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Abstract—The area under the receiver operating characteristic
(ROC) curve (AUC), an important performance measure of the
energy detector, is derived for Nakagami-𝑚 and 𝜂-𝜇 fading
channels. The analysis is based on the moment generating
function (MGF) of the received signal-to-noise ratio (SNR). The
derived closed-form expressions do not include special functions,
thus reducing computational issues. The analytical framework
can also be applied in cases with other fading channels, with
diversity reception, or with cooperative spectrum sensing.

Index Terms—Area under ROC curve (AUC), energy detection,
moment generating function (MGF).

I. INTRODUCTION

THE presence of unknown deterministic signals of an
active wireless communications network can be detected

by the energy detection. This technique is frequently analyzed
in the wireless communications community, especially for
the spectrum sensing in cognitive radio networks and the
signal detection in ultra-wideband (UWB) communications. In
cognitive radio networks, energy detection is a promising spec-
trum sensing technique because it is a non-coherent technique
with low implementation complexity. The conventional energy
detector measures the energy associated with the received
signal over a specified time period and a bandwidth.

The performance of an energy detector is analyzed by using
two key metrics: detection probability (or missed-detection
probability) and false alarm probability. Typically, detection
capability at a given threshold is illustrated using a receiver
operating characteristic (ROC) curve – a plot of the detec-
tion probability versus the false alarm probability when the
threshold varies from 0 to ∞. In the open literature, the
performance of an energy detector, based on ROC curve, has
been analyzed for small scale and large scale fading, different
diversity reception techniques, and data and decision fusion
cooperative spectrum sensing [1]–[4]. However, it is desirable
to have a single parameter to measure the overall detection
capability. Thus, the area under the ROC curve (AUC) has
been introduced as an alternative performance measure [5].
AUC is also used as a metric for fault detection performance
of wavelet-based detection techniques [6].

AUC and complementary AUC (CAUC, which is the area
under the complementary ROC curve) are proposed in [5]
and [7], respectively, and subsequently investigated in [8],
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as single-valued measures for overall detection capability of
an energy detector. In these references, the AUC and CAUC
of systems with no diversity reception, with several popular
diversity schemes, with channel estimation errors, with fading
correlations, and with relay networks are comprehensively
analyzed. However, the analytical approaches of [5], [7], [8]
may not suffice for some network scenarios (e.g., coopera-
tive spectrum sensing). Moreover, the special functions (e.g.,
Marcum-𝑄, confluent hypergeometric, and regularized conflu-
ent hypergeometric functions) in the detection probability and
the AUC expressions lead to high computational complexity.
To circumvent these drawbacks, based on moment generating
function (MGF) of the received signal-to-noise ratio (SNR),
this letter proposes an alternative analytical approach to evalu-
ate the AUC by reformulating it as a complex integral, which
can be evaluated by calculating the residues [9]. The residue
calculations are simple, with no special functions involved,
and are readily available in all modern mathematical softwares
(e.g., Mathematica and MAPLE).

II. SYSTEM MODEL

A. Channel and Signal Models

Depending on the unknown signal status (absent or present),
the received signal status at the receiver can be described by
using a binary hypothesis: ℋ0 (signal absent) and ℋ1 (signal
present). The additive white Gaussian noise (AWGN) at the
receiver is assumed to be a circularly symmetric complex
Gaussian random variable with mean zero and one-sided
power spectral density 𝑁0. The conventional energy detection,
which has an ideal bandpass filter with bandwidth 𝑊 and
an integrator within time interval 𝑇 , is considered. For an
unknown deterministic signal, the probabilities of false alarm,
𝑃𝑓 (𝜆), and detection, 𝑃𝑑(𝛾, 𝜆), can be evaluated as [1]

𝑃𝑓 (𝜆) =
Γ(𝑢, 𝜆2 )

Γ(𝑢)
and 𝑃𝑑(𝛾, 𝜆) = 𝑄𝑢(

√
2𝛾,

√
𝜆), (1)

where 𝑢 = 𝑊𝑇 , 𝜆 is a predefined threshold value, 𝛾 is SNR
given as 𝛾 = 𝐸𝑠∣ℎ∣2/𝑁0, 𝐸𝑠 is the power budget at the
transmitter, ℎ is wireless channel gain, 𝑄𝑢(⋅, ⋅) is the 𝑢th order
generalized Marcum-𝑄 function, Γ(⋅) is the gamma function,
and Γ(⋅, ⋅) is the upper incomplete gamma function.

