.

The hardware overhead of ReCycle is as follows. For each log-
ical stage, ReCycle adds a duplicate pipeline register and its TDB.
A TDB is a signal buffer like those in conventional pipelines aug-
mented with a chain of inverters and a multiplexer. Moreover, for
each physical pipeline stage, ReCycle augments the existing clock
signal buffer with a chain of inverters and a multiplexer. Finally, Re-
Cycle adds the Donor Creation register. Optionally, ReCycle also
uses a phase detector and predictor, and temperature sensors. Sec-
tion 6.2 quantifies these resources for the actual pipeline modeled.

329

6. Evaluation Setup
6.1. Architecture Modeled
We model a 45nm architecture with a processor similar to an

Alpha 21264, 64KB L1 I- and D-caches and a 2MB L2 cache.
We estimate a nominal frequency of 6GHz with a supply voltage
of 1V. We use the simplified version of the Alpha 21264 pipeline
shown in Figure 1(a). In the figure, labeled boxes represent logi-
cal pipeline stages, which are composed of one or more physical
pipeline stages. Unlabeled boxes show pipeline registers between
logical stages. The pipeline registers between the multiple physical
stages of some logical stages are not shown.
The Alpha 21264 pipeline has a logic depth of approximately

17FO4 per pipeline stage [23]. As per [20], we choose the setup
and hold times to be 10% and 4%, respectively, of the nominal clock
period. This gives us a nominal period of 18.8FO4 and a setup and
hold times of 1.8FO4 and 0.8FO4, respectively. In some experi-
ments, we scale the logic depth of the pipeline stages from 17FO4
to 6FO4; in all cases, we use the same absolute value of the setup
and hold times.
We take the latencies of the different pipeline structures at

17FO4 from [23]. We follow the methodology in [21] in that, as
the logic depth of stages decreases, we add extra pipeline stages to
keep the total algorithmic work in the pipeline constant. Finally, we
are assuming that, before variation, the pipeline stages are balanced.
This represents the most unfavorable case for ReCycle.
The feedback path lengths are estimated based on the Alpha

21264 floorplan scaled down to 45nm. From ITRS projections, we
use a wire delay of 371ps/mm [25].

6.2. ReCycle Hardware Overhead
The pipeline used in this paper (Figure 1(a)) has 23 physical

pipeline stages organized into 13 logical ones. Consequently, as per
Section 5.4, ReCycle needs the addition of 13 duplicate pipeline
registers, 13 clock signal buffers connected to the duplicate regis-
ters, 36 inverter chains and multiplexers, one Donor Creation regis-
ter and, optionally, one phase detector and predictor, and tempera-
ture sensors.
The area and power overhead of the duplicate pipeline registers,

clock signal buffers, inverter chains, multiplexers, Donor Creation
register, and temperature sensors is negligible. Specifically, we ob-
serve that the maximum clock skew Tskew max that we need per
stage is 50% of the nominal clock period. This corresponds to 0.5
× 18.8FO4 = 9.4FO4. Using 1FO4≈ 3FO1 from [22], and 1FO1 =
4ps at 45nm from [32], we have that Tskew max = 112.8ps. This de-
lay can be supplied by 28 basic inverters. Then, the multiplexer can
be controlled by 5 bits. The resulting clock signal buffer with the
inverter chain, multiplexer, and skew selector consumes negligible
area and power. As a reference, a bigger buffer controlled by 16 bits
at 800nm occupies just under 350μm× 150μm [13]. Linearly scal-
ing the area to a 45nm design, and adding up the contributions of all
the added buffers, we get a negligible area. Moreover, Chakraborty
et al. [8] find the power overhead of TDBs to be minimal.
We can use a hardware-based phase detector and predictor like

the one proposed by Sherwood et al. [40]. Using CACTI [44], we
estimate that it adds ≈ 0.25% to the processor area.
6.3. Modeling Process Variation
We model a chip with four instances of the processor, L1 and L2

architecture described in Section 6.1— although only one processor
is being used. The chip’s Vt and Leff maps are generated using the

model of Section 2.3. For Vt, we set μ=150mV at 100°C, and use
empirical data from Friedberg et al. [19] to set σ/μ to 0.09. Follow-
ing [27], we use equal contributions of the systematic and random
components. Consequently, σsys/μ = σran/μ =