B. Performance Measurement

We next consider the AUC, which measures overall detec-
tion capability of the energy detector. Different from [5], [7],
[8], this measure is derived by using an alternative approach
as follows.

Applying the threshold averaging method, the instantaneous
AUC, 𝐴(𝛾), can be given as 𝐴(𝛾) = − ∫∞

0
𝑃𝑑(𝛾, 𝜆)

∂𝑃𝑓 (𝜆)
∂𝜆 𝑑𝜆.
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Using the derivative of 𝑃𝑓 (𝜆) with respect to (w.r.t.) 𝜆 and an
alternative representation of 𝑃𝑑(𝛾, 𝜆) [4, eq. (4)], 𝐴(𝛾) can
be written as

𝐴(𝛾) =

∫ ∞

0

𝑒−
𝜆
2

𝑗2𝜋

∮
Ω

𝑒(
1
𝑧−1)𝛾+𝜆

2 𝑧

𝑧𝑢(1− 𝑧)
𝑑𝑧
𝜆𝑢−1𝑒−

𝜆
2

2𝑢Γ(𝑢)
𝑑𝜆

=
1

𝑗2𝜋

∮
Ω

𝑒(
1
𝑧−1)𝛾

𝑧𝑢(1 − 𝑧)

∫ ∞

0

𝜆𝑢−1𝑒−(1− 𝑧
2 )𝜆

2𝑢Γ(𝑢)
𝑑𝜆𝑑𝑧

=
1

𝑗2𝜋

∮
Ω

𝑒(
1
𝑧−1)𝛾

𝑧𝑢(1 − 𝑧)(2− 𝑧)𝑢
𝑑𝑧,

(2)

where Ω is a circular contour of radius 𝑟 ∈ [0, 1), and the
second equality of (2) results after changing integration orders.

III. AVERAGE AUC

The average AUC under different fading channels is given
in this section. With direct integration over the channel SNR
distribution 𝑓𝛾(𝑥), the average AUC, 𝐴 =

∫∞
0 𝐴(𝑥)𝑓𝛾(𝑥)𝑑𝑥,

can be written using (2) as

𝐴 =
1

𝑗2𝜋

∮
Ω

𝑔(𝑧)𝑑𝑧, (3)

where

𝑔(𝑧) =
ℳ𝛾

(
1− 1

𝑧

)
𝑧𝑢(1− 𝑧)(2− 𝑧)𝑢

,

ℳ𝛾(𝑠) = 𝔼(𝑒−𝑠𝛾) is MGF of the received SNR 𝛾, and
𝔼(⋅) means expectation. The Residue Theorem in complex
analysis is one of the effective techniques to evaluate the
contour integral in (3). If 𝑔(𝑧) =

∑∞
𝑖=−∞ 𝑎𝑖(𝑧 − 𝑧0)

𝑖, the
integration of 𝑔(𝑧) in a closed contour Ω encircling 𝑧0 is given
by

∮
Ω
𝑔(𝑧)𝑑𝑧 = 𝑗2𝜋𝑎−1 where 𝑎−1 is the complex residue. If

the contour encloses multiple poles, then the general result is∮
Ω

𝑔(𝑧)𝑑𝑧 = 𝑗2𝜋
∑
𝑎𝑖∈𝒜

Res(𝑔; 𝑎𝑖), (4)

where 𝒜 is the set of poles contained inside the contour, and
Res(𝑔; 𝑎𝑖) denotes residue of function 𝑔(𝑧) at 𝑧 = 𝑎𝑖 [9].
Readers are referred to our paper [4], in which a detailed
discussion on calculation of residues is given.

A. Average AUC over Nakagami-m and 𝜂-𝜇 Fading Channels

We consider Nakagami-𝑚 and 𝜂-𝜇 (Format I) fading mod-
els, as they are popularly used to model the non-line of sight
small-scale fading of a wireless channel. Note that Rayleigh
fading model is a special case of the Nakagami-𝑚 model.