√
σ2/2/μ =

0.064. Finally, since Friedberg et al. [19] observe that the range of
spatial correlation is around half the length of the chip, we set the
default φ to 0.5.
For Leff , we use ITRS projections that set Leff ’s σ/μ design

target to be 0.5 of Vt’s σ/μ. Consequently, we use σ/μ = 0.045
and σsys/μ = σran/μ = 0.032. Knowing μ, σ, and φ, we gen-
erate chip-wide Vt and Leff maps using the geoR statistical pack-
age [37] of R [35]. We use a resolution of 1M cells per chip, which
corresponds to 256K cells for the processor and caches used. Each
individual experiment is repeated 200 times, using 200 chips. Each
chip has different Vt and Leff maps generated with the parameters
described. Finally, we ignore variation in wires, in agreement with
current variation models [24].

6.4. Architecture Simulation Infrastructure
We measure the performance of the architecture of Section 6.1

with the SESC cycle-accurate execution-driven simulator [36]. We
run all the SPEC2000 applications except 3 SPECint (eon, perlbmk,
and bzip2) and 4 SPECfp (galgel, facerec, lucas, and fma3d) that
fail to compile correctly. We evaluate each application for 0.6-1.0
billion instructions, after skipping several billion instructions due
to initialization. The simulator is augmented with dynamic power
models from Wattch [7] and CACTI [44].

7. Results
7.1. Timing Issues After Applying ReCycle
In any given pipeline, the loop with the longest average stage de-

lay is the critical one, and limits ReCycle’s ability to further reduce
the pipeline period. In the rest of this paper, we use the term “stage
in a loop” to refer to the combination of the loop’s physical stage(s)
and its feedback path(s).
Figure 7 shows the fraction of times that each of the loops in

Figure 1(b) is critical for a batch of 200 chips. This figure demon-
strates the interplay of several factors: the number of logical stages
in a loop, the number of physical stages in each logical stage of the
loop, and the relative number of feedback paths in the loop. A large
number of logical stages in a loop induces a better averaging of
stage delays, since the probability that all logical stages are slow is
small. More physical stages per logical stage reduces the effective-
ness of ReCycle. The reason is that, since all these physical stages
share the same hardware structure, their critical paths are affected
by the same values of the systematic component of variation. As a
result, they contribute with similar delays to the loop. Finally, since
wires are not subject to variation in our model and, in most cases, a
stage with logic is slowed down due to a slow critical path, having
relatively more feedback paths in a loop reduces its average delay.
The figure shows that there are two types of pipeline loops that

are unlikely to be critical. One is very short loops, such as iren,
fpren, iissue, fpissue, and ialu. These loops have two stages, in-
cluding one feedback path. The latter is effective at reducing the
average loop delay. The second type is long loops, such as ldfwd.
This loop has 13 stages, which include 2 feedback paths. It is likely
that it contains some fast stages that reduce the average stage delay.
On the other hand, medium-sized loops that include several

physical stages in the same logical stage are often critical. They

330

fe
tc

h

ire
n

fp
re

n

iis
su

e

fp
is

su
e

ia
lu

fp
ad

d

fp
m

ul

bm
is

s

ild
sp

fp
ld

sp

ld
fw

d

Pipeline loop

pi

pe
lin

es
 (

%
)

0
5

10
15
20
25
30
35

Figure 7: Histogram of critical pipeline loops.

fe
tc

h

ire
n

fp
re

n

iis
su

e

fp
is

su
e

ia
lu

fp
ad

d

fp
m

ul

bm
is

s

ild
sp

fp
ld

sp

ld
fw

d

Pipeline loop

R
el

. s
la

ck
 (

%
)

0
5

10
15
20
25

Figure 8: Average slack per stage in each loop. The data is shown
relative to the stage delay of a no-variation pipeline.

include fetch, fpmul and others. In these loops, the feedback path
only has modest impact at reducing the average delay, and the fact
that multiple physical stages are highly correlated opens the door to
unfavorable cases.
For a given pipeline, only one loop is critical, and the rest have

unused timing slack. For the same experiment as in the previous
figure, Figure 8 shows the average slack per stage in each loop. The
data is shown relative to the stage delay of a no-variation pipeline.
The data shows that, in general, the average slack per stage in

a loop tends to increase with the number of stages making up the
loop. This is because more stages tend to produce better averages
and reduce the possibility of making the loop critical. We observe
that, in the longest loop (ldfwd), we get an average slack per stage
of 25%. The main exception to this trend is fetch, which has a low
average slack even though it has 5 stages. The reason is that it is
critical for the largest number of pipelines (Figure 7) and, therefore,
has no slack in those cases.
Finally, we measure the average and maximum time skew that

ReCycle inserts per pipeline register. We show this data as we
change the range φ from its default 0.5 to higher and lower val-
ues (Figure 9(a)), and as we reduce the useful logic depth of the
pipeline stages from the default 17FO4 to 6FO4 (Figure 9(b)). In
both cases, we show the skews relative to the stage delay of a no-
variation pipeline for the same logic depth of the stages.
The average skew is a measure of the average stage unbal-

ance in the pipeline loops. Figure 9(a) shows that the average
skew increases as we reduce φ. This is because for low φ, even
short loops observe large changes in systematic variation, which
increase unbalance. Similarly, Figure 9(b) shows that the average
skew increases as we decrease the logic depth. The reason is that,
for shorter stages, the random component of the variation is more
prominent, increasing the unbalance. Finally, both figures show that
the maximum skews are much higher than the average ones. For ex-
ample, for 17FO4 and φ= 0.1, the maximum skew reaches 0.5.

7.2. Frequency After Applying ReCycle
We now consider the impact of ReCycle on the pipeline fre-

quency. We compare three environments, namely one without pro-
cess variation (NoVar), one with process variation and no ReCycle
(Var), and one with process variation and ReCycle (ReCycle). Fig-
ure 10 compares these environments for 17FO4 as we vary φ. All
bars are normalized to the frequency of Var for φ=0.1.

(a) Skew versus φ

(b) Skew versus logic depth

Figure 9: Average and maximum time skew inserted by ReCycle
per pipeline register. The skews are shown relative to the stage delay
of a no-variation pipeline of the same logic depth.

0.1 0.3 0.5 0.9
Range (φ)

R
el

at
iv

e
fr

eq
ue

nc
y

0.
0

0.
4

0.
8

1.
2

NoVar
ReCycle
Var

Figure 10: Pipeline frequency of the environments considered for
different φ.

6 8 10 12 14 16 18

1.
0

1.
5

2.
0

2.
5

3.
0

Useful logic per stage(FO4)

R
el

at
iv

e
fr

eq
ue

nc
y

NoVar
ReCycle
Var

Figure 11: Pipeline frequency of the environments considered for
different useful logic depths per pipeline stage.