1) Nakagami-𝑚: The MGF of Nakagami-𝑚 fading model
is 1/

(
1 + 𝛾

𝑚𝑠
)𝑚

, where 𝛾 is the average SNR and 𝑚 is the
fading parameter. The average AUC over Nakagami-𝑚 fading,
𝐴Nak, is derived based on (3) and (4), as

𝐴Nak =

⎧⎨
⎩

1

(1+ 𝛾
𝑚 )𝑚

[
Res

(
𝑔; 𝛾

𝑚+𝛾

)
+ Res (𝑔; 0)

]
: 𝑢 > 𝑚

1

(1+ 𝛾
𝑚 )

𝑚 Res
(
𝑔; 𝛾

𝑚+𝛾

)
: 𝑢 ≤ 𝑚.

(5)
Res

(
𝑔; 𝛾

𝑚+𝛾

)
= 1

(𝑚−1)!𝐷
𝑚−1

(
1

𝑧𝑢−𝑚(1−𝑧)(2−𝑧)𝑢

)
∣𝑧= 𝛾

𝑚+𝛾
,

Res(𝑔; 0) = 1
(𝑢−𝑚−1)!𝐷

𝑢−𝑚−1

(
1

(𝑧− 𝛾
𝑚+𝛾 )

𝑚
(1−𝑧)(2−𝑧)𝑢

)
∣𝑧=0,

and 𝐷𝑛(𝑓(𝑧)) denotes the 𝑛th derivative of 𝑓(𝑧) w.r.t. 𝑧.
When 𝑚 = 1, 𝐴Nak is the average AUC over Rayleigh fading.

2) 𝜂-𝜇 (Format I): The MGF of 𝜂-𝜇 (Format I) fading
model is 𝐾𝜇/[(𝑠+ 𝑐1)

𝜇(𝑠+ 𝑐2)
𝜇], where 𝐾 = 4𝜇2ℎ/𝛾2,

𝑐1 = 2(ℎ−𝐻)𝜇/𝛾, 𝑐2 = 2(ℎ+𝐻)𝜇/𝛾, 𝜇 represents the
number of multipath clusters (𝜇 > 0), and the respective
𝐻 and ℎ are defined as 𝐻 = (𝜂−1 − 𝜂)/4 and ℎ =
(2 + 𝜂−1 + 𝜂)/4 where 𝜂 (> 0) is the power ratio of the in-
phase component to the quadrature component [10].

The average AUC over 𝜂-𝜇 fading, 𝐴𝜂𝜇, is derived based
on (3) and (4), as (6) at the top of the next page, where

Res
(
𝑔; 1

1+𝑐1

)
=

𝐷𝜇−1

(
1

(𝑧− 1
1+𝑐2

)𝜇𝑧𝑢−2𝜇(1−𝑧)(2−𝑧)𝑢

)
∣
𝑧= 1

1+𝑐1

(𝜇−1)! ,

Res
(
𝑔; 1

1+𝑐2

)
=

𝐷𝜇−1

(
1

(𝑧− 1
1+𝑐1

)𝜇𝑧𝑢−2𝜇(1−𝑧)(2−𝑧)𝑢

)
∣
𝑧= 1

1+𝑐2

(𝜇−1)! ,

Res(𝑔; 0) =
𝐷𝑢−2𝜇−1

(
1

(𝑧− 1
1+𝑐1

)𝜇(𝑧− 1
1+𝑐2

)𝜇(1−𝑧)(2−𝑧)𝑢

)
∣𝑧=0

(𝑢−2𝜇−1)! , and
𝜇 (the number of multipath clusters) is an integer value.

The AUC expressions (5) and (6) are closed-form. These
expressions can be exactly evaluated by symbolic mathemat-
ical softwares (e.g., Mathematica and MAPLE). They do not
include any special functions (such as confluent hypergeomet-
ric and Marcum-𝑄 functions appearing in [5], [7], [8]).

B. AUC in other Network Scenarios

If the MGF of 𝛾 is in a simple rational form (e.g., in
Nakagami-𝑚 and 𝜂-𝜇 fading), the proposed analytical ap-
proach based on residue evaluation is effective. Unfortunately,
MGFs of some fading models (e.g., 𝐾 or 𝐾𝐺 model) or some
network scenarios (e.g., cooperative spectrum sensing) do not
have a rational form. For those scenarios, we make the fol-
lowing suggestions: 1) [11] proposes a mixture gamma (MG)
model for the distribution of the SNR, which can accurately
approximate existing fading channels. The MGF of the MG
model is in a simple rational form; 2) for cooperative spectrum
sensing in cognitive radio, we have derived in [4] the rational
form MGFs; and 3) in general, the Taylor series and the Padé
approximation of the MGF can generate rational forms. In
summary, if the exact MGF is not in a suitable rational form,
an accurate rational approximation can be derived, which can
be used in (4). Thus, the proposed analytical approach based
on the MGF furnishes a unified framework.