The figure shows that, across different φ, the pipeline frequency
of NoVar is 19-22% higher than that of Var. This would be the fre-
quency gain if we could completely eliminate the effect of variation.
On the other hand, the frequency of Recycle is about 12-13% higher
than Var’s. This means that ReCycle is able to recover around 60%
of the frequency losses due to variation. The figure also shows that
frequencies are not very sensitive to the value of φ, possibly because
many factors end up affecting the critical loop.
Figure 11 compares the three environments for φ=0.5 as we vary

the useful logic depth per pipeline stage from 17FO4 to 6FO4. All

331

the curves shown in the figure are normalized to the frequency of
Var for 17FO4.
The figure shows that, as we decrease the logic depth per stage,

process variation hurts the frequency of a Var pipeline more and
more. Indeed, while NoVar’s frequency is 19% higher than Var’s at
17FO4, it is 32% higher at 6FO4. This is because, with fewer gates
per critical path for 6FO4, the random component of process varia-
tion does not average itself as much, creating more unbalance across
stages and hurting Var. However, a pipeline with ReCycle is very
resilient to variation, and tracks NoVar well. ReCycle performs rel-
atively better as the logic depth per pipeline stage decreases. Specif-
ically, ReCycle’s frequency is 12% and 24% higher than Var’s for
17FO4 and 6FO4, respectively. This means that ReCycle recovers
63% and 75% of the losses due to variation for 17FO4 and 6FO4,
respectively. The stage-delay averaging capability of ReCycle is
very effective. Overall, ReCycle puts pipelines with variation back
on the roadmap to scaling.

7.3. Adding Donor Stages
After ReCycle is applied, we can further improve the pipeline

frequency by adding donor stages. Section 4.2 described the Donor
algorithm that we use. In practice, every time that we add a donor
stage to a loop, the loop typically ends up with the highest average
slack per stage in the pipeline and another loop becomes critical.
Recall that the Donor algorithm stops when we reach the power
limit. We set the power limit to 30W per processor, which is the
maximum power dissipated by any of our applications on a NoVar
processor at the nominal frequency.
We have run the Donor algorithm statically (Section 4.2), using

as representative workload the execution of all our applications, one
at a time, and minimizing the impact on the geometric mean of the
IPCs. It can be shown that, on average for the 200 pipelines con-
sidered, the Donor algorithm pushes up the frequency of ReCycle-
enhanced pipelines by a further 24%, resulting in an average fre-
quency that is now 36% higher than Var.
As an example, Figure 12(a) shows the frequency changes as we

run the Donor algorithm on one representative pipeline instance.
Each data point corresponds to the addition of one donor stage. We
see that the frequency increases slowly until when we add the 9th
donor stage; at that point, there is large frequency increase. This
corresponds to the point when all the loops in the pipeline have
been given donor stages — while the pipeline has 12 loops, some of
them share a donor stage. After that, frequency increases are again
small.
Since increasing the latency of a pipeline loop hurts IPC, not

every step in frequency increase translates into a performance
increase. Figure 12(b) shows the performance changes for the
pipeline instance of Figure 12(a). If we focus on the curve that
includes all applications, we see that the performance changes little
with more donor stages until we add the 9th stage. At that point,
the performance jumps up, even surpassing the performance of the
pipeline without variation (NoVar). After that, additional stages im-
prove performance slowly again. The figure also shows the curve
if we had used only SPECint or SPECfp applications to profile the
IPC changes.
Examining the data for the 200 pipelines analyzed, we observe

several trends. First, as we add donor stages, performance decreases
or stays flat for the first few steps and then starts increasing. Sec-
ond, when each loop has at least one donor stage, we observe a
significant performance boost. Third, the performance reaches a

●

● ●
●

● ●

●

●

●

●

●
●

0 2 4 6 8 101.
00

1.
05

1.
10

1.
15

1.
20

Extra Donor stages

R
el

at
iv

e
fr

eq
ue

nc
y

(a)

●
●

● ●

● ●

● ●

●

●

●

●

0 2 4 6 8 100.
95

1.
00

1.
05

1.
10

Extra Donor stages

R
el

at
iv

e
B

IP
S

● All applications
SPECint
SPECfp
NoVar performance

(b)

Figure 12: Impact of donor stages on frequency (a) and perfor-
mance (b) in one representative pipeline instance.

maximum after a few steps and then starts decreasing. Finally, the
optimal performance delivered by this technique is always higher
than that of the no-variation pipeline.
To gain additional insight, we run the Donor algorithm with a

single application at a time, and measure the performance gains.
It is as if we were tuning the pipeline to run that single applica-
tion. Figure 13 shows the number of donor stages required for the
pipeline to match the performance of the no-variation pipeline. The
figure shows a bar for each application and the geometric mean (last
bar). For a given application, the bar shows the mean of the 200
pipelines, while the segment shows the range of values for individ-
ual pipelines. We see that, in the large majority of applications, the
Donor algorithm needs to add 8-12 stages to match NoVar. This
figure also shows that all applications are amenable to the Donor
algorithm.

am
m

p

ap
pl

u

ap
si ar
t

cr
af

ty

eq
ua

ke

ga
p

gc
c

gz
ip

m
cf

m
es

a

m
gr

id

pa
rs

er

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex vp
r

w
up

w
is

e

gm
ea

n

E
xt

ra
 D

on
or

 s
ta

ge
s

0

5

10

15

20

Figure 13: Number of donor stages needed to match the perfor-
mance of the no-variation pipeline.

7.4. Overall Performance and Power Evaluation
We now compare the performance of Var, NoVar, ReCycle, Re-

Cycle plus the static application of the Donor algorithm (ReCy-
cle+StDonor), and ReCycle plus the dynamic application of the
Donor algorithm (ReCycle+DynDonor). The latter is a limited dy-
namic environment, where we consider each whole application to
be a single phase and, therefore, only rerun the Donor algorithm
at the beginning of each application. Moreover, we assume that
we know the average IPC impact of adding each donor stage from
a previous profiling run. Modeling a more sophisticated dynamic
environment will likely produce better results.
Figure 14 shows the performance of the five environments nor-

malized to Var. The bars show the mean of the 200 pipelines, while
the segments show the range for individual pipelines. Looking at
average values, we see that ReCycle speeds up the applications

332

by 9% over Var. This is not enough to compensate the effect of
variation, since NoVar is 14% faster than Var. However, ReCy-
cle+StDonor and ReCycle+DynDonormore than recover the losses
due to variation, since they are 15% and 16% faster than Var, re-
spectively.

Figure 14: Performance of different environments.

Figure 15: Dynamic power for constant performance.

6 8 10 12 14 16 18

0
10

20
30

40

Useful logic per stage(FO4)

R
ep

ea
te

rs
 r

em
ov

ed
 (

%
)

●

●
●

●
● ●

● ● ●
● ●

●

● φ=0.1
φ=0.3
φ=0.5
φ=0.9

Figure 16: Fraction of repeaters eliminated by ReCycle.

ReCycle generates timing slack that we use to increase the fre-
quency. Interestingly, we could use the slack generated by ReCycle
to save power instead. Specifically, we could use dynamic voltage
scaling to bring the frequency back to the Var level while reducing
the operating voltage— saving dynamic power in the process. Sim-
ilarly, we can do the same thing with the slack created by the Donor
optimization, except that now we want to roll back the frequency
until we get the same performance as Var.
The results of these experiments appear in Figure 15. The figure

shows the dynamic power consumed by the environments of Fig-
ure 14 at constant performance. We see that ReCycle saves on av-
erage 26% of the Var dynamic power. Moreover, ReCycle+StDonor
and ReCycle+DynDonor save 50% and 53%, respectively of the Var
dynamic power. These are sizable power reductions.

7.5. Eliminating Repeaters
Section 4.3.1 proposed using ReCycle to push the slack of non-

critical loops to their feedback paths and then consuming it by elim-
inating repeaters there — and saving power in the process. Fig-
ure 16 shows the percentage of repeaters in feedback paths that Re-
Cycle eliminates for different values of the useful logic depth per
pipeline stage and φ.