IV. NUMERICAL AND SIMULATION RESULTS

This section provides numerical and semi-analytical Monte-
Carlo simulation results. For numerical results, equations
(5) and (6) are used for Nakagami-𝑚 and 𝜂-𝜇 channels,
respectively. For semi-analytical Monte-Carlo simulations, 106

channel realizations are generated, each of which is used by
eq. (9) in [5] to calculate the instantaneous AUC, and the
average AUC is calculated over the 106 instantaneous AUCs.

The average CAUC (CAUC=1-AUC) versus average SNR
curves are plotted, with 𝑢 = 2. Fig. 1 shows the average
CAUC for Nakagami-𝑚 fading channel, which demonstrates
the effect of fading parameter 𝑚 on overall detection capabil-
ity. When 𝑚 increases, the average CAUC decreases, which
means the overall detection capability increases. Moreover, the
detection performance increases with order 𝑚 as 𝑚 increases
from 1, 2, 3, to 5. Thus, the detection diversity order is 𝑚.
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𝐴𝜂𝜇 =

⎧⎨
⎩

𝐾𝜇

(1+𝑐1)𝜇(1+𝑐2)𝜇

[
Res

(
𝑔; 1

1+𝑐1

)
+ Res

(
𝑔; 1

1+𝑐2

)
+ Res (𝑔; 0)

]
: 𝑢 > 2𝜇

𝐾𝜇

(1+𝑐1)𝜇(1+𝑐2)𝜇

[
Res

(
𝑔; 1

1+𝑐1

)
+ Res

(
𝑔; 1

1+𝑐2

)]
: 𝑢 ≤ 2𝜇

(6)
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Fig. 1. Average CAUC for Nakagami-𝑚 fading channel.

Since a general proof for detection diversity order may need
more space, we give a numerical example. When 𝑚 = 2 and
𝑢 = 3, from (5), 𝐴Nak can be evaluated as

𝐴Nak =
4

(2 + 𝛾)2

[
1/8(
𝛾

2+𝛾

)2 − 1

2
2+𝛾

(
𝛾

2+𝛾

)2 (
4+𝛾
2+𝛾

)3

+
3

2
2+𝛾

(
𝛾

2+𝛾

)(
4+𝛾
2+𝛾

)4 +
1(

2
2+𝛾

)2 (
𝛾

2+𝛾

)(
4+𝛾
2+𝛾

)3

]

= 1− 15.5𝛾−2 +𝒪(𝛾−3).

(7)

Thus, the detection diversity order is 2. Fig. 2 shows the
average CAUC for 𝜂-𝜇 fading model (Format I), which
demonstrates the effect of the number (𝜇) of multipath clusters
on overall detection capability. When 𝜇 = 1, 2, 3, and 5,
the average CAUC decreases in the order of 2, 4, 6, and 10,
respectively. This means overall detection capability increases
with order 2𝜇, and the detection diversity order is 2𝜇.

Similar to [1-3], a small value of 𝑢 (= 2) is considered
in above results. A larger 𝑢 will increase the computational
complexity, since our approach needs to compute a derivative
of order 𝑢. It takes less than 10 minutes for a 3.4 GHz
computer processor to compute 𝑢 = 3500 case. For values of
𝑢 up to 10,000, a more powerful workstation may be needed.

V. CONCLUSION

Closed-form expressions for the AUC of energy detector
over Nakagami-𝑚 and 𝜂-𝜇 fading channels are derived. This
analysis uses the MGF of the received SNR at the energy
detector output, and subsequently applies the residue theorem.
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Fig. 2. Average CAUC for 𝜂-𝜇 fading channel (Format I), 𝜂 = 0.5.

The analytical results do not include special functions, thus
reducing computational issues, and are amenable to rapid
computer evaluation by using mathematical softwares. This
analysis can be extended to other fading models and different
network scenarios, e.g., cooperative spectrum sensing.
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