The figure shows that ReCycle removes 15-30% of the repeaters,
depending on the logic depth per stage. The higher effectiveness
corresponds to pipelines with less logic per stage. This is because,
as we make the pipeline longer and stages shorter, we have more
unbalance across stages. This results in non-critical loops having
more slack. The bigger the slack is, the more repeaters we can
remove. On the other hand, the value of φ has little effect. Overall,
since ≈50% of the power in feedback paths is in repeaters [26],
ReCycle can save ≈7.5-15% of the power in feedback paths.

8. Related Work
ReCycle is an architectural framework for pipelines that com-

prehensively performs cycle time stealing after fabrication (either
statically at the manufacturer site or dynamically based on operat-
ing conditions) to tolerate process variation. The most related ar-
eas of research are those of clock skew optimization and adaptive
pipelining.
Clock skew optimization has been well studied in the circuits com-
munity [4]. It has been applied both at design time and after fabrica-
tion to improve circuit timing margins. Fishburn [18] was the first to
propose a linear programming formulation to find the optimal clock
skews in a circuit.
Several works use clock skewing to address the problem of pro-

cess variation. Most of them apply skewing to latch elements in the
clock distribution network to compensate for the effects of process
variation on the clock path delays themselves (e.g., [41]). For ex-
ample, Itanium has buffers in the clock network that dynamically
deskew the signal — i.e., ensure that the clock signal reaches all the
parts of the processor with the same skew [14]. On the other hand,
Liang and Brooks [31] use clock skewing to balance two pipeline
stages. Specifically, they use cycle time stealing between the regis-
ter file and execute stages and, with level-sensitive latches, between
stages in the floating-point unit.
The only work that applies cycle time stealing in a systematic

manner in a pipeline is that of Lee et al. [30]. They use it in the
context of Razor to balance pipeline error rates. They neither apply
it to process variation nor, more importantly, study the impact of
pipeline structure such as pipeline depth or loop organization on the
performance of cycle time stealing.
Adaptive pipelining techniques are related to our donor stage op-
timization. Koppanalil et al. [29] study the effect of dynamically
merging pipeline stages to extend the frequency range of dynamic
voltage scaling; they do not explicitly describe the implementation
details of their scheme. Efthymiou et al. [16] use asynchronous
design techniques to adaptively merge adjacent stages in an em-
bedded, single-issue processor pipeline. Albonesi [2] proposes
dynamically-varying functional unit latencies as an adaptive pro-
cessing scheme, but he does not discuss the resulting scheduling
complexities. Recently, Ozdemir et al. [34] address the issue of
scheduling complexity for variable-access L1 cache by using ad-
ditional load-bypass buffers. Finally, concurrently with our work,
Liang and Brooks [31] propose inserting level-sensitive latches in-
side the FP unit that can be enabled after fabrication. If process
variation is such that the unit does not meet timing, the latches are
enabled, adding one extra cycle to the FP unit.

9. Conclusions
Process variation affects processor pipelines by exacerbating

pipeline unbalance and reducing the attainable frequency. To toler-

333

ate variation, this paper proposed an architectural framework called
ReCycle that comprehensively applies cycle time stealing — trans-
ferring the timing slack of the faster stages to the slower ones by
skewing the clock arrival times to latching elements after fabrica-
tion. As a result, the pipeline can be clocked with a period close to
the average stage delay rather than the longest one.
We showed that ReCycle increases the frequency of a pipeline

without changing its structure or depth, or the speed of transistors.
Such increase is relatively higher the deeper the pipeline is. More-
over, we proposed donor pipeline stages, which are empty stages
added to the critical loop in the pipeline to “donate” slack to slow
stages, enabling a higher pipeline frequency. We also used ReCy-
cle to push the slack of non-critical pipeline loops to their feedback
paths, which can then be consumed there to reduce wire power or
to improve wire routability. Finally, ReCycle can also be used to
salvage chips that would otherwise be rejected due to variation-
induced hold-time failures.
On average for a 17FO4 pipeline, ReCycle increased the fre-

quency by 12%, thereby recovering 63% of the frequency lost to
variation, and speeding up our applications by 9%. Combining
ReCycle and donor stages increased the frequency of the original
pipeline by 36% and its performance by 15% on average. The
resulting pipeline performed even better than one without process
variation. Finally, ReCycle also saved 7-15% of the power in feed-
back paths for different pipeline depths.

References
[1] M. Agarwal, B. C. Paul, and S. Mitra. Circuit failure prediction and

its application to transistor aging. In IEEE VLSI Test Symp., 2007.
[2] D. H. Albonesi. Dynamic IPC/clock rate optimization. In Interna-

tional Symposium on Computer Architecture, June 1998.
[3] C. Albrecht, B. Korte, J. Schietke, and J. Vygen. Maximum mean

weight cycle in a digraph and minimizing cycle time of a logic chip.
Discrete Appl. Math., 123(1-3):103–127, 2002.

[4] K. Bernstein, K. M. Carrig, C. M. Durham, P. R. Hansen, D. Hogen-
miller, E. J. Nowak, and N. J. Rohrer. High Speed CMOS Design
Styles. Kluwer Academic Publishers, 1999.

[5] E. Borch, E. Tune, S. Manne, and J. S. Emer. Loose loops sink chips.
In International Symposium on High-Performance Computer Archi-
tecture, February 2002.

[6] K. Bowman, S. Duvall, and J. Meindl. Impact of die-to-die and within-
die parameter fluctuations on the maximum clock frequency distribu-
tion for gigascale integration. IEEE Journal of Solid-State Circuits,
37(2):183–190, 2002.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In International
Symposium on Computer Architecture, June 2000.

[8] A. Chakraborty, K. Duraisami, A. Sathanur, P. Sithambaram,
L. Benini, A. Macii, E. Macii, and M. Poncino. Dynamic thermal
clock skew compensation using tunable delay buffers. In International
Symposium on Low Power Electronics and Design, October 2006.

[9] T. Chen and S. Naffziger. Comparison of adaptive body bias (ABB)
and adaptive supply voltage (ASV) for improving delay and leakage
under the presence of process variation. IEEE Trans. on VLSI Systems,
11(5):888–899, October 2003.

[10] Z. Chishti and T. Vijaykumar. Wire delay is not a problem for SMT
(in the near future). In International Symposium on Computer Archi-
tecture, June 2004.

[11] L. Cotten. Maximum rate pipelined systems. In AFIPS Spring Joint
Computing Conference, 1969.

[12] N. Cressie. Statistics for Spatial Data. John Wiley & Sons, 1993.
[13] A. DeHon, T. Knight, Jr., and T. Simon. Automatic impedance control.

In ISSCC Digest of Technical Papers, February 1993.
[14] U. Desai, S. Tam, R. Kim, J. Zhang, and S. Rusu. Itanium processor

clock design. In International Symposium on Physical Design, April
2000.

[15] S. Dhar, D. Maksimovic, and B. Kranzen. Closed-loop adaptive volt-
age scaling controller for standard-cell ASICs. In International Sym-
posium on Low Power Electronics and Design, August 2002.

[16] A. Efthymiou and J. D. Garside. Adaptive pipeline depth control for
processor power-management. In International Conference on Com-
puter Design, November 2002.

[17] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,

D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In International
Symposium on Microarchitecture, December 2003.

[18] J. P. Fishburn. Clock skew optimization. In IEEE Trans. on Comput-
ers, volume 39, July 1990.

[19] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos.
Modeling within-die spatial correlation effects for process-design co-
optimization. In International Symposium on Quality Electronic De-
sign, March 2005.

[20] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L.
Allmon. High-performance microprocessor design. Journal of Solid-
State Circuits, 33(5):676–686, May 1998.

[21] A. Hartstein and T. R. Puzak. The optimum pipeline depth for a mi-
croprocessor. In International Symposium on Computer Architecture,
May 2002.

[22] R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of
the IEEE, 89(4), April 2001.

[23] M. Hrishikesh, D. Burger, N. P. Jouppi, S.W. Keckler, K. I. Farkas, and
P. Shivakumar. The optimal logic depth per pipeline stage is 6 to 8 FO4
inverter delays. International Symposium on Computer Architecture,
May 2002.

[24] E. Humenay, D. Tarjan, and K. Skadron. Impact of parameter vari-
ations on multicore chips. In Workshop on Architectural Support for
Gigascale Integration (ASGI), June 2006.

[25] International Technology Roadmap for Semiconductors (2005 Edi-
tion).

[26] P. Kapur, G. Chandra, and K. C. Saraswat. Power estimation in global
interconnects and its reduction using a novel repeater optimization
methodology. In Design Automation Conference, June 2002.

[27] T. Karnik, S. Borkar, and V. De. Probabilistic and variation-tolerant
design: Key to continued Moore’s law. In TAU Workshop, 2004.

[28] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
19(2):24–36, 1999.

[29] J. Koppanalil, P. Ramrakhyani, S. Desai, A. Vaidyanathan, and
E. Rotenberg. A case for dynamic pipeline scaling. In Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, Oc-
tober 2002.

[30] S. Lee, S. Das, T. Pham, T. Austin, D. Blaauw, , and T. Mudge. Reduc-
ing pipeline energy demands with local DVS and dynamic retiming.
In International Symposium on Low Power Electronics and Design,
pages 319–324, August 2004.

[31] X. Liang and D. Brooks. Mitigating the impact of process variations
on CPU register file and execution units. In International Symposium
on Microarchitecture, December 2006.

[32] B. Nikolic, L. Chang, and T.-J. King. Performance of deeply-scaled,
power-constrained circuits. In International Conference on Solid State
Devices and Materials, September 2003.

[33] M. Olivieri. Design of synchronous and asynchronous variable-latency
pipelined multipliers. In IEEE Transactions on Very Large Scale Inte-
gration Systems, volume 9, April 2001.

[34] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-aware
cache architectures. In International Symposium on Microarchitec-
ture, December 2006.

[35] R Development Core Team. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, 2005.

[36] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC Simulator,
January 2005. http://sesc.sourceforge.net.

[37] P. Ribeiro Jr. and P. Diggle. geoR: a package for geostatistical analysis.
R-NEWS, 1(2):14–18, June 2001.

[38] T. Sakurai and R. Newton. Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas. Journal of
Solid-State Circuits, 25(2):584–594, 1990.

[39] T. Shanley. The Unabridged Pentium-4. Addison Wesley, July 2004.
[40] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In

International Symposium on Computer Architecture, June 2003.
[41] M. Shoji. Elimination of process-dependent clock skew in CMOS

VLSI. In Journal of Solid State Circuits, pages 875–880, 1986.
[42] E. Sprangle and D. Carmean. Increasing processor performance by

implementing deeper pipelines. In International Symposium on Com-
puter Architecture, May 2002.

[43] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical Analysis and
Optimization for VLSI: Timing and Power. Springer, 2005.

[44] D. Tarjan, S. Thoziyoor, and N. Jouppi. CACTI 4.0. Technical Report
2006/86, HP Laboratories, June 2006.

[45] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chan-
drakasan, and V. De. Adaptive body bias for reducing impacts of
die-to-die and within-die parameter variations on microprocessor fre-
quency and leakage. Journal of Solid-State Circuits, 37(11):1396–
1402, 2002.

[46] X. Vera, O. Ünsal, and A. González. X-pipe: An adaptive resilient mi-
croarchitecture for parameter variations. InWorkshop on Architectural
Support for Gigascale Integration, June 2006.

[47] J. Xiong, V. Zolotov, and L. He. Robust extraction of spatial correla-
tion. In International Symposium on Physical Design, August 2006.

334

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

